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The automatic generation of 3D finite element meshes (FEM) is still a bottleneck for the simulation of
large fluid dynamic problems. Although today there are several algorithms that can generate good meshes
without user intervention, in cases where the geometry changes during the calculation and thousands
of meshes must be constructed, the computational cost of this process can exceed the cost of the FEM.
There has been a lot of work in FEM parallelization and the algorithms work well in different parallel
architectures, but at present there has not been much success in the parallelization of mesh generation
methods. This paper will present a massive parallelization scheme for re-meshing with tetrahedral
elements using the local modification algorithm. This method is frequently used to improve the quality
of elements once the mesh has been generated, but we will show it can also be applied as a regeneration
process, starting with the distorted and invalid mesh of the previous step. The parallelization is carried
out using OpenCL and OpenMP in order to test the method in a multiple CPU architecture and also in
Graphics Processing Units (GPUs). Finally we present the speedup and quality results obtained in meshes

with hundreds of thousands of elements and different parallel APIs.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

FEM is the best method to solve large fluid dynamic problems.
This method requires the construction of a mesh to describe
the geometry of the domain, which is a real bottleneck in the
simulation process (one of the main specialists of the area recently
opened his conference saying “No mesh, no computations”).
The problem gets worse when the domain changes during the
simulation process. When the nodes are moved, elements will
usually distort to the point that the mesh is no longer valid, and
then regeneration is mandatory.

The most accepted strategy is the re-meshing of the whole do-
main, as proposed by [21,5], among others. This is because the gen-
eration using the Delaunay method is faster than one simulation
step. Nevertheless, this method requires an a posteriori element
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quality improvement to remove slivers and other local problems,
and this process can be really expensive. Moreover, if the simula-
tion is carried out in a parallel architecture, the re-meshing must
also be parallelized, and this is not easy for the Delaunay method.

Our proposal is the use of a robust algorithm for element quality
improvement as a re-meshing process, considering that a mesh
is already available. The time step of the simulation determines
the node displacement and, therefore, the quality of the elements.
When the time steps are relatively small (as normally occurs), only
a few elements are not acceptable. In these cases, the standard
approach of re-meshing the entire domain seems unreasonable,
and strategies as local meshers sound more attractive.

There are several approaches to improve the element quality
in a given mesh. For example, in [22] the authors propose finding
the most suitable position of the nodes based in an optimization
process, but in practice this algorithm does not solve most of
the problems. The strategy that seems to work really well is the
one proposed in [3] and applied by other authors like [4,10]. This
algorithm is based on a local topological modification process,
changing nodes connection in small clusters of elements.
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In this paper, we propose a dynamic mesher using local topo-
logical operations that attempt to optimize a given quality cri-
terion. Our re-meshing process is configurable, since the type of
operation can be chosen (with/without nodes movement, nodes
insertion/deletion, surface improvement, among others) according
to the problem addressed. An interesting feature of this process is
that operations can be executed simultaneously on multiple pro-
cessors in a context of global memory, even in GPUs. Under such
circumstances, we may obtain interesting speedups, which com-
pete in time with classical algorithms like Delaunay; but the qual-
ities obtained are significantly better.

2. Background

Simulation accuracy and the time step that must be used
depend on the size and quality of the elements. If these elements
are degraded by a deformation, a re-meshing strategy is mandatory
for recovering a minimum quality. There is extensive literature on
how to improve the quality of the meshes in adaptive contexts.
In [1,14] a survey of quality optimization methods with dynamic
meshes can be found.

Probably the best technique for elements quality optimization
in three dimensions is the one proposed by T. Coupez in [3],
and adopted in other works like [7,19]. The idea is to analyze
small clusters of elements, changing the element connectivity and
checking if a better quality can be obtained. The ways in which the
clusters are selected and the type of connectivity changes applied
have a strong impact in the efficiency of the method.

This technique can be employed even on discretization with
large differences in element size, thus making the strategy suitable
for use in an adaptive context. In more recent works, such as [20],
authors have intended to apply a transformation that takes the
distorted space to the original space, letting nodes move freely
and elements be reconfigured to adapt to the quality criterion
proposed. In [11] a mesh adaptation algorithm is proposed as an
iterative combination of point insertions, edge collapses, swaps
and point of edge smoothing for Aerodynamics problems. The work
of [15] proposes a parallel method but taking into account only
node insertion (densification).

For large problems where the number of nodes is very high,
the Finite Element Method is usually parallelized and the re-
meshing step becomes a bottleneck and must also be programmed
in a parallel architecture. Many of the algorithms presented
from [16] to [17], for working with dense meshes in a parallelizable
environment propose the generation of partitions known as
Patches with a minimum connectivity between elements using
principles of graphs [12]. These methods treat the surfaces shared
by two or more patches differently, which adds a significant
synchronization time.

In this work, we will present a variant of the dynamic re-
meshing method that runs on parallel architectures. The meshes
are previously prepared, distributing the elements in multiple
threads from the connectivity information. This method works
with all the elements at the same time, thus avoiding the use of
lock strategies—similar to lock-free algorithms applied in real-time
systems [6]- and ensuring the simultaneous access to data. The
strategy is primarily designed to run on PCs with a large amount
of processing units, and even on GPUs.

3. Quality optimization

The results of the simulations depend on the size and quality
of the mesh elements. If the quality of these elements is near
to or below 0, the results are meaningless. If, at the same time,
nodes move during the simulation, the mesh quality is constantly
degraded. It is in this context that maintaining a high quality of

the tetrahedra becomes important; and this is achieved by re-
meshing, for each time step, those potentially problematic sections
of domain.

Traditional methods (such as Delaunay [8] or Advancing
Front [9]) often fail in accomplishing this purpose because of two
main reasons: first, they regenerate the entire domain at a very
high computational cost, and second, the qualities of the meshes
are sometimes much lower than expected. Local change strategies
resolve these issues, but sometimes they require several iterations
(and time) to provide reasonable meshes and fail to solve inverted
elements.

We propose supplementing the traditional strategies with one
of local improvements, which modifies a mesh in an attempt to
optimize a given quality metric at each time step of the simulation.
In order to measure the quality of the elements, we use the
proposal of [13], which relates their volume and side length. This
metric is suitable and efficient for regular elements; it also tends to
improve the dihedral angles. As a global criterion for optimization,
the worst dihedral angle is used. This angle defines the numerical
accuracy as well as the time step that can be applied. In this section,
we will provide the details for the framework we propose.

3.1. Iterative improvement

The proposed improvement algorithm consists of an incremen-
tal method. It begins by choosing a set of tetrahedra to form a clus-
ter, and then, it performs a series of internal transformations to
generate new tetrahedra. If the lowest quality of the new cluster is
greater than the quality of the previous one, the elements are ac-
cepted; otherwise, they are discarded. The algorithm then contin-
ues with another group of elements. During the evaluation process,
the original surface of each cluster should be preserved.

The process is repeated on all the selected elements of the
mesh either until a minimum quality requirement is met or when
the amount of changes is not significant. This strategy of partial
improvement ensures that, in each successive change, the quality
of the mesh will be better and will never worsen the worst quality.
One of the disadvantages of this method is its computational cost,
since each step requires that almost every element of the mesh is
evaluated several times.

3.2. Cluster reconnections

For a dynamic mesher to obtain good quality results, it should
prove a significant amount of local topological transformations to
repair poor quality tetrahedra. The topological transformations are
a set of changes that modify the connections, removing existing
elements and replacing them by others which occupy the same
space. Many previous works [20,2] suggest a limited set of changes,
such as 2-3 or 4-4 edge swapping, vertex removal or face collapse.

In this paper, we propose a more general scheme, in which
possible connections are freely evaluated within a cluster limited
by its outer surface. Following some ideas originally proposed
by [3], the algorithm selects a set of tetrahedra, extracts the surface
and evaluates connecting all the surface triangles to every opposite
node, thus generating a new configuration. If this configuration
optimizes the proposed criteria, the result is stored; otherwise,
it is discarded. This method, called CLUSTER OPTIMIZATION, is
presented below. If, during the simulation, nodes can be added, the
method is also tested with a new central vertex.

CLUSTER OPTIMIZATION (Cluster C, Mesh M, bool canlnsert)
Cs <« extract surface from C

T <« triangles in Cs

V «vertexes in Cg

Copr < copy(C)
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if (canInsert) V.Add( Ceenter)
for each vertex v € V
Cremp = new Cluster()
for each trianglet € T
tt = new Tetra(t.v0, t.v1, t.v2, v)
Cremp-Add(tt)
If worstQuality(Cremp) > worstQuality(Copt)
Copt < Cremp
newElements.Add(Cop;)
removeElements.Add(C)

In order to illustrate how this works, a 2D case is shown, where
contour is fixed and all the vertexes are evaluated as shown in
Fig. 1. The best configuration (case 1) is the one that maximizes the
minimum quality with the existing elements. If nodes can be added
(case 6), the worst quality and the average cluster are improved
even more, at the expense of adding nodes.

Although we cannot guarantee that all the possible connections
are analyzed, we can assert that the number of cases evaluated is
much higher than those that have been presented up to now.

3.3. Optimization based on node movement

Smoothing is a well-known technique for improving the qual-
ity of meshes in an efficient manner. Even tough the connectivity
of the elements is preserved, the movement of nodes in the sim-
ulation may require that certain data are interpolated; therefore,
smoothing is not always applied. In this work, several smoothing

strategies were evaluated, such as local Laplacian smoothing [22]
and iterative Taubin filter [18], which usually provide good re-
sults. Although they tend to improve the average quality, some-
times they introduce inverted elements.

To ensure that no negative elements are generated and that
quality is constantly improved, we propose another strategy: the
idea of this algorithm is to analyze, in a spatial section around a
selected node, a set of “candidate positions” that the node may
take. These positions are located at an r distance from the node.
If one of these positions improves the quality criteria, it is chosen
as the new node’s position and the process is repeated. If there
is no position that optimizes the quality, the radius is updated as
r < r/2, new candidates are proposed and it is tested again until
r is less than a certain tolerance. The initial r is taken as half the
average length of the cluster edges. Fig. 2 shows how the algorithm
works.

This strategy requires, at least, 10 iterations to converge, with a
rather high computational cost; however, it ensures better results
than the previously mentioned smoothing techniques. The parallel
pseudo-code is later explained.

3.4. Surface operations

The above mentioned operations work exclusively with tetra-
hedral elements, while the surface that encloses the mesh is
preserved throughout the entire optimization process. In many
instances, when the mesh is animated or deformed, the surface of
the mesh may worsen, overlapping elements that make tetrahedra
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Fig. 3. Cylinder mesh with elements overlapping on the surface.

impossible to be repaired. In such cases, our proposal is to imple-
ment operations that improve the surface, such as edge swapping
or vertexes removal that optimize the volume criteria. Since such
operations might affect the appearance of the mesh, changes must
be restricted [7].

Fig. 3 shows a case where these operators should be applied:

4. Operations pipeline

In general, a dynamic mesher like the one we propose here
should re-mesh conservatively in order to limit artificial diffusion.
Our meshing operations are applied in the order that affects the
topology. First, the most restrictive operations are applied (with
face or edge reconfiguration), and then, the most aggressive (like
smoothing) follow. All operations should always work fast. In
order to build clusters efficiently, some connectivity information
is needed. We propose that the list of incident tetrahedra, or
elements neighbors, is stored for each node. This structure is useful
to calculate, in a dynamic manner, other types of neighborhoods,
such as tetrahedron face neighbors, neighbors by edge and vertex
neighbors. These structures are generated at the time of use and are
afterwards disposed. As a result, the memory space is effectively
reduced. This process is much more robust in parallel processes at
an increased computational time.

When some elements are added or removed, the node structure
of the elements’ neighbors should be instantly updated to ensure
mesh conformity. In turn, new and deleted elements should be
reflected in the mesh. As shown in the CLUSTER OPTIMIZATION
method, two lists of elements are kept: one for the new elements
and another for the deleted ones. The mesh is updated only once
in a bulk task called CONFORM, reducing memory allocations and
accelerating the updating stage.

EDGE OPTIMIZATION(Mesh M)
E < set of all edges of tetrahedra € M
for eachedgee € E
C < Cluster(e) { Subset of tetrahedra in mesh M with edge e}
CLUSTER OPTIMIZATION( C, M )
Conform(M)
FACE OPTIMIZATION(Mesh M)
F < set of all faces of tetrahedra € M
for each facef € F
C < Cluster(f) {Subset of the tetrahedra in the mesh
M that has face f}
CLUSTER OPTIMIZATION( C, M )
Conform(M)
NODE OPTIMIZATION(Mesh M)
V <« set of all vertexes of tetrahedra € M
for each vertex v € V
C < Cluster(v ) {Subset of the tetrahedra in the mesh
M that has vertex v}

CLUSTER OPTIMIZATION( C, M )
Conform(M)
SURFACE OPTIMIZATION(Mesh M)
Es < set of all surface edges of tetrahedra € M
for each edge e; € Es
ming < min( quality(e;.T1, e;.T2)
if swapDiagonal(e;.T1, e;.T2) > ming
CLUSTER OPTIMIZATION( C )
Conform(M)
DYNAMIC IMPROVE MESH(Mesh M , int flags)
for each iteration
EDGE OPTIMIZATION(M)
FACE OPTIMIZATION(M)
If (NodeRemovalFlag ) NODE OPTIMIZATION(M)
If (SurfaceFlag) SURFACE OPTIMIZATION(M)
If (SmoothFlag) SMOOTH OPTIMIZATION(M)

For the tested cases, the quality of the mesh drastically increases
in the first three iterations.

5. Parallel meshing

The dynamic meshing method has the advantage that the
elements are analyzed in localized groups. As noted in the previous
section, each time new connections are generated, neighborhood
structures must be updated. These updates in a concurrent access
environment should be treated by a synchronization mechanism,
such as barriers or semaphores, to avoid inconsistencies. But,
when there are many processes accessing the same data, these
synchronization mechanisms slow down the overall process.
However, it can be predicted that accesses to and changes of two
clusters that do not share elements can be treated simultaneously
without data locks.

We propose a set of definitions that help generalize the prob-
lem. Each of the operations listed in the previous section is a
mesh operator known as O. Every operator O works on a cluster
of elements C. Depending on the operator type, each cluster is
conformed around an element E using neighborhood information
(either per vertex, face or edge); this is what we call the Operator
Scope or Sp.

The aim of this process is to ensure that there are multiple
instances of processing operators, since clusters should not share
items. We define mutual-independence between two elements E
and E’ asI(E, E’) = 1if it meets So(E) N So(E") = @.

If we wish to process multiple clusters simultaneously using
parallel architectures, we need to organize them so that they en-
sure the condition of mutual independence. To satisfy this condi-
tion, it is necessary to make a processing scheduling. The schedul-
ing algorithm will be explained in the following section.

5.1. Assignment method

Since it is expected that all elements can be modified by several
independent threads simultaneously, there must be a distribution
of elements among these processors that ensures the consistency
of the changes. Considering the element neighborhood and apply-
ing a temporary order, changes affect only one element at a time.

Using the previously defined notions of Operators Scope, and
taking one element E, all elements within the scope of E are marked
as visited and they are partly excluded from the analysis. If another
independent element called E’ is found, it can be assigned to a
different thread. In case there are many other elements to process,
the same criteria is applied and the available threads are assigned.
The elements are sorted by quality in order to ensure that the worst
elements are processed first.
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Fig. 4. Independent clusters identified with different colors. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of

this article.)

The proposed algorithm has the following form:

ASSIGMENT (Elements E , Operation O)
ResultList R
E < sortByQuality(E)
foreache € E
Sc < Scope (e, 0)
If marked( e ) or markedAny (S¢) {If already visited }
continue
for each ¢’ € S¢
mark(e’)
Push(R, e)
return R

Elements distributed in different mutually independent clus-
ters are shown in Fig. 4. These clusters can be seen as small par-
titions of the mesh.

When comparing parallel execution to the sequential version,
certain unresolved issues arise. The most important one is that
all elements that have been discarded for not complying with the
condition of independence should later be processed. In this paper,
we propose that all the elements that have not been allocated in
the first iteration, are allocated in the next stage and the process is
repeated until all the elements are visited. On the other hand, if a
cluster has been improved, new elements are created, which might
need to be evaluated, while those deleted need to be discarded. The
new and deleted elements are maintained into two different lists
for each cluster until every cluster has been processed. After the
processing stage, all memory news/deletes are performed in the
CONFORM method and the visit list is updated.

Now, the process proposed to optimize by NODE presents the
following form:

PARALLEL NODE OPTIMIZATION (Mesh M)
V <« set of all vertexes of tetrahedra € M
While not empty(V)
V' <« assignment(M, NodeOperation)
{ V' is alist of vertexes }
Remove(V, V')
Parallel for each vertexv e V
C <« Cluster(v) {Subset of tetrahedra
that has vertex v}
CLUSTER OPTIMIZATION( C)
CONFORM(M)
return

This process is carried out with the different types of operations
proposed, where only the Scope function and the elements to
be visited (nodes, faces, surface faces or edges) vary. In order to
include a new type of operator that has not been described here, it
is necessary to define the appropriate Scope function. Although we

have shown a working scheme where only one type of operator is
applied at a time - similar to a SIMD (Single Instruction Multiple
Data) architecture - different types of operators (similar to MIMD)
could coexist.

The total mesh optimization time is composed by an assign-
mentTime plus optimizationTime. The optimizationTime is fully par-
allelizable, so it is expected to decrease linearly when running on
more processors. Since the assignment has a linear cost, it is time-
invariant in different hardware architectures; but its simplicity
ensures that the execution time is several times less than the eval-
uation time.

5.2. Smoothing on the GPU

The use of the GPU as a processing unit operates efficiently
in parallel for numeric calculation, but it has serious limitations
when dynamic memory managing is required. In this project, we
suggest the use of OpenCL, which has not yet integrated functions
such as new or delete data that CUDA already provides. Under
these conditions, the structures updates are not trivial and the
accelerations with respect to a multi-core CPU implementation are
not as good as expected.

On the other hand, the proposed smoothing strategy intensively
evaluates the positions of the nodes without changing their
connectivity and promises to be the most favored function. An
implementation of this method on a GPU is easily carried out
using OpenCL with the advantage of portability to multiple CPUs or
GPUs architectures. Since a node movement affects the quality of
incident elements, the independence condition should be verified,
for which the assignment scheme is previously applied. The
parallelization of the reconnectivity step is not so easy, and may
be an architecture dependent implementation will be necessary.

PARALLEL SMOOTH KERNEL (Vertex V, float radius,
Tetra* tetraNeighbors)
Copr < tetraNeighbours[V] Build a Cluster
with neighbors
Qpest < getClusterQuality (Copr)
radius <— meanEdgeLength(Copr)
While radius > ¢
Vecandidates < computeCandidates(V, radius)
for each vertex v € Viundidates
VPOS <— Upos
Qremp <— getClusterQuality (Copr)
if (Gremp > Qpest )
Upest <— Upos
found <« true
if (not found )r < r/2
Vpos <— Upest
return
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PARALLEL SMOOTH OPTIMIZATION( Mesh M, float radius)
V <« set of all vertexes of tetrahedra € M
ty <« tetrahedra vertex neighborhoode M
CopyDataToGPU (V, M, ty)
While not empty(V)
V’ < assignment(M, NodeOperation) {V’ is a
list of vertexes}
Parallel for each vertexv e V'
PARALLEL SMOOTH KERNEL
(v, radius, ty )
ReadDataFromGPU(V)
return

The copying times from GPU to CPU memory, which are
supposed to be insignificant, are considered in the optimization
time.

6. Benchmarks

The efficiency of the optimization strategy presented above is
tested with a simple optimization case. A cubic cavity is considered,
which is defined in the range (0, 0, 0) to (1, 1, 1), refined with
6 x 10’ tetrahedral elements with an initial quality of 7.26°. This
cavity is deformed by certain function, which decreases the quality
t0 0.05° and produces the appearance of 48 inverted elements with
negative volume. In order to optimize the quality of this mesh, 7
iterations of parallel processing are applied using all the steps of
volume (EDGE, FACE, NODE, SMOOTH). SURFACE OPTIMIZATION is
omitted since the mesh surface is preserved. As the SMOOTH step
is executed in the GPU, times are taken separately. We expect to
obtain a minimal quality of 15°.

The first calculations were performed on an AMD 6-cores at
2.6 GHz with an NVIDIA GTX550 graphics card. The parallelization
was carried out with OpenMP and OpenCL. The time required to
run the process using an increasing number of processors and
adding the GPU to the calculation is shown in Table 1 and it
is presented in a graphic in Fig. 5. The results show that the
optimization algorithm exhibited good performance in parallel,
but it is not the best. Also a good speed up is obtained when the
smoothing step is carried out on a GPU. The problem is now in the
cluster assignment process and the actualization of data structures
necessary when the nodes connection changes. These stages of
the algorithm remain sequential and are the new bottleneck. Both
processes can also be parallelized and they are a topic for future
work.

The mesh after seven iterations has a quality of 25.10° but three
were enough to eliminate all inverted elements and get 15° as the
minimal dihedral.

Table 1
Speedups obtained. (Left) The whole process in the CPU. (Right) Smoothing on the
GPU and re-mesh in the CPU.

Optimization times

#Cores CPU time (s) CPU + GPU time (s)
Smooth E+F+N Total Smooth E4+F+N  Total
(CPU) (CPU) (GPU) (CPU)
1 300.17 81.77 381.94 10.73 80.35 91.08
2 168.23 51.61 219.84 9.74 50.89 60.73
4 97.49 37.42 13491 9.80 37.86 47.60
6 77.53 34.22 111.75 10.09 34.59 44.39
Table 2
Optimization times compared to its sequential version.
Large meshes test
Mesh #Elements Conf1 Conf2
Time (ms) Speedup Time (ms) Speedup
Dragon 32959 2169 3.80x 3363 3.42x
Sculp 50391 3179 4.22x 4907 3.84x
Staypuft 102392 6459 3.71x 11896 2.81x
Cylinder 378018 21341 5.67 x 33799 5.10x
Cavity 607 297 32293 6.61x 48248 6.36%
F1 2080457 105437 4.75x 191562 3.70x

6.1. Large mesh optimization

It is important to test the algorithm in meshes with a great
amount of elements. The second benchmark tries to optimize the
quality of six examples (some of which have already been used in
other works), with a smaller mesh of 3 x 10 elements and a larger
one of 2 x 10° elements. Fig. 6 shows some of the examples used.

Two different PC configurations were used with different
parallelization APIs. One is an Intel i-5 (2nd generation) with 4
cores at 3.3 GHz with 8 GB of RAM and a NVIDIA GTX 560 with
1.5 GB of RAM using Intel Thread Building Block (TBB) called
configuration1; the other is an AMD 6-cores at 2.6 GHz with an
NVIDIA GTX550 with 1 GB of RAM running with OpenMP called
configuration2. We used in both OpenCL for GPU step. Table 2
shows the best times obtained in each case after three iterations
and the improvement of the worst dihedral angle with respect to
the incoming quality. Fig. 7 summarizes in images the qualities
obtained for the cases proposed.

The obtained qualities were the same for both PC configura-
tions. With configuration1, we obtained very good speedups, even
with less cores, thanks to a newer technology and a better GPU.
At the same time, configuration2 was limited by GPU memory size;
the biggest mesh that could be allocated was the F1 one. It was also
observed that the larger the mesh, the better the speedup, as more
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Fig. 6. Large meshes tested.
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Fig. 7. Six meshes before and after improvement. In each box, the left mesh is the input, the right mesh is the optimized. Histograms show the distributions of dihedral
angles and the minimum and maximum dihedral angles in each mesh. Colored elements are tetrahedrals that have a dihedral angle below 15°. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

clusters are processing in parallel. On the other hand, poor qual- have more elements. Top speedups of 6.61x were obtained for the
ity meshes (F1 and staypuft) take down this rate because clusters cavity mesh which has a rather good initial quality.
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Table 3
Comparing times and quality with other re-meshing library.

Large meshes test

Mesh Worst dihedral Average dihedral Time (s) Our method
(Stellar) (Our (Stellar) (Our (Stellar) Speedup
method) method)
Dragon 27.11° 28.11° 51° 54° 28.0 12.9x
Sculp 30.05° 26.40°  45° 55° 110.0 30.7x
Staypuft 18.10° 11.07°  50° 60° 198.0 34.6x

Finally, an open access re-meshing library, Stellar [20], was used
to compare execution times and element quality. In order to get
comparable results, Stellar and our proposal were limited to a
fixed amount of improvement iterations. We evaluated the cases,
already published in their work, measuring minimum and mean
dihedral angles. In Table 3, we show the obtained results.

In general, Stellar obtains better minimal angle qualities, but
worse average angles. The speedups were not linear, since the
operations pipeline and termination criterion are different. It can
also be observed that the time required for a large mesh such as
Staypuft is too high (more than 3 min) and it is not applicable in an
adaptive context.

7. Conclusions

This paper presents a meshing algorithm designed to be used
in a highly parallelizable environment. The implementation of the
solution proposed here is relatively simple, since it is based on loop
parallelization functions that are provided by open libraries such as
OpenMP or TBB.

The procedure presented has three main components. The first
is a quality metric which determines the elements that should be
processed. The second is a set of optimal regeneration strategies
of elements within a local environment from the metric chosen.
The third is an administrator of these clusters which allows
simultaneous modification of multiple groups.

The proposed framework is flexible in the sense that any of
these components, especially the operators, can be modified or
extended. Meeting the proposed scope definitions, the method
ensures that the new components can be effectively parallelized.
This scheme has already been successfully applied to surface
meshes composed of triangles, and it may be extended to other
types of elements. To improve performance even more, the method
can be applied only to clusters that have poor quality (below a
given tolerance).

This study only showed a set of possible configurations of the
elements, which allowed us to achieve significant improvements
in quality, but did not guarantee that all possible reconnections
leading to a global optimum were evaluated. In a future line of
work, we should extend the reconnection method so as to consider
more possibilities. The other possible line of work consists of using
this strategy in a distributed context, with even larger meshes, for
which a message passing scheme might need to be added.
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