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ABSTRACT 

The increasing computational needs of parallel applications 

inevitably require portability across parallel architectures, which 

now include heterogeneous processing resources, such as CPUs 

and GPUs, and multiple SIMD/SIMT widths. However, the lack 

of a common parallel programming paradigm that provides 

predictable, near-optimal performance on each resource leads to 

the use of low-level frameworks with architecture-specific 

optimizations, which in turn cause the code base to diverge and 

makes porting difficult. Our experiences with parallel applications 

and frameworks lead us to the conclusion that achieving 

performance portability requires structured code, a common set of 

high-level directives and efficient mapping onto hardware. 

In order to demonstrate this concept, we develop Trellis, a 

prototype programming framework that allows the programmer to 

maintain only a single generic and structured codebase that 

executes efficiently on both the CPU and the GPU. Our approach 

annotates such code with a single set of high-level directives, 

derived from both OpenMP and OpenACC, that is made 

compatible for both architectures. Most importantly, motivated by 

the limitations of the OpenACC compiler in transforming such 

code into a GPU kernel, we introduce a thread synchronization 

directive and a set of transformation techniques that allow us to 

obtain the GPU code with the desired parallelization that yields 

more optimal performance. 

While a common high-level programming framework for both 

CPU and GPU is currently not available, our analysis shows that 

even obtaining the best-case performance with OpenACC, state-

of-the-art solution for a GPU, requires modifications to the 

structure of codes to properly exploit braided parallelism, and 

cope with conditional statements or serial sections. While this 

already requires prior knowledge of compiler behavior the optimal 

performance is still unattainable due to the lack of 

synchronization. We describe the contributions of Trellis in 

addressing these problems by showing how it can achieve correct 

parallelization of the original codes for three parallel applications, 

with performance competitive to that of OpenMP and CUDA, 

improved programmability and reduced overall code length. 
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1. INTRODUCTION 

1.1 Need for a Portable Parallel Framework 
Parallelizing compilers still fall short in many cases, especially for 

the hierarchical parallelism that maps best onto GPUs, so 

parallelization still typically involves manual orchestration of 

execution and data transfer. For clarity and convenience, many 

programmers would prefer to parallelize code by using pragmas to 

annotate a traditional, serial programming language, such as 

Fortran or C, rather than using new languages or extensions that 

require them to rewrite the existing code.  

While many solutions related to OpenMP [1] or inspired by its 

form facilitate this approach, none of them are universal. 

Currently, OpenMP is limited to multi-core CPUs. Although PGI 

[2] and OpenACC [3] feature directives that describe the two-

level parallelism common in accelerators, they are not yet 

compatible with CPUs and lack a key, local synchronization 

primitive. The Cetus-based translator [4] achieves CPU-GPU 

portability, but its underlying OpenMP programming model does 

not provide directives suited for accelerators. Moreover, none of 

the above frameworks support codes with braided parallelism and 

complicated loop structures, a shortcoming that usually results in 

serialization, even when parallelism is present. The only 

framework that achieves portability and optimal performance on 

both multi-core CPU and GPU is OpenCL [5]. However, unlike 

high-level, directive-based approaches, it requires the use of low-

level statements and extensive modifications to the code base. The 

performance of the high-level directive-based programming 

approaches must improve before programmers will stop using 

low-level solutions. 

The lack of a convenient, portable, and capable framework forces 

programmers to use architecture-specific optimizations or to 

parallelize with low-level and/or non-portable languages, both of 

which yield non-portable code. Porting such code to a different 

architecture often results in an inefficient mapping onto hardware 

and thus suboptimal performance. Even if we manage to port such 

code across architectures, we are left with multiple semi-

optimized and divergent versions, each expensive to maintain 

when changes are made to the underlying algorithm. In order to 

avoid this inefficient development cycle, we need a general 

programming paradigm that is convenient, portable across many 

computational resources and roughly equivalent in terms of 

performance.  

1.2 Our Approach and Contributions 
Our experience with modular programming and existing high-

level accelerator frameworks has shown that we already have 

many fundamental building blocks available to realize the concept 

of a portable, multi-platform, high-level framework. We present 

Trellis, a prototype programming approach that demonstrates this 
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by deriving features from these components and integrates them 

into a single solution. Trellis consists of three features that we find 

crucial to performance portability: structured code, a single 

programming framework and code transformations capable of 

efficiently mapping parallel constructs onto diverse hardware. 

Each of these techniques alone improves portability, and together 

they improve the state of the art of portable parallel programming. 

We first illustrate portability in terms of code structure. Although 

proper code structuring that exposes available, often multi-level, 

parallelism is needed for all parallel frameworks, we emphasize it 

in the case of Trellis to allow proper application of high-level 

directives. To increase concurrency, available parallelism should 

be maximized by combining independent tasks as well as 

avoiding conditional statements and synchronization, at a 

potential small cost of redundant computation. 

We then demonstrate portability in terms of framework syntax. 

Drawing on previous work in this area, Trellis derives a single set 

of directives from both OpenMP and Open ACC, current high-

level state-of-the-art solutions for multi-core CPU and GPU, and 

makes it compatible for both architectures. To implement 

execution on these architectures, Trellis performs a source-to-

source translation of these directives to OpenMP and OpenACC, 

respectively. 

Finally, we illustrate portability in terms of performance. GPUs 

pose a challenge to efficient hardware mapping by introducing a 

second hierarchical level of parallelism. While executing target 

OpenACC code, we identified constructs, such as braided 

structures, intermediate statements and interleaved serial code, 

that typically impede efficient mapping. We address this 

shortcoming in Trellis with prototype implementations of a thread 

synchronization directive and appropriate code analysis. The 

functionality of these features is obtained by translating directly to 

CUDA at the back end. 

We apply Trellis to three applications that are representative of 

computationally intensive tasks: ddcMD (molecular dynamics) 

[6], Heart Wall (image processing) [7] and B+Tree (database 

search) [8]. These applications execute at the level of a cluster 

node, on multi-core CPU and GPU. Our results show that Trellis 

can achieve correct parallelization of these codes with 

performance competitive to that of OpenMP and CUDA, 

improved programmability and reduced overall code length. 

Our work on Trellis illustrates that a common high-level 

framework is feasible and it can support efficient execution across 

heterogeneous resources. We discuss the benefits of this approach 

in terms of portability, performance, programmability and 

maintenance. Our GPU-based lessons should generalize to other 

accelerators with hierarchical structure. We make the following 

contributions: 

 Providing a common set of directives, derived from the 

current state-of-the-art solutions, that are portable across 

architectures. 

 Illustrating sufficient descriptive capability of directives to 

support efficient, portable parallelization of codes, thus 

obviating the need for low-level solutions. 

 Complementing the OpenACC-derived paradigm with a 

thread synchronization directive and code analysis to enable 

more efficient mapping of kernels onto GPU hardware. 

 Source-to-source translation of the common code base to 

OpenMP for multi-core CPU and OpenACC, augmented with 

CUDA for new transformations, for GPUs. 

The remainder of this paper is organized as follows. Section 2 

gives an overview of related work. Section 3 described the three 

applications that we analyze. Section 4 provides details of the 

Trellis framework. Section 5 gives an overview of our setup and 

methodology. Section 6 describes the performance and code 

length of different versions of our applications. Section 7 

discusses the benefits of Trellis from the perspective of 

applications and architectures. This paper is best viewed in color. 

2. RELATED WORK 

Early frameworks for multicore CPUs, such as Cilk [9], use 

library functions to automate parallelization of tasks, such as 

loops and reductions. Later libraries such as TBB [10] also 

abstract many aspects of thread management. Unlike our 

approach, these solutions target specific functionality, require 

changes to the existing code, use parallelizing algorithms tailored 

to CPUs and lack features required for describing multilevel 

parallelism. Alternatively, OpenMP facilitates parallel execution 

on multicore CPUs via high-level directives that annotate the 

unchanged base code. However, in spite of its convenient form, its 

small set of directives only support single-level shared memory 

parallelism. Trellis uses OpenMP as a translation target for 

implementing CPU execution, as well as a point of reference. 

The most popular native GPU framework, CUDA, facilitates 

efficient execution with GPUs’ hierarchical parallel structure and 

internal memory. However, it explicitly orchestrates offloading of 

kernels, which in turn increases the learning effort and the amount 

of repetitive coding. PGI CUDA-x86 [11] and gpuOcelot [12] 

make CUDA portable to CPUs by compilation of the original 

code or translation of its assembly form, respectively. OpenCL 

extends CUDA’s approach to support for both CPUs and GPUs 

portably. However, it also orchestrates kernel execution through a 

lower-level API. Similarly to these native frameworks, our 

solution provides more control over computational resources. 

However, we provide an orthogonal high-level directive-based 

approach that is convenient and portable. 

The high-level APIs of Jacket [13] and ArrayFire [14], which are 

compatible with common CPU and GPU languages, offload 

common data-parallel operations to a GPU. These approaches 

combine multiple functions, with the corresponding data transfers 

into a single kernel. Although these solutions are convenient, they 

only target specific arithmetic functions and do not provide a 

generic programming framework. 

The Cetus-based translator [4] converts OpenMP code to CUDA 

for execution on a GPU. However, its performance is limited by 

the efficiency of determining data transfer and kernel mappings 

that the original OpenMP code does not explicitly describe. 

Flexible application-specific programming interfaces [15] [16] 

support heterogeneous platforms as well as algorithmic primitives 

developed for GPUs [17]. However, these are based on libraries 

that implement only specific algorithms and functionality while 

our approach provides a general, portable solution. 

Both PGI [2] and its successor, OpenACC [3], adapt the high-

level directive-based approach of OpenMP to accelerators by 

adding optional directives for describing multi-level parallelism. 

While similar in form and functionality to our approach, these 

solutions do not yet support CPUs. A future OpenMP interface [1] 

is expected to introduce accelerator directives, similar to those in 

OpenACC, in addition to its current support for CPUs. This 

solution may eventually become roughly equivalent to our 
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approach, so this paper formally evaluates the benefits of that 

possibility. Trellis uses OpenACC as a translation target for 

implementing GPU execution, as well as a point of reference. 

In our prior, non-archival, workshop paper [18], we presented 

techniques for achieving structural and syntactic portability by 

maintaining a common code structure and using a common high-

level directive-based framework with annotations derived from 

OpenMP and OpenACC. This paper extends that work by 

demonstrating how performance portability can be achieved for a 

GPU with additional synchronization directive and code analysis. 

We now present all of these techniques together in a single 

programming approach called Trellis. 

3. OVERVIEW OF APPLICATIONS 

3.1 ddcMD 
The ddcMD application [6] calculates particle potential and 

relocation due to mutual forces between particles within a large 

3D space. This space is divided into cubes, or large boxes, that are 

allocated to individual cluster nodes (Figure 1). The large box at 

each node is further divided into cubes, called boxes. Twenty-six 

neighbor boxes surround each box (the home box). Home boxes at 

the boundaries of the particle space have fewer neighbors. 

Particles only interact with those other particles that are within a 

cutoff radius, since those at larger distances exert negligible 

forces. Thus the box size s is chosen so that the cutoff radius does 

not span beyond any neighbor box for any particle in a home box, 

thus limiting the reference space to a finite number of boxes.  

 

Figure 1. Partitioning of computation in ddcMD application. 

For every particle in an orange area, interactions with all 

particles in the surrounding yellow area are calculated. 

Figure 2 shows the ddcMD code structure that executes on a node. 

The code has two groups of nested loops enclosed in the 

outermost loop, which processes home boxes. The processing of 

home boxes is independent and can proceed in parallel. For any 

particle in the home box, the 1st and 2nd groups of nested loops 

compute interactions with other particles in the home box and 

particles in all neighbor boxes, respectively. The processing of 

each particle consists of a single calculation stage in the innermost 

loop. The code is characterized by embarrassing parallelism, since 

the processing at both, home box and particle, levels can proceed 

in parallel within their own scope. 

 

Figure 2. Original ddcMD code structure. Section in blue is 

merged with the remaining code into a braided structure to 

maximize parallelism. 

 

Figure 3. Partitioning of computation in Heart Wall 

application. Displacement of areas marked with blue and 

green squares is tracked throughout a frame sequence. 

3.2 Heart Wall 
The Heart Wall application [7] tracks the movement of a mouse 

heart over a sequence of 609x590 ultrasound frames (images) to 

observe response to a stimulus. Images are arranged into batches 

and offloaded to individual nodes for parallel processing (Figure 

3). In the initial stage, not included in the diagram, the program 

performs image processing operations on the first frame in a batch 
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to detect initial, partial shapes of inner and outer heart walls and 

place sample points on them. The core of the application tracks 

the movement of heart walls by detecting displacement of image 

areas under sample points as the shape of heart walls changes 

throughout the remaining frames. Green and blue dots in Figure 3 

indicate sample points that mark inner and outer heart walls. 

Figure 4 shows the Heart Wall code structure that executes on a 

node. The code has two groups of nested loops enclosed in the 

outermost loop, which processes frames. The processing of frames 

is dependent and needs to proceed sequentially. The first and 

second groups of loops track features around sample points on 

inner and outer heart walls. The processing of each sample point, 

enclosed by the middle loop, consists of several sequentially 

dependent tracking stages interleaved by control statements. The 

code is characterized by braided parallelism, since the processing 

of inner and outer points can proceed in parallel.  

 

Figure 4. Simplified structure of the original Heart Wall code. 

Section in blue is merged with the remaining code into a 

braided structure to maximize parallelism. 

3.3 B+Tree 
The B+Tree application [8] performs search queries to a database. 

The pool of all requested queries is divided into groups, each 

offloaded to a node. The database is organized as a B+tree, 

optimized for efficient insertion and retrieval of records. The tree 

consists of many levels with multiple leaves at each level. A key 

value defines the database search criterion. The search proceeds 

down the tree structure across all levels to find leaf values that 

satisfy the search criterion (Figure 5). The response to the query is 

then created based on the individual search results. 

Figure 6 shows the B+Tree code structure that executes on a node. 

The code has one group of nested loops enclosed in the outermost 

loop that processes individual queries. The processing of queries 

is independent and can proceed in parallel. The middle loop 

traverses levels of the data tree structure while the innermost loop 

compares the value of each leaf at every tree level to the key. The 

code is characterized by braided parallelism, since the processing 

of different queries can performed in parallel. 

 

Figure 5. Partitioning of computation in the B+Tree 

application. The search proceeds down the tree structure 

consisting of levels and leaves. 

 

Figure 6. Original B+Tree code structure. Section in blue 

represents processing of different queries combined into a 

braided structure to maximize parallelism. 

4. TRELLIS 

4.1 Code Structure 
Our previous work demonstrates that performance portability 

requires proper file organization and code order when manually 

transitioning between diverse frameworks by replacing relevant 

code sections. Trellis eliminates this requirement as it allows 

maintaining a single portable code base with generic structure 

where the available, often multi-level, parallelism can be clearly 

exposed to annotation for heterogeneous resources. When 

targeting parallel resources, parallelism should be maximized by 

grouping similar or different independent operations, usually 

expressed by individual loops, into a uniform or braided structure. 

Also, for GPUs, long tasks can be split to increase resource 

occupancy and to decrease register file footprint. As much as 

possible, conditional statements and synchronization should be 

avoided at the minimal cost of redundant computation to improve 

lock-step SIMD execution flow. 
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4.2 Common Framework 
Trellis derives and extends a unified set of directives from 

OpenMP [1] and OpenACC [3], current high-level state-of-the-art 

solutions for multicore CPU and GPU, and makes it compatible 

for both architectures. To implement execution on these 

architectures, Trellis performs a source-to-source translation of 

these directives to OpenMP and OpenACC, respectively. For 

improved performance, it features a new thread synchronization 

directive and new code analysis (Section 4.3A) with functionality 

implemented via translation to CUDA [19]. The set of directives 

adopted by Trellis consists of those common for both CPU and 

GPU with specific clauses for the latter, as well as those that are 

specific to a GPU. In the remainder of this section we give only a 

short overview of annotations adapted by Trellis, and ask the 

reader to refer to [1] and [2] for more detailed information on this 

programming style. The naming for our annotations is derived 

mostly from [2]. 

Trellis uses annotations that consist of a directive and a 

corresponding clause (Figure 7). There are four types of 

directives: region, loop, data and executable (Figure 8). Data 

directives can only exist in combination with a region or loop 

directive that defines their scope. Clauses specify values that can 

refer to the number of tasks, vector widths, and the names and 

sizes of variables. While all directives can annotate the base code, 

the Trellis translator uses only those that are appropriate for the 

target framework (Section 4.4). Consider codes in Figures Figure 

14, Figure 16 and Figure 18 as examples. 

#pragma trellis directive (clause) 

Figure 7. Directive format in Trellis framework. 

Region directives data and compute encapsulate code regions in 

which data is exchanged with the GPU or in which computation is 

offloaded to the GPU, respectively. The data directive indicates 

that data should remain on the device for the duration of enclosed 

kernels. The compute directive instructs the compiler to try to 

offload the enclosed code region to an accelerator, regardless of 

whether particular parallel constructs, such as loops, are present. 

Loop directives such as parallel, vector or sequential, specify 

execution flow for the annotated loop. The parallel directive is 

used for coarse-grained mapping onto cores in a CPU or 

multiprocessors in a GPU. The vector directive, on the other hand, 

is used for fine-grained mapping onto processing units in a CPU. 

In the case of a CPU, equivalent mapping onto vector units is 

performed implicitly by the compiler. Since the compiler can try 

to implicitly parallelize loops, even when no annotations present, 

sequential execution can be enforced via the sequential directive. 

Data directives, such as shared, private, cache, local, copy, 

copyin or copyout, specify the types of data used in annotated 

code sections. The first two directives can be used for specifying 

the scope of variables for both CPU and GPU. The remaining 

annotations are used for caching and allocating space in GPU 

memory, as well as transferring data between GPU and system 

memories. 

Executable directives support operations, such as device setup, 

as well as explicit thread and data synchronization, that are not 

associated with a particular construct but an implicit code region 

in which they appear. The GPU thread synchronization directive 

that is introduced in Trellis (Section 4.3A) is an example of this 

type of directive. 

 

Figure 8. Types of directives in Trellis framework. 

4.3 Efficient Mapping to GPUs 
While running target OpenACC code, generated by Trellis at the 

back end, which is then further translated to CUDA by the 

OpenACC compiler, we observe that performance is suboptimal 

when compared to hand-written CUDA code. We discover that 

the desired hardware mapping (which is also the most optimal 

mapping in the case of our codes), specified by explicit 

annotations, cannot be obtained with OpenACC because it lacks 

support for thread synchronization and inefficiently handles code 

structure. This behavior is illustrated in the case of three main 

code constructs that we identify as braided loops, intermediate 

statements and interleaved serial code (Figure 9), discussed in 

detail below.  

 

Figure 9. Code structure of our applications. 

The penalties of these shortcomings can be alleviated by first 

analyzing OpenACC compiler’s behavior via trial and error and 

then, often unintuitively, modifying the source code only to obtain 

more efficient mapping. However, the optimal performance still 

cannot be obtained due to the lack of thread synchronization 

support. Since the aforementioned constructs appear in codes 

frequently, this is a major obstacle in achieving performance 

portability of a single code base. Therefore, we address this 

problem in Trellis with an introduction of a thread 

synchronization directive and required code transformations to 

achieve proper hardware mapping. The functionality of these is 

implemented at the back end via source-to-source translation 

directly to CUDA. Consider representative C-style outlines of 

kernels in our applications (Figure 9. Code structure of our 

applications.). 
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Figure 10. Efficient mapping of braided code onto GPU. 

A. Braided Structure 
We first focus on a braided code structure, such as that in Heart 

Wall (Figure 9a, disregard conditional statements). The outermost 

loop represents independent tasks that can execute in parallel, 

where each task consists of multiple operations that execute 

sequentially due to dependencies (black arrow). These operations 

are either parallel (marked blue) or scalar (marked purple) within 

their own scope. In order to achieve the best performance (highest 

occupancy and locality), the two-level braided structure should be 

mapped to the corresponding two-level hierarchy in a GPU 

(Figure 10) where tasks can take advantage of hardware 

synchronization for the sequentially dependent operations. The 

compiler should determine the optimal vector width, common for 

all operations.  

 

Figure 11. Inefficient mapping of braided code onto GPU due 

to the lack of synchronization support that results in a split 

kernel. 

We observe that OpenACC cannot effectively map a braided 

structure most likely due to lack of support for thread 

synchronization within a GPU multiprocessor. In such case, 

synchronization can only be invoked via a global barrier at the 

end of the kernel. Therefore, as a result, each iteration of the loop 

corresponding to tasks is combined with those of each 

sequentially dependent operation into a separate kernel and spread 

across all multiprocessors (with no particular task-multiprocessor 

assignment, Figure 11). Most importantly, code offloaded to a 

GPU in such a way suffers from the overhead of additional kernel 

launches that could diminish the benefits of parallel execution 

[20]. Moreover, while this mapping tries to increase occupancy, it 

often suffers in terms of locality. 

Following the approach of explicit annotation (Section 4.4), rather 

than relying on compiler dependence analysis, we address this 

shortcoming in Trellis with an introduction of a 

threadSynchronize directive (Figure 16, Figure 18) that allows the 

programmer to invoke thread synchronization explicitly. We then 

develop code analysis that takes advantage of this directive to 

construct a proper braided kernel as show in Figure 10.  

B. Intermediate Statements 
Let us now consider a braided code with intermediate statements 

such as conditionals (Heart Wall, Figure 9a) or loops (ddcMD, 

Figure 9b and B+Tree, Figure 9c) that add slight complexity to its 

structure. These statements can enclose individual operations, sets 

of operations (Heart Wall, B+Tree) or entire contents of a task 

(ddcMD). Similarly to Section 4.3A, in order to achieve optimal 

performance, all tasks with their contents (including the 

intermediate statements) should be executed in a single kernel 

(Figure 10), or at least as shown in Figure 11 (assuming limitation 

described in Section 4.3A). Although less deterministic, common 

vector width could be determined in case of a conditional 

statement.  

We observe that OpenACC cannot yet efficiently map code 

structure that includes intermediate statements. The inclusion of 

the conditional statement or the additional loop (which could 

potentially be eliminated by the compiler via unrolling) currently 

prevents the compiler from offloading the code, even in the form 

shown in Figure 10 by breaking into multiple kernels. As a result, 

in the case of Heart Wall and ddcMD, operations within each task 

are serialized while tasks themselves are spread across 

multiprocessors (Figure 12). This mapping suffers from 

significant performance penalty due to serialization. In the case of 

B+Tree, on the other hand, the parallel region is not offloaded to a 

GPU, but executes in a CPU instead.  

 

Figure 12. Inefficient mapping of a braided code onto GPU 

due to intermediate statements and interleaved sequential 

code that results in task serialization. 

Trellis addresses this shortcoming with code analysis and 

transformations that can properly offload such code structure, as 

shown in Figure 10. The OpenACC compiler can be aided in 

achieving a more efficient mapping, such as the one in Figure 11, 

by moving conditional statements outside of the two-level loop 

structure and merging the intermediate loop with one of the 
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remaining loops. We make this manual modification to show the 

best-case OpenACC performance. 

C. Interleaved Serial Code 
Finally, we consider a braided code structure with parallel and 

sequential operations interleaved inside a task (Heart Wall, Figure 

9a, ddcMD, Figure 9b, B+Tree, Figure 9c). The sequential 

operations usually represent initial, intermediate or final 

computation steps within a task (marked purple) that narrow the 

effective vector width to one thread. Similarly to Sections 4.3A 

and 4.3B, in order to achieve the best performance, all tasks with 

their contents should be executed in a single kernel (Figure 10), or 

at least as shown in Figure 11, while restricting execution of a 

serial section to a single thread. 

We observe that OpenACC cannot efficiently map structures that 

include interleaved serial code, since unlike loops, it cannot be 

intuitively mapped onto a parallel resource. As a result, similarly 

to examples in Sections 4.3A and 4.3B, the remaining (parallel) 

operations within each task are serialized while the processing of 

tasks is spread across multiprocessors with no particular task-

multiprocessor assignment that explores locality (Figure 12). This 

mapping suffers from significant performance penalty due to the 

serialization. 

Trellis addresses this shortcoming with an appropriate code 

analysis and transformation that can offload this type of code 

structure as shown in Figure 10. The OpenACC compiler can be 

aided in achieving a more efficient mapping, such as the one in 

Figure 11, by enclosing interleaved serial code in a loop of unit 

width. We make this manual modification to show the best-case 

OpenACC performance. 

4.4 Trellis Translator 
Trellis translator implements execution of portable Trellis codes 

on multi-core CPU and GPU. This is achieved via source-to-

source translation of C code annotated with Trellis directives 

(Figure 13a) to OpenMP and OpenACC (Figure 13b), 

respectively. Since Trellis directives are a subset of those derived 

from these two solutions, the translation process is 

straightforward. The additional synchronization directive and 

code transformations for improved GPU performance (Section 

4.3) are implemented via translation to CUDA. Although 

straightforward as well, the process of translating to CUDA 

structure and syntax is beyond the scope of this paper. Trellis 

translator performs the following steps: 

1) Determine target framework based on user input; 

2) Perform code analysis with respect to loop structure; 

3) Translate code to target CPU or GPU framework; 

In its prototype form, unlike OpenACC, Trellis does not attempt 

to parallelize unannotated code, but it relies entirely on 

annotations. This approach is sufficient for the purpose of this 

work, as we are concerned with proper mapping of a fully 

annotated code rather than parallelization techniques via 

dependence analysis in the case of an unannotated or partially 

annotated code. Moreover, unlike OpenACC, Trellis does not split 

the inner loop iterations and map across multiprocessors for 

improved occupancy. This turns out to be problematic in terms of 

locality when a proper braided code is generated by Trellis. From 

all annotations present in the code, only applicable ones are used 

when generating kernel code for a CPU or a GPU. Also, for 

simplicity in this prototype version, Trellis expects certain 

ordering of variable declaration, memory allocation and 

computation code sections. The translator is available on the first 

author’s webpage. 

 

Figure 13. Translation of Trellis code to target frameworks. 

5. SETUP AND METHODOLOGY 

The baseline codes for our applications are written in C. They are 

extended with the Trellis framework, which is then translated to 

target frameworks that include: OpenMP, OpenACC and CUDA.  

We configure ddcMD with 1000 small boxes with 120 particles in 

each. The Heart Wall application processes 104 video frames, 

609x590 pixels each, with 20 inner and 30 outer sample points, 

80x80 pixels each. B+Tree runs 65000 queries and its database is 

configured with 4 tree levels, each with 65536 leaves 128 keys.  

Analysis and performance results are obtained from a single 

machine, equivalent to a cluster node, equipped with an 8-core (2 

threads/core) Intel Xeon X5550 CPU and NVIDIA Tesla C2050 

GPU. We compile C-only and OpenMP codes with GCC [21], 

using the highest optimization level. OpenACC codes are handled 

by PGCC [2], version 12.5, which translates them to CUDA that 

is further compiled by NVCC [19]. 

We try to ensure that OpenACC and CUDA codes generated by 

Trellis are equivalent in terms of memory usage, so that the 

difference in performance is related only to hardware mapping, 

kernel launch overhead, resource utilization and locality. We 

ensure that such mapping, that we compare against, is the most 

optimal for each application. For a fair line count comparison, we 

split compound annotations to include only one directive per line. 

We choose the PGI compiler for OpenACC, as it appears to be the 

most mature option. Since the compiler does not allow examining 

the CUDA (Figure 13c) that it generates at the back end, we infer 
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its structure based on compiler messages and comparative 

performance. We use the hand-written CUDA code to estimate 

typical GPU overheads due to driver communication, data transfer 

and kernel launch.  

We are only concerned with tasks processed at each node. Thus, 

we assume that the higher level code balances the amount of work 

at each node. Diagrams, code outlines and line counts for each 

application refer to the accelerated section of the code, which 

accounts for nearly all of execution time. 

We refer to NVIDIA terminology [19] when describing GPU 

optimizations. Our results do not account for the overhead of 

source-to-source translation, which would be minimized if Trellis 

was supported natively by the compiler.  

6. RESULTS 

6.1 ddcMD 
In order to prepare for the application of our framework, we first 

make several changes to the original code structure that include 

the following. 

 Increase Parallelism: Since the processing of home 

and neighbor box interactions is almost identical, we 

combine the corresponding code and data structures to 

expose more parallelism (marked blue in Figure 2).  

 Improve Convergence: We remove conditional 

statements related to the cut-off radius in order to 

improve convergence of GPU threads and data accesses 

at the cost of a small amount of additional work.  

 Simplify References: To support GPU transfers, we 

consolidate box and particle data that originally used 

multiple structures referenced through nested pointers. 

 Remove Customization: We remove optimizations, 

such as the explicit use of particular ISA instructions 

and memory padding, at insignificant performance cost.  

We then apply our framework to the structured code as follows to 

arrive at a portable version (Figure 14). 

 Hardware Mapping: We map box processing to CPU 

cores or GPU multiprocessors and parallelize particle 

processing across CPU vector units or GPU processors. 

 Execution Parameters: To match computation size to 

available resources in GPU implementations, we set the 

number of blocks for tasks to 1000 and the vector width 

for operations to 128. 

The portable Trellis code is translated to OpenMP or OpenACC 

for CPU or GPU execution, respectively. Since the annotations in 

the two follow from the relevant ones in Trellis, we do not show 

them in separate code listings, but only mark the relevant Trellis 

annotations with colors in Figure 14. The listing of target CUDA 

code that fully utilizes Trellis annotations is omitted because of 

being beyond the scope of the paper.  

We make the following changes to OpenACC code to achieve the 

best-case performance (Figure 15). 

 Intermediate Loop: We remove two sequential loops 

from the kernel (marked purple in Figure 15). However, 

the resulting implementation is still far from optimal as 

it narrows the scope of offloaded code (to two 

innermost loops) and increases the number of kernels. 

Table 1 compares performance of ddcMD implementations. In our 

results, Original corresponds to the baseline sequential version, 

usually with custom optimizations, while Structured refers to the 

generalized parallel version of the Original code. These results 

illustrate code length and performance achievable with OpenMP 

(OMP) and OpenACC (OACC). Structured Portable code, on the 

other hand, is a Structured code that uses Trellis to achieve 

portability across architectures. These results show the code 

length and performance achievable with our portable high-level 

approach. Line 12 gives additional initialization and data transfer 

overhead incurred by GPU codes, as extracted from the hand-

written CUDA code. Line 13 gives the best-case OpenACC 

performance, achievable with structural modifications to the 

source code. This number illustrates detriment to performance due 

to the lack of synchronization support (Section 4.3A). We 

normalize speedup to the OpenMP code that runs on a single core. 

Conversion of indices to partitioned space 

#pragma trellis data copyin(box[0:#_boxes]) \ 

copyin(pos[0:#_par.]) \ 

copyin(chr[0:#_par.]) \ 

copyout(dis[0:#_par.]){ 

#pragma trellis compute{ 

#pragma trellis parallel(1000) \ 

independent \ 

private(…) \ 

cache(home_box) 

for(i=0; i<#_home_boxes; i++){ 

Home box setup 

#pragma trellis sequential 

for(j=0; j<#_neighbor_boxes; j++){ 

Neighbor box setup 

#pragma trellis vector (128) \ 

independent \ 

private(…) \ 

cache(neighbor_box) 

for(k=0; k<#_home_particles; k++){ 

#pragma trellis sequential 

for(l=0; l<#_neighbor_particles;l++){ 

Calculation of interactions 

} 

… 

} 

Figure 14. Outline of portable ddcMD code, written in Trellis. 

During translation, statements in blue apply to both OpenMP 

and OpenACC, while those in brown only to OpenACC. 

Names of some directives change during translation. 

Conversion of indices to partitioned space 

#pragma acc data copyin(box[0:#_boxes]) \ 

copyin(pos[0:#_par.]) \ 

copyin(chr[0:#_par.]) \ 

copyout(dis[0:#_par.]){ 

for(i=0; i<#_home_boxes; i++){ 

Home box setup 

for(j=0; j<#_neighbor_boxes; j++){ 

Neighbor box setup 

#pragma acc kernels{ 

#pragma acc loop gang \ 

independent \ 

private(…) \ 

cache(neighbor_box) 

for(k=0; k<#_home_particles; k++){ 

#pragma acc loop vector \ 
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independent 

for(l=0; l<#_neighbor_particles;l++){ 

Calculation of interactions 

} 

… 

} 

Figure 15. Outline of portable ddcMD code translated to 

OpenACC. Statements in blue represent structural changes 

required to achieve best-case OpenACC performance. 

Table 1. Performance of ddcMD application. 

 
Arch. 

Code 

Feature Framework 

Kernel 

Length 

[lines] 

Exec. 

Time [s] 

Speedup 

[x] 

1 
1-core 

CPU Original C 62 60.53e-1 1.52 

2 
1-core 

CPU Structured OMP 58 73.24e-1 1.00 

3 
8-core 

CPU Structured OMP 65 10.51e-1 6.97 

4 GPU Structured OACC 97 91.62e-1 0.80 

5 GPU Structured CUDA 88 5.59e-1 13.10 

6    162  6.97 

7 
1-core 

CPU 
Structured 

Portable 

Trellis  

(-> OMP) 
97 73.24e-1 1.00 

8 
8-core 

CPU 

Structured 

Portable 

Trellis  

(- > OMP) 
97 10.51e-1 6.97 

9 GPU 
Structured 

Portable 

Trellis  

(- > OACC) 97 91.62e-1 0.80 

10 GPU 
Structured 

Portable 

Trellis 

(-> CUDA) 
97 5.59e-1 13.10 

11    97  13.10 

12 GPU 
Init/Trans 

Overhead 
CUDA --- 3.36e-1 --- 

13 GPU 
Modified 

Best-case 
OACC 89 8.24e-1 8.88 

6.2 Heart Wall 
In order to prepare for the application of our framework, we first 

make several changes to the original code structure that include 

the following. 

 Increase Parallelism: Since the processing of inner and 

outer points is almost identical, we combine the 

corresponding code and data structures to expose more 

parallelism (marked blue in Figure 4).  

 Improve Locality: Since point-processing stages can 

share data, we arrange data accesses to maximize 

utilization of cache and shared memory in CPU and 

GPU, respectively. 

We then apply our framework to the structured code as follows to 

arrive at a portable version (Figure 16). 

 Hardware Mapping: We map sample point processing 

to CPU cores or GPU multiprocessors and parallelize 

processing of detection stages across CPU vector units 

or GPU processors.  

 Execution Parameters: To match computation size to 

available resources in GPU implementations, we set the 

number of blocks for tasks to 50 and the vector width 

for operations to 512. 

 Thread Synchronization: We instruct Trellis translator 

to invoke thread synchronization between sequentially 

dependent operations via new directive introduced in 

Trellis. 

The portable Trellis code is translated to either OpenMP or 

OpenACC for CPU or GPU execution, respectively (relevant 

sections are marked in color in Figure 16). 

We make the following changes to OpenACC code to achieve the 

best-case performance (Figure 17). 

 Conditional Statements: We split code on each 

conditional statement (not shown in Figure 4 and Figure 

9a for clarity) into groups of operations to avoid 

serialization. 

 Interleaved Sequential Code: We enclose interleaved 

sequential code in a loop of unit width (purple in Figure 

17) to enable proper parallelization of the outer loop. 

 

Table 2 compares performance of Heart Wall implementations. 

Processing of inputs from earlier stages. 

for(i=0; i<#_frames; i++){ 

Read frame 

#pragma trellis data copyin(frm[0:frm_siz]) \ 

        copyin(ini_loc[0:#_smp_pnts.]) \ 

        local(con/cor[0:#_pixels]) \ 

        copyout[fin_loc[0:#_smp_pnts.]){ 

#pragma trellis compute{ 

#pragma trellis parallel(50) \ 

            independent \ 

private 

for(j=0; j<#_sample_points; j++){ 

#pragma trellis vector(512) \ 

   independent \ 

   private(…) 

for(i=0; i<#_pixels; i++){ 

Preparing inputs 

} 

#pragma threadSynchronize 

#pragma trellis vector(512) \ 

     independent \ 

   private(…) 

for(i=0; i<#_pixels; i++){ 

Convolving/correlating with templates 

} 

#pragma threadSynchronize 

Updating displacement 

… 

} 

Figure 16. Outline of portable Heart Wall code, written in 

Trellis. During translation, statements in blue apply to both 

OpenMP and OpenACC, those in brown only to OpenACC, 

while those in purple to CUDA. Names of some directives 

change during translation. 

Processing of inputs from earlier stages. 

for(i=0; i<#_frames; i++){ 

Read frame 

#pragma acc data copyin(frm[0:frm_siz]) \ 

copyin(ini_loc[0:#_smp_pnts.]) \ 

create(con/cor[0:#_pixels]) \ 

copyout[fin_loc[0:#_smp_pnts.]){ 

#pragma acc kernels{ 

#pragma acc loop gang \ 

independent 
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for(j=0; j<#_sample_points; j++){ 

#pragma acc loop vector \ 

independent \ 

private(…) 

for(i=0; i<#_pixels; i++){ 

Preparing inputs 

} 

#pragma acc loop vector \ 

independent \ 

private(…) 

for(i=0; i<#_pixels; i++){ 

Convolving/correlating with templates 

} 

#pragma acc loop vector \ 

independent \ 

private(…) 

for(i=0; i<1; i++){ 

Updating displacement 

} 

… 

} 

Figure 17. Outline of portable Heart Wall code translated to 

OpenACC. Statements in blue represent structural changes 

required to achieve best-case OpenACC performance. 

Table 2. Performance of Heart Wall application. 

 Arch. 
Code 

Feature Framework 

Kernel 

Length 

[lines] 

Exec. 

Time [s] 

Speed-up 

[x] 

1 
1-core 

CPU Original C 178 11.76e1 0.88 

2 
1-core 

CPU Structured OMP 183 10.35e1 1.00 

3 
8-core 

CPU Structured OMP 197 2.01e1 5.15 

4 GPU Structured OACC 205 42.12e1 0.25 

5 GPU Structured CUDA 202 1.21e1 8.55 

6    402  5.15 

7 
1-core 

CPU 
Structured 

Portable 

Trellis  

(-> OMP) 
209 10.35e1 1.00 

8 
8-core 

CPU 

Structured 

Portable 

Trellis  

(- > OMP) 
209 2.01e1 5.15 

9 GPU 
Structured 

Portable 
Trellis  

(- > OACC) 209 42.12e1 0.25 

10 GPU 
Structured 

Portable 

Trellis 

(-> CUDA) 
209 1.21e1 8.55 

11    209  8.55 

12 GPU 
Init/Trans 

Overhead 
CUDA --- 0.03e1 --- 

13 GPU 
Modified 

Best-case 
OACC 223 1.49e1 6.95 

6.3 B+Tree 
In order to prepare for the application of our framework, we first 

make several changes to the original code structure that include 

the following. 

 Simplify References: To support GPU transfers, we 

consolidate data for queries and trees that originally 

used multiple structures referenced by nested pointers. 

We then apply our framework to the structured code as follows to 

arrive at a portable version (Figure 18). 

 Hardware Mapping: We map the processing of queries 

to CPU cores or GPU multiprocessors and parallelize 

the processing of leaves across CPU vector units or 

GPU processors. 

 Execution Parameters: To match computation size to 

available resources in GPU implementations, we set the 

number of blocks for tasks to 65000 and the vector 

width for operations to 512. 

 Thread Synchronization: We instruct Trellis translator 

to invoke thread synchronization between sequentially 

dependent operations via new directive introduced in 

Trellis. 

The portable Trellis code is translated to either OpenMP or 

OpenACC for CPU or GPU execution, respectively (relevant 

sections are marked in color in Figure 18). 

We make the following changes to OpenACC code to achieve the 

best-case performance (Figure 19). 

 Intermediate Loop: We move the middle loop beyond 

the outermost loop to help the compiler recognize 

braided structure. 

 Interleaved Sequential Code: We enclose interleaved 

sequential code in a loop of unit width (purple in Figure 

19) to enable proper parallelization of the outer loop. 

Table 3 compares performance of B+Tree implementations. 

Construct data tree with multiple levels and leaves 

#pragma trellis data copyin(records[0:#_records]) \ 

copyin(knodes[0:#_knodes.]) \ 

copyin(keys[0:#_queries.]) \ 

copyout(ans[0:#_queries.]){ 

#pragma trellis compute{ 

#pragma trellis parallel(65000) \ 

independent \ 

private 

for(i=0; i<#_queries; i++){ 

#pragma trellis sequential 

for(i=0; i<#_tree_levels; i++){ 

#pragma trellis vector(512) \ 

independent \ 

private(…) 

for(j=0; j<#_leaves; j++){ 

Compare value against the key 

} 

#pragma threadSynchronize 

Set offset for the next tree level 

} 

#pragma threadSynchronize 

Select single value out of all tree levels 

… 

} 

Figure 18. Portable B+Tree code, written in Trellis. During 

translation, statements in blue apply to both OpenMP and 

OpenACC, those in brown only to OpenACC, while those in 

purple to CUDA. Names of some directives change during 

translation. 

Construct data tree with multiple levels and leaves 

#pragma acc data copyin(records[0:#_records]) \ 

copyin(knodes[0:#_knodes.]) \ 

copyin(keys[0:#_queries.]) \ 

copyout(ans[0:#_queries.]){ 

for(i=0; i<#_tree_levels; i++){ 

#pragma acc kernels{ 
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#pragma acc loop gang \ 

independent \ 

for(i=0; i<#_queries; i++){ 

#pragma acc loop vector \ 

independent \ 

private(…) 

for(j=0; j<#_leaves; j++){ 

Compare value against the key 

} 

#pragma acc loop vector \ 

independent \ 

private(…) 

for(i=0; i<1; i++){ 

Set offset for the next level 

} 

… 

} 

#pragma acc kernels{ 

#pragma acc gang \ 

independent \ 

for(i=0; i<#_queries; i++){ 

Select value out of all tree levels 

} 

… 

} 

Figure 19. Portable B+Tree code translated to OpenACC. 

Statements in blue represent structural changes required to 

achieve best-case OpenACC performance. 

Table 3. Performance of B+Tree application. 

 Arch. 
Code 

Feature Framework 

Kernel 

Length 

[lines] 

Exec. 

Time [s] 

Speed-up 

[x] 

1 
1-core 

CPU Original C 34 35.99e-2 0.92 

2 
1-core 

CPU Structured OMP 39 33.11e-2 1.00 

3 
8-core 

CPU Structured OMP 42 8.06e-2 4.11 

4 GPU Structured OACC 72 29.56e-2 1.12 

5 GPU Structured CUDA 81 1.57e-2 21.08 

6    114  4.11 

7 
1-core 

CPU 
Structured 

Portable 

Trellis  

(-> OMP) 
73 33.11e-2 1.00 

8 
8-core 

CPU 

Structured 

Portable 

Trellis  

(- > OMP) 
73 8.06e-2 4.11 

9 GPU 
Structured 

Portable 
Trellis  

(- > OACC) 73 29.56e-2 1.12 

10 GPU 
Structured 

Portable 

Trellis 

(-> CUDA) 
73 1.57e-2 21.08 

11    73  21.08 

12 GPU 
Init/Trans 

Overhead 
CUDA --- 0.35e-2 --- 

13 GPU 
Modified 

Best-case 
OACC 82 2.03e-2 16.31 

7. DISCUSSION 

7.1 Performance 
The results summarized on line 6 in Table 1,  

Table 2, and Table 3 illustrate the total code length and the best 

performance achievable with both OpenMP and OpenACC, the 

current high-level state-of-the-art solutions that implement CPU 

and GPU execution. When manually applied to the original code 

base, 8-core OpenMP yields the best performance that scales with 

the number of cores (rows 2, 3 in Table 1,  

Table 2 and Table 3). The performance of OpenACC is 

suboptimal due to inefficient mapping onto a GPU (rows 4 in 

Table 1,  

Table 2 and Table 3). However, neither of the two provides 

performance comparable to that of CUDA, a native GPU solution 

(rows 5 in Table 1,  

Table 2 and Table 3). 

The corresponding results for the target codes generated by Trellis 

are given on line 11. For all applications, target OpenMP code 

significantly improves the original performance (rows 7, 8 in 

Table 1,  

Table 2 and Table 3, Figure 20 b, c). While the target OpenACC 

code (row 9 in Table 1,  

Table 2 and Table 3, Figure 20 d) yields performance worse than 

that of the original code (row 1 in Table 1,  

Table 2 and Table 3, Figure 20 a), manual modifications to the 

code structure allow achieving best-case performance (row 13, 

Table 1,  

Table 2 and Table 3, Figure 20 e). Target CUDA code that reflects 

Trellis’ ability to efficiently handle parallel constructs results in 

the best performance for all applications (row 10 in Table 1,  

Table 2 and Table 3, Figure 20 g), equivalent to that of a hand-

written CUDA (row 5 in Table 1,  

Table 2 and Table 3, Figure 20 f). Within its parallelization limits, 

OpenACC compiler can efficiently utilize shared memory, as seen 

with Heart Wall (rows 10, 13 in  

Table 2). Relative to CPU, GPU implementations incur an 

additional overhead due to communication with a driver and data 

transfer (row 12, Table 1,  

Table 2, Table 3). 

 

Figure 20. Execution time [log scale, normalized to worst]. 

Trellis allows achieving GPU performance equivalent to that 

of a hand-written CUDA code without modifications to the 

code base. 

7.2 Portability 
Our experiences with applications and Trellis lead us to the 

conclusion that the high-level directive-based framework is well 

suited to achieving high performance while supporting long-term 

annotation portability and overall ease of programming. The key 

is to provide intuitive abstractions that map naturally to the 

important architectural features (e.g., braided parallelism, local 

synchronization), yet remain general enough to apply across 

diverse architectures.  
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Achieving performance portability across a GPU, which poses 

additional mapping challenges due to its hierarchical structure, 

required implementation of the new hardware mapping capability 

in Trellis. This capability complements OpenACC, in its current 

state, by achieving performance (row 10, Table 1,  

Table 2 and Table 3, Figure 20 g) equivalent to that of a hand-

written CUDA code (row 5, Table 1,  

Table 2 and Table 3, Figure 20 f) without manual modifications to 

the code base. In contrast, it is important to observe, that as of 

today, OpenACC requires manual modifications to obtain 

acceptable performance (row 13, Table 1,  

Table 2 and Table 3, Figure 20 e). Unfortunately, these changes 

require prior knowledge of the compiler’s behavior, are 

unintuitive to a common programmer and may no longer be 

optimal for a sequential CPU. However, even with such, 

OpenACC performance still remains inferior due to the lack of 

thread synchronization support. Since most accelerators are 

expected to have hierarchical structure, our conclusions regarding 

GPUs can be generalized. 

7.3 Accuracy of Directives 
As expected, the performance of Trellis codes for different target 

frameworks (rows 7, 8, 9 in Table 1,  

Table 2 and Table 3) is identical to that of the corresponding 

manual implementations (rows 2, 3, 4 in Tables Table 1,  

Table 2, Table 3). Since annotations used by Trellis are a superset 

of the relevant directives in OpenMP and OpenACC, the 

translation to those is straightforward and always results in the 

code that is as efficient as the hand-written one.  

However, the most important observation is that high-level 

directives are sufficiently descriptive to allow generation of native 

GPU code (CUDA in our case, row 10 in Table 1,  

Table 2 and Table 3) with deterministic performance that is 

equivalent to that of a hand-written code. Our codes show that 

many low-level statements can be replaced by higher-level 

abstractions for convenience, with no loss of performance, which 

contradicts the conventional view. Individual statements for 

copying to and from a GPU can be simplified to an enclosing data 

region. Explicit low-level thread control is unnecessary in most 

cases as, from coding and performance point of view, it is 

equivalent to introducing an additional loop of unit or limited 

width. All other aspects of execution, such as mapping to a 

hierarchical resource, execution width and the use of shared 

memory can be in fact efficiently described via directives and 

implemented by the compiler (or Trellis tool in our case). 

7.4 Explicit Annotation 
As already mentioned, our results illustrate sufficient descriptive 

capability of directives to allow proper parallelization even for a 

GPU. We show that this can be achieved via mere interpretation 

of comprehensive annotations with no need to rely on compiler 

dependence/occupancy analysis. Although such analysis is 

required in the absence of sufficient directives, it cannot be relied 

on due to its current immature state of the art. 

As a part of this approach, we decide to include thread 

synchronization in the set of basic annotations in Trellis, which 

may not be supported by compilers in the near future due to the 

complexity of required dependence analysis. We believe that it is 

a fundamental high-level abstraction and should be available to 

allow the programmer to better express their intentions, and thus 

aid generation of the efficient native code (Figure 10) and avoid 

scenarios such as that in OpenACC, where kernels needs to be 

split to implement synchronization (Figure 11). 

7.5 Generalization vs. Optimization 
The restructuring that removed custom optimizations and 

regularized parallel control flow, in the case of ddcMD (row 2 in 

Table 1) to expose parallelism decreased its sequential 

performance by 17%. However, in the case of Heart Wall and 

B+Tree applications, similar techniques improved sequential 

performance by 14% and 9% mainly due to the removal of 

significant control flow overheads (row 2,  

Table 2, Table 3). Thus, for most codes, structuring required for 

the efficient application of parallel frameworks (directive-based as 

well as lower-level) does not necessarily decrease performance 

with respect to that of that obtained with architecture-specific 

optimizations, while it gives potential of many-fold speedups 

when running on a parallel architectures. Therefore, programmers 

should focus their efforts on writing portable code rather than 

optimizing legacy sequential code. 

7.6 Programmability 
Our experiences with Trellis provide yet another illustration of the 

ease of programmability of the directive-based approach that we 

advocate. Although efficient utilization of directives still requires 

plentiful and exposed parallelism, unlike other solutions, this 

approach is characterized by simplicity and convenience. The 

most important advantage of the directive-based approach is that 

it allows the programmer to specify desired parallelization without 

making significant changes to the code base. This is so, because 

most directives and their clauses have simple forms and they 

annotate existing structures or regions in the original code base. 

Moreover, unlike in native approaches, lower-level operations in 

the form of runtime calls take place transparently. Consequently, 

many programmers are likely to avoid low-level languages if 

directive-based frameworks prove to support sufficient 

functionality and performance. 

 

Figure 21. Length of OpenMP CPU code and OpenACC GPU 

code, normalized to portable Trellis code. Trellis minimizes 

the total code length required for portable execution. 

7.7 Code Length and Maintenance 
As of today, our solution decreases the overall code size required 

for CPU/GPU portability to that of single Trellis code base. The 

use of a single code base, as demonstrated by our codes written in 

Trellis, naturally reduces code maintenance costs (Figure 21). The 

overall code size decreased by 40%, 50%, 36% for ddcMD, Heart 

Wall and B+Tree (row 11 in Table 1,  

Table 2 and Table 3, Figure 21 d) compared to separate multi-core 

CPU and GPU versions (row 6 in Table 1,  
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Table 2 and Table 3). Maintaining a single code base simplifies 

subsequent porting or optimization for any target architecture. 

While different in structure, both Trellis (row 5 in Table 1,  

Table 2 and Table 3) and CUDA (row 10 in Table 1,  

Table 2 and Table 3) codes have similar size. While CUDA 

requires more code to describe lower-level operations, Trellis 

must specify private variables for each parallelized loop. 

8. CONCLUSIONS & FUTURE WORK 

Our experiences with the applications presented in the paper, as 

well as development of the portable Trellis approach, lead us to 

the following conclusions. 

 Most of the necessary building blocks for a common 

framework with syntactic portability, including high-level 

frameworks and structured programming, already exist. 

 A directive-based approach has sufficient descriptive 

capability to support execution across multicore CPUs and 

accelerators. 

 Synchronization support and additional hardware mapping 

capability added to OpenACC can yield performance 

comparable to that achieved by native solutions. 

 Implementation of these concepts in Trellis allows 

programmers to develop a single code base with competitive 

performance and programmability as well as decreased code 

maintenance cost. 

 Current solutions such as OpenMP and OpenACC can easily 

include features demonstrated in Trellis for CPU/GPU 

portability and improved hardware utilization. 

Our future work will extend the Trellis with a more sophisticated 

transformation analysis and verification against a larger range of 

codes to demonstrate capabilities of a directive-based approach. 
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