
1

ABSTRACT

The increasing computational needs of parallel applications

inevitably require portability across parallel architectures, which

now include heterogeneous processing resources, such as CPUs

and GPUs, and multiple SIMD/SIMT widths. However, the lack

of a common parallel programming paradigm that provides

predictable, near-optimal performance on each resource leads to

the use of low-level frameworks with architecture-specific

optimizations, which in turn cause the code base to diverge and

makes porting difficult. Our experiences with parallel applications

and frameworks lead us to the conclusion that achieving

performance portability requires structured code, a common set of

high-level directives and efficient mapping onto hardware.

In order to demonstrate this concept, we develop Trellis, a

prototype programming framework that allows the programmer to

maintain only a single generic and structured codebase that

executes efficiently on both the CPU and the GPU. Our approach

annotates such code with a single set of high-level directives,

derived from both OpenMP and OpenACC, that is made

compatible for both architectures. Most importantly, motivated by

the limitations of the OpenACC compiler in transforming such

code into a GPU kernel, we introduce a thread synchronization

directive and a set of transformation techniques that allow us to

obtain the GPU code with the desired parallelization that yields

more optimal performance.

While a common high-level programming framework for both

CPU and GPU is currently not available, our analysis shows that

even obtaining the best-case performance with OpenACC, state-

of-the-art solution for a GPU, requires modifications to the

structure of codes to properly exploit braided parallelism, and

cope with conditional statements or serial sections. While this

already requires prior knowledge of compiler behavior the optimal

performance is still unattainable due to the lack of

synchronization. We describe the contributions of Trellis in

addressing these problems by showing how it can achieve correct

parallelization of the original codes for three parallel applications,

with performance competitive to that of OpenMP and CUDA,

improved programmability and reduced overall code length.

General Terms

Parallel Computation, Parallel Frameworks, Parallel

Architectures, Loop Mapping

Keywords

Parallel Computation, Parallel Frameworks, Parallel

Architectures, Loop Mapping

1. INTRODUCTION

1.1 Need for a Portable Parallel Framework
Parallelizing compilers still fall short in many cases, especially for

the hierarchical parallelism that maps best onto GPUs, so

parallelization still typically involves manual orchestration of

execution and data transfer. For clarity and convenience, many

programmers would prefer to parallelize code by using pragmas to

annotate a traditional, serial programming language, such as

Fortran or C, rather than using new languages or extensions that

require them to rewrite the existing code.

While many solutions related to OpenMP [1] or inspired by its

form facilitate this approach, none of them are universal.

Currently, OpenMP is limited to multi-core CPUs. Although PGI

[2] and OpenACC [3] feature directives that describe the two-

level parallelism common in accelerators, they are not yet

compatible with CPUs and lack a key, local synchronization

primitive. The Cetus-based translator [4] achieves CPU-GPU

portability, but its underlying OpenMP programming model does

not provide directives suited for accelerators. Moreover, none of

the above frameworks support codes with braided parallelism and

complicated loop structures, a shortcoming that usually results in

serialization, even when parallelism is present. The only

framework that achieves portability and optimal performance on

both multi-core CPU and GPU is OpenCL [5]. However, unlike

high-level, directive-based approaches, it requires the use of low-

level statements and extensive modifications to the code base. The

performance of the high-level directive-based programming

approaches must improve before programmers will stop using

low-level solutions.

The lack of a convenient, portable, and capable framework forces

programmers to use architecture-specific optimizations or to

parallelize with low-level and/or non-portable languages, both of

which yield non-portable code. Porting such code to a different

architecture often results in an inefficient mapping onto hardware

and thus suboptimal performance. Even if we manage to port such

code across architectures, we are left with multiple semi-

optimized and divergent versions, each expensive to maintain

when changes are made to the underlying algorithm. In order to

avoid this inefficient development cycle, we need a general

programming paradigm that is convenient, portable across many

computational resources and roughly equivalent in terms of

performance.

1.2 Our Approach and Contributions
Our experience with modular programming and existing high-

level accelerator frameworks has shown that we already have

many fundamental building blocks available to realize the concept

of a portable, multi-platform, high-level framework. We present

Trellis, a prototype programming approach that demonstrates this

Trellis: Portability Across Architectures with a High-level

Framework

Lukasz G. Szafaryn
+
 Todd Gamblin

++
 Bronis R. de Supinski

++
 Kevin Skadron

+

+University of Virginia

{lgs9a, skadron}@virginia.edu

++Lawrence Livermore National Laboratory

{tgamblin, bronis}@llnl.gov

2

by deriving features from these components and integrates them

into a single solution. Trellis consists of three features that we find

crucial to performance portability: structured code, a single

programming framework and code transformations capable of

efficiently mapping parallel constructs onto diverse hardware.

Each of these techniques alone improves portability, and together

they improve the state of the art of portable parallel programming.

We first illustrate portability in terms of code structure. Although

proper code structuring that exposes available, often multi-level,

parallelism is needed for all parallel frameworks, we emphasize it

in the case of Trellis to allow proper application of high-level

directives. To increase concurrency, available parallelism should

be maximized by combining independent tasks as well as

avoiding conditional statements and synchronization, at a

potential small cost of redundant computation.

We then demonstrate portability in terms of framework syntax.

Drawing on previous work in this area, Trellis derives a single set

of directives from both OpenMP and Open ACC, current high-

level state-of-the-art solutions for multi-core CPU and GPU, and

makes it compatible for both architectures. To implement

execution on these architectures, Trellis performs a source-to-

source translation of these directives to OpenMP and OpenACC,

respectively.

Finally, we illustrate portability in terms of performance. GPUs

pose a challenge to efficient hardware mapping by introducing a

second hierarchical level of parallelism. While executing target

OpenACC code, we identified constructs, such as braided

structures, intermediate statements and interleaved serial code,

that typically impede efficient mapping. We address this

shortcoming in Trellis with prototype implementations of a thread

synchronization directive and appropriate code analysis. The

functionality of these features is obtained by translating directly to

CUDA at the back end.

We apply Trellis to three applications that are representative of

computationally intensive tasks: ddcMD (molecular dynamics)

[6], Heart Wall (image processing) [7] and B+Tree (database

search) [8]. These applications execute at the level of a cluster

node, on multi-core CPU and GPU. Our results show that Trellis

can achieve correct parallelization of these codes with

performance competitive to that of OpenMP and CUDA,

improved programmability and reduced overall code length.

Our work on Trellis illustrates that a common high-level

framework is feasible and it can support efficient execution across

heterogeneous resources. We discuss the benefits of this approach

in terms of portability, performance, programmability and

maintenance. Our GPU-based lessons should generalize to other

accelerators with hierarchical structure. We make the following

contributions:

 Providing a common set of directives, derived from the

current state-of-the-art solutions, that are portable across

architectures.

 Illustrating sufficient descriptive capability of directives to

support efficient, portable parallelization of codes, thus

obviating the need for low-level solutions.

 Complementing the OpenACC-derived paradigm with a

thread synchronization directive and code analysis to enable

more efficient mapping of kernels onto GPU hardware.

 Source-to-source translation of the common code base to

OpenMP for multi-core CPU and OpenACC, augmented with

CUDA for new transformations, for GPUs.

The remainder of this paper is organized as follows. Section 2

gives an overview of related work. Section 3 described the three

applications that we analyze. Section 4 provides details of the

Trellis framework. Section 5 gives an overview of our setup and

methodology. Section 6 describes the performance and code

length of different versions of our applications. Section 7

discusses the benefits of Trellis from the perspective of

applications and architectures. This paper is best viewed in color.

2. RELATED WORK

Early frameworks for multicore CPUs, such as Cilk [9], use

library functions to automate parallelization of tasks, such as

loops and reductions. Later libraries such as TBB [10] also

abstract many aspects of thread management. Unlike our

approach, these solutions target specific functionality, require

changes to the existing code, use parallelizing algorithms tailored

to CPUs and lack features required for describing multilevel

parallelism. Alternatively, OpenMP facilitates parallel execution

on multicore CPUs via high-level directives that annotate the

unchanged base code. However, in spite of its convenient form, its

small set of directives only support single-level shared memory

parallelism. Trellis uses OpenMP as a translation target for

implementing CPU execution, as well as a point of reference.

The most popular native GPU framework, CUDA, facilitates

efficient execution with GPUs’ hierarchical parallel structure and

internal memory. However, it explicitly orchestrates offloading of

kernels, which in turn increases the learning effort and the amount

of repetitive coding. PGI CUDA-x86 [11] and gpuOcelot [12]

make CUDA portable to CPUs by compilation of the original

code or translation of its assembly form, respectively. OpenCL

extends CUDA’s approach to support for both CPUs and GPUs

portably. However, it also orchestrates kernel execution through a

lower-level API. Similarly to these native frameworks, our

solution provides more control over computational resources.

However, we provide an orthogonal high-level directive-based

approach that is convenient and portable.

The high-level APIs of Jacket [13] and ArrayFire [14], which are

compatible with common CPU and GPU languages, offload

common data-parallel operations to a GPU. These approaches

combine multiple functions, with the corresponding data transfers

into a single kernel. Although these solutions are convenient, they

only target specific arithmetic functions and do not provide a

generic programming framework.

The Cetus-based translator [4] converts OpenMP code to CUDA

for execution on a GPU. However, its performance is limited by

the efficiency of determining data transfer and kernel mappings

that the original OpenMP code does not explicitly describe.

Flexible application-specific programming interfaces [15] [16]

support heterogeneous platforms as well as algorithmic primitives

developed for GPUs [17]. However, these are based on libraries

that implement only specific algorithms and functionality while

our approach provides a general, portable solution.

Both PGI [2] and its successor, OpenACC [3], adapt the high-

level directive-based approach of OpenMP to accelerators by

adding optional directives for describing multi-level parallelism.

While similar in form and functionality to our approach, these

solutions do not yet support CPUs. A future OpenMP interface [1]

is expected to introduce accelerator directives, similar to those in

OpenACC, in addition to its current support for CPUs. This

solution may eventually become roughly equivalent to our

3

approach, so this paper formally evaluates the benefits of that

possibility. Trellis uses OpenACC as a translation target for

implementing GPU execution, as well as a point of reference.

In our prior, non-archival, workshop paper [18], we presented

techniques for achieving structural and syntactic portability by

maintaining a common code structure and using a common high-

level directive-based framework with annotations derived from

OpenMP and OpenACC. This paper extends that work by

demonstrating how performance portability can be achieved for a

GPU with additional synchronization directive and code analysis.

We now present all of these techniques together in a single

programming approach called Trellis.

3. OVERVIEW OF APPLICATIONS

3.1 ddcMD
The ddcMD application [6] calculates particle potential and

relocation due to mutual forces between particles within a large

3D space. This space is divided into cubes, or large boxes, that are

allocated to individual cluster nodes (Figure 1). The large box at

each node is further divided into cubes, called boxes. Twenty-six

neighbor boxes surround each box (the home box). Home boxes at

the boundaries of the particle space have fewer neighbors.

Particles only interact with those other particles that are within a

cutoff radius, since those at larger distances exert negligible

forces. Thus the box size s is chosen so that the cutoff radius does

not span beyond any neighbor box for any particle in a home box,

thus limiting the reference space to a finite number of boxes.

Figure 1. Partitioning of computation in ddcMD application.

For every particle in an orange area, interactions with all

particles in the surrounding yellow area are calculated.

Figure 2 shows the ddcMD code structure that executes on a node.

The code has two groups of nested loops enclosed in the

outermost loop, which processes home boxes. The processing of

home boxes is independent and can proceed in parallel. For any

particle in the home box, the 1st and 2nd groups of nested loops

compute interactions with other particles in the home box and

particles in all neighbor boxes, respectively. The processing of

each particle consists of a single calculation stage in the innermost

loop. The code is characterized by embarrassing parallelism, since

the processing at both, home box and particle, levels can proceed

in parallel within their own scope.

Figure 2. Original ddcMD code structure. Section in blue is

merged with the remaining code into a braided structure to

maximize parallelism.

Figure 3. Partitioning of computation in Heart Wall

application. Displacement of areas marked with blue and

green squares is tracked throughout a frame sequence.

3.2 Heart Wall
The Heart Wall application [7] tracks the movement of a mouse

heart over a sequence of 609x590 ultrasound frames (images) to

observe response to a stimulus. Images are arranged into batches

and offloaded to individual nodes for parallel processing (Figure

3). In the initial stage, not included in the diagram, the program

performs image processing operations on the first frame in a batch

Select home box

Select neighbor box

Select home particle

Process interactions

with neighbor par.

Loop for

of

home

particles

(120)

Loop for

of

home

boxes

(1000)

Loop for

of

neighbor

particles

(120)

Loop for

of

neighbor

boxes

(26)

Select home particle

Process interactions

with home par.

Loop for

of

home

particles

(120)

Loop for

of

home

particles

(120)

4

to detect initial, partial shapes of inner and outer heart walls and

place sample points on them. The core of the application tracks

the movement of heart walls by detecting displacement of image

areas under sample points as the shape of heart walls changes

throughout the remaining frames. Green and blue dots in Figure 3

indicate sample points that mark inner and outer heart walls.

Figure 4 shows the Heart Wall code structure that executes on a

node. The code has two groups of nested loops enclosed in the

outermost loop, which processes frames. The processing of frames

is dependent and needs to proceed sequentially. The first and

second groups of loops track features around sample points on

inner and outer heart walls. The processing of each sample point,

enclosed by the middle loop, consists of several sequentially

dependent tracking stages interleaved by control statements. The

code is characterized by braided parallelism, since the processing

of inner and outer points can proceed in parallel.

Figure 4. Simplified structure of the original Heart Wall code.

Section in blue is merged with the remaining code into a

braided structure to maximize parallelism.

3.3 B+Tree
The B+Tree application [8] performs search queries to a database.

The pool of all requested queries is divided into groups, each

offloaded to a node. The database is organized as a B+tree,

optimized for efficient insertion and retrieval of records. The tree

consists of many levels with multiple leaves at each level. A key

value defines the database search criterion. The search proceeds

down the tree structure across all levels to find leaf values that

satisfy the search criterion (Figure 5). The response to the query is

then created based on the individual search results.

Figure 6 shows the B+Tree code structure that executes on a node.

The code has one group of nested loops enclosed in the outermost

loop that processes individual queries. The processing of queries

is independent and can proceed in parallel. The middle loop

traverses levels of the data tree structure while the innermost loop

compares the value of each leaf at every tree level to the key. The

code is characterized by braided parallelism, since the processing

of different queries can performed in parallel.

Figure 5. Partitioning of computation in the B+Tree

application. The search proceeds down the tree structure

consisting of levels and leaves.

Figure 6. Original B+Tree code structure. Section in blue

represents processing of different queries combined into a

braided structure to maximize parallelism.

4. TRELLIS

4.1 Code Structure
Our previous work demonstrates that performance portability

requires proper file organization and code order when manually

transitioning between diverse frameworks by replacing relevant

code sections. Trellis eliminates this requirement as it allows

maintaining a single portable code base with generic structure

where the available, often multi-level, parallelism can be clearly

exposed to annotation for heterogeneous resources. When

targeting parallel resources, parallelism should be maximized by

grouping similar or different independent operations, usually

expressed by individual loops, into a uniform or braided structure.

Also, for GPUs, long tasks can be split to increase resource

occupancy and to decrease register file footprint. As much as

possible, conditional statements and synchronization should be

avoided at the minimal cost of redundant computation to improve

lock-step SIMD execution flow.

Select query

Compare value at

leaf against the key

Loop for

of tree

levels

(4)

Loop for

of

leaves

(65536)

Loop for

of

queries

(65000)

Set offset for the

next tree level

Select tree level

Select single value

out of all tree levels

Process pixels:

Prepare template

Prepare sample point

Convolve

Update location

Loop for #

of pixels

(80x80)

Loop for

of outer

sample

points

(30)

Loop for #

of frames

(104)

Read frame (I/O)

Process pixels:

Prepare template

Prepare sample point

Convolve

Update location

Loop for #

of pixels

(80x80)

Loop for

of inner

sample

points

(20)

Select inner point

Select outer point

5

4.2 Common Framework
Trellis derives and extends a unified set of directives from

OpenMP [1] and OpenACC [3], current high-level state-of-the-art

solutions for multicore CPU and GPU, and makes it compatible

for both architectures. To implement execution on these

architectures, Trellis performs a source-to-source translation of

these directives to OpenMP and OpenACC, respectively. For

improved performance, it features a new thread synchronization

directive and new code analysis (Section 4.3A) with functionality

implemented via translation to CUDA [19]. The set of directives

adopted by Trellis consists of those common for both CPU and

GPU with specific clauses for the latter, as well as those that are

specific to a GPU. In the remainder of this section we give only a

short overview of annotations adapted by Trellis, and ask the

reader to refer to [1] and [2] for more detailed information on this

programming style. The naming for our annotations is derived

mostly from [2].

Trellis uses annotations that consist of a directive and a

corresponding clause (Figure 7). There are four types of

directives: region, loop, data and executable (Figure 8). Data

directives can only exist in combination with a region or loop

directive that defines their scope. Clauses specify values that can

refer to the number of tasks, vector widths, and the names and

sizes of variables. While all directives can annotate the base code,

the Trellis translator uses only those that are appropriate for the

target framework (Section 4.4). Consider codes in Figures Figure

14, Figure 16 and Figure 18 as examples.

#pragma trellis directive (clause)

Figure 7. Directive format in Trellis framework.

Region directives data and compute encapsulate code regions in

which data is exchanged with the GPU or in which computation is

offloaded to the GPU, respectively. The data directive indicates

that data should remain on the device for the duration of enclosed

kernels. The compute directive instructs the compiler to try to

offload the enclosed code region to an accelerator, regardless of

whether particular parallel constructs, such as loops, are present.

Loop directives such as parallel, vector or sequential, specify

execution flow for the annotated loop. The parallel directive is

used for coarse-grained mapping onto cores in a CPU or

multiprocessors in a GPU. The vector directive, on the other hand,

is used for fine-grained mapping onto processing units in a CPU.

In the case of a CPU, equivalent mapping onto vector units is

performed implicitly by the compiler. Since the compiler can try

to implicitly parallelize loops, even when no annotations present,

sequential execution can be enforced via the sequential directive.

Data directives, such as shared, private, cache, local, copy,

copyin or copyout, specify the types of data used in annotated

code sections. The first two directives can be used for specifying

the scope of variables for both CPU and GPU. The remaining

annotations are used for caching and allocating space in GPU

memory, as well as transferring data between GPU and system

memories.

Executable directives support operations, such as device setup,

as well as explicit thread and data synchronization, that are not

associated with a particular construct but an implicit code region

in which they appear. The GPU thread synchronization directive

that is introduced in Trellis (Section 4.3A) is an example of this

type of directive.

Figure 8. Types of directives in Trellis framework.

4.3 Efficient Mapping to GPUs
While running target OpenACC code, generated by Trellis at the

back end, which is then further translated to CUDA by the

OpenACC compiler, we observe that performance is suboptimal

when compared to hand-written CUDA code. We discover that

the desired hardware mapping (which is also the most optimal

mapping in the case of our codes), specified by explicit

annotations, cannot be obtained with OpenACC because it lacks

support for thread synchronization and inefficiently handles code

structure. This behavior is illustrated in the case of three main

code constructs that we identify as braided loops, intermediate

statements and interleaved serial code (Figure 9), discussed in

detail below.

Figure 9. Code structure of our applications.

The penalties of these shortcomings can be alleviated by first

analyzing OpenACC compiler’s behavior via trial and error and

then, often unintuitively, modifying the source code only to obtain

more efficient mapping. However, the optimal performance still

cannot be obtained due to the lack of thread synchronization

support. Since the aforementioned constructs appear in codes

frequently, this is a major obstacle in achieving performance

portability of a single code base. Therefore, we address this

problem in Trellis with an introduction of a thread

synchronization directive and required code transformations to

achieve proper hardware mapping. The functionality of these is

implemented at the back end via source-to-source translation

directly to CUDA. Consider representative C-style outlines of

kernels in our applications (Figure 9. Code structure of our

applications.).

Sequential

dependence

a) Heart Wall

Sequential

dependence

b) ddcMD

for(…){

for(…){

for(…){
Par Op iter

}

Seq Op
}

}

for(…){

for(…){

for(…){
Par Op iter

}

Seq Op
}

for(…){

Par Op iter
}

} Sequential

dependence

c) B+Tree

Loop (+ Data) Region (+ Data) Executable

Directives

for(…){

if(…){

for(…){
Par Op 1 iter

}

Seq Op
}

else{

for(…){
Par Op 1 iter

}

for(…){
Par Op 2 iter

}

…
for(…){

Par Op N iter

}
Seq Op

}

}

6

Figure 10. Efficient mapping of braided code onto GPU.

A. Braided Structure
We first focus on a braided code structure, such as that in Heart

Wall (Figure 9a, disregard conditional statements). The outermost

loop represents independent tasks that can execute in parallel,

where each task consists of multiple operations that execute

sequentially due to dependencies (black arrow). These operations

are either parallel (marked blue) or scalar (marked purple) within

their own scope. In order to achieve the best performance (highest

occupancy and locality), the two-level braided structure should be

mapped to the corresponding two-level hierarchy in a GPU

(Figure 10) where tasks can take advantage of hardware

synchronization for the sequentially dependent operations. The

compiler should determine the optimal vector width, common for

all operations.

Figure 11. Inefficient mapping of braided code onto GPU due

to the lack of synchronization support that results in a split

kernel.

We observe that OpenACC cannot effectively map a braided

structure most likely due to lack of support for thread

synchronization within a GPU multiprocessor. In such case,

synchronization can only be invoked via a global barrier at the

end of the kernel. Therefore, as a result, each iteration of the loop

corresponding to tasks is combined with those of each

sequentially dependent operation into a separate kernel and spread

across all multiprocessors (with no particular task-multiprocessor

assignment, Figure 11). Most importantly, code offloaded to a

GPU in such a way suffers from the overhead of additional kernel

launches that could diminish the benefits of parallel execution

[20]. Moreover, while this mapping tries to increase occupancy, it

often suffers in terms of locality.

Following the approach of explicit annotation (Section 4.4), rather

than relying on compiler dependence analysis, we address this

shortcoming in Trellis with an introduction of a

threadSynchronize directive (Figure 16, Figure 18) that allows the

programmer to invoke thread synchronization explicitly. We then

develop code analysis that takes advantage of this directive to

construct a proper braided kernel as show in Figure 10.

B. Intermediate Statements
Let us now consider a braided code with intermediate statements

such as conditionals (Heart Wall, Figure 9a) or loops (ddcMD,

Figure 9b and B+Tree, Figure 9c) that add slight complexity to its

structure. These statements can enclose individual operations, sets

of operations (Heart Wall, B+Tree) or entire contents of a task

(ddcMD). Similarly to Section 4.3A, in order to achieve optimal

performance, all tasks with their contents (including the

intermediate statements) should be executed in a single kernel

(Figure 10), or at least as shown in Figure 11 (assuming limitation

described in Section 4.3A). Although less deterministic, common

vector width could be determined in case of a conditional

statement.

We observe that OpenACC cannot yet efficiently map code

structure that includes intermediate statements. The inclusion of

the conditional statement or the additional loop (which could

potentially be eliminated by the compiler via unrolling) currently

prevents the compiler from offloading the code, even in the form

shown in Figure 10 by breaking into multiple kernels. As a result,

in the case of Heart Wall and ddcMD, operations within each task

are serialized while tasks themselves are spread across

multiprocessors (Figure 12). This mapping suffers from

significant performance penalty due to serialization. In the case of

B+Tree, on the other hand, the parallel region is not offloaded to a

GPU, but executes in a CPU instead.

Figure 12. Inefficient mapping of a braided code onto GPU

due to intermediate statements and interleaved sequential

code that results in task serialization.

Trellis addresses this shortcoming with code analysis and

transformations that can properly offload such code structure, as

shown in Figure 10. The OpenACC compiler can be aided in

achieving a more efficient mapping, such as the one in Figure 11,

by moving conditional statements outside of the two-level loop

structure and merging the intermediate loop with one of the

Multiprocessor 1 Multiprocessor 2 Multiprocessor N

…

…

Kernel 1

Task 1

Par Op 1
Par Op 2

…

Par Op N
Seq Op

Task 2

Par Op 1

Par Op 2

…

Par Op N

Seq Op

Task N

Par Op 1

Par Op 2

…

Par Op N

Seq Op

…

Multiprocessor 1 Multiprocessor 2 Multiprocessor N

…

…

Kernel 1

Task 1

Par Op 1

Task 2

Par Op 1

Task N

Par Op 1

…

…

Kernel 2

Task 1

Par Op 2

Task 2

Par Op 2

Task N

Par Op 2

…

…

Kernel N

Task 1

Par Op N

Task 2

Par Op N

Task N

Par Op N

…

…

Multiprocessor 1 Multiprocessor 2 Multiprocessor N

…

…

Kernel 1

Task 1

Par Op 1
Sync

Par Op 2

Sync
…

Par Op N

Seq Op

Task 2

Par Op 1
Sync

Par Op 2

Sync
…

Par Op N

Seq Op

Task N

Par Op 1
Sync

Par Op 2

Sync
…

Par Op N

Seq Op

…

7

remaining loops. We make this manual modification to show the

best-case OpenACC performance.

C. Interleaved Serial Code
Finally, we consider a braided code structure with parallel and

sequential operations interleaved inside a task (Heart Wall, Figure

9a, ddcMD, Figure 9b, B+Tree, Figure 9c). The sequential

operations usually represent initial, intermediate or final

computation steps within a task (marked purple) that narrow the

effective vector width to one thread. Similarly to Sections 4.3A

and 4.3B, in order to achieve the best performance, all tasks with

their contents should be executed in a single kernel (Figure 10), or

at least as shown in Figure 11, while restricting execution of a

serial section to a single thread.

We observe that OpenACC cannot efficiently map structures that

include interleaved serial code, since unlike loops, it cannot be

intuitively mapped onto a parallel resource. As a result, similarly

to examples in Sections 4.3A and 4.3B, the remaining (parallel)

operations within each task are serialized while the processing of

tasks is spread across multiprocessors with no particular task-

multiprocessor assignment that explores locality (Figure 12). This

mapping suffers from significant performance penalty due to the

serialization.

Trellis addresses this shortcoming with an appropriate code

analysis and transformation that can offload this type of code

structure as shown in Figure 10. The OpenACC compiler can be

aided in achieving a more efficient mapping, such as the one in

Figure 11, by enclosing interleaved serial code in a loop of unit

width. We make this manual modification to show the best-case

OpenACC performance.

4.4 Trellis Translator
Trellis translator implements execution of portable Trellis codes

on multi-core CPU and GPU. This is achieved via source-to-

source translation of C code annotated with Trellis directives

(Figure 13a) to OpenMP and OpenACC (Figure 13b),

respectively. Since Trellis directives are a subset of those derived

from these two solutions, the translation process is

straightforward. The additional synchronization directive and

code transformations for improved GPU performance (Section

4.3) are implemented via translation to CUDA. Although

straightforward as well, the process of translating to CUDA

structure and syntax is beyond the scope of this paper. Trellis

translator performs the following steps:

1) Determine target framework based on user input;

2) Perform code analysis with respect to loop structure;

3) Translate code to target CPU or GPU framework;

In its prototype form, unlike OpenACC, Trellis does not attempt

to parallelize unannotated code, but it relies entirely on

annotations. This approach is sufficient for the purpose of this

work, as we are concerned with proper mapping of a fully

annotated code rather than parallelization techniques via

dependence analysis in the case of an unannotated or partially

annotated code. Moreover, unlike OpenACC, Trellis does not split

the inner loop iterations and map across multiprocessors for

improved occupancy. This turns out to be problematic in terms of

locality when a proper braided code is generated by Trellis. From

all annotations present in the code, only applicable ones are used

when generating kernel code for a CPU or a GPU. Also, for

simplicity in this prototype version, Trellis expects certain

ordering of variable declaration, memory allocation and

computation code sections. The translator is available on the first

author’s webpage.

Figure 13. Translation of Trellis code to target frameworks.

5. SETUP AND METHODOLOGY

The baseline codes for our applications are written in C. They are

extended with the Trellis framework, which is then translated to

target frameworks that include: OpenMP, OpenACC and CUDA.

We configure ddcMD with 1000 small boxes with 120 particles in

each. The Heart Wall application processes 104 video frames,

609x590 pixels each, with 20 inner and 30 outer sample points,

80x80 pixels each. B+Tree runs 65000 queries and its database is

configured with 4 tree levels, each with 65536 leaves 128 keys.

Analysis and performance results are obtained from a single

machine, equivalent to a cluster node, equipped with an 8-core (2

threads/core) Intel Xeon X5550 CPU and NVIDIA Tesla C2050

GPU. We compile C-only and OpenMP codes with GCC [21],

using the highest optimization level. OpenACC codes are handled

by PGCC [2], version 12.5, which translates them to CUDA that

is further compiled by NVCC [19].

We try to ensure that OpenACC and CUDA codes generated by

Trellis are equivalent in terms of memory usage, so that the

difference in performance is related only to hardware mapping,

kernel launch overhead, resource utilization and locality. We

ensure that such mapping, that we compare against, is the most

optimal for each application. For a fair line count comparison, we

split compound annotations to include only one directive per line.

We choose the PGI compiler for OpenACC, as it appears to be the

most mature option. Since the compiler does not allow examining

the CUDA (Figure 13c) that it generates at the back end, we infer

Framework:

Trellis

Architecture:

Multi-core CPU

GPU

Framework:

CUDA

Architecture:

GPU

Framework:

OpenMP

Architecture:

Multi-core CPU

Framework:

OpenACC

Architecture:

GPU

Framework:

CUDA

Architecture:

GPU

Compare

c) Low-level

Target Code

b) High-level

Target Code

a) High-level

Original Code

8

its structure based on compiler messages and comparative

performance. We use the hand-written CUDA code to estimate

typical GPU overheads due to driver communication, data transfer

and kernel launch.

We are only concerned with tasks processed at each node. Thus,

we assume that the higher level code balances the amount of work

at each node. Diagrams, code outlines and line counts for each

application refer to the accelerated section of the code, which

accounts for nearly all of execution time.

We refer to NVIDIA terminology [19] when describing GPU

optimizations. Our results do not account for the overhead of

source-to-source translation, which would be minimized if Trellis

was supported natively by the compiler.

6. RESULTS

6.1 ddcMD
In order to prepare for the application of our framework, we first

make several changes to the original code structure that include

the following.

 Increase Parallelism: Since the processing of home

and neighbor box interactions is almost identical, we

combine the corresponding code and data structures to

expose more parallelism (marked blue in Figure 2).

 Improve Convergence: We remove conditional

statements related to the cut-off radius in order to

improve convergence of GPU threads and data accesses

at the cost of a small amount of additional work.

 Simplify References: To support GPU transfers, we

consolidate box and particle data that originally used

multiple structures referenced through nested pointers.

 Remove Customization: We remove optimizations,

such as the explicit use of particular ISA instructions

and memory padding, at insignificant performance cost.

We then apply our framework to the structured code as follows to

arrive at a portable version (Figure 14).

 Hardware Mapping: We map box processing to CPU

cores or GPU multiprocessors and parallelize particle

processing across CPU vector units or GPU processors.

 Execution Parameters: To match computation size to

available resources in GPU implementations, we set the

number of blocks for tasks to 1000 and the vector width

for operations to 128.

The portable Trellis code is translated to OpenMP or OpenACC

for CPU or GPU execution, respectively. Since the annotations in

the two follow from the relevant ones in Trellis, we do not show

them in separate code listings, but only mark the relevant Trellis

annotations with colors in Figure 14. The listing of target CUDA

code that fully utilizes Trellis annotations is omitted because of

being beyond the scope of the paper.

We make the following changes to OpenACC code to achieve the

best-case performance (Figure 15).

 Intermediate Loop: We remove two sequential loops

from the kernel (marked purple in Figure 15). However,

the resulting implementation is still far from optimal as

it narrows the scope of offloaded code (to two

innermost loops) and increases the number of kernels.

Table 1 compares performance of ddcMD implementations. In our

results, Original corresponds to the baseline sequential version,

usually with custom optimizations, while Structured refers to the

generalized parallel version of the Original code. These results

illustrate code length and performance achievable with OpenMP

(OMP) and OpenACC (OACC). Structured Portable code, on the

other hand, is a Structured code that uses Trellis to achieve

portability across architectures. These results show the code

length and performance achievable with our portable high-level

approach. Line 12 gives additional initialization and data transfer

overhead incurred by GPU codes, as extracted from the hand-

written CUDA code. Line 13 gives the best-case OpenACC

performance, achievable with structural modifications to the

source code. This number illustrates detriment to performance due

to the lack of synchronization support (Section 4.3A). We

normalize speedup to the OpenMP code that runs on a single core.

Conversion of indices to partitioned space

#pragma trellis data copyin(box[0:#_boxes]) \

copyin(pos[0:#_par.]) \

copyin(chr[0:#_par.]) \

copyout(dis[0:#_par.]){

#pragma trellis compute{

#pragma trellis parallel(1000) \

independent \

private(…) \

cache(home_box)

for(i=0; i<#_home_boxes; i++){

Home box setup

#pragma trellis sequential

for(j=0; j<#_neighbor_boxes; j++){

Neighbor box setup

#pragma trellis vector (128) \

independent \

private(…) \

cache(neighbor_box)

for(k=0; k<#_home_particles; k++){

#pragma trellis sequential

for(l=0; l<#_neighbor_particles;l++){

Calculation of interactions

}

…

}

Figure 14. Outline of portable ddcMD code, written in Trellis.

During translation, statements in blue apply to both OpenMP

and OpenACC, while those in brown only to OpenACC.

Names of some directives change during translation.

Conversion of indices to partitioned space

#pragma acc data copyin(box[0:#_boxes]) \

copyin(pos[0:#_par.]) \

copyin(chr[0:#_par.]) \

copyout(dis[0:#_par.]){

for(i=0; i<#_home_boxes; i++){

Home box setup

for(j=0; j<#_neighbor_boxes; j++){

Neighbor box setup

#pragma acc kernels{

#pragma acc loop gang \

independent \

private(…) \

cache(neighbor_box)

for(k=0; k<#_home_particles; k++){

#pragma acc loop vector \

9

independent

for(l=0; l<#_neighbor_particles;l++){

Calculation of interactions

}

…

}

Figure 15. Outline of portable ddcMD code translated to

OpenACC. Statements in blue represent structural changes

required to achieve best-case OpenACC performance.

Table 1. Performance of ddcMD application.

Arch.

Code

Feature Framework

Kernel

Length

[lines]

Exec.

Time [s]

Speedup

[x]

1
1-core

CPU Original C 62 60.53e-1 1.52

2
1-core

CPU Structured OMP 58 73.24e-1 1.00

3
8-core

CPU Structured OMP 65 10.51e-1 6.97

4 GPU Structured OACC 97 91.62e-1 0.80

5 GPU Structured CUDA 88 5.59e-1 13.10

6 162 6.97

7
1-core

CPU
Structured

Portable

Trellis

(-> OMP)
97 73.24e-1 1.00

8
8-core

CPU

Structured

Portable

Trellis

(- > OMP)
97 10.51e-1 6.97

9 GPU
Structured

Portable

Trellis

(- > OACC) 97 91.62e-1 0.80

10 GPU
Structured

Portable

Trellis

(-> CUDA)
97 5.59e-1 13.10

11 97 13.10

12 GPU
Init/Trans

Overhead
CUDA --- 3.36e-1 ---

13 GPU
Modified

Best-case
OACC 89 8.24e-1 8.88

6.2 Heart Wall
In order to prepare for the application of our framework, we first

make several changes to the original code structure that include

the following.

 Increase Parallelism: Since the processing of inner and

outer points is almost identical, we combine the

corresponding code and data structures to expose more

parallelism (marked blue in Figure 4).

 Improve Locality: Since point-processing stages can

share data, we arrange data accesses to maximize

utilization of cache and shared memory in CPU and

GPU, respectively.

We then apply our framework to the structured code as follows to

arrive at a portable version (Figure 16).

 Hardware Mapping: We map sample point processing

to CPU cores or GPU multiprocessors and parallelize

processing of detection stages across CPU vector units

or GPU processors.

 Execution Parameters: To match computation size to

available resources in GPU implementations, we set the

number of blocks for tasks to 50 and the vector width

for operations to 512.

 Thread Synchronization: We instruct Trellis translator

to invoke thread synchronization between sequentially

dependent operations via new directive introduced in

Trellis.

The portable Trellis code is translated to either OpenMP or

OpenACC for CPU or GPU execution, respectively (relevant

sections are marked in color in Figure 16).

We make the following changes to OpenACC code to achieve the

best-case performance (Figure 17).

 Conditional Statements: We split code on each

conditional statement (not shown in Figure 4 and Figure

9a for clarity) into groups of operations to avoid

serialization.

 Interleaved Sequential Code: We enclose interleaved

sequential code in a loop of unit width (purple in Figure

17) to enable proper parallelization of the outer loop.

Table 2 compares performance of Heart Wall implementations.

Processing of inputs from earlier stages.

for(i=0; i<#_frames; i++){

Read frame

#pragma trellis data copyin(frm[0:frm_siz]) \

 copyin(ini_loc[0:#_smp_pnts.]) \

 local(con/cor[0:#_pixels]) \

 copyout[fin_loc[0:#_smp_pnts.]){

#pragma trellis compute{

#pragma trellis parallel(50) \

 independent \

private

for(j=0; j<#_sample_points; j++){

#pragma trellis vector(512) \

 independent \

 private(…)

for(i=0; i<#_pixels; i++){

Preparing inputs

}

#pragma threadSynchronize

#pragma trellis vector(512) \

 independent \

 private(…)

for(i=0; i<#_pixels; i++){

Convolving/correlating with templates

}

#pragma threadSynchronize

Updating displacement

…

}

Figure 16. Outline of portable Heart Wall code, written in

Trellis. During translation, statements in blue apply to both

OpenMP and OpenACC, those in brown only to OpenACC,

while those in purple to CUDA. Names of some directives

change during translation.

Processing of inputs from earlier stages.

for(i=0; i<#_frames; i++){

Read frame

#pragma acc data copyin(frm[0:frm_siz]) \

copyin(ini_loc[0:#_smp_pnts.]) \

create(con/cor[0:#_pixels]) \

copyout[fin_loc[0:#_smp_pnts.]){

#pragma acc kernels{

#pragma acc loop gang \

independent

10

for(j=0; j<#_sample_points; j++){

#pragma acc loop vector \

independent \

private(…)

for(i=0; i<#_pixels; i++){

Preparing inputs

}

#pragma acc loop vector \

independent \

private(…)

for(i=0; i<#_pixels; i++){

Convolving/correlating with templates

}

#pragma acc loop vector \

independent \

private(…)

for(i=0; i<1; i++){

Updating displacement

}

…

}

Figure 17. Outline of portable Heart Wall code translated to

OpenACC. Statements in blue represent structural changes

required to achieve best-case OpenACC performance.

Table 2. Performance of Heart Wall application.

 Arch.
Code

Feature Framework

Kernel

Length

[lines]

Exec.

Time [s]

Speed-up

[x]

1
1-core

CPU Original C 178 11.76e1 0.88

2
1-core

CPU Structured OMP 183 10.35e1 1.00

3
8-core

CPU Structured OMP 197 2.01e1 5.15

4 GPU Structured OACC 205 42.12e1 0.25

5 GPU Structured CUDA 202 1.21e1 8.55

6 402 5.15

7
1-core

CPU
Structured

Portable

Trellis

(-> OMP)
209 10.35e1 1.00

8
8-core

CPU

Structured

Portable

Trellis

(- > OMP)
209 2.01e1 5.15

9 GPU
Structured

Portable
Trellis

(- > OACC) 209 42.12e1 0.25

10 GPU
Structured

Portable

Trellis

(-> CUDA)
209 1.21e1 8.55

11 209 8.55

12 GPU
Init/Trans

Overhead
CUDA --- 0.03e1 ---

13 GPU
Modified

Best-case
OACC 223 1.49e1 6.95

6.3 B+Tree
In order to prepare for the application of our framework, we first

make several changes to the original code structure that include

the following.

 Simplify References: To support GPU transfers, we

consolidate data for queries and trees that originally

used multiple structures referenced by nested pointers.

We then apply our framework to the structured code as follows to

arrive at a portable version (Figure 18).

 Hardware Mapping: We map the processing of queries

to CPU cores or GPU multiprocessors and parallelize

the processing of leaves across CPU vector units or

GPU processors.

 Execution Parameters: To match computation size to

available resources in GPU implementations, we set the

number of blocks for tasks to 65000 and the vector

width for operations to 512.

 Thread Synchronization: We instruct Trellis translator

to invoke thread synchronization between sequentially

dependent operations via new directive introduced in

Trellis.

The portable Trellis code is translated to either OpenMP or

OpenACC for CPU or GPU execution, respectively (relevant

sections are marked in color in Figure 18).

We make the following changes to OpenACC code to achieve the

best-case performance (Figure 19).

 Intermediate Loop: We move the middle loop beyond

the outermost loop to help the compiler recognize

braided structure.

 Interleaved Sequential Code: We enclose interleaved

sequential code in a loop of unit width (purple in Figure

19) to enable proper parallelization of the outer loop.

Table 3 compares performance of B+Tree implementations.

Construct data tree with multiple levels and leaves

#pragma trellis data copyin(records[0:#_records]) \

copyin(knodes[0:#_knodes.]) \

copyin(keys[0:#_queries.]) \

copyout(ans[0:#_queries.]){

#pragma trellis compute{

#pragma trellis parallel(65000) \

independent \

private

for(i=0; i<#_queries; i++){

#pragma trellis sequential

for(i=0; i<#_tree_levels; i++){

#pragma trellis vector(512) \

independent \

private(…)

for(j=0; j<#_leaves; j++){

Compare value against the key

}

#pragma threadSynchronize

Set offset for the next tree level

}

#pragma threadSynchronize

Select single value out of all tree levels

…

}

Figure 18. Portable B+Tree code, written in Trellis. During

translation, statements in blue apply to both OpenMP and

OpenACC, those in brown only to OpenACC, while those in

purple to CUDA. Names of some directives change during

translation.

Construct data tree with multiple levels and leaves

#pragma acc data copyin(records[0:#_records]) \

copyin(knodes[0:#_knodes.]) \

copyin(keys[0:#_queries.]) \

copyout(ans[0:#_queries.]){

for(i=0; i<#_tree_levels; i++){

#pragma acc kernels{

11

#pragma acc loop gang \

independent \

for(i=0; i<#_queries; i++){

#pragma acc loop vector \

independent \

private(…)

for(j=0; j<#_leaves; j++){

Compare value against the key

}

#pragma acc loop vector \

independent \

private(…)

for(i=0; i<1; i++){

Set offset for the next level

}

…

}

#pragma acc kernels{

#pragma acc gang \

independent \

for(i=0; i<#_queries; i++){

Select value out of all tree levels

}

…

}

Figure 19. Portable B+Tree code translated to OpenACC.

Statements in blue represent structural changes required to

achieve best-case OpenACC performance.

Table 3. Performance of B+Tree application.

 Arch.
Code

Feature Framework

Kernel

Length

[lines]

Exec.

Time [s]

Speed-up

[x]

1
1-core

CPU Original C 34 35.99e-2 0.92

2
1-core

CPU Structured OMP 39 33.11e-2 1.00

3
8-core

CPU Structured OMP 42 8.06e-2 4.11

4 GPU Structured OACC 72 29.56e-2 1.12

5 GPU Structured CUDA 81 1.57e-2 21.08

6 114 4.11

7
1-core

CPU
Structured

Portable

Trellis

(-> OMP)
73 33.11e-2 1.00

8
8-core

CPU

Structured

Portable

Trellis

(- > OMP)
73 8.06e-2 4.11

9 GPU
Structured

Portable
Trellis

(- > OACC) 73 29.56e-2 1.12

10 GPU
Structured

Portable

Trellis

(-> CUDA)
73 1.57e-2 21.08

11 73 21.08

12 GPU
Init/Trans

Overhead
CUDA --- 0.35e-2 ---

13 GPU
Modified

Best-case
OACC 82 2.03e-2 16.31

7. DISCUSSION

7.1 Performance
The results summarized on line 6 in Table 1,

Table 2, and Table 3 illustrate the total code length and the best

performance achievable with both OpenMP and OpenACC, the

current high-level state-of-the-art solutions that implement CPU

and GPU execution. When manually applied to the original code

base, 8-core OpenMP yields the best performance that scales with

the number of cores (rows 2, 3 in Table 1,

Table 2 and Table 3). The performance of OpenACC is

suboptimal due to inefficient mapping onto a GPU (rows 4 in

Table 1,

Table 2 and Table 3). However, neither of the two provides

performance comparable to that of CUDA, a native GPU solution

(rows 5 in Table 1,

Table 2 and Table 3).

The corresponding results for the target codes generated by Trellis

are given on line 11. For all applications, target OpenMP code

significantly improves the original performance (rows 7, 8 in

Table 1,

Table 2 and Table 3, Figure 20 b, c). While the target OpenACC

code (row 9 in Table 1,

Table 2 and Table 3, Figure 20 d) yields performance worse than

that of the original code (row 1 in Table 1,

Table 2 and Table 3, Figure 20 a), manual modifications to the

code structure allow achieving best-case performance (row 13,

Table 1,

Table 2 and Table 3, Figure 20 e). Target CUDA code that reflects

Trellis’ ability to efficiently handle parallel constructs results in

the best performance for all applications (row 10 in Table 1,

Table 2 and Table 3, Figure 20 g), equivalent to that of a hand-

written CUDA (row 5 in Table 1,

Table 2 and Table 3, Figure 20 f). Within its parallelization limits,

OpenACC compiler can efficiently utilize shared memory, as seen

with Heart Wall (rows 10, 13 in

Table 2). Relative to CPU, GPU implementations incur an

additional overhead due to communication with a driver and data

transfer (row 12, Table 1,

Table 2, Table 3).

Figure 20. Execution time [log scale, normalized to worst].

Trellis allows achieving GPU performance equivalent to that

of a hand-written CUDA code without modifications to the

code base.

7.2 Portability
Our experiences with applications and Trellis lead us to the

conclusion that the high-level directive-based framework is well

suited to achieving high performance while supporting long-term

annotation portability and overall ease of programming. The key

is to provide intuitive abstractions that map naturally to the

important architectural features (e.g., braided parallelism, local

synchronization), yet remain general enough to apply across

diverse architectures.

12

Achieving performance portability across a GPU, which poses

additional mapping challenges due to its hierarchical structure,

required implementation of the new hardware mapping capability

in Trellis. This capability complements OpenACC, in its current

state, by achieving performance (row 10, Table 1,

Table 2 and Table 3, Figure 20 g) equivalent to that of a hand-

written CUDA code (row 5, Table 1,

Table 2 and Table 3, Figure 20 f) without manual modifications to

the code base. In contrast, it is important to observe, that as of

today, OpenACC requires manual modifications to obtain

acceptable performance (row 13, Table 1,

Table 2 and Table 3, Figure 20 e). Unfortunately, these changes

require prior knowledge of the compiler’s behavior, are

unintuitive to a common programmer and may no longer be

optimal for a sequential CPU. However, even with such,

OpenACC performance still remains inferior due to the lack of

thread synchronization support. Since most accelerators are

expected to have hierarchical structure, our conclusions regarding

GPUs can be generalized.

7.3 Accuracy of Directives
As expected, the performance of Trellis codes for different target

frameworks (rows 7, 8, 9 in Table 1,

Table 2 and Table 3) is identical to that of the corresponding

manual implementations (rows 2, 3, 4 in Tables Table 1,

Table 2, Table 3). Since annotations used by Trellis are a superset

of the relevant directives in OpenMP and OpenACC, the

translation to those is straightforward and always results in the

code that is as efficient as the hand-written one.

However, the most important observation is that high-level

directives are sufficiently descriptive to allow generation of native

GPU code (CUDA in our case, row 10 in Table 1,

Table 2 and Table 3) with deterministic performance that is

equivalent to that of a hand-written code. Our codes show that

many low-level statements can be replaced by higher-level

abstractions for convenience, with no loss of performance, which

contradicts the conventional view. Individual statements for

copying to and from a GPU can be simplified to an enclosing data

region. Explicit low-level thread control is unnecessary in most

cases as, from coding and performance point of view, it is

equivalent to introducing an additional loop of unit or limited

width. All other aspects of execution, such as mapping to a

hierarchical resource, execution width and the use of shared

memory can be in fact efficiently described via directives and

implemented by the compiler (or Trellis tool in our case).

7.4 Explicit Annotation
As already mentioned, our results illustrate sufficient descriptive

capability of directives to allow proper parallelization even for a

GPU. We show that this can be achieved via mere interpretation

of comprehensive annotations with no need to rely on compiler

dependence/occupancy analysis. Although such analysis is

required in the absence of sufficient directives, it cannot be relied

on due to its current immature state of the art.

As a part of this approach, we decide to include thread

synchronization in the set of basic annotations in Trellis, which

may not be supported by compilers in the near future due to the

complexity of required dependence analysis. We believe that it is

a fundamental high-level abstraction and should be available to

allow the programmer to better express their intentions, and thus

aid generation of the efficient native code (Figure 10) and avoid

scenarios such as that in OpenACC, where kernels needs to be

split to implement synchronization (Figure 11).

7.5 Generalization vs. Optimization
The restructuring that removed custom optimizations and

regularized parallel control flow, in the case of ddcMD (row 2 in

Table 1) to expose parallelism decreased its sequential

performance by 17%. However, in the case of Heart Wall and

B+Tree applications, similar techniques improved sequential

performance by 14% and 9% mainly due to the removal of

significant control flow overheads (row 2,

Table 2, Table 3). Thus, for most codes, structuring required for

the efficient application of parallel frameworks (directive-based as

well as lower-level) does not necessarily decrease performance

with respect to that of that obtained with architecture-specific

optimizations, while it gives potential of many-fold speedups

when running on a parallel architectures. Therefore, programmers

should focus their efforts on writing portable code rather than

optimizing legacy sequential code.

7.6 Programmability
Our experiences with Trellis provide yet another illustration of the

ease of programmability of the directive-based approach that we

advocate. Although efficient utilization of directives still requires

plentiful and exposed parallelism, unlike other solutions, this

approach is characterized by simplicity and convenience. The

most important advantage of the directive-based approach is that

it allows the programmer to specify desired parallelization without

making significant changes to the code base. This is so, because

most directives and their clauses have simple forms and they

annotate existing structures or regions in the original code base.

Moreover, unlike in native approaches, lower-level operations in

the form of runtime calls take place transparently. Consequently,

many programmers are likely to avoid low-level languages if

directive-based frameworks prove to support sufficient

functionality and performance.

Figure 21. Length of OpenMP CPU code and OpenACC GPU

code, normalized to portable Trellis code. Trellis minimizes

the total code length required for portable execution.

7.7 Code Length and Maintenance
As of today, our solution decreases the overall code size required

for CPU/GPU portability to that of single Trellis code base. The

use of a single code base, as demonstrated by our codes written in

Trellis, naturally reduces code maintenance costs (Figure 21). The

overall code size decreased by 40%, 50%, 36% for ddcMD, Heart

Wall and B+Tree (row 11 in Table 1,

Table 2 and Table 3, Figure 21 d) compared to separate multi-core

CPU and GPU versions (row 6 in Table 1,

13

Table 2 and Table 3). Maintaining a single code base simplifies

subsequent porting or optimization for any target architecture.

While different in structure, both Trellis (row 5 in Table 1,

Table 2 and Table 3) and CUDA (row 10 in Table 1,

Table 2 and Table 3) codes have similar size. While CUDA

requires more code to describe lower-level operations, Trellis

must specify private variables for each parallelized loop.

8. CONCLUSIONS & FUTURE WORK

Our experiences with the applications presented in the paper, as

well as development of the portable Trellis approach, lead us to

the following conclusions.

 Most of the necessary building blocks for a common

framework with syntactic portability, including high-level

frameworks and structured programming, already exist.

 A directive-based approach has sufficient descriptive

capability to support execution across multicore CPUs and

accelerators.

 Synchronization support and additional hardware mapping

capability added to OpenACC can yield performance

comparable to that achieved by native solutions.

 Implementation of these concepts in Trellis allows

programmers to develop a single code base with competitive

performance and programmability as well as decreased code

maintenance cost.

 Current solutions such as OpenMP and OpenACC can easily

include features demonstrated in Trellis for CPU/GPU

portability and improved hardware utilization.

Our future work will extend the Trellis with a more sophisticated

transformation analysis and verification against a larger range of

codes to demonstrate capabilities of a directive-based approach.

ACKNOWLEDGEMENTS

This work was supported in part by the US NSF under grant

MCDA-0903471, SRC under GRC task 1972 and by C-FAR, one

of six centers of STARnet, a Semiconductor Research

Corporation program sponsored by MARCO and DARPA.

REFERENCES
[1] OpenMP. [Online]. http://www.openmp.com

[2] PGI Accelerator API. [Online].

http://www.pgroup.com/resources/accel.htm

[3] OpenACC. [Online]. http://www.openacc-standard.org

[4] S Lee, S Min, and R Eigenmann, "OpenMP to GPGPU: a

Compiler Framework for Automatic Translation and

Optimization.," in Proceedings of PPoPP'09, New York,

2009.

[5] OpenCL. [Online]. http://www.khronos.org/opencl/

[6] F. H. Streitz et al., "100+ TFlop Solidification Simulations

on BlueGene/L.," in Proceedings SC'05, Seattle, 2005.

[7] S. Che et al., "A Characterization of the Rodinia Benchmark

Suite with Comparison to Contemporary CMP Workloads.,"

in Proceedings of the ISWC'10., Atlanta, 2010.

[8] J. Fix, A. Wilkes, and K. Skadron, "Accelerating Braided B+

Tree Searches on a GPU with CUDA.," in Proceedings of the

2nd A4MMC Workshop, in conjunction with ISCA., San Jose,

2011.

[9] R. D. Blumofe, C. F. Joerg, C. E. Leiserson, K. H. Randall,

and Y. Zhou, "Cilk: An Efficient Multithreaded Runtime

System.," in Proceedings of PPoPP'95., Santa Barbara,

1995.

[10] Threading Building Blocks (TBB). [Online].

http://threadingbuildingblocks.org/documentation.php

[11] CUDA-x86. [Online].

http://www.pgroup.com/resources/cuda-x86.htm

[12] G Diamos, A. Andrew, and M. Kesavan, "Translating GPU

Binaries to Tiered SIMD Architectures with Ocelot.,"

Atlanta, 2009.

[13] Jacket. [Online]. http://www.accelereyes.com/jacket_tour

[14] ArrayFire. [Online].

http://www.accelereyes.com/arrayfire_tour

[15] P. Hanrahan. Domain-Specific Languages for Heterogeneous

GPU Computing. [Online].

http://www.graphics.stanford.edu/~hanrahan/talks/

[16] Gromacs. [Online]. http://www.gromacs.org/

[17] D. Merrill, M. Garland, and A. Grimshaw, "Scalable GPU

Graph Traversal.," in Proceedings of PPoPP'12., New

Orleans, 2012.

[18] L. G. Szafaryn, T. Gamblin, B. de Supinski, and K. Skadron,

"Experiences with Achieving Portability Across

Heterogeneous Architectures.," in Proceedings of

WOLFHPC, in conjunction with ICS., Tucson, 2011.

[19] CUDA Programming Guide 3.2. [Online].

http://developer.download.nvidia.com

[20] Michael W. Boyer. CUDA Support Page. [Online].

https://www.cs.virginia.edu/

~csadmin/wiki/index.php/CUDA_Support

[21] GCC. [Online]. http://gcc.gnu.org/

[22] Many Integrated Core (MIC) Architecture. [Online].

http://www.intel.com

[23] T. Chen, R. Raghavan, J. N. Dale, and E. Iwata, "Cell

Broadband Engine Architecture and Its First Implementation:

a Performance View.," in IBM Journal of Research and

Development., 2007.

[24] CSX700. [Online].

http://support.clearspeed.com/documentation/hardware/

[25] D. Tarjan, J. Meng, and K. Skadron, "Increasing Memory

Miss Tolerance for SIMD Cores.," in Proceedings of SC'09.,

Portland, 2009.

http://www.openmp.com/
http://www.pgroup.com/resources/accel.htm
http://www.openacc-standard.org/
http://www.khronos.org/opencl/
http://threadingbuildingblocks.org/documentation.php
http://www.pgroup.com/resources/cuda-x86.htm
http://www.accelereyes.com/jacket_tour
http://www.accelereyes.com/arrayfire_tour
http://www.graphics.stanford.edu/~hanrahan/talks/
http://www.gromacs.org/
http://developer.download.nvidia.com/
https://www.cs.virginia.edu/%20~csadmin/wiki/index.php/CUDA_Support
https://www.cs.virginia.edu/%20~csadmin/wiki/index.php/CUDA_Support
http://gcc.gnu.org/
http://www.intel.com/
http://support.clearspeed.com/documentation/hardware/

