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Abstract

While recognition of the advantages of heterogeneous computing is steadily growing, the issues of pro-
grammability and portability hinder its exploitation. The introduction of the OpenCL standard was a
major step forward in that it provides code portability, but its interface is even more complex than that of
other approaches. In this paper we present the Heterogeneous Programming Library (HPL), which permits
the development of heterogeneous applications addressing both portability and programmability while not
sacrificing high performance. This is achieved by means of an embedded language and data types provided
by the library with which generic computations to be run in heterogeneous devices can be expressed. A
comparison in terms of programmability and performance with OpenCL shows that both approaches offer
very similar performance, while outlining the programmability advantages of HPL.
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1. Introduction

The usage of heterogeneous computing resources that cooperate in the execution of an application has
become increasingly popular as a result of improvements in runtime and power consumption achieved with
respect to traditional approaches solely based on general-purpose CPUs [19]. Still, these advantages do come
at a sizable cost in terms of programmer productivity and, often, code portability. The reason for this is that
current hardware accelerators cannot be simply programmed using the sequential languages and semantics
with which programmers are familiar. Nowadays, the most widely utilized approach to take advantage of
these systems is the usage of extended versions of well-known languages [18, 29, 3, 20] that reflect and
allow for the management of the particular semantics, characteristics and limitations that these accelerators
pose for programmers. Portability problems arise from the fact that the vast majority of these programming
environments, in fact all of them with the exception of OpenCL [20], are vendor-specific, and sometimes even
accelerator-specific. This situation has led to extensive research on ways to improve the programmability of
heterogeneous systems. In light of this, researchers have proposed a rich set of libraries [12, 35, 5, 9, 23, 21],
each with different strengths and weaknesses, and compiler directives [24, 15, 30], whose performance strongly
depends on compiler technology.

In this paper we present the Heterogeneous Programming Library (HPL), a new alternative to address
the problems of programmability and portability described above. Our approach relies on expressing the
kernels that exploit heterogeneous parallelism in a language embedded in C++. This allows the library
to capture at run-time the computations and variables required for the execution of those kernels. With
this information the HPL performs run-time code generation (RTCG) in order to run those kernels on the
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Figure 1: Heterogeneous Programming Library hardware model

requested device. This is currently achieved on top of OpenCL in order to maximize the portability of
applications, although nothing precludes the usage of other backends in the future. Our experience with
HPL indicates that it provides performance on par with OpenCL, while providing major programmability
advantages.

This article is organized as follows: we begin with an overview of the hardware and programming
model supported by HPL, followed by a description of the interface and implementation of our library. An
evaluation in terms of programmability and performance in Section 4 is followed by a discussion on related
work. The last section discusses our conclusions and future work.

2. Supported programming model

The Heterogeneous Programming Library (HPL) hardware and programming models are similar to those
provided by CUDA [29] and OpenCL [20] and they are so general that they can be applied to any computing
system and application. The HPL hardware model, depicted in Fig. 1, is comprised of a host with a standard
CPU and memory, to which is attached a number of computing devices. The sequential portions of the
application run in this host and can only access its memory. The parallel parts, which will be written
using the embedded language provided by the library, run in the attached devices at the request of the
host program. Each device has one or more processors, which can only operate on data found within the
memory of the associated device, and which must all execute the same code in SPMD. Processors in different
devices, however, can execute different pieces of code. Also, in some devices the processors are organized in
groups with two properties. First, the processors in a group can synchronize using barriers, while processors
in different groups cannot be synchronized. Second, each group of processors may share a small and fast
scratchpad memory.

As regards the memory model of the HPL, while no special distinction is made in the host, three kinds
of memory can be identified in the devices. First, we have the global memory of the device, which is the
largest one, and which can be both read and written by any processor in the device. Second, the scratchpad
memory which is local and restricted to a single group of processors is called local memory. Finally, a device
may have a constant memory, which is read-only memory for its processors, but which can be set up by the
host.

As this description of the hardware indicates, HPL applications run their serial portions in the host
while their parallel regions run in SPMD mode in the attached devices. While the processors in the same
device must all run the same code at a given time, different devices can run different codes. Thus, both
data and task parallelism are supported. The parallel tasks are called kernels and they are expressed as
functions written in the HPL embedded language. Since the device and host memories are separate, the
inputs of a kernel are transferred to its device by the host, and they are provided to the kernel by means of
some of its arguments. Similarly, kernels output their results through some of their arguments, which will
be transferred to the host when required.

Since multiple threads in a device run the same kernel in SPMD style, an identifier is needed to univocally
distinguish each thread. For this purpose, when a kernel is launched to execution in a device, it is associated
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to a domain of non-negative integers with between one and three dimensions called global domain. An
instance of the kernel is run for each point in this domain. In this way, this point is the unique identifier
(global id) of the thread, and the domain size gives the number of threads used.

Kernel executions can also be optionally associated to another domain, called local domain, whose
purpose is to define groups of threads that run together in a group of device processors able to synchronize
and share local memory. The local domain must have the same dimensionality as the global domain, and
its size in every dimension must be a divisor of the size of that dimension in the global domain. The global
domain can thus be evenly divided in regions of the size of the local domain, so that each region corresponds
to a separate thread group whose threads can cooperate thanks to the barriers and the exploitation of the
local memory. Each group has a unique identifier based on its position in the global domain (group id).
Each thread also has a local id that corresponds to the relative position of its global id within the group’s
local domain.

As we will see as we develop the description of HPL, in comparison with OpenCL, its backend, HPL
avoids the concepts of context, command queues and commands submitted to the devices. There is no
correspondence either for the OpenCL program and memory objects and thus for their management (ex-
plicit load and compilation, data transfers, buffer allocation, etc.). Kernel objects are not needed to refer
to kernels, just their function name, as in C or C++. There are also issues that OpenCL forces to manage,
while HPL can either totally hide or let the user just provide hints for optimization purposes, such as the
synchronization between the devices and the host. HPL also brings generic programming capabilities to
portable heterogeneous programming, as its kernels and data types support templates. Another interesting
feature is that HPL supports multidimensional arrays in the kernel arguments even if their sizes are deter-
mined at runtime, giving place to a much more natural notation than the array linearization forced by the
usage of raw pointers in OpenCL. Finally, HPL provides run-time code generation (RTCG) tools that can
simplify the generation and selection of code versions at runtime.

3. The Heterogeneous Programming Library

Our library supports the model described in the preceding section, providing three main components
to users. First, it provides a template class Array that allows for the definition of both the variables that
need to be communicated between the host and the devices, and the variables that are local to the kernels.
Second, these kernels, as mentioned in the previous section, are functions written using the HPL embedded
language, which is an API in C++ consisting of data types, functions, macros and predefined variables.
This API allows our library to capture the computations requested, so that it can build a binary for them
that can run in the requested accelerator. Finally HPL provides an API for the host code in order to inspect
the available devices and request the execution of kernels. The entire HPL interface is made available by the
inclusion of the single header file HPL.h and it is encapsulated inside the HPL namespace in order to avoid
collisions with other program objects. At this point, we will turn to a discussion of the library components.

3.1. The Array data type
Like any function, HPL kernels have parameters and private variables. Both kinds of variables must

have type Array<type, ndim [, memoryFlag]>, which represents an ndim-dimensional array of elements of
the C++ type type, or a scalar for ndim=0. The optional memoryFlag either specifies one of the kinds
of memory supported (Global, Local and Constant, in the order used in Section 2) or is Private, which
specifies that the variable is private to the kernel and which is the default for variables defined inside kernels.
The type of the elements can be any of the usual C++ arithmetic types or a struct. In this latter case, the
struct definition must be made known to HPL using the syntax shown in Fig. 2, where mystruct t is the
name we want to give to the struct.

When the host code invokes a kernel, it provides the arguments for its execution, which must also be
Arrays. In this way Arrays must be declared in the host space as global variables or inside functions that
run in the host, in order to specify the inputs and outputs of the kernels. These variables, which we call
host Arrays, are initially stored only in the host memory. When they are used as kernel arguments, our
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1 HPL DEFINE STRUCT( mystruct t,

2 { int i;

3 float f;

4 } );

5

6 Array<mystruct t, 2> matrix(100, 100);

Figure 2: Declaring a struct type to HPL in order to use it in Arrays

1 Array<float, 1> a(N), b(N);

2 ...

3 for(int i = 0; i < N; i++)

4 a(i) = b(i);

(a) automated management

1 Array<float, 1> a(N), b(N);

2 ...

3 float ∗pa = a.data(HPL WRITE);

4 float ∗pb = b.data(HPL READ);

5

6 for(int i = 0; i < N; i++)

7 pa[i] = pb[i];

(b) manual management

Figure 3: Usage of Arrays in host code

library transparently builds a buffer for each one of them in the required device if no such buffer exists
yet. The library also automatically performs the appropriate transfers between host and device memory,
again only if needed. When a host array or kernel argument declaration specifies no memoryFlag, Global
is assumed. Variables defined inside kernels do not allow the Global and Constant flags. By default they
follow the standard behavior of data items defined inside functions, being thus private to each thread in its
kernel instantiation. The exceptions are Arrays with the Local flag, which are shared by all the threads in
a group even if they are defined inside a kernel.

While scalars can be defined using the Array template class with ndim=0, there are convenience types
(Int, Uint, Float, . . . ) that simplify the definition of scalars of the obvious corresponding C++ type. Vector
types are also supported both in the kernels (e.g. Int2, Float4, . . . ) and the host code (correspondingly
int2, float4, . . . ). These vectors can be indexed to access their components and manipulated with several
functions, including the standard operators. Computations can be performed between vectors as well as
between vectors and scalars.

An important characteristic both of Arrays and HPL vector types is that while they are indexed with
the usual square brackets in kernels, their indexing in host code is made with parenthesis. This difference
visually emphasizes the fact that while Array accesses in the host code experience the usual overheads found
in the indexing of user-defined data types [13], this is not the case in the kernels. The reason is that HPL
kernels are dynamically captured and compiled into native binary code by our library, so that the array
accesses have no added overheads.

One reason for the extra cost of the Array accesses in the host code is that they track the status of
the array in order to maintain a consistent state for the computations. In this way an array that has been
modified by a kernel in a device is refreshed in the host when an access detects the host copy is non-consistent.
If the array is written, it is marked as obsolete in the devices. The other crucial point for the maintenance
of the consistency is at kernel launch. Input arrays are updated in the device only if there have been most
recent writes to them in the host or another device. Also, output arrays are marked as modified by the
device, but they are not actively refreshed in the host after the execution. Rather, as explained above, an
access in the host will trigger this process. Overall this leads to a lazy copying policy that minimizes the
number of transfers.

While this automated management is the default, it can be avoided in order to improve the performance.
For example, the user may get the raw pointer to the array data in the host through the Array method
data and perform the accesses through the pointer. This method has as an optional argument a flag to
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Meaning First dimension Second dimension Third dimension
Global id idx idy idz

Local id lidx lidy lidz

Group id gidx gidy gidz

Global domain size szx szy szz

Local domain size lszx lszy lszz

Number of groups ngroupsx ngroupsy ngroupsz

Table 1: Predefined HPL variables.

1 void saxpy(Array<float,1> y, Array<float,1> x, Float a) {
2 y[idx] = a ∗ x[idx] + y[idx];

3 }

Figure 4: SAXPY kernel in HPL

indicate whether the array will be read, written or both through the pointer; if not provided, both kinds
of accesses are assumed. With this information the host data is updated if necessary, and the status of the
array is correctly tracked. Figure 3 illustrates both possibilities. In the case of Fig. 3(a) HPL automatically
tracks the state of the arrays and makes the required updates, but the check is performed in every access.
In Fig. 3(b), however, the user explicitly indicates in lines 3 and 4 that Array a will be overwritten in the
host, while b should be brought from the device with the newest version, unless such version is of course the
one in the host. Data are then accessed through pointers in line 7, incurring no overhead.

3.2. Computational kernels
The second requirement for writing HPL kernels, after the usage of the HPL data types, is to express

control flow structures using HPL keywords. The constructs are the same as in C++, with the differences
that an underscore finishes their name (if , for , . . . ) and that the arguments to for are separated by
commas instead of semicolons1.

Given the SPMD nature of the execution of kernels, an API to obtain the global, local and group ids as
well as the sizes of the domains and numbers of groups described in Section 2 is critical. This is achieved
by means of the predefined variables displayed in Table 1.

Kernels are written as regular C++ functions that use these elements and whose parameters are passed
by value if they are scalars, and by reference otherwise. For example, the SAXPY (Single-precision real
Alpha X Plus Y) vector BLAS routine, which computes Y = aX + Y , can be parallelized with a kernel in
which each thread idx computes y[idx]. This results in the code in Fig. 4.

The kernel functions can be instantiations of function templates, i.e., C++ functions that depend on
template parameters. This is a very useful feature, as it facilitates generic programming and code reuse with
the corresponding boost in productivity. In fact, templates are one of the most missed features by OpenCL
developers, who can finally exploit them on top of OpenCL, the current backend for our library, thanks to
HPL. A small kernel to add two 2-D arrays a and b into a destination array c, all of them with elements
of a generic type T, is shown in Fig. 5. The kernel will be executed with a global domain of the size of the
arrays, and the thread with the global id given by the combination of idx and idy takes care of the addition
of the corresponding elements of the arrays.

HPL provides several functions very useful for the development of kernels. For example, barrier per-
forms a barrier synchronization among all the threads in a group. It accepts an argument to specify whether
the local memory (argument LOCAL), the global memory (argument GLOBAL) or both (LOCAL|GLOBAL) must
provide a coherent view for all those threads after the barrier. Fig. 6(a) illustrates its usage in a kernel used

1The initial version of HPL presented in [7] required that the end of a block was explicitly marked either with the keyword
end , or with a structure-specific keyword (endif , endfor , . . . ). This is no longer needed.
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1 template<typename T>

2 void addmatrices(Array<T,2> c, Array<T,2> a, Array<T,2> b) {
3 c[idx][idy] = a[idx][idy] + b[idx][idy];

4 }

Figure 5: Generic HPL kernel to add bidimensional arrays of any type

1 #define M 64

2

3 void dotp(Array<float,1> v1,

4 Array<float,1> v2,

5 Array<float, 1> pSum) {
6 Int i;

7 Array<float, 1, Local> vec(M);

8

9 vec[lidx] = v1[idx] ∗ v2[idx];

10

11 barrier(LOCAL);

12

13 if ( lidx == 0 ) {
14 for ( i = 0, i < M, i++ ) {
15 pSum[gidx] += vec[i];

16 }
17 }
18 }

(a) basic manual reduction

1 #define M 64

2

3 void dotp(Array<float,1> v1,

4 Array<float,1> v2,

5 Array<float, 1> pSum) {
6

7 reduce(pSum[gidx],

8 v1[idx] ∗ v2[idx],

9 ”+”).groupSize(M).inTree();

10 }

(b) using reduce and binary tree reduction

Figure 6: Dot product kernels in HPL

in the computation of the dot product between two vectors v1 and v2. An instance of the kernel, which is
run using groups (local domain size) of M threads, is executed for each one of the elements of the vectors
so that thread idx multiplies v1[idx] by v2[idx]. The reduction of these values is achieved in two stages.
First, a shared vector vec of M elements located in the local memory stores the partial result computed by
each thread in the group. Once the barrier ensures all the values have been stored, the thread with the
local id 0 reduces them. There are more efficient algorithms to perform this reduction, but our priority here
is clarity. The result is stored in the element of the output vector pSum associated to this group, which is
selected with the group id gidx. In a second stage, when the kernel finishes, the host reduces the contents
of pSum into a single value.

Another example of useful HPL function is call, used for invoking functions within kernels. For example,
call(f)(a,b) calls function f with the arguments a and b. Of course the routine must also be written
using the HPL data types and syntax. HPL will internally generate code for a routine and compile it only
the first time it is used; subsequent calls will simply invoke it. It should be mentioned that routines that
do not include a return statement can also be called with the usual f(a,b) syntax. The difference is that
they will be completely inlined inside the code of the calling function.

This behavior of call raises the issue of how HPL kernels are transformed into a binary suitable to
run on a given device. This is a two-step process that is hidden from the user. In the first stage, called
instantiation, the kernel is run as a regular C++ code compiled in the host application. The fact that this
code is written using the embedded language provided by HPL allows the library to capture all the data
definitions, computations, control flow structures, etc. involved in the code, and build a suitable internal
representation (IR) that can be compiled, as a second step, into a binary for the desired device. Our
current implementation relies on OpenCL C [20] as IR because, as the open standard for the programming
of heterogeneous systems, it provides the HPL programs with portability across the wide range of platforms
that already support it. There are not, however, any restrictions that preclude the usage of other IRs and
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1 if( ( (m ∗ (m + 1) ) / 2 ) ∗ n > C ) {
2 Int i, j, k;

3 for ( i = 0, i < m, i++ )

4 for ( j = 0, j < n, j++ )

5 for ( k = i; k < m, k++ )

6 r[i][j] += a[i][k] ∗ b[k][j];

7 } else {
8 for( int i = 0; i < m; i++ )

9 for( int j = 0; j < n; j++ )

10 for( int k = i; k < m; k++ )

11 r[i][j] += a[i][k] ∗ b[k][j];

12 }

Figure 7: Using regular C++ in a kernel to generate an unrolled matrix product

platforms as backend. In fact efforts were made in the development of the library to facilitate this possibility,
for example by placing most OpenCL-dependent code in a separate module. The aim is for heterogeneous
applications written in HPL to have the potential both to preserve the effort spent in their development
even in environments where OpenCL is not available and to exploit more efficient backends where possible.

Since the kernel is run as a regular C++ routine during the instantiation, variables of standard C++
types can appear in the kernel. These variables will not appear in the kernel IR; rather, they will be replaced
by a constant with their value at the points of the kernel in which they interact with the HPL embedded
language elements. By taking advantage of this property, the macro M used in lines 7 and 14 of Fig. 6(a)
and defined as a constant in line 1, could have been instead defined as an external integer variable. The
best value for the group size could have been chosen at runtime and stored in this variable before the kernel
was instantiated, which happens when it is invoked for the first time. At that point, any reference to M in
the kernel would be replaced by its actual value in the IR.

For the reasons explained above, standard C++ code, such as computations and control flow keywords,
can also appear in kernels. Just as the variables of a type other than Array, they will not appear in the
IR. In their case, they will simply be executed during the instantiation. In this way, they can be used to
compute at runtime values that can become constants in the kernel, to choose among different HPL code
versions to include in the kernel or to simplify the generation of repetitive codes. This is illustrated in Fig. 7,
where r, a and b are 2-D Arrays of m×n, m×m and m×n elements, respectively, and in which m and n are C++
integers whose value is only known at runtime, but remains fixed once computed, and the matrix a is known
to be upper triangular. The code computes r=a×b avoiding computations on the zeros of the lower triangle
of a. HPL first helps by allowing the direct usage of m and n in the kernel without having to pass them as
arguments. If the number of iterations of the innermost loop is above some threshold C, the matrix product
is computed using HPL loops whose optimization is left to the backend compiler. Otherwise the code runs
the loops in C++ so that they get completely unrolled during the instantiation, which should enhance the
performance in GPUs given the properties of these devices. This gives place to (m × (m + 1) × n)/2 lines
of code with the shape of line 11 in the figure, each one with a combination of the values of i, j and k. In
CUDA or OpenCL the compiler may have trouble applying this optimization due to the triangular loop, the
variable nature of m and n or both, so the programmer would have to perform this tedious and error-prone
process by hand. Nevertheless, the HPL user can write the code in Fig. 7, knowing that the loops will only
run during the instantiation, generating the required versions of line 11 with the appropriate frozen values
of i, j and k. These lines will be part of the kernel IR due to the use of the variables of type Array.

As can be seen, regular C++ embedded inside HPL kernels acts as a metaprogramming language that
controls the code generated for the kernels. This provides HPL with advanced run-time code generation
(RTCG) abilities that simplify the creation of versions of a kernel optimized for different situations as
well as the application of several optimizations. This property is particularly valuable for HPL given the
diversity of heterogeneous devices on which the kernels could be run and the high dependence of their
performance on the exact codification chosen. This metaprogramming approach, also called generative
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metaprogramming [10, 16], is much more powerful than other well-known metaprogramming techniques such
as those based on C++ templates [36, 1]. For example, templates are very restricted by the requirement to
perform their transformations only with the information available at compile-time. Another problem is their
somewhat cumbersome notation (specializations of functions or classes are used to choose between different
versions of code, recursion rather than iteration is used for repetitive structures, etc.), which complicates their
application. This contrasts with our approach, which takes place at run-time and uses the familiar control
structs of C++. Template metaprogramming has been widely used though in the internal implementation
of HPL in order to optimize the HPL code capture and the backend code generation, moving computations
to compile time whenever possible. Still, most of the process is performed at runtime, although its cost is
negligible, as we will see in Section 4.

The advantages of RTCG are not only provided by HPL as a feature to be manually exploited by the
programmer. Rather, the interface includes facilities to express common patterns of computation whose
codification can be built at runtime in order to tailor it to the specific requirements needed. An example
is reduce, which accepts as inputs a destination, an input value and a string representing an operator and
which performs the reduction of the input value provided by each thread in a group using the specified
operator into the destination. This routine actually builds an object that generates at run-time the code for
the reduction. This object accepts, by means of methods, a number of optional hints to control or optimize
the code generated. As an example, the dot product kernel in Fig. 6(a) is simplified using this feature in
Fig. 6(b). In this case, we provide the optional hint that the kernel will be run using groups of M threads
to help generate a more optimized code. We also request the reduction to be performed using a binary tree
algorithm, which often yields better performance than the alternative used in Fig. 6(a), at the cost of a
more complex codification. As of now reduce supports nine code generation modifiers. Other examples of
modifiers are requesting a maximum amount of local memory to be used in the reduction process, indicating
a minimum group size rather than the exact group size, or specifying whether only one thread needs to write
the result in the destination, which is the default, or whether all of them must do it. The object builds an
optimized code that tries to fulfill the requests performed while using the minimum number of resources,
computations and thread synchronizations, and inserts it in the kernel. This mechanism is thus equivalent
to having a library of an infinite number of functions to perform reductions in a thread group, each one
optimized for a specific situation.

Finally, it should be pointed out that our library does not merely translate the HPL embedded language
into an IR in a passive way. On the contrary, during this process the code can be analyzed by the library,
which enables it to act as a compiler, gathering information and performing optimizations in the generation
of the IR. As of now, HPL does not yet automatically optimize the IR. Nevertheless, kernels are analyzed
during the instantiation in order to learn which arrays are only read, only written or both, and in this case,
in what order. This information is used by the runtime to minimize the number of transfers required for the
kernel and host accesses between the host and the device memories in use without any user intervention,
as discussed in the previous section. It also allows to learn the dependences of each kernel submitted to
execution, so that HPL automatically ensures they are satisfied before it runs, which results in an automatic
and effortless synchronization system.

3.3. Host Interface
The most important part of the host interface is function eval, which requests the execution of a kernel

with the syntax eval(f)(arg1, arg2, . . . ) where f is the routine that implements the kernel. As mentioned
before, scalars are passed by value and arrays are passed by reference, and thus allow the returning of results.

Specifications in the form of methods to parameterize the execution of the kernel can be inserted between
eval and the argument list. Two key properties are the global and local domains associated with the kernel
run explained in Section 2, which can be specified using methods global and local, respectively. For
example, if kernel f is to be run on arguments a and b on a global domain of 100× 200 threads with a local
domain of size 5× 2, the programmer should write eval(f).global(100, 200).local(5, 2)(a, b).

By default the global domain corresponds to the sizes of the first argument, while the local domain is
chosen by the library. Fig. 8 illustrates a simple invocation of the SAXPY kernel of Fig. 4, also included
in this figure for completeness, by means of its function pointer in line 12. The global domain requires one

8



1 void saxpy(Array<float,1> y, Array<float,1> x, Float a) {
2 y[idx] = a ∗ x[idx] + y[idx];

3 }
4

5 int main(int argc, char ∗∗argv) {
6 float myvector[1000];

7 Float a;

8 Array<float, 1> x(1000), y(1000, myvector);

9

10 //the vectors and a are filled in with data (not shown)

11

12 eval(saxpy)(y, x, a);

13 }

Figure 8: Array creation and SAXPY kernel usage

eval(f) is there an
IR for f?

take it
from cache

generate it and
store it in cache

is there a 
binary for this IR 

and device

take it
from cache

generate it and
store it in cache

transfer 
inputs run kernel

NO NO

YES YES

Figure 9: Kernel invocation algorithm.

point per element of y, which is the first argument, while the local domain needs no specification. The
example also shows that host arrays can be created from scratch (x), making the library responsible for the
allocation and deallocation of its storage in the host, or they can use already allocated host memory by
providing the pointer to this memory as last argument to the constructor (y). In this latter case the user is
responsible for the deallocation too.

Also, although not detailed here due to space limitations, our library provides a simple interface to
identify and inspect the devices in the system and their attributes (number of threads supported, amount
of memory of each kind, etc.) and to obtain a handle of type Device to make reference to each one of them.
A final method to control the execution of a kernel is device, which takes as argument one of these handles
in order to choose the associated device for the execution. If none is specified, the kernel is run in the first
device found in the system that is not a standard CPU. If no such device is found, the kernel is run in the
CPU.

The sequence of steps performed by HPL when a kernel is invoked is described in Fig. 9. In the first
place, an IR of the kernel suitable for the chosen device is sought in an internal cache. If such IR is not
found, the kernel is instantiated following the process described in the previous section. Once the required
IR is available, it could have been already compiled to generate a binary for the chosen device or not. This is
checked in a second cache, which is updated with that binary after the corresponding compilation if it is not
found. At this point, HPL transfers to the device those and only those data needed for the execution. This
is possible thanks to the information that is automatically tracked on the status of the HPL arrays, and the
knowledge of which of the kernel arguments are inputs, which is obtained during the kernel instantiation.
As a final step, the kernel is launched for execution.

As we can see in Fig. 9, the kernel evaluation request finishes in the host side when the device is asked
to run the kernel, without further synchronizations with the device. In this way, HPL kernel runs are
asynchronous, i.e., the host does not wait for their completion before proceeding to the next statement.
This enables overlapping computations among the host and the device, as well as among several devices in
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Benchmark SLOCs Routines Repetitive Cooperation Arithmetic
OpenCL invocation intensity

Spmv 500 medium low
Reduction 399 1 kernel high low
Matrix transpose 373 low low
Floyd-Warshall 407 1 kernel no low
EP 605 X low high
Shallow water 965 X 3 kernels low high

Table 2: Benchmarks characteristics.

a straightforward way. There are several ways to synchronize with the kernel evaluations. As discussed in
Section 3.1, whenever the host code accesses an array or submits for execution a kernel that uses it, our
runtime analyzes the dependences with preceding uses of the array, enforces them and performs the required
transfers. There are also explicit synchronization mechanisms such as the data method of Arrays or the
sync method of Devices, which waits for the completion of all the kernels sent to the associated device and
then updates those that have been modified in the host memory.

Another conclusion from our description of Fig. 9 is that kernel instantiations and compilations are
minimized, because each kernel is only instantiated the first time it is used, and an IR is only compiled when
an associated binary does not exist yet for the chosen device. However, a user might want to reinstantiate
a kernel in some situations. For example, as we mentioned in Section 3.2, the instantiation could depend
on the values of external C++ variables, and the user could be interested in generating several possible
instantiations and comparing their performance in order to choose the best one. For this reason, there is a
function reeval with the same syntax as eval, but which forces the instantiation of a kernel even if there
were already a version in the HPL caches. Also, our library allows the user to retrieve the string with the
IR generated for any kernel, so that it can be inspected and/or directly used on top of the corresponding
backend.

4. Evaluation

This section evaluates the programmability benefits and the performance achieved by HPL. The baseline
of our study is OpenCL, since this is the only tool that provides the same degree of portability. Also, as it is
the current backend for HPL, the comparison allows for the measurement of the overhead that HPL incurs.

The evaluation is based on six codes, namely the sparse matrix vector multiplication (spmv) and reduction
benchmarks of the SHOC Benchmark suite [11], the matrix transpose and Floyd-Warshall codes from the
AMD APP SDK, the EP benchmark of the NPB suite [2], and the shallow water simulator with pollutant
transport (shwa) first presented in [37], whose OpenCL version is thoroughly described and evaluated in [25].
The first five codes were already used in a preliminary evaluation in [7]. This study relied on the original
OpenCL implementations from the corresponding suites, which include several non-basic routines and use
the C interface of the OpenCL framework. Although EP had not been taken from any distribution, the
baseline code suffered similar problems. The HPL versions of spmv and reduction also had some unneeded
routines inherited from the original OpenCL implementation.

We have now streamlined and cleared all the codes. The OpenCL baselines have also been translated to
C++ in order to use the much more succinct OpenCL C++ interface, so that by avoiding the C++ versus
C expressivity difference in the host interface, the programmability comparison is much fairer. The same
policies were followed in the translation of the shallow water code from the original CUDA implementa-
tion [37]. The result is that now the number of source lines of code excluding comments (SLOC) of our
OpenCL baselines is up to 3.3 times smaller than in [7], as Table 2 indicates. The HPL codes were also
improved with features implemented after the publication of [7], such as the customized reduce mechanism
described in Section 3.2.

Table 2 further characterizes the benchmarks indicating whether their kernels use subroutines, whether
there is a single kernel invocation or repetitive invocations (and in this case of how many kernels), the degree
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of cooperation between the threads in the kernels and the arithmetic intensity. The repetitive invocation
of kernels is interesting for the analysis of the cost of the kernel executions and synchronizations with the
host, including the effectiveness of the mechanisms to avoid unneeded transfers between host and device
memory. Reduction and Floyd-Warshall repetitively invoke in a loop a single kernel, while the shallow water
simulator performs a simulation through time in a sequential loop in which in each iteration three different
kernels are run one after another, there being also computations in the host in each time iteration.

The cooperation column qualitatively represents the weight of synchronizations and data exchanges
between threads in the kernels. For example, in spmv each thread first performs part of the product of the
compressed row of a matrix by a vector, and then performs a binary tree reduction with other threads in
its group to compute the final value for the row. The reduction benchmark focuses intensively in reductions
that imply continuous data sharing and synchronization among threads. In matrix transpose, each thread
group loads the local memory with a sub-block of the matrix to transpose, then synchronizes once with a
barrier, and finally copies the data from the local memory to the transposed matrix. In Floyd-Warshall,
each thread performs its own computations without the use of local memory or barriers. In EP, each thread
runs the vast majority of the time working on its own data, there being a final reduction of the results of
each thread. The situation is similar in the shallow water simulator, in which threads only need to cooperate
in a reduction in the most lightweight kernel.

Finally, the arithmetic intensity, which measures the ratio of computations per memory word transferred,
is a usual indicator for characterizing applications run in GPUs. Due to the much higher cost of memory
accesses compared to computations in these devices, high arithmetic intensity is a very desirable property
for GPGPU computing. As can be seen in Table 2, our evaluation relies on codes with a wide range of
different characteristics.

4.1. Programmability analysis
Productivity is difficult to measure, thus most studies try to approximate it from metrics obtained from

the source code such as the SLOCs. Lines of code, however, can vary to a large extent in terms of complexity.
Therefore, other objective metrics have been proposed to more accurately characterize productivity. For
example, the programming effort [14] tries to estimate in a reasoned way the cost of developing a code by
means of a formula that takes into account the number of unique operands, unique operators, total operands
and total operators found in the code. For this, it regards as operands the constants and identifiers, while
symbols or combinations of symbols that affect the value or ordering of operands constitute the operators.
Another indicator of the complexity of a program is the number of conditions and branches it contains.
Based on this idea, [26] proposed as a measure of complexity the cyclomatic number V = P + 1, where P
is the number of decision points or predicates.

Figure 10 shows the reduction of SLOCs, programming effort [14] and the cyclomatic number [26] of HPL
with respect to an OpenCL implementation of the considered benchmarks. Figure 10(a) takes as the baseline
an OpenCL program including the initialization code to choose a suitable platform and device, build the
context and command queue used by this framework, and load and compile the kernels. The initialization
code is written in a very generic way, so that it maximizes portability by supporting environments with
multiple OpenCL platforms installed and/or several devices, and it controls all the errors that can appear
during the process. The code is in fact taken with minor adaptations from the internals of HPL in order to
provide exactly the same high degree of portability and error control. This is the OpenCL version whose
SLOCs appear in Table 2. Nevertheless, the initialization of the OpenCL environment as well as the loading
and compilation of the kernels can be easily placed in routines that can be reused across most applications,
thus avoiding much programming cost. For this reason Fig. 10(b) takes as the baseline for the improvement
in productivity metrics provided by HPL a factorized OpenCL code that replaces with a few generic routine
calls this heavy initialization of ∼270 SLOCs. The two baselines considered thus represent a reasonable
maximal and minimal programming cost of the OpenCL version of each application, even if the minimal
one is somewhat unfair to HPL, as the removed code has still to be written at some point.

Even if we consider the most demanding scenario, HPL reduces the SLOCs between 21% and 48%,
the programming effort between 15% and 63% and the cyclomatic number between 18% and 44%. While
these numbers are very positive, complexity measurements on the code do not tell the whole story. Our
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Figure 10: Productivity metrics reduction in HPL with respect to two OpenCL baseline implementations

experience when programming with HPL is that it speeds up the development process in two additional
ways not reflected in the code. The first way is by moving the detection of errors to an earlier point.
Concretely, since OpenCL kernels are compiled at runtime, the application needs to be recompiled (if there
are changes in the host code), sent to execution, and reach the point where the kernel is compiled to find
the usual lexical and syntactical errors, fix them and repeat the process. With HPL the detection of the
most common problems of this kind (missing semicolons, unbalanced parenthesis, mistyped variables, . . . )
happens right at the compilation stage, as in any C++ program. Besides in many integrated development
environments (IDEs) the integration of the compiler with the editor allows quickly going through all the
errors found by the compiler and fix them. We have seen a productivity improvement thanks to the faster
response time enabled by HPL.

The second way how HPL further improves productivity is by providing better error messages. This
way, sometimes the error messages obtained from some OpenCL compilers were not helpful to address the
problem. For example, some errors detectable at compile or link time, such as invoking a nonexistent
function due to a typo, were reported using a line of a PTX assembly file, without any mention of the
identifier or line of OpenCL where the error had been made. Obviously, this is a hit to the productivity
of the average user who has to track the source of this problem and fix it. With HPL, the C++ compiler
always clearly complains about the unknown identifier in the point of the source code where it is referenced
or, in the worst case, when the error is detected during linking, at least it indicates the object file and name
of the missing function, largely simplifying the programmer’s work.

4.2. Performance analysis
This section compares the performance of the baseline OpenCL applications with those developed in HPL

in two systems. The first is a host with 4xDual-Core Intel 2.13 GHz Xeon processors that are connected to
a Tesla C2050/C2070 GPU, a device with 448 thread processors operating at 1.15 GHz and 3GB of DRAM.
This GPU operates under CUDA 4.2.1 with an OpenCL 1.1 driver. In order to evaluate the very different
environments and test the portability of the applications, the second machine selected was an Intel Core 2
at 2.4GHz with an AMD HD6970 GPU with 2 GB of DRAM and 1536 processing elements at 880 MHz
operating under OpenCL 1.2 AMD-APP. The applications were compiled with g++ 4.7.1 using optimization
level O3 on both platforms.

The performance of OpenCL and HPL applications is compared for the NVIDIA and AMD GPU based
systems in Fig. 11(a) and Fig. 11(b), respectively. The runtime of both versions was normalized to that
which was achieved by the OpenCL version and it was decomposed in six components: kernel creation,
kernel compilation, time spent in CPU to GPU transfers, time required by GPU to CPU transfers, kernel
execution time, and finally host CPU runtime. The kernel creation time accounts in the OpenCL version for
the loading of the kernel source code from a file, as this is the most usual approach followed, particularly for
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Figure 11: Performance of the OpenCL and the HPL versions of the codes, normalized to the runtime of the OpenCL version

(a) satellite image (b) pollutant drop (c) situation after 8 days

Figure 12: Simulation of evolution of a pollutant in Ŕıa de Arousa

medium and large kernels. In the HPL columns, it corresponds to the time our library required to build the
kernel IR from the C++ embedded language representation. The other portions of the runtime correspond
to the same basic steps in both versions. The measurements were made using synchronous executions, as
most profilers do for accuracy reasons, thus there was no overlapping between host computations and GPU
computations or transfers. It should be pointed out that it is particularly easy to obtain this detailed profiling
for the HPL codes because when our library and the application are compiled with the flag HPL PROFILE,
HPL automatically gathers these statistics for each individual kernel invocation as well as for the global
execution of the program. The user can retrieve these measurements by means of a convenient API.

The experiments consisted of multiplying a 16K×16K sparse matrix with a 1% of nonzeros by a vector in
spmv, adding 16M values in reduction, transposing a 8K×8K matrix, applying the Floyd-Warshall algorithm
on 1024 nodes, running EP with class C, and finally simulating the evolution of a contaminant during one
week in a mesh of 400 × 400 cells that represents an actual estuary (Rı́a de Arousa, in Galicia, Spain)
using real terrain and bathymetry data. The input and the visual representation of the results of this real-
world application are illustrated in Fig. 12(a), with the Google Maps satellite image of the region where
the simulation takes place, the illustration of the initial setup in Fig. 12(b), in which the contaminant is
concentrated in a small circle with a radius of 400m., and Fig. 12(c) where we see how it evolved after eight
days via a color scale which indicates the normalized concentration of the pollutant. All the benchmarks
operate on single-precision values, the exceptions being Floyd-Warshall, which works with integers, and EP,
which is based on double-precision floating point computations. It should also be mentioned that the shallow
water simulation kernels largely rely on vector types both in the OpenCL and HPL versions.

The most relevant conclusion that can be drawn from Fig. 11 is that the performance of HPL applications
is very similar to that of the corresponding native OpenCL code. The average slowdown of HPL with respect
to OpenCL across these tests was just 1.5% and 1.3% in the NVIDIA and AMD GPU based systems,
respectively. The maximum overhead measured has been 6.4% for Floyd-Warshall in the NVIDIA system,
followed by a 4.4% for this same algorithm in the AMD system, and it is mostly concentrated in the CPU
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Tesla C2050/C2070 HD6970
Benchmark OpenCL HPL OpenCL HPL

SNU NPB EP 2.905 2.930 4.513 4.536
locally developed EP 2.745 2.772 4.408 4.428

Table 3: NAS Parallel Benchmark EP runtimes for class C (in seconds)
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Figure 13: Runtime of the OpenCL and the HPL versions of the shallow water simulator for different problem sizes

runtime in both cases. The reason is that this application launches 1024 consecutive kernel executions of very
short length (0.1 ms) to the GPU, without any array transfer (only a scalar is sent), and unsurprisingly the
HPL runtime incurs in additional costs in the kernel launches with respect to the OpenCL implementation.
This was also the main overhead found in the HPL versions of the shallow water simulator, as it is the
other application that launches many kernel executions. At this point it is relevant to remember that the
measurements were taken using synchronous executions for the benefit of the detailed analysis of all the
execution stages. However, HPL runs by default in asynchronous mode, which enables partially overlapping
this overhead with GPU computations and transfers. This way, the overhead, in a non-profiled run of HPL
with respect to an OpenCL implementation of Floyd-Warshall that also exploits asynchronous execution, is
5% and just 0.44% in the NVIDIA and AMD systems, respectively.

It is interesting to note in Fig. 11 that the same code spends its runtime in quite different activities in
the two platforms tested. For example, compilation consumes much more resources in the AMD than in the
NVIDIA system. Also, the kernel creation time is always negligible.

While our sparse matrix vector product, reduction, matrix transpose and Floyd-Warshall algorithm
baseline OpenCL codes are existing works taken from well-known external sources, this is not the case for
NAS Parallel Benchmark EP and the shallow water simulator, which we have developed ourselves. Thus it
can be interesting to compare these baselines with other works in order to evaluate their quality. Although
it is not feasible to find another shallow water simulator with exactly the same characteristics, the quality
of our OpenCL implementation can be assessed in our recent publication [25]. As for EP, Table 3 shows the
total runtime for problem size C of the SNU NPB suite [34] EP and the EP we developed in the two platforms
tested, both when written in OpenCL and in HPL. We can see that HPL has a minimal overhead of around
0.85-1% for both EP versions in the NVIDIA system, which drops to 0.5% in the AMD GPU. Regarding the
performance of our implementation, it is competitive with respect to the SNU NPB implementation, and in
fact it outperforms it by a small margin of 5.7% and 2.4% in the NVIDIA and AMD systems, respectively. As
a result, our HPL version slightly outperforms the SNU OpenCL native implementation in both platforms.

The runtime of the OpenCL and HPL versions of the shallow water simulator is shown for varying
problem sizes in the two platforms considered in Fig. 13. This code was chosen because it is the largest
and unlike the others has several kernels, which are invoked repetitively during the simulation, and also
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because it is an actual complete application. The figure shows the runtimes for mesh sizes from 100 × 100
to 800× 800 in steps of 100 cells. The runtimes of the OpenCL version went from 103.5 and 90 seconds for
the smallest mesh, to 4794 and 2548 seconds for the largest in the NVIDIA and AMD systems, respectively.
In all of the cases the runtime was mostly dominated by the execution times of the kernels, followed by the
operations in the host CPU. The periodic transfers of data from the GPU to CPU are only noticeable in
the AMD system. The runtimes were very similar for both versions for all the problem sizes, the average
slowdown of HPL with respect to OpenCL being 3.4% and 4.6% in the NVIDIA and AMD GPU based
systems, respectively. The HPL overhead is concentrated in the host CPU usage implied by its runtime.
As we previously explained, this is a maximal bound of the actual overhead found in a non-profiled run, in
which the asynchronous execution between host and device hides part of it.

5. Related work

Much research has been devoted to improving the programmability of heterogeneous systems. This is the
case for example of mpC [22], a high level programming language for parallel computing in heterogeneous
networks of computers, inspired by HPF but more focused on performance models. The interest of this field
has further grown with the rise of modern hardware accelerators. This way, CuPP [8] and EPGPU [23]
facilitate the usage in C++ programs of CUDA [29] and OpenCL [20], respectively, by providing a better
interface and a runtime that takes care of low level tasks such as memory management and kernel invocation.
A higher degree of abstraction is provided by CUDPP [33], a library of data-parallel algorithm primitives
that can only run a predefined set of operations and only in CUDA-supported devices. ViennaCL [31] mainly
focuses on a convenient C++ API for running linear algebra operations on top of OpenCL, although it also
simplifies the execution of custom kernels provided as strings in OpenCL C.

Thrust [5] provides an interface inspired in STL to perform operations on 1D vectors in either CPUs of
CUDA-supported GPUs. Its user-defined operations are restricted to being one-to-one, that is, each element
of the output vector is computed using a single value from each input vector and the user cannot control
basic execution parameters such as numbers of threads or kinds of memory to use.

SkePU [12] and SkelCL [35] further explore the idea of using skeletons to express computations in
heterogeneous systems. They can run on top of OpenCL (SkePU also supports CUDA and OpenMP) and
they support up to 1D (OpenCL) or 2D (SkePU) arrays. Their skeletons accept user functions in the form
of strings for OpenCL, or class member functions for the CUDA and OpenMP backends. However, since
these latter functions must be representable as strings, they have in practice the same restrictions as strings.
In this way, contrary to HPL kernels, which can capture external variables and perform RTCG even under
the control of the programmer, their code must be constant at compile time and include all the definitions
of the values they use. An additional restriction in the case of SkePU is that since all its backends use
the same user function code, only the common denominator of the language supported by all the backends
can appear in the user code, which can preclude many important optimizations. These libraries, which also
support the usage of multiple GPUs in a straightforward way, are excellent options to run in heterogeneous
devices for those computations whose structure naturally conforms to one of their skeletons.

The PyCUDA and PyOpenCL [21] toolkits simplify the usage of hardware accelerators in the high-level
scripting language Python to perform many predefined computations. Custom user functions in the form of
strings are also supported, although they are restricted to element-to-element computations and reductions.
These projects also emphasize RTCG, although in their case it is based on string processing in the form
of keyword replacement, textual templating and syntax tree building. These approaches require learning a
new, and sometimes quite complex, interface to perform the corresponding transformations. This contrasts
with the natural integration of HPL kernels in C++ and the direct and simple use of this language to control
RTCG.

The kind of RTCG provided by HPL is supported by TaskGraph [4] and Intel Array Building Blocks
(ArBB) [27] because they also build at runtime their kernels from a representation using a language embedded
in C++. TaskGraph combines code specialization with runtime dependence analysis and restructuring
optimizations. It has been used to build active libraries that can compose and optimize sequences of
kernels [32], and while it exposes no parallel programming model, its authors have explored parallel schemes
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using it. Regarding ArrBB, it only targets multicore CPUs, however, and it has a very different programming
model, with special instructions to copy data in and out of the space where the kernels are run and does not
offer the possibility of controlling the task granularity, optimizing the memory hierarchy usage or cooperating
between parallel threads.

Copperhead [9] is an embedded language that allows the exploitation of heterogeneous devices, although
only NVIDIA GPUs, in order to run computations expressed with data-parallel primitives and a restricted
subset of Python, which is its host language. It is a powerful tool for expressing computations that adjust
to the usual data-parallel abstractions and in which all the code generation and execution parameters are
transparently controlled by the Copperhead runtime. This results in a high level of abstraction that benefits
programmability, but which provides little or no programmer control on the result, which largely depends
on the ability of the compiler. These characteristics are typical of compiler directives, which have been also
explored in the area of heterogeneous programming [6, 24, 15, 30]. The number of directives and clauses that
some of these approaches require to generate competitive code is sometimes on par with or even exceeds
the programming costs of library-based approaches. More importantly, the lack of a clear performance
model [28] and the suboptimal code generated by compilers in many situations have already led to the
demise of promising approaches of this kind such as HPF [17]. The state of affairs is even worse in the
case of heterogeneous systems because they allow for more possible implementations for the same algorithm,
they have a large number of parameters that can be chosen, and their performance is very sensitive to small
changes in these parameters.

6. Conclusions and future work

Heterogeneous systems are becoming increasingly important in the computing landscape as a result of
the absolute performance and performance per watt advantage that devices such as GPUs achieve with
respect to the standard general-purpose CPUs for many problems. Nevertheless, an improvable aspect of
these systems is their programmability and the portability of the codes that exploit them. This paper
addresses these issues proposing the Heterogeneous Programming Library (HPL), whose most characteristic
component is a language embedded inside C++ to express the computations (kernels) to run in heterogeneous
environments. This language allows our library to capture the kernels so that it can translate them into a
suitable IR that is then compiled for the device where they will be run. The host C++ language can be
naturally interleaved with our embedded language in the kernels, acting as a metaprogramming language
that controls the code generated using a syntax that is much more convenient and intuitive than other
metaprogramming approaches such as C++ templates. This results in a very powerful run-time code
generation (RTCG) environment that is particularly useful for heterogeneous systems, in which users often
need to tune the kernels to the specific characteristics of each device to achieve good performance. HPL
also provides very convenient interfaces to exploit RTCG to generate highly specialized code for common
patterns of computation such as reductions.

During the generation of the IR for a kernel, our library has the opportunity of analyzing and potentially
optimizing it, as a compiler would do. While our current implementation performs no code transformations,
it does analyze the kernels in order to determine their inputs and outputs. This information allows HPL
to track the data dependences between the tasks that the user requests to run in the devices exploiting
the asynchronous execution model of the library, as well as between these tasks and the host. This way
HPL provides automatic task synchronization while minimizing the number of data transfers. In a related
manner, HPL provides rather handy classes to represent data for use in the heterogeneous kernels whose
management (creation and deallocation of buffers, tracking of the state and synchronization as required
among physical buffers associated with the same logical array in different memories, etc.) is completely
automated by our library.

As of today HPL uses as only backend OpenCL, as it maximizes the portability of the applications.
The programmability advantages of HPL over OpenCL are not restricted to the points discussed above.
The ability to exploit C++ templates in kernels, the detection of errors at compile time, at times with
clearer messages, the natural embedding in the kernels of runtime constants, and the transparent indexing
of multidimensional arrays further boost HPL programmer productivity.
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An evaluation using codes with quite different natures and taken from different sources indicates that
HPL provides significant programmability improvements with respect to OpenCL while achieving nearly the
same performance in different platforms. In fact, even if we take as the baseline a streamlined version of
OpenCL codes in which the initialization and program compilation stages typical of this platform have been
removed, the average reduction in terms of SLOCs, programming effort and cyclomatic number achieved by
HPL are 34%, 44% and 30%, respectively. Nevertheless, the typical performance overhead is below 5%.

The Heterogeneous Programming Library is an ongoing project in our group. Our future lines of work
include the addition of more mechanisms to help further exploit RTCG and ease the exploration of the
search space for different versions of HPL computational kernels. We also plan to support distributed
memory systems, so that HPL applications can run with minimal effort on clusters. Finally, we have found
that skeletons are an appealing alternative for expressing numerous computations, and the integration of
typical ones in our framework is thus an interesting extension.

HPL is publicly available under GPL license at http://hpl.des.udc.es.
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do Mar of Xunta de Galicia and the Centro Tecnolóxico do Mar (CETMAR) for providing the ocean currents
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