
Online Vector Scheduling and Generalized Load
Balancing

Xiaojun Zhu∗†, Qun Li†, Weizhen Mao† and Guihai Chen∗
∗ State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, P. R. China
† Department of Computer Science, the College of William and Mary, Williamsburg, VA, USA

Email: gxjzhu@gmail.com, {liqun,wm}@cs.wm.edu, gchen@nju.edu.cn

Abstract—We give a polynomial time reduction from vector
scheduling problem (VS) to generalized load balancing problem
(GLB). This reduction gives the first non-trivial online algorithm
for VS where vectors come in an online fashion. The online
algorithm is very simple in that each vector only needs to
minimize the Lln(md) norm of the resulting load when it comes,
where m is the number of partitions and d is the dimension of
vectors. It has an approximation bound of e log(md), which is
in O(ln(md)), so it also improves the O(ln2 d) bound of the
existing polynomial time algorithm for VS. Additionally, the
reduction shows that GLB does not have constant approximation
algorithms that run in polynomial time unless P = NP .

I. INTRODUCTION

Scheduling with costs is a very well studied problem in
combinatorial optimization. The traditional paradigm assumes
single-cost scenario: each job incurs a single cost to the
machine that it is assigned to. The load of a machine is the
total cost incurred by the jobs it serves. The objective is to
minimize the makespan, the maximum machine load. Vector
scheduling and generalized load balancing extend the scenario
in different directions.

Vector scheduling assumes that each job incurs a vector cost
to the machine that it is assigned to. The load of a machine
is defined as the maximum cost among all dimensions. The
objective is to minimize the makespan. Vector scheduling is a
multi-dimensional generalization of the traditional paradigm. It
finds application in multi-dimensional resource scheduling in
parallel query optimization [2]. For example, a task may have
requirements for CPU, memory and network at the same time,
and this requirement is best described by a vector of CUP,
memory and network, instead of an aggregate measure. In this
scenario, the load of a server is also described by a vector.
To solve vector scheduling, there are three approximation
solutions [2]. Two of them are deterministic algorithms based
on derandomization of a randomized algorithm, with one
providing O(ln2 d) approximation1, where d is the dimension
of vectors, and the other providing O(ln d) approximation
with running time polynomial in nd, where n is the number
of vectors. The third algorithm is a randomized algorithm,

The work was done when the first author was visiting the College of
William and Mary. This paper has been accepted to JPDC as a research note
[1]. The current version contains more content than the published one due to
page limitation of research notes of JPDC.

1In this paper, e denotes the natural number, ln(·) denotes the natural
logarithm, and log(·) denotes the logarithm base 2.

which assigns each vector to a uniformly and randomly chosen
partition. It gives O(ln dm/ ln ln dm) approximation with high
probability, where m is the number of partitions (servers). For
fixed d, there exists a polynomial time approximation scheme
(PTAS) [2]. A PTAS has also been proposed for a wide class
of cost functions (rather than max) [3].

Generalized load balancing is recently introduced to model
the effect of wireless interference [4][5]. Each job incurs costs
to all machines, no matter which machine it is assigned to.
The exact cost incurred by a job to a specific machine is
dependent on which machine the job is assigned to. The load
of a machine is the total cost incurred by all the jobs, instead
of just the jobs it serves. This model is well suited for wireless
transmission, since, in wireless network, a user may influence
all APs in its transmission range due to the broadcast nature
of wireless signal. To solve the generalized load balancing
problem, the current solution is an online algorithm, adapted
from the recent progress in online scheduling on traditional
model [6]. The solution, though provides good approximation,
is rather simple: each job selects the machine to minimize the
Lτ norm of the resulting loads at all machines where τ is a
constant parameter to be optimized. To avoid confusion, we
keep the two terms job and machine unchanged for generalized
load balancing, while refer to job and machine in the vector
scheduling model as vector and partition respectively.

We make two contributions. First, we present an approach
to encode any vector scheduling instance by an instance of
generalized load balancing problem (Section II). This encod-
ing method directly shows that generalized load balancing
problem does not admit constant approximation algorithms
unless P = NP . Second, we design the first non-trivial online
algorithm for vector scheduling based on the encoding method
(Section III). Directly applying the encoding method does not
necessarily lead to a polynomial time algorithm, because it
needs to compute the Lln l norm function (l is the number
of machines), and it is unclear whether this norm can be
computed in polynomial time. We eliminate this uncertainty
by rounding ln l to the next integer, guaranteeing polynomial
running time. In addition, we prove that the approximation
loss due to rounding is small. We conclude this section by the
following two definitions.

ar
X

iv
:1

21
1.

57
29

v2
 [

cs
.C

C
]

 1
4

Ja
n

20
14

A. Vector Scheduling

We are given positive integers n, d,m. There are a set
V of n rational and d-dimensional vectors p1, p2, . . . , pn
from [0,∞)d. Denote vector pi = (pi1, . . . , pid). We need
to partition the vectors in V into m sets A1, . . . , Am. The
problem is to find a partition to minimize max1≤i≤m ‖Ai‖∞
where Ai =

∑
j∈Ai

pj is the sum of the vectors in Ai, and
‖Ai‖∞ is the infinity norm defined as the maximum element
in the vector Ai. For the case m ≥ n, there is a trivial optimal
solution that assigns vectors to distinct partitions. Therefore,
we only consider the case m < n.

For ease of presentation, we give an equivalent integer
program formulation. Let xij be the indicator variable such
that xij = 1 if and only if vector pi is assigned to partition
Aj . Then

‖Aj‖∞ = max
1≤k≤d

∑
i

xijpik

The vector scheduling problem can be rewritten as

min
x

max
j,k

∑
i

xijpik

subject to ∑
j

xij = 1, ∀i

xij ∈ {0, 1}, ∀i, j

(VS)

B. Generalized Load Balancing

This formulation first appears in [5]. We reformulate it with
slightly different notations. There are a set M of independent
machines, and a set J of jobs. If job i is assigned to machine
j, there is non-negative cost cijk to machine k. The load
of a machine is defined as its total cost. The problem is to
find an assignment (or schedule) to minimize the makespan,
the maximum load of all the machines. This problem can be
formally defined as follows.

min
x

max
k

∑
i,j

xijcijk

subject to ∑
j

xij = 1, ∀i ∈ J

xij ∈ {0, 1}, ∀i ∈ J , j ∈M

(GLB)

where x ∈ {0, 1}|J |×|M| is the assignment matrix with
elements xij = 1 if and only if job i is assigned to machine
j. The two constraints require each job to be assigned to one
machine.

II. ENCODING VECTOR SCHEDULING BY GENERALIZED
LOAD BALANCING

We first create a GLB instance for any VS instance, then
prove their equivalence. At last, we discuss the hardness of
GLB and extend the VS model.

A. Creating GLB Instances

Comparing VS to GLB, we can find that they mainly differ
in the subscripts of max and

∑
. Our construction is inspired

by this observation.
Given as input to VS the vector set V and m partitions, we

construct the GLB instance as follows. We set the jobs J = V .
For each partition Aj and its k-th dimension, we construct a
machine, denoted by the pair (j, k). Thus, the constructed ma-
chine setM is {(j, k) | j = 1, 2, . . . ,m and k = 1, 2, . . . , d}.
We refer to a machine as a pair of indices so that we can
map the machine back to its corresponding partition and
dimension easily. For a machine t = (j, k) where t ∈ M,
we refer to the partition j as t1, and the dimension k as
t2, i.e., t = (t1, t2). We can see that there are totally d
machines (t included) corresponding to the same partition as
the machine t. We denote [t] as the set of these machines, i.e.,
[t] = {(j, 1), (j, 2), . . . , (j, d)}, where j = t1. Among these d
machines, we select the first one (j, 1) as the anchor machine,
denoted by t, such that a vector chooses partition Aj in VS if
and only if the corresponding job chooses t in the new GLB
problem.

The incurred cost cist of job i to machine t if i chooses
machine s is defined as

cist =


pit2 if s = t (1)
∞ if s ∈ [t] ∧ s 6= t (2)
0 if s /∈ [t] (3)

where (1)(2) are for the situation where s and t correspond to
the same partition. They force a job to select only the anchor
machines. (3) is for the situation where s and t correspond to
different partitions. In this case, there is no load increase.

The resulting GLB instance is defined as VS-GLB:

min
x′

max
t

∑
i,s

x′iscist

subject to ∑
s

x′is = 1, ∀i ∈ J

x′is ∈ {0, 1}, ∀i ∈ J , s ∈M

(VS-GLB)

To avoid the confusion with the general GLB problem, we
intentionally use different notations x′, s and t. The notation
i is kept since it is in 1-1 correspondence with the vectors in
VS.

As an example, consider the case when d = 1. All vectors
in VS have only one element, and there is only one machine
in VS-GLB representing a partition in VS. The objective
of VS becomes maxj

∑
i xijpi1. On the other hand, the

objective of VS-GLB is maxt
∑
i x
′
itcitt = maxt

∑
i x
′
itpi1.

Since any machine t corresponds to a distinct partition Aj ,
simply changing subscripts shows that the two problems are
equivalent. For the case when d > 1, the proof is much
involved, which we delay to Section II-B.

Theorem 1. The construction of VS-GLB can be done in
polynomial time.

Proof: An instance of VS needs Ω(nd) bits. The con-
structed VS-GLB instance has n jobs, md machines and
n(md)2 costs. Since m < n, all three terms are polynomials
in n and d. The theorem follows immediately.

The following theorem shows that the constructed VS-GLB
problem is equivalent to its corresponding VS problem. Let T
be a positive constant.

Theorem 2. There is a feasible solution x to VS with objective
value T if and only if there is a feasible solution x′ to VS-GLB
with the same objective value T .

This theorem shows that VS and its corresponding VS-
GLB have the same optimal value. In addition, any c-
approximation solution to VS-GLB, after transformation, is
also a c-approximation solution to VS, vice versa. We prove
this theorem in Section II-B.

It is worth mentioning that VS-GLB is a special instance of
GLB. Since VS-GLB is converted from VS, VS is a special
instance of GLB, which implies that VS should have approx-
imation algorithms at least as good as GLB. Unfortunately,
on the contrary, the literature shows better approximation
algorithm for GLB than that for VS. Hence, it is worth
applying algorithms of GLB to VS.

B. Proof of Equivalence

We first study the properties of feasible solutions to VS-
GLB in Lemma 1 and Lemma 2, and then prove Theorem 2.

Lemma 1. Given a feasible solution x′ to VS-GLB yielding
objective value T , for any i ∈ J , we have

1) ∀s 6= s, x′is = 0;
2) ∃j such that for s = (j, 1), x′is = 1.

Proof: For 1), suppose x′is = 1 for some s with
s 6= s. Then x′isciss = ∞ > T , contradicting with
maxt

∑
i,s xiscist = T .

For 2), since
∑
s x
′
is = 1, there exists some s such that

x′is = 1. Due to 1), we must have s = s.

Lemma 2. Given a machine t, a job i, and a feasible
solution x′ to VS-GLB yielding objective value T , we have∑
s x
′
iscist = x′

it
pit2 .

Proof: Recall that [t] = {(t1, 1), (t1, 2), . . . , (t1, d)}. We
have ∑

s

x′iscist =
∑
s∈[t]

x′iscist +
∑
s/∈[t]

x′iscist

=
∑
s∈[t]

x′iscist (4)

= x′itcitt (5)
= x′itpit2 (6)

where (4) is due to (3), (5) is due to Lemma 1, and (6) is due
to (1).

With the two lemmas, we can now prove the equivalence.
Proof of Theorem 2: “=⇒” Given a feasible solution x

to VS, construct a feasible solution x′ to VS-GLB as follows.

Set x′is = xis1 and all others to be 0. We first show that x′

is a feasible solution to VS-GLB. Obviously, x′ is an integer
assignment. We will check that

∑
s x
′
is = 1. Observe that

x′is = 0 if s 6= s. We only need to consider m machines
(1, 1), (2, 1), . . . , (m, 1). Since x is a feasible solution to VS,
then for any i ∈ V , there exists one and only one partition
Aj such that xi,j = 1. Our transformation sets x′is = 1 where
s = (j, 1). So

∑
s x
′
is = 1.

Second, we prove that the objective values of the two
feasible solutions are equal.

max
t

∑
i,s

x′iscist = max
t

∑
i

s∈[t]

x′iscist (7)

= max
t

∑
i

x′itcitt (8)

= max
t

∑
i

xit1pit2

= max
j,k

∑
i

xijpik,

where (7) is due to that cist = 0 if s /∈ [t], and (8) is due to
our assignment of x′ that x′is = 0 if s 6= s.

“⇐=” Given x′ for VS-GLB, construct x for VS as follows.
Set xij = x′is where s1 = j. We show that x is a feasible
solution to VS. Due to Lemma 1, for any i, there exists one
s such that x′is = 1 and s = s. Therefore, there exists one j
such that xij = 1. On the other hand, there cannot be two js
both with xij = 1, otherwise x′ is not a feasible solution to
VS-GLB.

For the objective value, we have

max
j,k

∑
i

xijpik = max
t=(j,k)

∑
i

xit1pit2

= max
t

∑
i

x′itpit2

= max
t

∑
i,s

x′iscist, (9)

where (9) is due to Lemma 2. This completes our proof.

C. Inapproximability for GLB

It has been proved that no polynomial time algorithm can
give c-approximation solution to VS for any c > 1 unless
NP = ZPP [2]. Combining this result with Theorem 2, we
have the following theorem.

Theorem 3. For any constant c > 1, there does not exist a
polynomial time c-approximation algorithm for GLB, unless
NP = ZPP .

Proof: Since VS-GLB is a special instance of GLB, any
c-approximation algorithm for GLB can be used to obtain c-
approximation solution to VS-GLB. By Theorem 2, any c-
approximation solution to VS-GLB is also a c-approximation
solution to the corresponding VS. Therefore, the approxima-
tion algorithm is also a c-approximation algorithm for VS, a
contradiction.

We can obtain a stronger result by relaxing the assumption
NP 6= ZPP to P 6= NP . (It is a relaxation because
P ⊆ ZPP ⊆ NP .) This can be done by examining the
inapproximability proof for VS [2]. The inapproximability
proof relies on the result that no polynomial time algorithm
can approximate chromatic number to within n1−ε for any
ε > 0 unless NP = ZPP . Recently, it has been proved
that no polynomial time algorithm can approximate chromatic
number to within n1−ε for any ε > 0 unless P = NP [7].
Thus, we can change the assumption NP 6= ZPP to P 6= NP
safely.

Theorem 4. For any constant c > 1, there does not exist a
polynomial time c-approximation algorithm for GLB, unless
P = NP .

D. Extending to generalized VS

Our construction of VS-GLB and proof can be easily ex-
tended to a general version of vector scheduling. In the current
VS definition, all machines (partitions) are identical so that
any job (vector) incurs the same vector cost to all machines.
The machines can be generalized to be heterogeneous so that
each job incurs a different vector cost to different machines.
Formally, job i incurs vector cost p(j)i to machine j if i is
assigned to machine j. The formulation and transformations
can be slightly changed as follows. In the integer program
formulation of VS, change the objective to maxj,k

∑
i xijp

(j)
ik .

Change pit2 in equation (1) to be p
(t1)
it2

. For Lemma 2,
change x′

it
pit2 to x′

it
p
(t1)
it2

. It can be verified that the proof of
Theorem 2 is still valid with minor modifications. The online
algorithm adopted later is also valid for this general version
of vector scheduling. For simplicity, we mainly focus on the
original VS model.

III. ONLINE ALGORITHM FOR VS

Based on Theorem 2, we can solve VS by its corresponding
VS-GLB. We review the approximation algorithm [4] for
GLB, and then modify it to solve VS.

Given a GLB instance and a positive number τ , the algo-
rithm [4] considers jobs one by one (in an arbitrary order) and
assigns the current job to a machine to minimize the Lτ norm2

of the resulting load of all machines. Specifically, suppose jobs
are numbered as 1, 2, . . . , n, the same as the considered order.
Suppose the load of machine k after jobs 1, 2, . . . , i − 1 are
assigned is li−1k . Then job i is assigned to the machine

arg min
j

(∑
k

(li−1k + cijk)τ

)1/τ

.

The above optimization problem can be solved by trying each
possible machine. During the optimization, the computation of
the last step of Lτ norm, (·)1/τ , can be omitted. In addition,
because the algorithm does not require the order of jobs
and each job is assigned once, it can be implemented in
an online fashion. This algorithm was originally proposed

2Lτ norm of a vector x = (x1, x2, . . . , xt) is defined as (
∑
i x
τ
i)

1/τ .

for the traditional load balancing problem [6], and recently
extended to the GLB problem [4]. The parameter τ controls
the approximation ratio of the algorithm, as shown in the
following lemma.

Lemma 3 ([6], [4]). Minimizing Lτ norm gives τ
ln(2) l

1/τ

approximation ratio to solve GLB where l is the number of
machines.

Setting τ = ln l yields the best approximation ratio e log l.
However, it is unclear whether the computation of Lln l can
be done in polynomial time. We consider this issue later.

A. Adapting to VS

To apply the above algorithm to VS, we can first solve
VS-GLB and transform the solution to VS. This process can
be simplified by omitting the transformation between VS and
VS-GLB.

Recall that the algorithm is to assign vectors one by one.
Consider a vector pi in VS. To solve VS-GLB, this vector
should choose a machine to minimize the Lτ norm of the
resulting load. Due to the construction of VS-GLB, this
vector can only choose from the anchor machines, otherwise,
the resulting Lτ norm would be infinite (definitely not the
optimal choice). Thus, this is equivalent to picking from the
corresponding partitions in VS. After the assignment of any
number of vectors that leads to partitions A1, A2, . . . , Am, the
Lτ norm of the load of machines in VS-GLB is, in fact, equal
to

f (τ)(A1, . . . , Am) =
(
‖A1‖ττ + . . .+ ‖Am‖ττ

)1/τ
where

‖Aj‖ττ =
∑
k

∑
i∈Aj

pik

τ

.

Suppose the assignment of vectors p1, p2, . . . , pi−1 leads to
partitions A1, A2, . . . , Am. Let f (τ)i,j be Lτ norm of the result-
ing load if vector pi chooses partition Aj , i.e.,

f
(τ)
i,j = f (τ)(A1, . . . , Aj ∪ {pi}, . . . , Am).

Then, according to the algorithm, vector pi should be assigned
to the partition

arg min
j
f
(τ)
i,j .

The procedure is described in Algorithm 1. For each incom-
ing vector, it only needs to execute Lines 5-9.

Algorithm 1 with τ = ln(md) is an e log(md) approxima-
tion algorithm to solve the corresponding VS-GLB. Thus, we
have the following result due to Theorem 2.

Lemma 4. Algorithm 1 with τ = ln(md) is an e log(md)
approximation algorithm to solve VS.

However, it is unclear whether Algorithm 1 with τ =
ln(md) can terminate within polynomial time. The algorithm
requires the computation of xln(md) for some x. First, the
number ln(md) is irrational, thus cannot be represented by

Algorithm 1: Vector Scheduling
Input: m, the number of partitions; d, the dimension of

each vector; p1, p2, . . . , pn, the n vectors to be
scheduled; τ , the norm

Output: A1, . . . , Am, the m partitions
1 begin
2 for j from 1 to m do
3 Aj ←− ∅;
4 for i from 1 to n do
5 if ∃Aj , Aj = ∅ then
6 Aj ←− Aj

⋃
{pi};

7 else
8 find j to minimize f (τ)i,j ;
9 Aj ←− Aj

⋃
{pi};

polynomial bits to achieve arbitrary resolution. Second, even
though we can approximate it by a rational number with
acceptable resolution, the number xτ̃ may still be irrational,
where τ̃ is the rational approximation to τ . For example, when
τ̃ = 1.5, there are lots of values of x such that x1.5 are
irrational. Though we can still approximate it by a rational
number, it is complicated to theoretically analyze whether
the approximation ratio still holds and how the running time
increases with respect to rational number approximation accu-
racy. This problem has not been addressed in literature.

Our solution is to round ln(md) to the next integer
dln(md)e and compute the Ldln(md)e norm. This guarantees
polynomial running time, but causes the loss of approximation
ratio. We show in the following that the loss is very small.

B. Guaranteeing Polynomial Running Time

To deal with the irrational number issue, we round ln(md)
to the next integer dln(md)e. In the following, we analyze the
resulting approximation ratio.

Theorem 5. Let l be the number of machines. Minimizing
Ldln le norm gives e log(l) + e log(e)

ln l+1 approximation ratio to
solve GLB.

Proof: This result is obtained from Lemma 3 by per-
forming calculus analysis. Let g(x) = x

ln(2) l
1/x. Consider the

derivative of g,

g′(x) =
l1/x

ln 2

(
1− ln l

x

)
.

For x ≥ ln l, it holds that g′(x) ≥ 0 so that the function g(x) is
monotonically increasing. Since ln(l) ≤ dln(l)e) ≤ ln(l) + 1,
we have

g(dln(l)e)− g(ln l) ≤ g(ln l + 1)− g(ln l).

In addition, consider the two points (ln l, g(ln l)) and (ln l +
1, g(ln l + 1)). Due to Langrange’s mean value theorem in
calculus, there exists ξ ∈ [ln l, ln l + 1] such that

g(ln l + 1)− g(ln l) = g′(ξ).

Since ξ ≥ ln l, we have l1/ξ ≤ e. Additionally, ξ ≤ ln l+1,
so 1 − ln l

ξ ≤
1

ln l+1 . Therefore, g′(ξ) ≤ e
ln(2)

(
1− ln l

ξ

)
≤

e log(e)
ln l+1 . We have

g(dln le)− g(ln l) ≤ g(ln l + 1)− g(ln l) ≤ e log(e)

ln l + 1

Note that g(ln l) = e log(l). This completes our proof.
This theorem holds for general GLB problem, such as the

one considered in [4] [6] and [5]. Of course, it holds for VS-
GLB as well. To have an intuition on the loss, we plot the two
approximation ratios with respect to the number of machines
in Figure 1. We can see that the loss is small.

0 20 40 60 80 100
0

5

10

15

20

number of machines
ap

pr
ox

im
at

io
n

ra
tio

before rounding
after rounding

Fig. 1. Approximation ratio loss due to rounding. Before rounding, the
approximation ratio is y = e log(x) and it becomes y = e log(x)+

e log(e)
ln(x)+1

after rounding.

We have the following corollary due to Theorem 5.

Corollary 1. With τ = dln(md)e, Algorithm 1 is an
e log(md) + e log(e)

ln(md)+1 approximation algorithm to VS, and it
runs in polynomial time.

The polynomial running time can be shown by the following
analysis. We assume τ = dln(md)e if not specified. The main
time consuming step is to minimize f (τ)i,j over j for given i.
We can omit the computation of the outer 1/τ power since
function xy is monotonic for x ≥ 0 and y > 0. In computing
Lτ norm, there is a basic operation, the integer power of a
number, aτ , where a is an element in any vector Aj . The
naive approach, which multiplies a iteratively, involves τ −
1 multiplications. This can be improved by utilizing partial
multiplication results. For example, computing a8 as ((a2)2)2

only needs 3 multiplications. Generally, computing aτ requires
blog(τ)c+ν(τ)−1 multiplications, where ν(τ) is the number
of 1s in the binary representation of τ (Chapter 4.6.3 in [8]).
In the following, we put an upper bound 2 log τ to the number
of multiplications needed to compute aτ .

To compute f
(τ)
i,j for given i and j, it needs d + m − 1

additions (adding pi to Aj , suppose Aj is maintained in each
iteration) and 2md log(τ) multiplications (md numbers, each
needs to compute its τ power). To find the optimal j for given
i, we need to compute f (τ)i,j for all j, and select the optimal
one by comparison. This procedure needs m(d + m − 1)

additions, 2d log(τ)m2 multiplications, and m − 1 compar-
isons. In summary, it takes O(d log(τ)m2) time for one vector.
For the overall algorithm, it takes O(d log(τ)nm2) time.
The computations can be sped up by exploiting the problem
structure. The complexity can be reduced to O(d log(τ)mn),
dropping one m factor, as shown in the following.

C. Computation Speedup

Towards VS-GLB, we have the following lemma. Note that
this lemma does not hold for the general GLB problem.

Lemma 5. For any j1, j2, it holds that f (τ)i,j1
> f

(τ)
i,j2

if and
only if∥∥∥Aj1 ∪ {pi}∥∥∥τ

τ
−
∥∥Aj1∥∥ττ > ∥∥∥Aj2 ∪ {pi}∥∥∥ττ − ∥∥Aj2∥∥ττ

Proof: Adding ‖A1‖ττ + . . .+‖Am‖ττ to both sides proves
the lemma.

Algorithm 2 shows the final design. For each partition Aj ,
the algorithm maintains two variables, the vector Aj (µj in
the algorithm) and its norm ‖Aj‖ττ (δj in the algorithm). If
there is no empty partition, then each incoming vector searches
over all partitions to find the j to minimize

∥∥∥Aj ∪ {pi}∥∥∥τ
τ
−∥∥Aj∥∥ττ (Lines 12-24). As Lemma 5 shows, this is equivalent

to minimize f (τ)i,j .
For the running time, consider a new vector that cannot

find an empty partition. There are md additions (Lines 13,16),
2md log(τ) multiplications (Lines 14,17), 2(m − 1) subtrac-
tions and m−1 comparisons (Line 18). The dominating factor
is md log(τ). This is for one vector. For all n vectors, the
running time is O(mnd log(τ)), compared to O(m2nd log τ)
before speedup. Substituting τ = dln(md)e into the formula
yields O(nmd ln ln(md)) running time, polynomial in the
input length (note m < n). This analysis, together with
Corollary 1 and Lemma 5, gives the following theorem.

Theorem 6. Algorithm 2 is an e log(md) + e log(e)
ln(md)+1 approx-

imation algorithm to VS. It runs in O(nmd ln ln(md)) time.

It should be noted that we treat multiplications as basic
operations in the above running time analysis. The running
time will be different if we further consider the complexity
of computing multiplications. Multiplying two n-bit integers
takes time O(n1.59) for a recursive algorithm (Chapter 5.5
in [9]). Applying such analysis to Algorithm 2, however,
requires the consideration of the length of the binary repre-
sentation of each numeric value in the vectors, which may
be complicated. Nevertheless, it is clear that multiplications
run in polynomial time in the input length. Thus Algorithm 2
terminates certainly in polynomial time.

D. Simulations

We implement three approaches for comparison: Algo-
rithm 1 with τ = ln(md), Algorithm 2 with τ = dln(md)e,
and a list scheduling algorithm mentioned in [2]. The list
scheduling algorithm is a (d+1) approximation algorithm for
vector scheduling. It ignores the multi-dimension property of

Algorithm 2: Sped-up Vector Scheduling with τ =
dln(md)e

Input: m, the number of partitions; d, the dimension of
each vector; p1, p2, . . . , pn, the n vectors to be
scheduled

Output: A1, . . . , Am, the m partitions
1 begin
2 for j from 1 to m do
3 Aj ←− ∅;
4 µj ←− 0; // vector Aj
5 δj ←− 0 ; // scalar ‖Aj‖ττ
6 for i from 1 to n do
7 if ∃Aj , Aj = ∅ then
8 Aj ←− Aj

⋃
{pi};

9 µj ←− pi;
10 δj ←− ‖pi‖ττ ;
11 else
12 jmin ←− 1; // partition index
13 µmin ←− µ1 + p1;
14 δmin ←− ‖µmin‖ττ ;
15 for j from 2 to m do
16 µ̃←− µj + pi; // vector addition
17 δ̃ ←− ‖µ̃‖ττ ;
18 if δmin − δjmin

> δ̃ − δj then
19 jmin ←− j;
20 µmin ←− µ̃;
21 δmin ←− δ̃;

22 µjmin ←− µmin;
23 δjmin

←− δmin;
24 Ajmin

←− Ajmin

⋃
{pi};

vectors, and treats vectors as scalars equal to the summation of
elements. We did not implement the O(ln2(d)) approximation
algorithm in [2] due to complicated implementation.

We consider two scenarios. In the first scenario, we study
the approximation ratio of each algorithm. This requires the
computation of the optimal solution, which is done by enu-
merating all solutions and is time consuming, so we only
consider small problem instances. Specifically, we consider
problem instances with 3 machines (m=3), 10 jobs (n=10) and
a dimension of 20 (d=20). For each job, its elements are drawn
independently from the uniform distribution in the range of
[0, 1]. Under such settings, the worst-case approximation ratios
for Algorithm 1, Algorithm 2 and the list scheduling algorithm
are 16.0566, 16.8264 and 21 respectively. We generate 100
problem instances and Figure 2 shows the box plot of the
approximation ratio of each algorithm. We can see that the
empirical performance of every algorithm is much better than
that suggested by the worst-case analysis, and Algorithms 1
and 2 outperform the list scheduling algorithm.

In the second scenario, we compare the three algorithms on
larger problem instances. There are 10 machines and 100 jobs.

1

1.1

1.2

1.3

1.4

1.5

Algorithm 1 Algorithm 2 List Scheduling

ap
pr

ox
im

at
io

n
ra

tio

Fig. 2. Approximation ratio of three vector scheduling approaches. One
hundred problem instances are generated to plot this figure.

The elements of a job are drawn from a uniform distribution
as before. We vary the dimension d from 10 to 40 with
increments of 5. For each dimension, we generate 100 problem
instances and compute the average makespan of the three
approaches. Figure 3 shows that Algorithm 1 and Algorithm 2
perform similarly, and both of them greatly outperform the
list scheduling algorithm. Note that with the increase of
dimension, the makespan of all approaches increases. This is
because the probability of an imbalanced dimension increases
in this case.

10 15 20 25 30 35 40
6

6.2

6.4

6.6

6.8

7

7.2

7.4

7.6

d

 m
ak

es
pa

n

Algorithm 1
Algorithm 2
List Scheduling

Fig. 3. Compare three vector scheduling approaches in terms of makespan.
Each point in the figure is averaged over 100 problem instances.

IV. CONCLUSION

In this work, we connect the vector scheduling problem with
the generalized load balancing problem, and obtain new results
by applying existing results to each other. Besides showing
that generalized load balancing does not admit constant ap-
proximation algorithms unless P = NP , we give the first
non-trivial online algorithm for vector scheduling. This online
algorithm also provides better approximation bound to solve
VS than existing offline polynomial time algorithm.

REFERENCES

[1] X. Zhu, Q. Li, W. Mao, and G. Chen, “Online vector scheduling
and generalized load balancing,” Journal of Parallel and Distributed
Computing. [Online]. Available: http://dx.doi.org/10.1016/j.jpdc.2013.12.
006

[2] C. Chekuri and S. Khanna, “On multidimensional packing problems,”
SIAM J. Comput., vol. 33, pp. 837–851, April 2004.

[3] L. Epstein and T. Tassa, “Vector assignment problems: a general frame-
work,” J. Algorithms, September 2003.

[4] F. Xu, C. C. Tan, Q. Li, G. Yan, and J. Wu, “Designing a practical access
point association protocol,” in Proceedings of INFOCOM’10.

[5] F. Xu, X. Zhu, C. C. Tan, Q. Li, G. Yan, and W. Jie, “Smartassoc:
Decentralized access point selection algorithm to improve throughput,”
IEEE Transactions on Parallel and Distributed Systems, vol. 24, no. 12,
pp. 2482–2491, 2013.

[6] I. Caragiannis, “Better bounds for online load balancing on unrelated
machines,” in Proceedings of SODA ’08.

[7] D. Zuckerman, “Linear degree extractors and the inapproximability of
max clique and chromatic number,” in Proceedings of STOC’06.

[8] D. E. Knuth, The art of computer programming, volume 2 (2nd ed.):
seminumerical algorithms. Addison-Wesley Longman Publishing Co.,
Inc., 1981.

[9] J. Kleinberg and E. Tardos, Algorithm Design. Addison-Wesley Longman
Publishing Co., Inc., 2005.

http://dx.doi.org/10.1016/j.jpdc.2013.12.006
http://dx.doi.org/10.1016/j.jpdc.2013.12.006

	I Introduction
	I-A Vector Scheduling
	I-B Generalized Load Balancing

	II Encoding Vector Scheduling by Generalized Load Balancing
	II-A Creating GLB Instances
	II-B Proof of Equivalence
	II-C Inapproximability for GLB
	II-D Extending to generalized VS

	III Online Algorithm for VS
	III-A Adapting to VS
	III-B Guaranteeing Polynomial Running Time
	III-C Computation Speedup
	III-D Simulations

	IV Conclusion
	References

