
12/05/2024 05:47

Detecting Similarities in Virtual Machine Behavior for Cloud Monitoring using Smoothed Histograms /
Lancellotti, Riccardo; Canali, Claudia. - In: JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING. - ISSN
0743-7315. - STAMPA. - 74:8(2014), pp. 2757-2769. [10.1016/j.jpdc.2014.02.006]

Terms of use:
The terms and conditions for the reuse of this version of the manuscript are specified in the publishing
policy. For all terms of use and more information see the publisher's website.

(Article begins on next page)

This is the peer reviewd version of the followng article:

Detecting Similarities in Virtual Machine Behavior

for Cloud Monitoring using Smoothed Histograms

Claudia Canali, Riccardo Lancellotti (B)

Department of Engineering “Enzo Ferrari”

University of Modena and Reggio Emilia

Corresponding author (B):
Riccardo Lancellotti

Department of Engineering “Enzo Ferrari”

University of Modena and Reggio Emilia

Via Vignolese 905/b

Modena, 41125, Italy

Tel: +39 059 205 6256

Fax: +39 059 205 6129

Email: riccardo.lancellotti@unimore.it

Detecting Similarities in Virtual Machine Behavior for
Cloud Monitoring using Smoothed Histograms

Claudia Canali, Riccardo Lancellotti (B)
Department of Engineering “Enzo Ferrari”

University of Modena and Reggio Emilia
{claudia.canali, riccardo.lancellotti}@unimore.it

Abstract

The growing size and complexity of cloud systems determine scalability issues

for resource monitoring and management. While most existing solutions con-

sider each Virtual Machine (VM) as a black box with independent characteristics,

we embrace a new perspective where VMs with similar behaviors in terms of

resource usage are clustered together. We argue that this new approach has the

potential to address scalability issues in cloud monitoring and management. In

this paper, we propose a technique to cluster VMs starting from the usage of mul-

tiple resources, assuming no knowledge of the services executed on them. This

innovative technique models VMs behavior exploiting the probability histogram

of their resources usage, and performs smoothing-based noise reduction and se-

lection of the most relevant information to consider for the clustering process.

Through extensive evaluation, we show that our proposal achieves high and stable

performance in terms of automatic VM clustering, and can reduce the monitoring

requirements of cloud systems.

Keywords: Cloud Computing, Virtual Machine clustering, Bhattacharyya

Distance, Histogram Smoothing, Spectral Clustering

Preprint submitted to Journal of Parallel and Distributed Computing February 12, 2014

1. Introduction

The cloud computing paradigm has emerged in the last few years as a way to

cope with the demands of modern application exploiting virtualization techniques

in large data centers. Cloud data centers based on Infrastructure as a Service

(IaaS) paradigm typically host several customer applications, where each applica-

tion consists of different software components (e.g., the tiers of a multi-tier Web

application). Each physical server in a cloud data center hosts multiple virtual

machines (VMs) running different software components with complex and het-

erogeneous resource demand behavior. Many customers are outsourcing services

and moving their applications from internal data centers to cloud platforms ex-

ploiting long-term commitments, purchasing several VMs for extended periods of

time (for example, integrating a data center with the Amazon so-called reserved

instances). As this scenario is, and is expected to be in the next future, a signifi-

cant part of the cloud ecosystem [1], we assume in the present study that customer

VMs do not change frequently the software component they are running and that

a single software component is typically deployed on several different VMs for

reliability and scalability purposes.

As cloud data centers grow in size and complexity to accommodate an in-

creasing number of customers, the process of monitoring VMs resource usage to

support management strategies in cloud systems becomes a major challenge due

to scalability issues. As VMs are traditionally considered as independent black

boxes, management strategies require to collect information about each single

VM of the data center. This means that gathering data about VMs exhibiting simi-

lar behaviors results in the collection of redundant information, thus hindering the

scalability of monitoring tasks for the cloud system.

We claim that automatically clustering together VMs with similar behaviors

may improve the scalability of the monitoring process. However, this approach

opens novel issues about how to represent VMs behavior and to measure their

similarity. The main contribution of this paper is the proposal of a technique,

namely Smoothing Histogram-based clustering (or SH-based clustering for short),

to group VMs showing similar behavior in a cloud data center. The proposed

technique exploits histograms of resource usage to model VM behaviors, and ap-

plies a smoothing algorithm to cope with the quantization error introduced by the

histogram-based representation. The VMs similarity is determined through the

Bhattacharyya distance [2], that is a statistical technique measuring the similarity

of discrete probability distributions. A further qualifying contribution of the SH-

based clustering technique is the automatic selection of the specific information

that is useful for the clustering process, to avoid considering data that do not carry

any meaningful information and may degrade the clustering performance due to

the presence of spiky or noisy behaviors.

To the best of our knowledge, the automatic clustering of VMs with similar

behavior is a problem only recently analyzed in [3, 4]. In [3] clustering is based

on the correlation coefficients among resource usage, which leads to highly sen-

sitive performance with respect to the length of resource usage time series. In [4]

the authors exploit an approach based on the Bhattacharyya distance requiring a

separate clustering step for every VM resource, thus resulting in a non-negligible

computational cost of the clustering process. On the other hand, the technique

proposed in this paper outperforms the previous attempts in terms of both qual-

ity and computational cost of the clustering solution. A preliminary version of the

present study was published by the authors in [5]; however, the SH-based proposal

is a clear step ahead with respect to the original work in terms of methodological

improvements (that is, use of histogram smoothing and analysis of a wider set of

information to describe VM behavior) and novel experimental testbed.

We apply the proposed technique to two case studies: a first dataset coming

from a cloud provider hosting VMs running Web servers and DBMS, and a second

dataset obtained from a synthetic benchmark deployed on a cloud infrastructure.

We show that our technique achieves high and stable performance in clustering

VMs on the basis of their resource usage monitored over different time periods; in

particular, the proposed clustering is effective even when the VM resource mon-

itoring covers short periods of time (e.g., one day). Furthermore, our results

demonstrate that blindly feeding every available information into the clustering

process does not necessarily improve the clustering performance, demonstrating

the advantage of automatically selecting relevant information.

The remainder of this paper is organized as follows. Section 2 describes the

proposed technique for VM clustering. Section 3 discusses the application of the

SH-based technique to a cloud data center. Section 4 describes the experimental

testbeds used to evaluate our technique, while Section 5 presents the results of

the experimental evaluation. Finally, Section 6 discusses the related work and

Section 7 concludes the paper with some final remarks.

2. SH-based clustering technique

Management strategies in cloud data centers typically try to predict VM work-

load over a planning period of time (e.g., hours or days) based on resource usage

patterns observed on past measurements, that are usually carried out with a fine

granularity (e.g., 5-minute intervals) [6, 7]. Since management strategies consider

each VM as a stand-alone object with independent resource usage patterns, the

amount of information that needs to be collected represents a challenge for the

scalability of the monitoring system.

The SH-based clustering technique aims to address this scalability issue by

automatically grouping similar VMs based on resource behavior. The main goal

is to cluster VMs of the same customer application which are running the same

software component (e.g., VMs belonging to the same tier of a Web application),

and therefore show similar behaviors in terms of resource usage. Then, the mon-

itoring system can exploit a fine-grained data collection about few representative

VMs as a representation of the behavior of a larger VM cluster [3].

In the rest of this section we describe and formalize the SH-based technique to

automatically cluster similar VMs in a IaaS cloud system. The proposed technique

is based on the following steps:

• Extraction of a quantitative model to describe the VM behavior through

selected useful information

• Smoothing step to remove noisy contributions from the VM behavior de-

scription

• Definition of a distance matrix representing VMs similarities

• Clustering based on the distance matrix to identify classes of similar VMs

Each step is now described in detail, providing insight on the main design choices

and their motivation.

2.1. VM behavior quantitative model

We now formally define the quantitative model chosen to represent the behav-

ior of VMs and discuss some critical design choices involved in this step. We call

the usage of a resource on a VM a metric and we use the probability distributions

of the metrics to describe the VM behavior. Specifically, we represent such prob-

ability distributions using histograms. For formalization purposes, we consider

N VMs and M metrics, so that n ∈ [1, N] is a generic VM and m ∈ [1,M]

represents a generic metric.

We now explain how the histogram is built. Let (Xn
1 ,X

n
2 , . . . ,X

n
M) be a set

of time series, where Xn
m is the time series consisting of the samples for metric m

on VM n. The corresponding probability density function p(Xn
m) is represented

through normalized histograms. Each histogram consists of a specified number

of bins, where each bin is associated to an interval of values the samples can take

and represents the sample density for the interval, that is the fraction of samples

in the time series falling within the interval.

If Bm is the number of bins considered for metric m, the histogram for metric

m on VM n is the set Hn
m = {hnb,m∀b ∈ [1, Bm]}, where hnb,m is the density

associated to the b-th histogram bin and defined as:

hnb,m =
|{x ∈ Xn

m : x > X l
m(b), x ≤ XU

m(b)}|
|Xn

m|

where |{x ∈ Xn
m : x > X l

m(b), x ≤ XU
m(b)}| is the number of samples in the

range (X l
m(b), XU

m(b)] and |Xn
m| is the number of samples in the time series. The

bin upper and lower bounds are defined as: X l
m(b) = Xminm + (b− 1)∆xm and

XU
m(b) = Xminm + b∆xm, where Xminm is the minimum value of metric m for

every VM,Xmaxm is the maximum value of metricm for every VM, and ∆xm is

the width of a bin for metric m, that is ∆xm = Xminm−Xmaxm
Bm

. Figure 1 provides

a graphical example of the above defined histogram.

Figure 1: Histogram example

This definition ensures that for each metric m the number of bins is the same

for every VM, which is required to compare histograms of different VMs. It

is worth to note that different statistical techniques are popularly used to auto-

matically estimate the number of bins of an histogram, such as Scott, Sturges

and Freedman-Diaconis rules [8, 9]. In this paper, we consider the Freedman-

Diaconis [9] rule, which was proven to be the best choice to generate resource

usage histograms capturing VMs behavior [5]. This rule is particularly suitable to

cope with samples not following a normal distribution because it makes use of the

inter-quartile range of the data to determine the bin number.

The representation of VMs behavior by means of metric histograms opens

some issues related to the selection of actually useful information that may bring

significant contributions to capture VMs behavior.

A first consideration is that the use of histograms takes into account the dis-

tribution of values in the time series, but may fail to capture dynamic behaviors

in the resource usage. Hence, we consider to exploit additional information such

as the derivative values extracted by the metric time series: for each histogram

Hn
m, we define another histogram Hn

m′
, which is built on the time series Xn

m′ of

the discrete derivative m′ of the metric m. Such histogram aims to capture the

dynamic aspects of the corresponding resource usage for the VM n. Each value in

the derivative time series is computed as the difference between the corresponding

value and its predecessor in the original time series.

A second consideration concerns the selection of which metrics are useful for

actually capturing the VM behavior. A naı̈ve approach of just feeding into the

clustering process as much information as possible may be counter-productive, be-

cause non-significant data may have an effect comparable to noise and adversely

affect the performance of clustering. Human intervention in the information se-

lection process is not a viable option because it would hinder the applicability of

the technique to large-scale data centers. Hence, we define an automatic process

to select relevant metrics. In the management of data centers, CPU and memory

are typically considered as representative VM metrics [10, 11], but we already

demonstrated that they are not sufficient for VM clustering [3]. For metric se-

lection, we rely on two statistical properties: the autocorrelation function (ACF)

and the coefficient of variation (CV). We perform a first selection based on the

values of the ACF of each time series: a quick decrease of the ACF means that the

observed metric exhibits low (or null) autocorrelation. This is the case of metrics

characterized by random perturbations and/or spikes varying in time and intensity

which may be detrimental for VM clustering purposes [12]. Hence, we choose to

retain metrics showing a slow decrease of the ACF, which have a strong depen-

dency among its values. However, a slow decreasing of ACF may be caused by

two conditions: (a) the metric is characterized by trends or periodical patterns that

are likely to be relevant to describe the VM behavior; (b) the metric values show

very low variations during the observation period, that are unlikely to be useful for

capturing differences in VM behaviors. To eliminate metrics corresponding to the

latter condition, we consider the CV of the metric time series. Specifically, a very

low CV (� 1) indicates metrics whose values vary into very small ranges, and

which do not provide any meaningful informative contribution for VM clustering.

2.2. Histogram smoothing

A further step in our technique is to apply a smoothing process to the met-

ric histograms. Figure 2(a) shows a typical metric histogram Hn
m presenting an

irregular shape. Irregularities are typically related to the interaction between a

finite number of samples in the time series and the boundaries in the bins. There-

fore, they may be considered as a quantization noise that is not useful to describe

the VM behavior, and is potentially harmful for our purpose of grouping together

similar VMs. We aim to remove this contribution from the VM behavior descrip-

tion exploiting a smoothing technique. Figure 2(b) shows the smoothed version

of the original histogram in Figure 2(a). Smoothing algorithms have already been

exploited in other research fields, such as artificial vision, to remove noisy com-

ponents from histogram representations [13, 14]. However, smoothing has never

been used in the specific context of VM behavior modeling.

20 50 80
Memory utilization [%]

P
ro

b
a
b
il
it

y
 d

e
n
s
it

y

(a) Non-smoothed histogram

20 50 80
Memory utilization [%]

P
ro

b
a
b
il
it

y
 d

e
n
s
it

y
(b) Smoothed histogram

Figure 2: Histogram smoothing example

To model the weights used for the smoothing algorithm, we use a Gaussian

functionG(x), which represents a Gaussian probability density with average value

µ = 0, and with standard deviation σ2 (σ2 = 0.25 in the example of Figure 2).

G(x) =
1√

2πσ2
e
x2

2σ2 (1)

From this Gaussian function we obtain an histogram G. The smoothed his-

togram is obtained by summing the generic b-th bin of a metric histogram Hn
m

with the values of all the nearby bins, each weighted according to the bins of the

histogram G:

hsnb,m =

∑Bm
i=0 h

n
i,m · gi−b∑Bm

i=0 gi−b

where hsnb,m is the b-th bin of the smoothed histogram HSn
m for metric m

and VM n, hni,m is the value of the original histogram bin and gi is a bin of the

histogram G obtained from the Gaussian function.

2.3. Distance matrix

The third step of the technique consists in building a distance matrix to de-

fine similarities among VMs starting from the smoothed histograms representing

the VMs behavior. To build the distance matrix we exploit the Bhattacharyya

distance [2], which measures the similarity between two datasets based on their

probability distributions. The Bhattacharyya distance Dm(n1, n2) computed ac-

cording to metric m between VMs n1 and n2 is defined as:

Dm(n1, n2) = −ln(
Bm∑
b=1

√
hsn1

b,m · hs
n2
b,m)

where hsn1
b,m is the b-th bin value in the smoothed histogram HSn1

m of metric

m for VM n1, while hsn2
b,m refers to VM n2. Since the histograms are normalized,

the Bhattacharyya distance may take values ranging from 0 (identical histograms)

to∞ (histograms where the product of every pair of bins is 0), as shown in Fig-

ure 3.

Figure 3: Bhattacharyya distance example

However, for clustering purposes a single metric is not sufficient, so we need

to combine together more metrics. To this aim, we define the multimetric-based

distance as the sum of squares of the distances for each metric, that is:

D(n1, n2) =
M∑

m=1

Dm(n1, n2)
2am +

M∑
m′=1

Dm′ (n1, n2)
2am′ (2)

where Dm(n1, n2) is the Bhattacharyya distance between n1 and n2 according

to metrics m, and Dm′ (n1, n2) is the distance computed according to derivative

values m′; the boolean variables am and am′ have value 1 or 0 depending on

whether metric m and its derivative m′ are considered or not. Finally, we build

the distance matrix D using the distances between every pair of VMs.

2.4. Clustering

The final step of the technique aims to obtain a clustering solution from the

distance matrix D. To this aim, we need to transform D into a similarity matrix S.

This step is carried out by applying a Gaussian kernel operator, that is a common

approach to translate distance into similarity [15]: specifically, we define the sim-

ilarity as si,j = e
−d2i,j
σ2 , where di,j is an element of the distance matrix D and σ is a

blurring coefficient of the kernel function. Preliminary analyses on the impact of

the σ coefficient on the clustering results suggest that the choice of the parameter

is not critical for the performance of the clustering algorithm. We choose σ = 0.6,

that is a default value for Gaussian kernels in statistical software tools [16].

To cluster together elements of a set starting from a similarity matrix, tradi-

tional algorithms such as k-means or kernel k-means are not viable options be-

cause they expect as input a set of coordinates for each element to cluster. On

the other hand, spectral clustering is a widely adopted solution which is explicitly

designed to manage as input a similarity matrix or matrix-based representation of

graphs [17].

The spectral clustering algorithm computes the Laplacian operator from the

input similarity matrix S. The eigenvalues and eigenvectors of the Laplacian are

then used to extract a new coordinate system that is fed into a k-means clustering

phase [18]. About this last phase of the clustering process, we must recall that

the k-means algorithm starts with a random set of centroids. To ensure that the

k-means result is not affected by local minimums, we iterate the k-means multiple

times, then we compare the ratio between inter-cluster distances (sum of squares

of distances between elements belonging to different clusters) and intra-cluster

distances (sum of squares of distances between elements of the same cluster).

Finally, we select the best solution across multiple k-means runs as the solution

that maximize inter-cluster distances and minimize intra-cluster distances. The

output of the clustering is a vector C, where the n-th element cn is the ID of the

cluster to which VM n is assigned.

Once the clustering is complete, we need to select for each class some repre-

sentative VMs that will be monitored with fine granularity. To this purpose, it is

worth to note that the output of the k-means internal phase of spectral clustering

provides as additional output the coordinates of the centroids for each identified

cluster. In this case, few representative VMs can be selected as the VMs closest

to the centroids. Specifically, we should consider that more than two representa-

tives (at least three) are selected for each class due to the possibility that a rep-

resentative unexpectedly changes its behavior with respect to its class: quorum-

based techniques can be exploited to cope with byzantine failures of representative

VMs [19].

3. Application of the SH-based clustering technique to cloud data centers

We now discuss how the SH-based clustering can be integrated in a typical

IaaS cloud data center. Specifically, this section aims to demonstrate the applica-

bility of the proposed technique, providing also an insight on the potential savings

in terms of data collected by the monitoring system.

3.1. Management strategy in a cloud data center

Management strategies in IaaS cloud data centers must guarantee an effi-

cient use of the system resources while avoiding overload conditions on physi-

cal servers. We recall that we consider a scenario where cloud customers rely on

long-term commitments and we assume that VMs do not change frequently the

software component they are running (e.g., changes occur with periods in the or-

der of few weeks or months). In this scenario, we consider a cloud management

strategy that consists of two separate mechanisms [20]: (a) a reactive VM reloca-

tion that exploits live VM migration when overloaded servers are detected [21];

(b) a periodic global consolidation strategy that places customer VMs on as few

physical servers as possible to reduce the infrastructure costs and avoid expensive

resource over-provisioning [10, 7, 22].

The SH-based clustering technique is essential to the scalability of the global

consolidation strategy because it can group together VMs with similar behavior

in terms of resource usage. The clustering technique is periodically applied to the

VMs of each customer. After the clustering process, few representative VMs are

selected for each identified cluster, as discussed in the previous section. To reduce

the amount of data collected by the monitoring system, only the representative

VMs of each class are monitored with fine granularity to collect information for

the global consolidation task, while the resource usage of the other VMs of the

same class is assumed to follow the representatives behavior. A quantification of

the reduction in the amount of information required to support global consolida-

tion policy is provided in the last part of this section. We do not enter in the details

of the specific algorithm or periodicity used for the server consolidation because

these choices depend on the workload characteristics in terms of variability and

patterns. However, this does not reduce the generality of the proposed solution,

because the SH-based clustering technique may be integrated with any consoli-

dation strategy. As regards the non representative VMs of each class, they are

monitored with coarse-grained granularity to identify behavioral drifts that could

determine a change of class. At the same time, sudden changes leading to server

overload are handled by the reactive VM relocation mechanism.

3.2. Reference scenario

Let us now describe an example of cloud data center exploiting the proposed

technique for monitoring and management. Figure 4 depicts the reference sce-

nario. The scheme represents a cloud data center with several physical servers,

namely host nodes, each running several VMs. A monitor process on each host

node periodically collects samples of the VM resources usage using the hypervi-

sor APIs. The collected data are sent to the time series aggregator running on the

host node. The time series aggregator selects the data to be communicated to the

clustering engine, which executes the proposed technique to automatically cluster

VMs, and to the cloud controller, which is responsible for running the consoli-

dation strategy. Live VM migration in the case of sudden host overload [21] and

programmed migrations to implement global consolidation strategies are carried

out by the local manager on each host node.

Time series

aggregator

L
o
c
a
l

M
a
n
a
g
e
r

VM

HypervisorH
o
s
t

n
o
d
e

Monitor

Clustering

engine

Cloud

controller

Management

nodeVM

Time series for

VM clustering

Clustering solution and

representative VMs

Time series for

VM consolidationConsolidation

decisions

Figure 4: Cloud Data Center

We now describe the dynamics occurring in the considered cloud system to

support VM clustering and server consolidation. The process of VM clustering

starts from the collection of time series Xn
m describing the resources usage for

each VM n and for each metric m over a certain period of time. The monitor pro-

cesses are responsible for this data collection. Then, the time series aggregators

of each host send the data to the clustering engine, which executes the SH-based

technique to obtain a clustering solution C and selects the representative VMs for

each identified class.

The information on VM classes and representatives are sent to the time series

aggregators on each host node and to the cloud controller. The time series ag-

gregators selectively collect the resource time series of the representative VMs of

each class, then send the data to the cloud controller. This latter component car-

ries out the consolidation task, exploiting the resource usage of the representative

VMs to characterize the behavior of every VM of the same class. The consolida-

tion decisions are finally communicated to the local managers on each host node

to be executed.

It is worth to note that the process of VM clustering is carried out periodically

with a frequency that allows to cope with changes in the VM classes (e.g. few

weeks). Furthermore, the clustering may be triggered when the number of excep-

tions in VMs behavior exceeds a given threshold, where for exception we mean

newly added VMs or clustered VMs that change their behavior with respect to the

class they belong to. However, a precise determination of the activation period or

strategy of the clustering process is out of the scope of this paper.

3.3. Reduction of monitored data

To understand the benefits for the monitoring system achievable through the

proposed SH-based clustering technique, it is interesting to determine the poten-

tial reduction in the amount of data collected to support consolidation. To this

aim, let us consider for example a cloud data center with 1000 VMs belonging to

5 customers, each running a three-tiered Web application (that is, resulting in 15

clusters of similar VMs).

Assuming that the global consolidation strategy considers K metrics for each

VM that are collected with a frequency of 1 sample every 5 minutes, we have

to manage a volume of data 288 · K samples per day per VM. Considering our

example, we have to monitor 1000 VMs, for a total amount of data in the order of

288× 103 ·K samples per day. After the clustering, we continue to monitor every

5 minutes only a few representative VMs per class, while the remaining VMs can

be monitored with a coarse-grained granularity, for example of 1 sample every

few hours. Assuming to select 3 representatives for each of the 15 VM classes,

the amount of data to collect after clustering is reduced to 13×103 ·K samples per

day for the class representatives; for the remaining 955 VMs, assuming to collect

one sample of the K metrics every 6 hours for VM, the data collected is in the

order of 3.8 × 103 · K samples per day. Hence, we observe that the amount of

data collected can be potentially reduced by a factor of 17, from 288× 103 ·K to

16.8× 103 ·K.

4. Experimental testbed

To evaluate the performance of the proposed SH-based clustering technique

we consider two case studies: (a) a dataset coming from a virtualized testbed

hosting a benchmark e-business application with synthetic workload; (b) a real

dataset coming from a Web-based application hosted on an enterprise data center.

Let us describe in details the two case studies and the considered performance

indicator.

4.1. EC2 Amazon case study

The first case study, namely EC2 Amazon, is based on a dataset coming from

a virtualized testbed running an e-commerce application. The considered appli-

cation, based on the RUBiS benchmark [23, 24], is deployed over the Amazon

Elastic Computing infrastructure. The benchmark uses a PHP-based application

server, a DBMS and a set of emulated browsers, issuing both HTTP and HTTPS

requests. By default we use 100 emulated browsers, but in some experiments

we change their number from 50 to 200 to consider different workload intensi-

ties. The benchmark is replicated on 36 VMs (we use the micro instances of VM

provided by Amazon EC2), with 12 VMs dedicated to the emulated browsers (by

default, 100 threads of emulated browsers for each VM), 12 to Web servers and 12

to DBMS. The monitoring system periodically collects samples about the usage of

13 VM resources. Each sample provides an average value computed over the pe-

riod between subsequent samplings. In this scenario, the virtualized infrastructure

is monitored through a framework explicitly designed for cloud platforms [25].

The complete list of the metrics collected by the monitoring system is provided in

Table 1 along with a short description.

Table 1: VM metrics for EC2 Amazon case study

Metric Description

X1 BlockOut Rate of blocks written to storage [Blk/s]

X2 CtxSwitch Rate of context switches [Cs/s]

X3 CPUIdle CPU idle time [%]

X4 CPUSystem CPU utilization (syst. mode) [%]

X5 CPUUser CPU utilization (user mode) [%]

X6 CPWait CPU waiting time [%]

X7 Interrupts Rate of interrupts [Int/s]

X8 MemBuff Size of filesystem in memory (Read/Write access) [MB]

X9 MemCache Size of filesystem in memory (Read only access) [MB]

X10 MemFree Size of free memory [MB]

X11 NetRxPkts Rate of network incoming packets [Pkts/s]

X12 NetTxPkts Rate of network outgoing packets [Pkts/s]

X13 ProcRun Number of running processes

As the considered application is supporting a synthetic workload, the patterns

of client requests are stable over time without the typical daily patterns that char-

acterize Web traffic. For this reason, we collect samples only for 12 hours: longer

time series would not provide additional information from a statistical point of

view in this steady state scenario. On the other hand, having a complete control

on the monitoring infrastructure allows us to change the sampling frequency for

the metrics of each VM: specifically, we consider sampling frequencies ranging

from 30 seconds to 5 minutes.

4.2. Enterprise data center case study

In the second case study, we consider 110 VMs belonging to one customer

Web application which is hosted on the cloud data center and is deployed ac-

cording to a multi-tier architecture. Specifically, the 110 VMs are divided in two

classes: Web servers and back-end servers (that are DBMS). We collect data about

the resource usage of every VM for different periods of time, ranging from 1 to

40 days. The samples are collected with a frequency of 5 minutes. For each VM

we consider 10 metrics describing the usage of different resources related to CPU,

memory, disk, and network. The complete list of the metrics is provided in Table 2

along with a short description.

Table 2: Virtual machine metrics
Metric Description

X1 SysCallRate Rate of system calls [req/sec]

X2 CPU User CPU utilization [%]

X3 DiskAvl Available disk space [%]

X4 CacheMiss Cache miss [%]

X5 Memory Physical memory utilization [%]

X6 PgOutRate Rate of memory pages swap-out [pages/sec]

X7 InPktRate Rate of network incoming packets [pkts/sec]

X8 OutPktRate Rate of network outgoing packets [pkts/sec]

X9 AliveProc Number of alive processes

X10 ActiveProc Number of active processes

It is worth to note that the workload intensity considered in this case study

changes dynamically over time. Figure 5(a) and 5(b) show a 5-days time series

of CPU utilization for a DBMS and a Web server, respectively: both graphs clearly

show the presence of daily patterns in the VMs CPU measurements.

0
2

0
4

0
6

0
8

0
1

0
0

Time [days]

C
P

U
 U

ti
liz

a
ti
o

n
 [

%
]

0 1 2 3 4 5

(a) DBMS
0

2
0

4
0

6
0

8
0

1
0

0

Time [days]

C
P

U
 U

ti
liz

a
ti
o

n
 [

%
]

0 1 2 3 4 5

(b) Web Server

Figure 5: Time series of CPU utilization

4.3. Performance Indicator

To evaluate the performance of the proposed clustering technique, we need

a measure indicating how many VMs are correctly identified. To this aim, we

consider the clustering purity, which is one of the most popular measures for

clustering evaluation [26] and represents the fraction of correctly identified VMs.

Purity is determined by comparing the output C of the clustering algorithm with

the ground truth vector C∗, which represents the correct classification of VMs into

clusters. It is worth to note that, since the spectral clustering includes an internal

phase of k-means starting with a set of randomly-generated cluster centroids, in

our experiments we run the final clustering step 103 times, then we select as the

clustering output vector C the solution that maximizes inter-cluster and minimizes

intra-cluster distances.

Purity is defined as:

purity =
|{cn : cn = c∗n,∀n ∈ [1, N]}|

N

where |{cn : cn = c∗n,∀n ∈ [1, N]}| is the number of VMs correctly clustered

and N is the total number of VMs.

5. Performance evaluation

In this section we present several experiments to evaluate the effect of his-

togram smoothing and the performance of the SH-based clustering technique. We

first evaluate the clustering purity achieved by the SH-based technique when ap-

plied to the two described case studies. This evaluation specifically aims to an-

alyze the impact on the final clustering results of the critical design choices in-

volved in the first two steps of the SH-based technique described in Section 2,

which mainly concern: inclusion of derivative values, automated metric selec-

tion and application of histogram smoothing. Furthermore, we analyze the impact

of variability in workload intensity on the final clustering results. Finally, we

compare the performance of the SH-based technique with that of alternative VM

clustering approaches proposed in previous studies [3, 4].

5.1. Impact of derivative values

In this first experiment we evaluate the opportunity of including derivative val-

ues of the metric time series in the computation of the Bhattacharyya distance be-

tween different VMs. To this aim, we analyzes for both case studies the clustering

purity achieved by considering different information as input for the computation

of the distance matrix D in Eq. 2. Specifically, we consider three cases: AllMet

uses only the metric histograms to compute the Bhattacharyya distance, without

derivative values (that is, am = 1, am′ = 0 ∀m ∈ [1,M] in Eq. 2); AllDer exploits

only the histograms of the derivative values (am = 0, am′ = 1); All(Met+Der)

uses both histograms of metrics and derivative values (am = am′ = 1).

Figure 6 shows the clustering purity as a function of sampling period (from

0.5 to 5 min) for the EC2 Amazon case study and of time series length (from 1 to

40 days) for the Enterprise Data Center scenario.

We observe that for both case studies the AllDer curve achieves very poor re-

 0.5

 0.6

 0.7

 0.8

 0.9

 1

5 3 1 0.5

C
lu

s
te

ri
n

g
 P

u
ri
ty

Sampling period [min]

AllMet
AllDer

All(Met+Der)

(a) EC2 Amazon

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

40 30 20 15 10 5 4 3 2 1

C
lu

s
te

ri
n

g
 P

u
ri
ty

Time series length [days]

AllMet
AllDer

All(Met+Der)

(b) Enterprise Data Center

Figure 6: Clustering purity including derivative values

sults. The All(Met+Der) curve performs better than AllDer, but the achieved pu-

rity is always lower than AllMet case, showing the negative influence of including

derivative values. The derivative values, that we included in the attempt to capture

the dynamic behavior of VM metrics, not only fail to provide any improvement,

but significantly decrease the capability of correctly clustering VMs. This poor

result is explained by the fact that the use of derivative values tends to exacerbate

the effect of the oscillating behaviors in the metric distributions, which do not

bring any meaningful contribution to the VMs description but have a detrimental

effect on the clustering results. This effect is confirmed by the analysis of the re-

sults in Figure 6(a), that is referred to the EC2 Amazon scenario. In this case we

observe that the clustering purity of the AllDer curve significantly decreases for

smaller sampling periods, because considering derivative values in case of high

sampling frequency intensifies the negative effect of metric spiky behavior on the

final clustering results.

A last observation is that the EC2 Amazon scenario provides a clustering pu-

rity that is generally higher if compared to the Enterprise Data Center scenario,

even if the overall data collection time is limited to 12 hours. This result is moti-

vated by the use of a synthetic workload for the EC2 Amazon case study, which

is characterized by regular access patterns that increase the accuracy of the clus-

tering algorithms.

Summarizing the results, the lesson learned by this experiment is that feeding

additional information into the clustering process does not necessarily improve

the achieved performance. On the other hand, it is of key importance for the

clustering to select the appropriate data, which may bring significant contribution

to the representation of the VM behavior.

5.2. Impact of metric selection

We now evaluate the impact on clustering performance of the automated se-

lection of relevant VM metrics to compute the Bhattacharyya distance. The au-

tomated selection is based on the Autocorrelation Function (ACF) computed for

different values of the time-lag and on the coefficient of variation (CV) of each

metric. Specifically, we evaluate how fast the ACF decreases as the time-lag in-

creases: we discard metrics having a percentage decrease of ACF greater than

50% for time-lag equal to 1 [12]. Among the remaining metrics, we operate a

further selection based on the coefficient of variation (CV), discarding metrics

having a value of CV� 1, as discussed in Section 2. The ACF and CV values are

reported in Tables 3 and 4 for EC2 Amazon and Enterprise Data Center scenario,

respectively. In particular, third and fourth columns of the tables report the per-

centage decrease of the values of ACF computed with time-lag equal to 1 and 5.

We highlight with gray background the rows corresponding to discarded metrics,

emphasizing with bold font the ACF and CV values that determine the elimination

from the set of relevant metrics.

For example, in the case of the Enterprise Data Center (Table 4), we first dis-

card metrics X4 and X6 because they show a quick decrease of ACF even for

short time-lag (68% and 85% for time-lag equal to 1, respectively), meaning that

the metrics are likely to be characterized by random perturbations and/or spikes

Table 3: Statistical properties of VM metrics for EC2 Amazon scenario
Metric ACF decrease CV

Lag=1 Lag=5

X1 BlockOut 66% 85% 12.48

X2 CtxSwitch 57% 75% 0.68

X3 CPUIdle 15% 23% 0.12

X4 CPUSystem 15% 22% 0.67

X5 CPUUser 16% 22% 0.63

X6 CPWait 53% 74% 20.07

X7 Interrupts 2% 4% 0.13

X8 MemBuff 4% 18% 0.35

X9 MemCache 23% 35% 0.08

X10 MemFree 19% 25% 1.14

X11 NetRxPkts 1% 3% 0.52

X12 NetTxPkts 2% 4% 0.54

X13 ProcRun 90% 97% 11.76

Table 4: Statistical properties of VM metrics for Enterprise data center scenario
Metric ACF decrease CV

Lag=1 Lag=5

X1 SysCallRate 11% 20% 0.87

X2 CPU 14% 23% 1.09

X3 DiskAvl 1% 3% 0.17

X4 CacheMiss 68% 81% 0.60

X5 Memory 5% 9% 0.54

X6 PgOutRate 85% 93% 23.13

X7 InPktRate 12% 19% 1.29

X8 OutPktRate 13% 21% 1.22

X9 AliveProc 1% 3% 0.07

X10 ActiveProc 17% 22% 0.67

varying in time and intensity [12]. It is worth to note that metric X6 has a CV

value � 1, thus confirming that it is characterized by spiky and highly variable

behavior [27]. On the other hand, metric X4 is characterized by random perturba-

tions that determines its lower variance (CV < 1). Then, we discard X3 and X9

because they have a CV� 1, indicating that these metrics show very low varia-

tions during the observation period, thus providing a not meaningful informative

contribution to differentiate the behavior of VMs belonging to separated classes.

The same selection process is applied to the EC2 Amazon scenario (Table 3).

To demonstrate that the selected metrics bring a relevant contribution to VM

description, we now evaluate the clustering purity achievable by considering only

the set of selected metrics, that we call BestSet, and compare it with the results

obtained for the entire set of metrics, namely AllMet. Figures 7(a) and 7(b) show

the results for EC2 Amazon and Enterprise Data Center case study, respectively.

To understand the different contributions of selected and discarded metrics, for

both case studies we also present the clustering purity achieved by computing

the Bhattacharyya distance just on single metrics: for example, we consider the

metrics X11 (NetRxPkts, selected) and X2 (CtxSwitch, discarded) for the EC2

Amazon scenario, and the metrics X8 (OutPktRate, selected) and X6 (PgOutRate,

discarded) for the Enterprise Data Center case study.

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

5 3 1 0.5

C
lu

s
te

ri
n

g
 P

u
ri
ty

Sampling period [min]

AllMet
BestSet

X11 (selected)
X2 (discarded)

(a) Amazon EC2

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

40 30 20 15 10 5 4 3 2 1

C
lu

s
te

ri
n

g
 P

u
ri
ty

Time series length [days]

AllMet
BestSet

X8 (selected)
X6 (discarded)

(b) Enterprise Data Center

Figure 7: Clustering Purity with Metric Selection

We first observe that the use of the BestSet leads to two important achieve-

ments with respect to the entire set of metrics: better performance and stability

of the clustering results for both case studies. Discarding the metrics based on

ACF and CV values allows us to avoid the negative effect that adds variability to

the performance of the AllMet curve. Such negative impact is particularly evident

if we observe Figure 7(b) (Enterprise Data Center scenario): for almost every

time series length the single selected metric X8 achieves better results than the

AllMet curve, whose performance is decreased by the negative effect of metrics

which are discarded from the BestSet, such as metric X6. It is also worth to note

that the clustering purity for AllMet decreases for long time series (left part of

Figure 7(b)). This result is apparently counter-intuitive, because it should be eas-

ier for the clustering process to correctly associate VMs to the belonging class

when longer sequences of characterizing measurements are available. However,

the reason of this behavior can be found in the presence of multiple local maxima

(modes) in the distributions of long metric time series. The multi-modal nature of

these distributions, that was pointed out by statistical analysis carried out on met-

ric time series, tends to hinder the performance of the clustering process. How-

ever, this experiment shows that an appropriate selection of metrics significantly

reduces the sensibility of the clustering results to the length of the time series.

5.3. Impact of histogram smoothing

In this experimental evaluation we aim to show the benefit of applying smooth-

ing to metric histograms to eliminate noisy contributions and capture the similar-

ities between VMs behavior. To this purpose, we present two experiments: first,

we evaluate the change in the Bhattacharyya distance when computed on non-

smoothed and smoothed histograms; second, we evaluate the impact of applying

histogram smoothing on the final clustering purity of the SH-based technique.

5.3.1. Impact on Bhattacharyya distance

To understand how smoothing affects the Bhattacharyya distance, we consider

the histograms referring to the same metric of the same VM, monitored during two

subsequent periods of observation. In particular, we compare the Bhattacharyya

distance computed on the non-smoothed and smoothed histograms.

Let us start with an example that considers the memory utilization (X5) of

a Web Server taken from the Enterprise Data Center case study. Figures 8(a)

and 8(c) present the histograms of the memory utilization for the first and sec-

ond 2-days period, respectively. Figures 8(b) and 8(d) show the corresponding

smoothed histograms. It is worth to note that in this and following experiments

we use a value of σ2 equal to 0.25 for the smoothing function in Equation 1. The

choice of this value is motivated by preliminary tests, not reported here for space

reasons, where we evaluate the impact of this parameter on the Bhattacharyya dis-

tance of non-smoothed and smoothed histograms for multiple metrics and VMs:

we found that any value of σ2 that is 0.1 < σ2 < 0.4 provides a significant noise

reduction, while preserving the main shape of the histograms.

Non-smoothed

histogram

Smoothed

histogram

D
a
y
s
 1

-2
D

a
y
s
 3

-4

Web server

(b)

(c) (d)

(a)

Memory

utilization [%]

20 40 600 80 100

20 40 600 80 100 20 40 600 80 100

20 40 600 80 100

P
ro

b
a
b
il
it

y

d
e
n
s
it

y

Histograms

reading key

Figure 8: Histogram smoothing example

If we observe the non-smoothed histograms in the left part of Figure 8, we note

that the noise due to quantization when building the histogram may hinder the pos-

sibility to capture the similarity between the resource usage in the two observed

periods. This hypothesis is confirmed by the computation of the Bhattacharyya

distance: the distance between the non-smoothed histograms is equal to 0.496,

while it decreases to 0.297 when computed between the smoothed histograms,

with a reduction of almost 40%.

We now extend our analysis to consider all the metrics included in the BestSet

for the Enterprise Data Center scenario. For each metric, we perform the same

evaluation on 110 VMs monitored for two subsequent periods of 2 days. Table 5

shows the percentage of reduction of the Bhattacharyya distance achieved when

smoothing is applied to the original metric histograms. Specifically, the first and

second rows of the table show for each metric the average and the standard devi-

ation of the achieved distance reduction, respectively.

Table 5: Reduction of Bhattacharyya Distance through Histogram Smoothing
Metric

SysCallRate CPU Memory InPktRate OutPktRate ActiveProc

Avg 37% 46% 43% 45% 41% 34%

StdDev 8% 9% 9% 8% 7% 6%

We observe that for all the metrics of the BestSet the application of the his-

togram smoothing leads to a significant reduction of the Bhattacharyya distance

between histograms resulting from subsequent observations of the same VM, with

a gain ranging from 34% to 46% on average. These results confirm that the

smoothing process may effectively reduce the noisy component in the metric mea-

surements while preserving the main informative contribution of the histograms

for a better determination of VM similarities.

5.3.2. Impact on clustering purity

Now we evaluate the impact of the smoothing process on the final performance

of the SH-based clustering technique. To this purpose, we apply the smoothing

technique to the histograms of the metrics included in the BestSet, and we refer to

the results as to BestSet-Smooth.

Figure 9 shows the clustering purity of the considered sets of metrics with and

without smoothing for the EC2 Amazon case study. We also show the results for

the AllMet case to highlight the gain achieved through the different steps of the

proposed technique.

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

5 3 1 0.5

C
lu

s
te

ri
n
g
 P

u
ri
ty

Sampling period [min]

AllMet
BestSet

BestSet-Smooth

Figure 9: EC2 Amazon: clustering with BestSet smoothing

We clearly see that the application of the histogram smoothing leads to an in-

crease in the clustering purity and a greater stability of the results with respect to

the sampling frequency used to collect metric measurements, proving that reduc-

ing the contribution of the quantization noise may improve the final performance

of the clustering process.

As regards the different sampling frequencies, we note that slightly better per-

formance is achieved for a sampling period of 5 minutes (purity up to 0.94), even

if the results are quite stable for every considered period. Hence, we can con-

clude that the SH-based clustering technique is suitable for being applied in sys-

tems where resource usage samples are collected every 5 minutes. Such value

of the sampling period is commonly used for data monitoring in distributed sys-

tems [25, 7, 10] because it allows to reduce the amount of collected data with

respect to shorter periods.

We now pass to evaluate the effect of histogram smoothing for the Enterprise

Data Center scenario. Fig. 10(a) presents the comparison between BestSet-Smooth

and BestSet focusing on short time series, ranging from 5 to 1 days. The graph

confirms that the use of smoothed histograms may actually improve the perfor-

mance of the clustering process, with an increase of the clustering purity up to 5%

for the shortest time series.

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

5 4 3 2 1

C
lu

s
te

ri
n

g
 P

u
ri
ty

Time series length [days]

BestSet
BestSet-Smooth

(a) BestSet vs. BestSet-Smooth

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

5 4 3 2 1

C
lu

s
te

ri
n

g
 P

u
ri
ty

Time series length [days]

CPU-Smooth (X2)
CPU (X2)

Memory-Smooth (X5)
Memory (X5)

BestSet-Smooth

(b) BestSet-Smooth vs. single metrics

Figure 10: Enterprise Data Center: clustering with BestSet smoothing

We also compare the clustering purity of the BestSet-Smooth approach with

the results obtained by considering just the single metrics X2 (CPU) and X5

(Memory), with and without smoothing, as shown in Fig. 10(b). We consider

these metrics because they are typically the only ones considered in cloud data

center management [28, 29, 7]. Figure 10(b) shows the small benefit achievable

by applying the smoothing technique to each single metric. However, results in

Fig. 10(b), together with non reported experiments considering the other single

metrics composing the BestSet, confirm that the clustering purity of the BestSet-

Smooth outperforms the results of each single smoothed metric. This means that

the use of single metrics, including CPU and memory, is not so efficient to capture

the VMs behavior for clustering purposes. Hence, this experiment confirms the

need to consider multiple metrics to correctly characterize VM behavior, but also

demonstrates the importance of removing from the VM behavior description the

useless data which may decrease the clustering performance, such as the noisy

contribution removed through the smoothing process.

5.4. Impact of workload variability

We now aim to evaluate the impact on clustering results of workload vari-

ability. The experiments carried out on the Enterprise data center scenario already

show that the proposed clustering technique may handle the inherent variability of

daily patterns. We now aim to further investigate the impact of workload variabil-

ity by considering aperiodic workload changes for the EC2 Amazon case study.

To this purpose, we consider a number of emulated browsers ranging from 50 to

200 (we recall that 100 is the default value used in previous experiments): for each

considered workload intensity we collect samples for 12 hours, then we apply the

clustering technique. Moreover, we create a dynamic workload where the number

of emulated browsers grows from 50 to 200 during a single collection period of

12 hours.

Table 6 shows the clustering purity achieved by the proposed technique, re-

ferred as BestSet Smoothed, in this experiment. For sake of comparison, the table

also shows the results of the BestSet Not Smoothed clustering.

Table 6: Clustering purity for different workload intensities

Clustering Number of Emulated Browsers

Approach 50 75 100 150 200 Dynamic

BestSet Smoothed 0.943 0.938 0.940 0.936 0.942 0.949

BestSet Not Smoothed 0.922 0.918 0.921 0.913 0.911 0.901

We observe that the proposed technique shows a great stability for every work-

load intensity, and confirms the gain over the not smoothed approach. For the

dynamic workload (last column of Table 6), we note a slightly higher gain of the

smoothed approach, close to 5%. This result may be explained by considering the

multi-modal shape that characterizes the histograms of the VM metrics when a dy-

namic workload is applied: in this case the impact of the histogram quantization

noise is likely to worsen the clustering results in absence of a corrective smoothing

process. From this experiment we conclude that the proposed technique is able to

cope with variability in the workload, as long as the arriving requests are evenly

distributed among the VMs of the same cluster, for example through load sharing

mechanisms.

5.5. Comparison with existing VM clustering approaches

Recent studies [3, 4] of the authors propose alternative techniques to automat-

ically cluster VMs in cloud systems depending on their behavior. In [3] we exploit

the correlation coefficients between resource usage time series to determine VM

similarities, while in [4] we rely on cluster ensemble techniques. Specifically, in

the latter study we compute the Bhattacharyya distance and perform a clustering

step for every single VM metric, then we apply a quorum-based ensemble tech-

nique to determine a global similarity matrix between every pair of VMs, and

finally apply a last step of clustering.

Both these techniques present strengths and weaknesses. The computational

cost of the Correlation-based approach [3] is relatively small, requiring the simple

computation of the correlation matrix to determine the behavioral representation

of each VM; however, the clustering purity decreases rapidly for short metric time

series (that is, collected for few days) as well as in presence of time periods during

which VMs are idle. On the other hand, the Ensemble-based approach [4] presents

high clustering purity at the price of high computational costs due to histograms

computation and multiple executions of the clustering step. The SH-based tech-

nique proposed in this paper aims to achieve a clustering purity which is stable

for different time series and comparable with the Ensemble-based approach; as

regards its computational cost, it is higher with respect to the Correlation-based

approach due to the smoothed histograms computation, but it is expected to be

lower than that of the Ensemble-based technique thanks to the presence of a sin-

gle clustering step.

We now provide a quantitative comparison of VM clustering techniques in

terms of performance and computational cost by applying our proposal and exist-

ing approaches to the Enterprise Data Center scenario. Table 7 shows the clus-

tering purity achieved by the three clustering techniques for time series length

ranging from 10 to 1 days.

Table 7: Clustering purity of alternative clustering techniques

Clustering Time series length [d]

technique 10 5 4 3 2 1

Correlation-based 0.809 0.797 0.771 0.752 0.729 0.714

Ensemble-based 0.864 0.862 0.861 0.852 0.850 0.841

SH-Based 0.880 0.876 0.872 0.870 0.867 0.863

We observe that the proposed SH-Based technique shows higher clustering

purity with respect to both alternatives for every time series length. With respect

to the Correlation-based approach, the gain in clustering purity increases for short

time series, exceeding 15% for 1 day time series. This effect is due to the rapid

degradation of the clustering purity for short time series of the Correlation-based

approach, as already noticed in [3]. With respect to the Ensemble-based approach,

the SH-based technique achieves similarly stable and slightly higher performance

thanks to the application of automated metric selection and histogram smoothing.

However, the main advantage of the proposed technique over the Ensemble-based

approach is the lower computational cost, as discussed below.

In this last experiment we compare the execution time of the clustering SH-

Based and Ensemble-based techniques. We limit the evaluation of the execution

time to the clustering phase of the techniques, because it is the only centralized

step that cannot be easily distributed and parallelized on multiple nodes. More-

over, it is worth to note that the additional cost of histogram smoothing to de-

termine the behavioral representation of each VM in the SH-Based approach is

negligible with respect of the initial creation of the histogram itself.

The clustering execution time is evaluated with respect to the number of con-

sidered metrics and VMs to cluster: for each of the 110 VMs of the Enterprise

Data Center scenario we consider metric time series with the length of one day

(24 hours): in this way, we emulate the presence of an increasing number of VMs

to cluster, ranging from 110 to 1100. Fig. 11 shows the clustering time as a func-

tion of the number of metrics and VMs. It is worth to note that, to carry out a

fair comparison, we consider for the two approaches the same number of met-

rics, even if the SH-Based actually limits the metrics to a selected set, while the

Ensemble-based typically exploits a greater number of metrics.

2 3 4 5 6 7 8 9 10

Number of metrics M110
330

550
770

1100
Number of VMs N

 0
 10
 20
 30
 40
 50
 60
 70
 80

C
lu

s
te

ri
n

g
 t

im
e

 [
s
]

 0 10 20 30 40 50 60 70 80 90

(a) Ensemble-based

2 3 4 5 6 7 8 9 10

Number of metrics M110
330

550
770

1100
Number of VMs N

 0
 10
 20
 30
 40
 50
 60
 70
 80

C
lu

s
te

ri
n

g
 t

im
e

 [
s
]

 1 2 3 4 5 6 7 8 9

(b) SH-based

Figure 11: Ensemble-based vs Smoothed-BestSet Clustering Time

The execution time required by the Ensemble-based approach reaches values

that are one order of magnitude higher with respect to the proposed technique

when 10 metrics are considered, as in [4]. The high computational costs of the

Ensemble-based approach are due to multiple executions of the clustering step,

which is performed M + 1 times, where M is the number of considered metrics.

On the other hand, the SH-Based approach performs the clustering step just once,

so the execution time of this step does not depend on the number of considered

metrics.

6. Related Work

Scalability issues concerning resource monitoring and management in cloud

systems have received a lot of attention by academic and industrial research in the

last few years.

Current solutions for monitoring large data centers typically exploit frame-

works for periodic collection of system status indicators. Most frameworks for

multi-cloud monitoring rely on standard building blocks such as Ganglia1, Cacti2

or Munin3. However, monitoring a large number of VMs remains a challenge un-

less some technique is used to reduce the amount of data to collect and store, as

done by the SH-based clustering technique proposed in this paper, which explic-

itly addresses this problem.

Similar scalability issues can be observed for cloud management. Most man-

agement solutions are inherited from literature on distributed systems, and can

be divided in two categories: reactive on-demand solutions that can be used to

avoid and mitigate server overload conditions, and periodic solutions that aim to

consolidate VMs exploiting optimization algorithms. The two approaches can be

combined together [20]. Examples of reactive solutions are [28] and [29], that

propose a mechanism based on adaptive thresholds regarding CPU utilization val-

ues. A similar approach is described also in Wood et al. [21] with a rule-based

approach for live VM migration that defines threshold levels about the usage of

few specific physical server resources, such as CPU-demand, memory allocation,

and network bandwidth usage. We believe that this type of solution can be in-

1http://ganglia.sourceforge.net/
2http://www.cacti.net
3http://munin-monitoring.org/

tegrated in our proposal at the level of the local managers on each host node.

An example of periodic VM consolidation solutions is proposed by Kusic et al.

in [22], where VM consolidation is achieved through a sequential optimization

approach. Similar solutions are proposed in [10, 11]. However, these approaches

are likely to suffer from scalability issues in large scale distributed systems due

to the amount of information needed by the optimization problem. Solutions like

our proposal, aiming to reduce the amount of data to collect and consider for the

management of cloud data centers, may play a major role for the applicability of

consolidation strategies to large cloud systems.

Solutions that exploit clustering to improve scalability of monitoring in cloud

and multi-cloud systems have been recently proposed by the authors [3, 4, 5].

In [3] we rely on correlation coefficients between resource usage to determine

VM similarities, while the proposal in [4] exploits cluster ensemble techniques

to improve accuracy and stability of the results. However, the technique based

on correlation provides poor performance for short metric time series (few days),

while the ensemble-based approach has high computational costs due to multi-

ple executions of the clustering step. Section 5.5 shows a quantitative analysis

of the gain achieved by the SH-based proposal both in terms of performance and

computational cost. Finally, in [5] we present a first application of the automatic

metric selection approach to a multi-cloud context. This paper represents a major

improvement with respect to the preliminary study in [5] because it proposes a

way to reduce the impact of quantization noise on the computation of the Bhat-

tacharyya distance thanks to the histogram smoothing. Furthermore, this paper

presents a more extensive experimental evaluation of the clustering technique on

multiple workloads, and sensitivity analysis with respect to sampling frequency

and inclusion of derivative values besides metrics time series.

Prior studies proposing clustering of cloud VMs are rather limited. Zhang et

al. [30] propose a method for VM clustering in cloud systems. However, they

consider only storage resources in order to perform storage consolidation strate-

gies, while our proposal focuses on the more general problem of global server

consolidation and takes into account multiple resources to describe VMs behav-

ior. The study in [31] investigates similarities in VM images used in public cloud

environments. While this study focuses on the static images of cloud VMs to pro-

vide insights for deduplication and image-level cache management, our approach

leverages similarities in the dynamic VMs behavior to improve scalability of cloud

monitoring.

One of the main research area where clustering based on statistical represen-

tation of features has been applied is the field of image processing and computer

vision. For example, the use of histograms and Bhattacharyya distance has been

exploited to compare the similarity of images [32]. In a similar way, smoothing

techniques on histograms have been proposed for image processing as a way to

improve image identification and retrieval [13, 14]. However, the application of

such techniques to cloud computing is a major innovation that opens new prob-

lems, such as the need for VM metric selection, that are specific to this application

realm.

7. Conclusions

We propose a novel technique, namely SH-based, for automatic clustering of

VMs sharing similar behavior to improve the scalability of monitoring process in

cloud data centers. The proposed technique exploits the Bhattacharyya distance to

determine similarities among VMs based on their resource usage and introduces

a smoothing process to remove noise from VM behavior representation. Our pro-

posal also considers multiple VM metrics and automatically selects which of them

actually bring a meaningful contribution to the clustering process. We evaluate

the performance of the SH-based technique using two case studies, and we dis-

cuss the potential benefit in terms of reduction of the amount of data collected

by the cloud monitoring system. Our experiments show that the purity achieved

by automatic VMs clustering ranges between 95% and 86% for every considered

scenario. Furthermore, we compare the achieved results with those of alternative

approaches to VM clustering, showing how the proposed technique surpasses the

existing alternatives in terms of both clustering quality and computational cost.

References

[1] D. Durkee, Why cloud computing will never be free, Queue 8 (4) (2010) 20:20–

20:29.

[2] A. Bhattacharyya, On a measure of divergence between two statistical populations

defined by their probability distributions, Bulletin of the Calcutta Mathematical So-

ciety 35 (1943) 99–109.

[3] C. Canali, R. Lancellotti, Automated Clustering of VMs for Scalable Cloud Moni-

toring and Management, in: Proc. of Conference on Software, Telecommunications

and Computer Networks (SOFTCOM), Split, Croatia, 2012.

[4] C. Canali, R. Lancellotti, Exploiting ensemble techniques for automatic virtual

machine clustering in cloud systems, Automated Software Engineering (2013) 1–

26 Available online. doi:10.1007/s10515-013-0134-y.

[5] C. Canali, R. Lancellotti, Automatic virtual machine clustering based on Bhat-

tacharyya distance for multi-cloud systems, in: Proc. of International Workshop on

Multi-cloud Applications and Federated Clouds, Prague, Czech Republic, 2013, pp.

45–52.

[6] B. Addis, D. Ardagna, B. Panicucci, M. Squillante, L. Zhang, A hierarchical ap-

proach for the resource management of very large cloud platforms, Dependable and

Secure Computing, IEEE Transactions on 10 (5) (2013) 253–272.

[7] T. Setzer, A. Stage, Decision support for virtual machine reassignments in enter-

prise data centers, in: Proc. of Network Operations and Management Symposium

(NOMS’10), Osaka, Japan, 2010.

[8] D. W. Scott, On Optimal and Data-Based Histograms, Biometrika 66 (3) (1979)

605–610.

[9] D. Freedman, P. Diaconis, On the histogram as a density estimator:L2 theory, Prob-

ability Theory and Related Fields 57 (4) (1981) 453–476.

[10] D. Ardagna, B. Panicucci, M. Trubian, L. Zhang, Energy-Aware Autonomic Re-

source Allocation in Multitier Virtualized Environments, IEEE Trans. on Services

Computing 5 (1) (2012) 2 –19.

[11] C. Tang, M. Steinder, M. Spreitzer, G. Pacifici, A scalable application placement

controller for enterprise data centers, in: Proc. of 16th World Wide Web Conference

(WWW’07), Banff, Canada, 2007.

[12] Y. Baryshnikov, E. Coffman, G. Pierre, D. Rubenstein, M. Squillante, T. Yimwad-

sana, Predictability of Web-Server Traffic Congestion, in: Proc. of IEEE Workshop

on Web Content Caching and Distribution (WCW), Sophia Antipolis, France, 2005.

[13] J.-H. Chang, K.-C. Fan, Y.-L. Chang, Image and Vision Computing 20 (3) (2002)

203 – 216.

[14] J. Kautsky, N. K. Nichols, D. L. Jupp, Smoothed histogram modification for image

processing, Computer Vision, Graphics, and Image Processing 26 (3) (1984) 271 –

291.

[15] I. S. Dhillon, Y. Guan, B. Kulis, Kernel k-means: spectral clustering and normal-

ized cuts, in: Proc. of International Conference on Knowledge Discovery and Data

Mining, Seattle, USA, 2004.

[16] A. Karatzoglou, A. Smola, K. Hornik, A. Zeileis, kernlab - An S4 package for kernel

methods in R, Tech. Rep. 9, WU Vienna University of Economics and Business (Aug

2004).

[17] A. K. Jain, Data clustering: 50 years beyond K-means, Pattern Recognition Letters

31 (8) (2010) 651 – 666.

[18] U. Luxburg, A tutorial on spectral clustering, Statistics and Computing 17 (4) (2007)

395–416.

[19] M. Castro, B. Liskov, Practical Byzantine Fault Tolerance, in: M. I. Seltzer, P. J.

Leach (Eds.), OSDI, USENIX Association, 1999, pp. 173–186.

[20] Z. Gong, X. Gu, PAC: Pattern-driven Application Consolidation for Efficient Cloud

Computing, in: Proc. of Symposium on Modeling, Analysis, Simulation of Com-

puter and Telecommunication Systems, Miami Beach, 2010.

[21] T. Wood, P. Shenoy, A. Venkataramani, M. Yousif, Black-box and gray-box strate-

gies for virtual machine migration, in: Proc. of Conference on Networked systems

design and implementation (NSDI), Cambridge, 2007.

[22] D. Kusic, J. O. Kephart, J. E. Hanson, N. Kandasamy, G. Jiang, Power and Perfor-

mance Management of Virtualized Computing Environment via Lookahead, Cluster

Computing 12 (1) (2009) 1–15.

[23] E. Cecchet, A. Chanda, S. Elnikety, J. Marguerite, W. Zwaenepoel, Performance

comparison of middleware architectures for generating dynamic Web content, in:

Proc. of 4th Middleware Conference, 2003.

[24] L. Hu, K. Schwan, A. Gulati, J. Zhang, C. Wang, Net-cohort: detecting and man-

aging VM ensembles in virtualized data centers, in: Proc. of the 9th international

conference on Autonomic computing (ICAC ’12), ICAC ’12, ACM, San Jose, Cali-

fornia, USA, 2012, pp. 3–12.

[25] M. Andreolini, M. Colajanni, M. Pietri, A scalable architecture for real-time moni-

toring of large information systems, in: Proc. of IEEE Second Symposium on Net-

work Cloud Computing and Applications, London, UK, 2012.

[26] E. Amigó, J. Gonzalo, J. Artiles, F. Verdejo, A Comparison of Extrinsic Clustering

Evaluation Metrics Based on Formal Constraints, Journal of Information Retrieval

12 (4) (2009) 461–486.

[27] S. Casolari, S. Tosi, F. Lo Presti, An adaptive model for online detection of state

changes in Internet-based systems, Performance Evaluation 69 (5) (2012) 206–226.

[28] A. Beloglazov, R. Buyya, Adaptive Threshold-Based Approach for Energy-Efficient

Consolidation of Virtual Machines in Cloud Data Centers, in: Proc. of MGC Work-

shop, Bangalore, India, 2010.

[29] D. Gmach, J. Rolia, L. Cherkasova, A. Kemper, Resource pool management: Reac-

tive versus proactive or let’s be friends, Computer Networks 53 (17).

[30] R. Zhang, R. Routray, D. M. Eyers, et al., IO Tetris: Deep storage consolidation for

the cloud via fine-grained workload analysis, in: IEEE Int’l Conference on Cloud

Computing, Washington, DC USA, 2011.

[31] K. R. Jayaram, C. Peng, Z. Zhang, M. Kim, H. Chen, H. Lei, An empirical analysis

of similarity in virtual machine images, in: Proc. of the Middleware 2011 Industry

Track Workshop, Middleware’11, ACM, Lisbon, Portugal, 2011, pp. 6:1–6:6.

[32] O. Michailovich, Y. Rathi, A. Tannenbaum, Image Segmentation Using Active Con-

tours Driven by the Bhattacharyya Gradient Flow, Trans. on Image Processing

16 (11) (2007) 2787–2801.

