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Abstract
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1. Introduction

The Resource Constrained Project Scheduling
Problem (RCPSP), which has a wide range of ap-
plications in logistics, manufacturing and project
management [1], is a universal and well-known
problem in the operations research domain. The
problem can be briefly described using a set of
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activities and a set of precedence constraints de-
scribing the relationships among activities. Each
activity requires a defined amount of the resources
and every resource has a limited capacity. The
objective is to find the best feasible schedule ac-
cording to a criterion. The RCPSP was proved
to be NP-hard in the strong sense when the crite-
rion is makespan [2]. For that reason only small
instances (approximately up to 30 activities) can
be reliably solved by exact methods like Branch &
Bound [3], therefore a heuristic or a meta-heuristic
is required to solve the problem satisfactorily.

In recent times, there is an increased interest
in using graphics cards to solve difficult combi-
natorial problems (e.g. [4, 5, 6]), since a modern
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graphics card is usually much more powerful than
a current multi-core CPU. Although the graphics
cards have some restrictions (e.g. a high-latency
global memory access), the new GPU architec-
tures like Kepler and Fermi can significantly re-
duce these bottlenecks. As a consequence modern
GPUs are applicable to the problems which were
solvable only on CPUs previously.

Not only the high computational power makes
graphics cards attractive to researchers and prac-
titioners, but also the mature Nvidia CUDA frame-
work which enables us to create GPU programs
in an effective and relatively easy way since it ex-
tends standard languages like C/C++ by adding
GPU specific functions and language keywords.
Nevertheless, the CUDA is only designed for the
Nvidia graphics cards.

From the implementation point of view, there
are two models. The first one is called a homo-
geneous model where all required data structures
are stored in a GPU at the beginning of an algo-
rithm and the results are read at the end of the
algorithm. There is no communication between
the CPU and the GPU during the computations.
The second approach is a heterogeneous model.
The main logic of an algorithm runs on the CPU
and the GPU is used only for the most computa-
tionally intensive tasks. The disadvantage of the
heterogeneous model is the frequent communica-
tion during computations, therefore, the commu-
nication bandwidth can state a bottleneck. How-
ever, the heterogeneous model is usually simpler
to implement.

1.1. Related works

The Tabu Search meta-heuristic was proposed
by Glover in 1986 [7]. Hundreds of publications
have been written since that time. The basic con-
cept of the TS meta-heuristic is clarified in Gen-
dreau [8]. The author has described the basic
terms of the TS, as a Tabu List (TL), aspiration
criteria, diversification, intensification, etc.

From the Tabu Search parallelization point of
view James et al. [9] proposed a sophisticated so-
lution. The authors use a circular buffer where
the size of the buffer is equivalent to the number
of the started threads (often the number of CPUs

cores). Every location (i.e. an index of a thread)
has different parameters (a tabu tenure, stopping
criteria). At the beginning of the search each
thread initializes its own location by a short TS
operator, i.e. a modified version of the Taillard’s
robust tabu search. Then the asynchronous paral-
lel tabu search is started. Every thread indepen-
dently reads a solution and parameters from the
location, possibly makes a diversification, runs the
TS operator on the solution, and writes back and
sets an UPDATE flag if an improving solution is
found. After that the thread location index is cir-
cularly incremented. Diversification takes place if
the read solution does not have the UPDATE flag
set. Every best global solution is copied to half of
the locations of the circular buffer to propagate
elite solutions. Since the circular buffer is shared
by many threads, the access has to be as short as
possible and the locations have to be protected by
critical sections.

Relatively many authors try to use a GPU
for solving combinatorial problems. For example,
Czapiński and Barnes [10] implemented a GPU
version of TS to solve the Flowshop Scheduling
Problem (FSP). The success of the implementa-
tion illustrates an achieved speedup against the
CPU version. The GPU version was up to 89.01
times faster than the CPU (Intel Xeon 3.0 GHz,
2 GB memory, Nvidia Tesla C1060 GPU). Nev-
ertheless, the quality of solutions was not investi-
gated.

The Flowshop Scheduling Problem was also
solved by Zaj́ıček and Š̊ucha [11]. The authors
implemented a GPU version of an island based
genetic algorithm. Islands are used for migration
of individuals among sub-populations, where each
sub-population is a subset of solutions and an in-
dividual corresponds to a specific solution. Sub-
population can be evaluated, mutated and crossed
over independently of other sub-populations, there-
fore, huge parallelization can be achieved. It should
be noted that a homogeneous model was used.
The maximal speedup against the CPU was 110
for 100 activities and 5 machines (AMD Phenom
II X4 945 3.0 GHz, Nvidia Tesla C1060).

Czapiński [5] proposed a Parallel Multi-start
Tabu Search for the Quadratic Assignment Prob-
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lem. The main idea is to start several Parallel
Tabu Search instances with different parameters
and initial solutions. All Tabu Search instances
should terminate approximately at the same time
since the synchronization is required to get the
most promising solutions. When a stop criterion
is met, the modified solutions are read back and
the most promising solutions are used as the ini-
tial solutions in the next run. The Tabu Search
instance runs entirely on the GPU, therefore com-
munication overheads are reduced to minimum.
The achieved results reveal the effectiveness of the
implementation since Nvidia GTX 480 is up to 70
times faster than a six-core Intel Core i7-980x 3.33
GHz.

Hofmann et al. [12] investigated the suitability
of graphics cards for genetic algorithms. The au-
thors selected two problems to solve, namely the
Weierstrass function minimization and the Trav-
eling Salesman Problem. The first problem can
be very effectively implemented on the GPU since
the Weierstrass function is comprised of floating-
point operations and trigonometric functions that
are directly supported by the GPU hardware. In
contrast to the first problem the second problem
was not tailor-made for the GPU, therefore, the
multi-core CPU was able to compete with the
GPU. The authors suggest that all parts of a ge-
netic algorithm should be performed on the Fermi
or newer GPUs (i.e. homogeneous model).

Boyer et al. [13] used dynamic programming
to solve the knapsack problem on a GPU. An ef-
fective data compression was proposed to reduce
memory occupancy. The achieved results show
that the Nvidia GTX 260 graphics card was up
to 26 faster than Intel Xeon 3.0 GHz.

The above mentioned combinatorial problems
have something in common. The solution eval-
uation is quite simple since it is usually a “sim-
ple sum”. On the other hand, the RCPSP re-
quires much more complicated schedule evalua-
tion methods and data structures.

1.2. Contribution and Paper Outline

The proposed solution is the first known GPU
algorithm for the RCPSP. The performed exper-
iments revealed that the GPU outperforms the

CPU version in both performance speedup and
the quality of solutions. This is possible thanks
to an effective schedule evaluation and a GPU-
optimized Simple Tabu List. In addition, the re-
quired data transfers are reduced to minimum due
to the homogeneous model. Our Parallel Tabu
Search is able to outperform other Tabu Search
implementations in the quality of the resulting so-
lutions.

The paper is structured as follows: The fol-
lowing section introduces the RCPSP mathemat-
ical formulation and notation. The Tabu Search
meta-heuristic is briefly described in Section 3.
Our proposed Parallel Tabu Search algorithm for
the CUDA platform is described in detail in Sec-
tions 4, 5, and 6. The performed experiments are
located in Section 7 and the last section concludes
the work.

2. Problem Statement

According to the standard notation, classifi-
cation for the RCPSP is PS|prec|Cmax [14]. A
project can be described as follows: There is a set
of activities V = {0, . . . , N − 1} with durations
D = {d0, . . . , dN−1} where N is the number of
activities. There are two dummy activities 0 and
N−1 such that d0 = dN−1 = 0. Activity 0 is a pre-
decessor of all other activities and activity N − 1
is the end activity of a project. A schedule of the
RCPSP can be represented as a vector of activi-
ties’ start times S = {s0, . . . , sN−1} where si ∈ N.
Alternatively, a schedule can be expressed as an
order of activities W = {w0, . . . , wN−1} ∈ W
where wu is the u-th activity of the schedule and
W is a set of all feasible solutions.

The RCPSP can be represented as Direct Acyclic
Graph G(V,E) where nodes V are activities and
edges E are precedence relations. If there is edge
(i, j) ∈ E then si + di ≤ sj since activity j has to
be scheduled after activity i.

Each activity requires some amount of renew-
able resources. The number of project resources is
denoted as M and a set of resources capacities is
R = {R0, . . . , RM−1} where Rk ∈ N. Maximal re-
source capacity Rmax is equal to maxM−1

k=0 Rk. Ac-
tivity resource requirement ri,k ∈ N means that
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activity i requires ri,k ≤ Rk resource units of re-
source k during its execution. As si and di values
are positive integers, the resulting schedule length
Cmax (i.e. the project makespan) will also be an
integer as well.

A lower bound of the project makespan can be
found by neglecting resources. For each activity
i ∈ V all outgoing edges (i, j) ∈ E are weighted
by its duration di. The longest path from 0 to
N−1 in graph G(V,E) corresponds to the critical
path. Its length is equal to the optimal project
makespan on the condition that all resources have
an unlimited capacity.

2.1. Mathematical Formulation

minimize Cmax (1)

s.t. Cmax = max
∀i∈V

(si + di) = sN−1 (2)

sj ≥ si + di ∀(i, j) ∈ E (3)

Cmax
max
t=0

(∑
i∈Ft

ri,k

)
≤ Rk (4)

∀k ∈ {0, . . . ,M − 1}
Ft = {i ∈ V |si ≤ t < si + di}

The objective of the RCPSP is to find a feasi-
ble schedule W with the minimal schedule length
Cmax. The schedule length is the latest finish
time of any activity (Equations (1),(2)). Equa-
tion (3) ensures that all precedence relations are
satisfied. A schedule is feasible if all precedence
relations are satisfied and the resources are not
overloaded, i.e. the activities requirements do not
exceed the capacity of any resource at any time
(Equation (4)).

2.2. Instance Example

The data of an example instance are showed in
Table 1. In the project there are 10 non-dummy
activities and 2 renewable resources with maximal
capacity 6. The corresponding graph of prece-
dences is shown in Figure 1. The critical path
is highlighted by bold lines and its length is 16.
One of the feasible solutions of the instance is the
activity order W = {0, 1, 2, 3, 4, 6, 5, 7, 9, 10, 8, 11}
with Cmax = 22. The resource utilization for this
order is depicted in Figure 2.

Activity i di ri,0 ri,1 Successors
0 0 0 0 {1, 2}
1 4 5 3 {3, 6}
2 3 2 1 {4, 5}
3 5 3 2 {5, 10}
4 5 2 3 {7}
5 3 3 4 {8, 9}
6 2 4 1 {7, 9}
7 4 2 2 {8, 10}
8 2 4 5 {11}
9 3 1 2 {11}
10 4 2 2 {11}
11 0 0 0 {}

Table 1: Data of an example instance.

3. Brief description of the Tabu Search meta-
heuristic

To move through solution spaceW , a transfor-
mation of the current solution to a neighborhood
solution is required. This transformation is called
a move which can be seen as a light solution mod-
ification like a swap of two elements in an order,
etc.

The Tabu Search meta-heuristic was proposed
by Glover [7] as an improvement of the local search
technique [8]. A local search algorithm starts
from the initial solution and iteratively improves
this solution by applying the best neighborhood
moves until a local optimum is reached, whereas
the Tabu Search introduces a short-term mem-
ory called Tabu List which reduces the probabil-
ity of getting stuck in a local optimum or plateau
by forbidding the previously visited solutions. As
a consequence, not only improving solutions are
permitted and the search process is able to climb
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Figure 1: Graph of precedences for the example instance.
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Figure 2: Utilization of resources for the example instance.

to the hills in the search spaceW if it is necessary.
Due to efficiency, the Tabu List usually con-

tains only parts of solutions or several previously
applied moves. As moves or parts of solutions do
not have to be unique, it is possible that a forbid-
den move leads to the best solution. In this case
it is reasonable to permit the move since the re-
sulting solution was not visited before. In general,
exceptions allowing forbidden moves are called as-
piration criteria [8].

The quality of the resulting solutions can be
further improved by a suitable search strategy.
For example, if a current location in the solu-
tion space is promising, i.e. the best solution
was found recently, then a more thorough search
is performed – intensification. It can be accom-
plished by concentrating more computational power
to this locality of the space. Opposite to that, if
a current location is unpromising, i.e. only poor
solutions were found, then diversification is per-
formed. The diversification moves the current
search location to another one where better so-
lutions could be found. It is often realized by
applying a few random moves.

The Tabu Search process is stopped if a stop
criterion is met. The stop criterion can be the

number of iterations, achieved quality of the best
found solution, the maximal number of iterations
since the last best solution was found, etc.

4. Exploration of the Solution Space

4.1. Creating Initial Activity Order

Our Tabu Search algorithm starts from initial
feasible solution W init ∈ W which is created in
the following way: First of all, the longest paths
in graph G from the start activity 0 to all other
activities are found. The weight of each graph
edge (i, j) ∈ E is set to 1. Activities with the
same maximal distance from the start activity are
grouped to levels. The level lk corresponds to all
activities with maximal distance k from the start
activity, therefore, activity 0 is at level l0 and ac-
tivity N − 1 is at level lmax where subscript max
corresponds with the last level number. The final
feasible schedule can be created from levels such
that W = {{l0}, . . . , {lmax}}. Alternative feasible
schedules can be created by shuffling the activities
on the same level.

4.2. Move Transformation

Schedule order W is changed in our Tabu Search
algorithm by a swap move. A simple example is
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illustrated in Figure 3. Two dummy activities (0
and N − 1) cannot be swapped due to precedence
constraints, therefore the activity at w0 is always
0 and the activity at wN−1 is always N − 1. The
swap move is defined as swap(u, v) where u and
v are swapped indices. As swap(u, v) modifies a
schedule in the same way as swap(v, u) only swaps
with u < v are taken into account without loss of
generality.
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Figure 3: Example of the swap move.

Let W ∈ W be a feasible activity order. A
feasible order means that there is not a violated
precedence relation. A feasible move is a move
which does not violate any precedence relation,
therefore if this move is applied to a feasible sched-
ule then the modified schedule will be feasible as
well. Move swap(u, v) is feasible if the following
equations are satisfied.

(wu, wx) /∈ E ∀x ∈ {u+ 1, . . . , v} (5)

(wx, wv) /∈ E ∀x ∈ {u, . . . , v − 1} (6)

The First Equation (5) means that there are
no edges from activity wu to the activities at in-
dices from u+1 to v. If there is any edge, then ac-
tivity wu cannot be moved to position v without
a precedence violation. In a similar way, Equa-
tion (6) states that activity wv cannot be moved
to index u if there is a precedence relation that
becomes violated.

4.3. Neighborhood Generation

Full neighborhood Nfull (W ) ⊆ W of schedule
W is a set of schedules obtained by applying all
feasible moves. Since the full neighborhood is usu-
ally too large to be evaluated in a reasonable time
only a subset of the neighborhood is usually taken
into account. Such a subset will be called as a re-
duced neighborhood denoted Nreduced (W ). In the

reduced neighborhood, moves are restricted to all
swap(u, v), where u < v and |v − u| ≤ δ. Value δ
is the maximal distance between the swapped ac-
tivities in order W . The size of the neighborhood
|Nreduced (W )| is parametrized by δ.

There are two reasons why only feasible moves
are applied. The neighborhood size is reduced
without noticeable deterioration of the project make-
span and there is no need to check the feasibility
of schedules.

4.4. Filtering Infeasible Moves

In order to saturate a GPU, feasible sched-
ules in Nreduced should be evaluated in a paral-
lel way by dividing the schedules equally among
the threads. Since the evaluation of a schedule is
much more time-consuming than checking whether
a move is feasible it is advantageous to filter out
all infeasible moves before the neighborhood eval-
uation. It reduces the branch divergency of warps,
hence the overall performance of the resources
evaluation is improved.

In Algorithm 1 is shown how infeasible moves
are filtered out from the neighborhood. The filter
works in two phases since it was discovered that
it is more effective due to the lower branch diver-
gency than to filter out all the infeasible moves
at once. In the end, only part of the array with
feasible moves is taken into account in the neigh-
borhood evaluation.

Algorithm 1 Removing infeasible moves from the re-
duced neighborhood.

Require: Nreduced(W )
Ensure: It filters out infeasible moves from the reduced

neighborhood.
1: Let MovesArray be an array containing all potential

swaps in Nreduced(W ).
2: All moves not satisfying Equation (5) are removed, i.e.

set empty.
3: Reorder MovesArray such that all empty moves are in

the end of the array.
4: Remove moves that do not satisfy Equation (6).
5: Move all feasible moves to the beginning of

MovesArray .

4.5. Simple Tabu List and Cache

The tabu list in [10] is not suitable for a GPU
since it is necessary to go through all moves in
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the tabu list to decide whether a move is in the
tabu list or not. As a consequence it places higher
demands on the device memory bandwidth. To
avoid this a simple and efficient Simple Tabu List
(STL) with constant algorithmic complexity is pro-
posed. Access to the STL is performed like an
access to a circular buffer. Its size is fixed and is
equal to |tabuList|. In our case, the STL stores
swap moves. Each swap(u, v) is stored to the STL
as a pair of swapped indices (u, v). A special value
is used for an empty move, e.g. swap(0, 0). At
each iteration of the TS algorithm one move is
added (see Algorithm 3) and the oldest one is re-
moved if the STL is full.

Algorithm 2 Check if a move is in the STL.

Require: tabuCache − STL cache.
Require: (u, v)− Swap move indices.
Ensure: It returns true if the move is in the STL, other-

wise false.
1: return tabuCache[u, v]

The Tabu Cache (TC) was proposed for effec-
tive checking if the move is in the STL. It is illus-
trated in Algorithm 2. Checking if a swap is in the
STL occurs much more often than adding a new
move since a move is added only once per itera-
tion and check if the move is in the STL occurs for
every neighborhood schedule. The TC is imple-
mented as a 2-dimensional N ×N boolean array
which is synchronized with the STL. A check if a
move is in the STL requires one read operation,
thus, the required memory bandwidth is very low.
It is obvious that a check if the move is in the STL
has O(1) algorithmic complexity.

Algorithm 3 Add a move to the STL.

Require: tabuList − Fixed size array.
Require: tabuCache − STL cache.
Require: writeIndex − Current write position.
Require: (u, v)− Swap move indices.
Ensure: Add move to STL and update TC.
1: (uold, vold) = tabuList [writeIndex ]
2: tabuCache[uold, vold] = false
3: tabuList [writeIndex ]= (u, v)
4: tabuCache[u, v] = true
5: writeIndex = (writeIndex + 1) % |tabuList|

5. Schedule Evaluation

During the evaluation of W , precedence rela-
tions and resource constraints have to be taken
into account to calculate activities start times si
and Cmax. The precedence earliest start time espreci

of activity i can be calculated as max∀(j,i)∈E (sj + dj),
where j are predecessors of activity i. The re-
sources earliest start time esresi can be computed
using either a time-indexed or capacity-indexed re-
sources evaluation algorithm. The capacity-indexed
algorithm is a completely new approach to the
best of our knowledge, whereas the time-indexed
algorithm is well-known [15]. The names of the
algorithms were selected with respect to the in-
dexed unit of a resource state array. According
to a heuristic the probable faster resources eval-
uation algorithm is selected in the schedule eval-
uation procedure. Having considered both prece-
dence and resource constraints the final earliest
start time is esi = max(espreci , esresi ).

5.1. Capacity-indexed resources evaluation

5.1.1. Required Data Structures

The most difficult part during the project make-
span evaluation is computation of the activities’
start times with respect to the resource capacities.
In our approach, the evaluation of resources re-
quires one array ck with length Rk per resource k.
Value ck[Rk − ri,k] corresponds to the earliest re-
source start time of activity i with resource re-
quirement ri,k > 0 on resource k. At the start of
the evaluation, all the resources arrays are set to
zeros. After that, activities are added one by one
to a schedule according to W and arrays are up-
dated with respect to the activity requirements
and precedences. The resources arrays are or-
dered descendly, i.e. ck[Rk − l] ≤ ck[Rk − l −
1] | ∀l ∈ {1, . . . , Rk − 1}. The state of resources
is represented as a set C = {c0, . . . , cM−1}.

5.1.2. The Earliest Resources Start Time

Resource earliest start time esresi ∈ N of activ-
ity i with respect to an occupation of resources
can be calculated using Equation (7). It is guar-
anteed that resources are not overloaded if activ-
ity i start time si ≥ esresi . Final activity start

7



time si can be more delayed due to the precedence
relations.

esresi =

 max
k∈{0,...,M−1}: ri,k>0

ck[Rk − ri,k] ∃ri,k > 0

0 otherwise
(7)

5.1.3. Update of the Resources Arrays

If activity i is added into the schedule, re-
sources arrays C have to be updated by Algo-
rithm 4. Each resource array ck is updated indi-

Algorithm 4 Method updates state of resources after
adding activity i.

Require: ri,k, di, C,R
Require: copy −Auxiliary array with length Rmax).
Require: si − Scheduled start time of activity i.
Ensure: Update C - activity i is added.
1: for (k = 0; k < M ; ++k) do
2: requiredEffort = ri,k · di
3: if (requiredEffort > 0) then
4: resIdx = 0; copyIdx = 0
5: newTime = si + di
6: while (requiredEffort > 0 AND resIdx < Rk)

do
7: if (ck[resIdx ] < newTime) then
8: if (copyIdx ≥ ri,k) then
9: newTime = copy [copyIdx − ri,k]

10: end if
11: timeDiff = newTime −max(ck[resIdx ], si)
12: if (requiredEffort − timeDiff > 0) then
13: requiredEffort -= timeDiff
14: copy [copyIdx++] = ck[resIdx ]
15: ck[resIdx ] = newTime
16: else
17: ck[resIdx ] = max(ck[resIdx ], si)
18: ck[resIdx ] += requiredEffort
19: requiredEffort = 0
20: end if
21: end if
22: resIdx = resIdx + 1
23: end while
24: end if
25: end for

vidually (line 1). Value requiredEffort = ri,k · di
will be called Required Resource Effort. Activity
i can be added to the schedule if and only if each
resource is able to provide its Required Resource
Effort. In other words, variable requiredEffort has

to be decremented to zero (lines 2, 13, 19) for each
resource k.

It is performed by setting ri,k elements of ck
to the activity finish time si + di after the last
ck ≥ si + di. Until the variable requiredEffort is
zero, the shifted (right shift about ri,k) copy of
the original resource array ck (original values are
stored in copy auxiliary variable) is made. The
complexity of the algorithm is O(M ·Rmax).
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Figure 4: An example of the resource state update.

The algorithm is illustrated on an example in
Figure 4. There is one resource with maximal
capacity 7. Added activity i requires 3 resource
units (i.e. ri,k = 3) and its duration di is 3. The
activity was scheduled at si = 5. The solid line
corresponds to the original resource state ck =
{7, 7, 5, 5, 5, 5, 4} and the dotted line corresponds
to the updated resource c′k = {8, 8, 8, 7, 7, 5, 4}.
Activity required effort is depicted by a square
with dashed border. The positive numbers be-
tween solid and dotted lines are effort contribu-
tions when old start time (solid line) will be changed
to the new start time (dotted line). It should be
noticed, that the sum of all contributions is the
requiredEffort for a given activity.
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5.2. Time-indexed resources evaluation

5.2.1. Required Data Structures

In the time-indexed evaluation algorithm the
state of each resource k is stored in array τk. Each
element τk[t] corresponds to the number of avail-
able resource units that resource k is able to pro-
vide at time t ∈ {0, . . . ,UBCmax}, where UBCmax

is the upper bound of the makespan which can be
calculated as e.g.

∑
∀i∈V di. Each τk array has ini-

tialized all its elements to the Rk value before the
start of the evaluation. The state of all resources
will be denoted as T = {τ0, . . . , τM−1}.

5.2.2. The Earliest Resources Start Time

Algorithm 5 Algorithm calculates the earliest start time
of activity i.

Require: ri,k, di,R,UBCmax , T
Require: espreci − The precedence earliest start time.
Ensure: Calculate the earliest start time esi of activity i.
1: loadTime = 0;
2: for (t = espreci ; t < UBCmax AND loadTime < di;

++t) do
3: sufficientCapacity = true
4: for (k = 0; k < M − 1; ++k) do
5: if (τk[t] < ri,k) then
6: loadTime = 0
7: sufficientCapacity = false
8: end if
9: end for

10: if (sufficientCapacity == true) then
11: ++loadTime
12: end if
13: end for
14: return t− loadTime

The earliest start time of activity i can be cal-
culated using Algorithm 5. In the algorithm, the
loadTime variable corresponds with the number
of consecutive time units in which resources are
able to meet resource requirements of activity i. If
loadTime = di then a time interval into which ac-
tivity i can be scheduled was found. Having con-
sidered variable t as a finish time of a candidate
interval, the resulting interval is the first interval
[t − loadTime, t) ∩ N such that loadTime = di.
The final earliest start time is the lower endpoint
of the interval.

5.2.3. Update of the Resources Arrays

The state of resources is updated as is shown
in Algorithm 6. Having scheduled activity i at si
the τk arrays have to be updated in the [si, si +
di) interval. For each resource k, values in the
interval are decreased by ri,k units.

Algorithm 6 Updating of resources after adding activ-
ity i.

Require: di, T, ri,k
Require: si − Scheduled start time of activity i.
Ensure: It updates state of resources T .

for (k = 0; k < M − 1; ++k) do
for (t = si; t < si + di; ++t) do
τk[t] -= ri,k

end for
end for

5.3. Schedule Evaluation Procedure

The schedule evaluation procedure is shown
in Algorithm 7. Activities are read one by one
from the activities order W . For each activity wu,
all its predecessors are found and the precedence
relations are used to update activity wu’s prece-
dence earliest start time esprecwu

∈ N (see lines 3–6).
Then the resources restrictions are checked and
the start time is adjusted to swu = max(esprecwu

, esreswu
).

Project makespan Cmax is the finish time of activ-

Algorithm 7 Complete schedule evaluation.

Require: W,C, T,E
Ensure: Calculate Cmax and the activities’ start times.
1: Cmax = 0
2: for (u = 0; u < N ; ++u) do
3: esprecwu

= 0
4: for all ((j, wu) ∈ E) do
5: esprecwu

= max(esprecwu
, sj + dj)

6: end for
7: esreswu

= getEarliestResourcesTime(activity wu, es
prec
wu

)
8: swu = max(esprecwu

, esreswu
)

9: updateResources(activity wu, swu)
10: Mark current activity wu as scheduled.
11: Cmax = max(Cmax, swu

+ dwu
)

12: end for
13: return Cmax

ity N − 1. As only feasible moves are allowed, an
infeasibility test of the resulting schedules is not
required.
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5.4. Heuristic Selection of Resources Evaluation
Algorithms

Before the search is started on the GPU, the
probable faster resources evaluation algorithm is
heuristically selected by decision rules and the re-
quired resources arrays are allocated. To create
the rules, the JRip classifier from the Weka data-
mining tool [16] was learned using pre-calculated
attributes shown in Table 2.

Min. resource capacity: min
∀k∈{0,...,M−1}

Rk

Avg. resource capacity: 1
M

∑
∀k∈{0,...,M−1}

Rk

Max. resource capacity: max
∀k∈{0,...,M−1}

Rk

Avg. activity duration: 1
N

∑
∀i∈V

di

Avg. branch factor: |E|
N

Critical path length: see Section 2
Evaluation algorithm: CAPACITY/TIME

Table 2: Attributes used for learning.

Attribute “Evaluation algorithm” determines
the class, i.e. the time-indexed or capacity-indexed
evaluation algorithm, to which the classifier should
classify. As the final class dependends on the
hardware and instance parameters it is necessary
to determine the probable correct class by mea-
suring — each evaluation algorithm was selected
for a small number of iterations and the faster
one was selected as the desired one. The result-
ing rules heuristically decide which of the two
algorithms should be more effective for a given
instance. The rules can be transformed into a
decision tree as is shown in Figure 5. Once the
rules are created they can be applied to other sim-
ilar instances without any measuring overhead as
well. To show the effectivity and usefulness of
the heuristic the experiments were performed in
Section 7.

6. Parallel Tabu Search for CUDA platform

Our Parallel Tabu Search for GPU (PTSG) is
proposed with respect to the maximal degree of
parallelization since thousands of CUDA threads

Min. resource capacity ≥ 29

Avg. resource capacity ≥ 29
Avg. branch factor ≥ 2.1

Min. resource capacity ≥ 25
Max. resource capacity ≥ 42

TIME

TIME

TIME CAPACITY

true false

true false

true false

Figure 5: An example of the decision tree.

are required to be fully loaded to exploit the graph-
ics card power. In our approach, the paralleliza-
tion is carried out in two ways. The first one
is a parallelization performed within the scope of
a block, for example the parallel filter (see Sec-
tion 4.4), the parallel neighborhood evaluation,
and other parallel reductions. The second one is
a parallelization introduced by launching many
blocks on the multi-processors simultaneously.

The basic steps of the PTSG are described in
Figure 6. First of all, an instance is read and the
initial solutions are created in accordance with
Section 4.1. After that, every second solution
is improved by using the forward-backward im-
provement method. The method is iteratively
shaking a schedule from the left to the right in
order to make a resource profile straight as long
as the schedule is getting shorter. To get more de-
tails about the method, refer to the original article
by Li and Willis [17]. The created solutions are
copied into a working set, i.e. a set of shared so-
lutions. The best solution in the working set will
be called the global best solution and its make-
span will be denoted as C∗max. Furthermore, the
block’s Tabu Lists and Tabu Caches are initial-
ized and auxiliary arrays such as τk, and ck are
allocated. Having had prepared required data-
structures, the host is ready to launch the kernel.

In the GPU part, every block is an indepen-
dent Tabu Search instance communicating with

10



the others through the global memory (see Sec-
tion 6.1). At the beginning, every block reads

print the best GPU solution

stop condition?

co-operation
with other blocks

exchange data?

apply m∗ and add it to STL

evaluate the neighborhood
and select the best move m∗

generate Nreduced and filter
out all infeasible moves

read an initial solution

initialize and fill GPU structures

apply forward-backward improve-
ment method for every second solution

create initial solutions

load data to CPU

yes

yes

no

no

launch kernel

m
a
in

lo
o
p

CPU

GPU
(a block)

CPU

Figure 6: Parallel Tabu Search for the CUDA platform.

an initial solution from the working set. After
that, the search is started for a specified number
of iterations of the main loop. In the main loop,
the neighborhood is generated, evaluated and the
best move m∗ is selected, applied and added into
the STL. Move m∗ leads to the best criterion im-
provement or to the smallest criterion deteriora-
tion. This move cannot be in the STL with one
exception — the move leads to the global best so-
lution. At the end of an iteration the solutions are
exchanged through the working set if the commu-

nication conditions are satisfied (see Section 6.1).
The search is stopped if the specified number of
iterations was achieved or C∗max is equal to the
length of a critical path.

After the termination of the kernel, the best
global solution is copied from the global memory
to the host memory. The solution is printed and
all allocated data-structures are freed.

6.1. Co-operation Among CUDA Blocks and It-
erations Distribution

To assure the high quality solutions, the co-
operation among Tabu Search instances is accom-
plished by exchanging solutions through the work-
ing set F that has a fixed number of solutions
|F |. Each solution k ∈ F consists of the or-
der of activities W k, makespan Ck

max, the tabu
list and iterations counter IC k. The solutions ex-
change takes place if the last read solution has not
been improved for more than Iassigned iterations
or the block found an improvement of the last
read solution. The block writes the best found
solution to F if it improves the last read solution
and reads the next solution from F . Since the
working set could be accessed by many blocks at
the same time, it is necessary to use read/write
locks in order to maintain data integrity. The
co-operation among Tabu Search instances was
inspired by James et al. [9].

After the block has read a solution from the
working set, it is checked whether the solution
was not read more than Φmax times without being
improved. If it is the case, a small number Φsteps

of random feasible swaps is applied to randomize
the read solution — diversification. After that,
the read solution k ∈ F has assigned the number
of iterations Iassigned according to the following
equation.

Iassigned =

⌊ quantity︷ ︸︸ ︷
1

5

Iblock
Itotal

( quality︷ ︸︸ ︷
0.8e

−100
(

Ck
max

C∗max
−1

)

+

intactness︷ ︸︸ ︷
0.2e

−4
(

ICk

Iblock

))⌋
(8)
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Iblock is the number of iterations assigned to
each Tabu Search instance and Itotal is the total
number of iterations calculated as IblockB, where
B is the number of launched blocks. The part
denoted as quantity corresponds to the maximal
number of iterations which can be assigned to
read solution k. It is ensured, that at least 5 solu-
tions are read from the working set by each block.
The quality part takes into account the quality of
read solution k. It is obvious that the high quality
solutions are preferred to poor ones — intensifi-
cation. And the last part intactness guarantees
that each solution k ∈ F has been given some
iterations to prove the quality.

6.2. Memory Model

The placement of the data-structures is a cru-
cial task highly influencing the effectiveness of the
GPU program, therefore, each decision should be
considered thoroughly with respect to the access
pattern, required bandwidth and data visibility
(local or shared data). In the shared memory cur-
rent block order Wblock, durations of activities D,
and auxiliary arrays are stored. Although D is
a read-only array which could be located in the
constants memory, it was moved to the shared
memory due to the higher bandwidth. The tex-
ture memory is used for storing read-only data as
ri,k values and predecessors of the activities. In
the local memory, private data-structures of each
thread are located, i.e. resources arrays ck, τk,
and start times of activities S. The long latency
of the memory is compensated by using a par-
tial coalescing since the arrays are often accessed
at the same relative indices as the majority of
threads evaluate similar schedules (Wblock + swap
move). Finally, the global memory is employed to
store the working set F .

7. Experimental Results

Experiments were performed on the AMD Phe-
nom(tm) II X4 945 server (4 cores, 8 GB mem-
ory) equipped with a mid-range Nvidia Geforce
GTX 650 Ti (1 GB, 768 cuda cores, 4 multipro-
cessors) graphics card. The testing environment
was the Windows Server 2008 with an installed

CUDA toolkit (version 5.0.35) and Microsoft Vi-
sual Studio 2010.

The sequential CPU version of the algorithm
corresponds to one Tabu Search instance with the
exception that solutions are not interchanged (|F | =
1 and B = 1). Instead of using the selection
heuristic (see Section 5.4) the faster evaluation
algorithm was selected dynamically by periodic
measuring every 1000 iterations. The parallel CPU
version differs from the sequential version in the
neighborhood evaluation. The feasible schedules
in the neighborhood are divided among CPU threads
to reduce evaluation time. Both the CPU and
GPU versions were fully optimized with respect
to memory access patterns and hardware architec-
ture (cache sizes). To fully saturate the GPU the
maximal number of available registers per CUDA
thread was limited to 32 due to possibility to
launch 4 blocks on a multiprocessor at once (alto-
gether 16 blocks on the GPU), where each block
has 512 CUDA threads.

J30 J60 J90 J120
N 30+2 60+2 90+2 120+2
M 4

|dataSet| 480 480 480 600
δ 30 60 60 60

|tabuList| 60 250 600 800
Φsteps 20
Φmax 3
|F | 16

Table 3: PTSG parameters and data-sets information.

To evaluate the performance and the quality of
resulting solutions the benchmark using the well-
known J30, J60, J90 and J120 data-sets was per-
formed. The number of instances in a data-set
will be denoted as |dataSet|. The selected PTSG
parameters and data-sets information are stated
in Table 3.

The results for the J30 data-set are shown in
Tables 4 and 6. The CPM dev and OPT dev val-
ues are the average percentage distance from the
critical path length and the average percentage
distance from the optimal makespan respectively.
Best sol states the number of optimal solutions
which have been proved to be optimal according
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CPU GPU
Itotal CPM dev OPT dev Best sol CPM dev OPT dev Best sol
10000 13.43 0.04 471 13.41 0.02 473
20000 – – – 13.38 0.01 478

Table 4: Quality of solutions — J30.

CPU GPU
Itotal CPM dev UB dev Best sol CPM dev UB dev Best sol
10000 11.13 0.51 380 11.22 0.57 375
20000 – – – 11.08 0.47 388
30000 – – – 10.99 0.41 394
50000 – – – 10.91 0.36 394

Table 5: Quality of solutions — J60.

Itotal Comp time Sched sec Speedup
CPU seq. 10000 1255 126400 1.00
CPU par. 10000 343 478300 3.65
GPU 10000 176 985543 7.12
GPU 20000 306 1120900 –

Table 6: Performance comparison — J30.

Itotal Comp time Sched sec Speedup
CPU seq. 10000 7094 59700 1.00
CPU par. 10000 1732 248700 4.10
GPU 10000 257 1733800 27.60
GPU 20000 485 1818600 –
GPU 30000 709 1861900 –
GPU 50000 1164 1879400 –

Table 7: Performance comparison — J60.

CPU GPU
Itotal CPM dev UB dev Best sol CPM dev UB dev Best sol
10000 10.81 0.92 367 11.04 1.09 365
20000 – – – 10.82 0.93 371
30000 – – – 10.73 0.86 373
50000 – – – 10.56 0.74 375

Table 8: Quality of solutions — J90.

CPU GPU
Itotal CPM dev UB dev Best sol CPM dev UB dev Best sol
10000 33.41 2.70 215 34.67 3.50 194
20000 – – – 34.04 3.11 208
30000 – – – 33.66 2.85 213
50000 – – – 33.54 2.76 222

Table 9: Quality of solutions — J120.

Itotal Comp time Sched sec Speedup
CPU seq. 10000 20294 36000 1.00
CPU par. 10000 5001 148300 4.06
GPU 10000 475 1599600 42.70
GPU 20000 923 1632000 –
GPU 30000 1348 1660700 –
GPU 50000 2221 1674000 –

Table 10: Performance comparison — J90.

Itotal Comp time Sched sec Speedup
CPU seq. 10000 148170 25700 1.00
CPU par. 10000 35812 107200 4.14
GPU 10000 2938 1340400 50.40
GPU 20000 5742 1351900 –
GPU 30000 8513 1353300 –
GPU 50000 14160 1347800 –

Table 11: Performance comparison — J120.
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CPM dev
Algorithm and reference J30 J60 J90 J120

Genetic Algorithm - Gonçalves et al. [18] 13.38 10.49 - 30.08
This work - Nvidia Geforce GTX 650 Ti 13.38 10.91 10.56 33.54
This work - AMD Phenom(tm) II X4 945 13.43 11.13 10.81 33.41
CARA algorithm - Valls et al. [19] 13.46 11.45 11.12 34.53
Ant Colony Optimization - Zhou et al. [20] - 11.42 - 35.11
Tabu Search - Artigues et al. [21] - 12.05 - 36.16
Simulated Annealing - Bouleimen and Lecocq [22] - 11.90 - 37.68

Table 12: Comparison with other heuristics.

to the results in the PSPLIB homepage — http:

//www.om-db.wi.tum.de/psplib/. Comp time
is the total run-time stated in seconds and the
Sched sec is the number of evaluated schedules
per second. It is obvious that the GPU version
is able to achieve a similar quality of solutions in
terms of CPM dev as the CPU version. Having
had Itotal doubled, the GPU version found 478
optimal solutions from the 480 solutions in the
data-set. From the performance point of view Ta-
ble 6 reveals a significant improvement in compu-
tational time if parallelization is performed. For
example, the parallel CPU version is 3.65 times
faster than the sequential CPU version and the
GPU is almost 2 times faster than the parallel
CPU version. If Itotal is increased to 20000 the
GPU is still slightly faster and achieves better
quality solutions.

For the J60 data-set the results are shown in
Tables 5 and 7, where UB dev is the average per-
centage distance from the best currently known
upper bounds. The CPU version gives slightly
better solutions for 10000 iterations, but on the
other hand if the GPU is given 20000 iterations
the quality of solutions is comparable with the
CPU version and the GPU is still 3.56 times faster
than the parallel CPU version. The lower quality
of GPU solutions for the same Itotal is probably
caused by wasting work when many Parallel Tabu
Search instances have read the same solution from
the working set and only one writes the best im-
provement. It can be noted, that the parallel CPU
version is more than 4 times faster than the se-
quential one. The reason of that is either better
cache utilization or the AMD True Core Scalabil-
ity technology.

The results in Tables 8 and 10 for the J90 data-
set show that the GPU is better utilized for big-
ger instances and the GPU is more than 10 times
faster than the parallel CPU version for the same
number of iterations. The same quality of solu-
tions is achieved 5.4 times faster on the GPU.

Results for the J120 data-set are shown in Ta-
bles 9 and 11. It can be noted that the quality
of GPU solutions is substantially lower for 10000
iterations. The GPU requires about 50000 iter-
ations to achieve the quality of the CPU solu-
tions. On the other hand, the GPU is able to
compete with the CPU since 50000 iterations is
performed 2.5 times faster than 10000 iterations
for the parallel CPU version. The GPU evalu-
ates more than one million schedules per second,
whereas the CPU evaluates one hundred thou-
sand.

The quality of the solutions is compared with
the existing solutions for the RCPSP in Table 12.
Our proposed PTSG outperforms other Tabu Search
implementations with respect to the quality of
solutions. For example, Artigues’ Tabu Search
[21] has been given at least 11000 iterations for
the J120 data-set and achieves 36.16 % CPM dev.
Having had 10000 iterations the proposed PTSG
reaches 33.41 % and 34.67 % for the CPU and
GPU respectively. In addition, the proposed PTSG
can be just as good as other heuristic approaches
like Ant Colony Optimization and Simulated An-
nealing. On the other hand, the state of the art
random-key genetic algorithms give even better
solutions than the PTSG.

From the performance point of view it is diffi-
cult to compare since the different algorithms and
hardware architectures were used for experiments.
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For example, Artigues’s Tabu Search requires 67 s
per J120 instance on average. The testing config-
uration was not stated. The PTSG requires 4.9 s
(10000 iterations) on the mid-range GPU with the
substantially higher quality of solutions. The ge-
netic algorithm by Gonçalves et al. [18] takes
180 s per J120 instance on average on the Intel
Core 2 Duo 2.4 GHz processor.

7.1. Evaluation of the Selection Heuristic

The heuristic (see Section 5.4) is using the
JRip classifier from the Weka data mining tool [16]
to decide which resources evaluation algorithm
should be faster. To get data for the learning,
the Progen generator [23] was used to generate
4 data-sets with 30, 60, 90, and 120 activities
respectively. The parameters of the generated
data-sets were set the same as for J30, J60, J90,
and J120 data-sets with the exception that dif-
ferent random seeds were used. For each gen-
erated data-set the classifier was learned using
weka.classifiers.rules.JRip -F 3 -N 2.0

-O 10 -S 0 command and tested on the corre-
sponding standard data-set with the same num-
ber of activities. The achieved results in Table 13
reveal that the accuracy is decreasing with the
number of activities. The reason for this behavior
can be the smaller ratio of the resources evalua-
tion time to the total run-time.

J30 J60 J90 J120
72.3 % 85.8 % 91.9 % 96.3 %

Table 13: Accuracy of the Selection Heuristic — the per-
centage of correctly classified.

To prove that the proposed heuristic also im-
proves the PTSG performance the run-time was
measured for each evaluation algorithm and nor-
malized with respect to the reference run-time, i.e.
the run-time achieved by using the heuristic. The
results in Table 14 show that the heuristic accel-
erates the PTSG up to 2 times and its effect is de-
creasing as the evaluation of schedules becomes a
less time-consuming part of the PTSG. The time-
indexed algorithm seems to be faster than the
capacity-indexed algorithm on the standard data-
sets. On the other hand, the achieved speedup is

dependent on the characteristics of instances and
it cannot be generally determined which evalu-
ation algorithm is faster. The capacity-indexed
evaluation algorithm is usually faster for long sched-
ules with low resource capacities in contrast to the
time-indexed algorithm which usually performs
better for short schedules with high resource ca-
pacities.

J30 J60 J90 J120
time-indexed 1.02 1.10 1.09 1.23
capacity-indexed 1.27 1.34 1.96 1.73
heuristic 1 1 1 1

Table 14: Effect of the heuristic on the PTSG performance.

7.2. Demonstration of Convergence

To demonstrate that co-operation among blocks
is beneficial the graph of convergency (in Figure 7)
was created for j1206_4.sm instance. It can be
seen that the quality of solutions is getting better
with the increasing number of launched blocks,
therefore, it is obvious that co-operation leads to
the better solutions. To ensure the smoothness of

Figure 7: Graph of convergence for the GPU version.

the graph each point was averaged over 50 mea-
surements.

8. Conclusion

The first known GPU algorithm dealing with
the Resource Constrained Project Scheduling Prob-
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lem has been proposed. The performed experi-
ments on the standard benchmark instances re-
veal the merits of the proposed solution. The
achieved quality of solutions is very good and out-
performs the other Tabu Search implementations
to the best of our knowledge. In addition to this,
the GPU algorithm design has proved to be very
effective since the mid-range GPU was substan-
tially faster than the optimized parallel CPU ver-
sion. The Nvidia Geforce GTX 650 Ti GPU is
able to evaluate more than one million schedules
per second for the J120 data-set on average. The
achieved performance boost could not be reached
without effective structures and auxiliary algo-
rithms. The Simple Tabu List implementation is
adapted to the features of the GPU, the capacity-
indexed evaluation algorithm was proposed and
many parallel reductions were applied. In addi-
tion to this, the homogeneous model reduces the
required communication bandwidth between the
CPU and the GPU.

In spite of the fact that GPUs are not primar-
ily designed for solving combinatorial problems
the rising interest about these solutions can be
seen [24]. The reason for this is the high compu-
tational power of graphics cards and the relatively
user friendly programming API that the CUDA
offers. So it can be expected that GPUs will be
more and more used in operations research in the
future.
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