
1

Efficient scatter-based kernel superposition on GPU

Joakim da Silvaa,b,*, Richard Ansorgea, Rajesh Jenac

a Cavendish Laboratory, University of Cambridge, UK

b Department of Oncology, University of Cambridge, UK

c Cambridge University Hospitals NHS Foundation Trust, UK

*Corresponding author:

jd491@cam.ac.uk

+44 1223 337010

BSS, Cavendish Laboratory

19 J J Thomson Avenue

Cambridge,

CB3 0HE

2

Abstract

Kernel superposition, where an image is convolved with a spatially varying kernel, is commonly used

in optics, astronomy, medical imaging and radiotherapy. This operation is computationally expensive

and generally cannot benefit from the mathematical simplifications available for true convolutions.

We systematically evaluated the performance of a number of implementations of a 2D Gaussian

kernel superposition on several graphics processing units of two recent architectures. The 2D

Gaussian kernel was used because of its importance in real-life applications and representativeness of

expensive-to-evaluate, separable kernels. The implementations were based both on the gather

approach found in the literature and on the scatter approach presented here. Our results show that,

over a range of kernel sizes, the scatter approach delivers speedups of 2.1–14.5 or 1.3–4.9 times,

depending on the architecture. These numbers were further improved to 4.8–28.5 and 3.7–16.8 times,

respectively, when only “exact” implementations were compared. Speedups similar to those presented

are expected for other separable kernels and, we argue, will also remain applicable for problems of

higher dimensionality.

Keywords

kernel superposition;

variable kernel convolution;

spatially varying;

point spread function;

scatter;

GPU;

3

Introduction

Kernel superposition vs. convolution

Image filtering finds use in a plethora of image processing, applications and can be used for example

to suppress noise, enhance detail, and detect edges. Often, the filtering process consists of a

convolution of the image data with a kernel, sometimes referred to as a filter or mask. In a true

convolution, the kernel does not vary over the image and is a function only of the vector difference

between the input and output coordinates (Eq. 1a). In the discrete case, this translates to element-wise

multiplication and summation of a constant kernel matrix with the corresponding neighbourhood in

the input (Eq. 1b). In some applications, however, the kernel is also dependent on its absolute spatial

position in either input or output space (Eq. 2a and 2b, respectively). The resulting operation, referred

to as kernel superposition (KS), variable kernel convolution, or convolution using a spatially-varying

point spread function, appears in many different fields. Examples include radiotherapy dose

calculation, both using photons [1] and charged particles [2], ultrasound imaging [3], computed

tomography [4,5], positron emission tomography [6], photography [7,8], astronomy [9,10], and

microscopy [11].

(� ∗ �)(�) = ∫ ⋯∞
−∞ ∫ � (�′)�(� − �′)d�′∞

−∞ Eq. 1a

�(�) = ∑ ⋯�′�
∑ �(�′)�(� − �′)�′1

= ∑ ⋯�′�
∑ ��′1,⋯,�′��′1

��1−�′1,⋯,��−�′� Eq. 1b

Direct evaluation of an n-dimensional convolution between an image and a kernel of side lengths M

and N, respectively, requires a total number of operations proportional to MnNn. Several techniques

can be employed to make the evaluation more efficient, especially when working with large kernels or

images of higher dimensionality. These include carrying out the calculation in Fourier space; dividing

an n-dimensional convolution into n 1D convolutions (for spatially separable kernels); and

approximating more complicated kernels by repeated convolutions with simpler ones. GPU

implementations employing these techniques, as well as direct evaluation, have all been described in

detail [12–15].

4

�in(�, �′) = �in(� − �′, �′) Eq. 2a

�out(�, �′) = �out(� − �′, �) Eq. 2b

Some of the techniques mentioned can be applied to special cases of KSs, such as fully spatially

separable problems (Eq. 3a) [16]; regionally constant kernels or linear combinations thereof [17];

spatially varying kernels that can be made invariant by transforming the input image [18]; and

approximate solutions for slowly varying Gaussian kernels [19]. However, this is not true for the

general case, which thus requires direct evaluation. Further, good performance of direct evaluation

techniques for true convolution on GPU rely on keeping the kernel values in memory and

broadcasting one value at a time to multiple threads [15], which has no equivalent for KS.

�FS(� − �′, �′) = %FS(&1 − &′1, &′1)%FS(&2 − &′2, &′2) ⋯ %FS(&) − &′), &′)) Eq. 3a

�PS(� − �′, �′) = %PS(&1 − &′1, �′)%PS(&2 − &′2, �′) ⋯ %PS(&) − &′), �′) Eq. 3b

Gather, scatter and system matrix approaches

The KS operation is in itself inherently parallel, since each output value can be calculated

independently given the input image. In a parallel implementation, it is natural to assign threads either

to elements in the input or output image. The former is referred to as the scatter approach, where each

input element “scatters” results to its neighbouring elements in the output, whereas the latter is

referred to as the gather approach, where each output “gathers” results from neighbouring elements in

the input (Figure 1). Conventional wisdom from GPU programming, and in particular the true

convolution case, states that the gather approach is preferable, since each thread can accumulate its

output locally and avoid having to resolve write conflicts through costly synchronisation or atomic

operations [20]. However, when the kernel is dependent on its position in the input image (Eq. 2a),

which seems to be the case in most real-world applications, the scatter approach has the advantage

that the kernel is fixed at the thread level. If the kernel is further spatially separable with respect to the

difference between input and output coordinates according to Eq. 3b, this means that each thread only

needs to calculate its 1D kernel values once and keep them locally. Therefore, the evaluation of the

kernel at each of the Nn neighbours can be replaced by a multiplication of n pre-calculated 1D kernel

5

values. Such separability is common in image filters, perhaps most notably in the Gaussian kernel. (If

the kernel is of the form of Eq. 2b and separable in the first argument, the problem becomes trivial;

the gather approach is used to avoid any synchronisation issues and each thread pre-calculates its 1D

kernel values as described.)

The gather and scatter approaches both perform the KS in a single step. Alternatively, the kernel

evaluation and the multiplication can be divided into two separate steps, by first calculating the NnMn

non-zero kernel values and storing them in a sparse system matrix. The KS is then performed by

multiplying the system matrix with the vector containing the input image. If the same matrix can be

used for multiple KSs, this effectively replaces each kernel evaluation with a load operation of the

corresponding value from memory. If, however, the kernel parameters are different for each image,

the benefit of using this technique is lost; it involves the same number of kernel evaluations and

multiplications but, in addition, requires each of the NnMn kernel values to be stored and subsequently

retrieved from memory. Further, for higher-dimensional problems, the amount of memory required

for this approach may become a concern on GPUs.

Context of the presented work

The work presented here is intended as a systematic investigation of efficient, multi-dimensional KS

implementation on GPU, similar to what has previously been done for field-programmable gate arrays

[21]. Excluding early GPU work on now outdated architectures, e.g. by Wang et al. [22], four related

studies have been identified in the literature. Two of these present GPU implementations of 1D KSs,

as a part of image reconstruction workflows for 3D ultrasound imaging and positron emission

tomography, respectively. Cui et al. started with a high-dimensional model but used symmetry to

reduce the kernel to a 1D asymmetric Gaussian, which makes the evaluation technique not applicable

to our case [23]. Gomersall et al. used the system matrix approach, which may be applicable also for

higher-dimensional problems, but due to the lack of advantages for kernels that change with each

image this technique will not be considered further [24]. The remaining two articles focus on 2D KS

used to aid object discovery in astronomical images and in proton therapy dose calculation,

respectively. For their GPU implementations, both these studies, by Hartung et al. [25] and Fujimoto

6

et al. [26], use the gather approach as recommended for true convolutions. Here we present several

GPU implementations of the KS operation based on the gather approach and compare their

performance to new scatter-based implementations on two common GPU architectures for a wide

range of parameters. The study was carried out in the context of fast dose calculation for proton

therapy [27], and hence the focus is on 2D Gaussian kernels. However, the results should be

applicable also to other problems separable according to Eq. 3b and those of higher dimensionality.

Methods

General considerations

The presented implementations are written in CUDA, a proprietary extension to C/C++ used to

program GPUs from Nvidia Corporation (Santa Clara, CA, USA). Although the discussion should be

applicable to modern GPUs from any manufacturer, the terminology used throughout the paper will

be that of CUDA. In CUDA parlance, a function that is executed on the GPU is known as a kernel

function (KF), which is not to be confused with the mathematical kernels or filters used in

convolution or superposition operations. A list of other terms used can be found in the Glossary

section.

Since the Gaussian function has infinite support, a cut-off, beyond which kernel contributions are

ignored, must be chosen. The cut-off is normally given as a multiple of the standard deviation, σ. Each

value of σ, and hence each input pixel, therefore has an associated minimum necessary kernel radius,

r, given as an integral number of pixels. Due to the lock-step execution, each execution time of a warp

will be limited by the largest value of r among its threads, rwarp, which can thus be used as the cut-off

for all threads within the warp without loss of performance. Here we choose to let all threads within a

block (which could, in principle, be limited to one warp) use their largest value of r, rmax, as a

common cut-off (giving N=2rmax+1 for each block). In doing so, we can implement rmax as a template

parameter, which allows us to benefit from loop unrolling and compile-time evaluation of much of the

expensive integer arithmetic. Generally, blocks of different rmax can be present in the same image,

meaning several KFs have to be launched. For the case of many and/or large images, this can be done

sequentially without loss of performance. For single, small images, blocks with rmax within specified

7

ranges can be batched together to increase the GPU usage at the expense of some redundant

calculation or, on recent GPUs, KFs corresponding to different values of rmax could be launched

concurrently.

The presented implementations assume that the input, σ-map, and output reside in global memory and

are arranged to allow for coalesced memory operations. We use bx and by to denote the width and

height, respectively, of a thread block; tx and ty similarly refer to the width and height of a tile. It is

assumed throughout that tx=bx=32, which equals the warp size on the considered GPU architectures,

and that ty is an integer multiple of by. If, for example, ty=2by, each thread in a thread block handles

two pixels of the input (scatter) or output (gather). Wherever a call to __syncthreads() was used, care

was taken to ensure that all threads of a block were guaranteed to reach this statement.

Gather implementations

The backbone of the gather approach is given in the left column of Algorithm 1. The first thing to

note with this approach is that for each of the N2 elements in its neighbourhood, a thread must read a

new pixel intensity and σ, and then calculate its contribution (Figure 1). A simple KF would read

these values directly from consecutive (but not necessarily aligned with a cache-line boundary) global

memory. A standard technique for improving performance in similar cases, where adjacent threads

repeatedly access nearby memory locations, is using shared memory as an explicitly managed cache.

All values required by the thread block are then read from global memory only once, with subsequent

calculations relying on low-latency, high-bandwidth shared memory. The amount of shared memory

is limited, however, and using large amounts might limit the occupancy, and thereby the opportunity

for latency hiding elsewhere in the KF. Further, global memory is cached (in L1 for Fermi and in L2

for Kepler) which, together with the potential of higher occupancy, might limit the benefit of using

shared memory. Therefore, all the gather approach KFs were implemented in three variants, using

shared memory arrays for neither, one, or both of the input intensity and σ. The size, in number of

elements, of each array is given by (tx+2rmax)*(ty+2rmax), equivalent to a tile with an added halo of

width rmax (Figure 1). After populating the shared memory, the threads within a block must be

8

synchronised through a call to __syncthreads() in order to ensure that the contribution from each

thread is seen by all others before continuing the calculation.

The second thing to note is that using the gather approach, each thread has to perform 2N2 evaluations

of the separable kernel (or nNn for n dimensions). In the case of a Gaussian kernel, each evaluation is

given by

�Gauss(., /) = 1
2 [erf (. + 0.5

√2/) − erf (. − 0.5
√2/)] Eq. 4

where d is the distance in pixels along the current axis between the input and output pixels. Evaluating

the error function four times for each neighbour becomes computationally expensive and, as pointed

out by Fujimoto et al. [26], can be avoided by interpolating between pre-calculated kernel values.

Two approaches for this were investigated. In the 1D approach, erf(x/(sqrt(2)*σ)) was pre-calculated

for a range of values of x and stored as a 1D array. In the 2D approach, Eq. 4 was evaluated for

integer values of d and for a range of σ, and stored as a 2D array in memory. To evaluate Eq. 4, the

1D approach requires two linear interpolations whereas the 2D approach requires one (since d is an

integer, the interpolation is 1D in both cases). The accuracy and performance of either approach will

be dependent on the sampling of the pre-calculated values. In both cases the functions were sampled

as sparsely as possible whilst keeping the absolute mean of the relative error of Eq. 4 below 1%, when

taken over all pixels within the cut-off for all values of σ in the considered range. The pre-calculated

values can be kept in global memory, be duplicated in shared memory for each block, or be bound to

texture memory. In the former two cases, linear interpolation must be carried out explicitly in the KF,

whereas in the latter case we can make use of the texture pipeline’s built-in hardware interpolation.

Because shared memory was too small to fit all values for the 2D approach, we are left with six

possible versions of the gather implementation: the naïve version explicitly evaluating the error

function; versions of the 1D approach using global, shared, and texture memory; and versions of the

2D approach using global and texture memory. Multiplied by the three variants of each, this gives a

total of eighteen implementations based on the gather approach.

9

Scatter implementations

The backbone of a scatter-based approach is shown in the right column of Algorithm 1. Since the

intensity and σ remain constant as a thread loops over x and y, these have to be read only once from

global memory, after which they are kept in registers (Figure 1). Based on the value of σ, each thread

calculates its rmax+1 (or 2rmax+1 for non-even kernels) values of the kernel which are stored in an

array. Since the array length is known at compile-time and the indexing is constant, the compiler

decides whether they are stored in registers or local memory.

The difficulty with implementing this approach lies in finding an efficient way of avoiding race

conditions for the write operation in the innermost loop of Algorithm 1 (line 11). As a naïve approach

we can make use of atomics to have each thread atomically add its result directly to the output in

global memory. However, the degree of serialisation of the atomic operation due to overlap between

threads of different warps is expected to be high. Better performance may therefore be achieved if the

accumulation for each block is done locally in shared memory. As in the gather approach, the size of

shared memory required by a single block is (tx+2rmax)*(ty+2rmax), elements (Figure 1), although here

one array is sufficient. Once a block finishes its calculations, the total result is transferred from shared

to global memory, again using atomic addition to avoid race conditions in the overlapping halos of

different blocks.

Five versions of a scatter-based KF were developed. In the global atomics version, each thread adds

its partial result directly to global memory as discussed above. In the shared atomics version, each

thread atomically adds its partial result to the array of shared memory in the innermost loop of

Algorithm 1 (line 11). This is similar to the global atomics version, but is expected to achieve better

performance for two reasons: lower latency of shared memory and less serialisation due to fewer write

conflicts. In the explicit sync version, the threads within a block are synchronised by calling

__syncthreads() after the write operation (between lines 11 and 12) in the innermost loop of

Algorithm 1. This ensures synchronised execution of the block which, since for each combination of

the loop variables x and y each thread within a block will write to its own unique memory location,

avoids race conditions. The call to __syncthreads() further ensures that all write operations made to

10

shared memory are visible to all threads of the block before continuing execution. In the threadfence

version, the call to __syncthreads() above is replaced with a call to __threadfence_block().

__threadfence_block() ensures that all memory operations carried out by a thread prior to the call are

visible to all other threads in the same block before the thread is allowed to continue execution. Since

we have assumed that bx= tx is equal to the warp size, for a given value of the loop variable y, each

warp writes to its own unique row of the shared memory array (Figure 1). Hence, for a given

combination of x and y, we can be sure to avoid race conditions as long as y remains the same for all

warps of a block. This can be ensured by inserting a call to __syncthreads() after the end statement of

the innermost loop (between lines 12 and 13) of Algorithm 1. In the volatile version, we remove the

call to __threadfence_block() introduced in the previous version, and instead declare the shared

memory used to hold the result volatile. This ensures that accesses to the memory in question are

compiled to explicit instructions rather than optimised to registers (in which case they are not visible

to other threads). In the innermost loop of Algorithm 1, the threads of a warp will therefore explicitly

read, add their contribution, and write back to adjacent positions in the same row of shared memory,

before each shifting one step and repeating the procedure. Since only one warp writes to a specific

row of the shared memory for a given value of y, keeping the call to __syncthreads() from the

previous version is enough to avoid race conditions.

Benchmarking

Benchmarking was carried out on five Nvidia GPUs of the Fermi and Kepler architectures listed in

Table 1. Detailed analysis was carried out for the highest-performance card of both architectures, the

Geforce GTX 580 and GTX 680. All systems hosting the GPUs were running 64-bit Microsoft

Windows environments and the KFs were compiled for each GPU type using CUDA 6.0.

All 23 implementations described above were templated with rmax as the argument. The KFs were

compiled and benchmarked for rmax ranging from 1 to 32, corresponding to kernels of odd side length

N between 3 and 65. (For variants where the shared memory requirement dictated a largest possible

value of rmax smaller than 32, this number replaced 32 as the upper limit.) All calculations were

carried out using single precision floating point operations and all implementations were compiled

11

with the flag -use_fast_math. A #pragma unroll statement was inserted just before the innermost loop

of all kernels (between lines 2 and 3 and lines 8 and 9, respectively, in Algorithm 1) since this was

seen to increase the performance of some KFs without negatively impacting that of others. The

CUDA cache configuration was set to prefer shared memory (48KiB shared memory, 16KiB L1

cache) for all kernels with the exception of the six gather variants that do not hold input intensity or σ

in shared memory and the naïve scatter implementation, for which the configuration was instead set to

prefer L1 cache (16KiB shared memory, 48KiB L1 cache).

A 512x512 pixel image of evenly distributed pseudorandom floating point values on the interval [0, 1)

was used as input intensities for the test case. The KFs corresponding to each rmax were tested

individually using σ-maps where the values of σ were chosen pseudorandomly from the interval [0,

rmax/nσ), where nσ is the kernel cut-off expressed as a multiple of σ. nσ =3 was chosen for the

benchmarking. (The value of nσ for a fixed rmax should not alter the performance of the KFs except

indirectly by slightly changing the sampling in the 1D and 2D gather approaches.) The performance

was measured by executing each combination of kernel implementation and rmax for each of the five

feasible combinations of byϵ{8, 16} and tyϵ{8, 16, 32}. The KF timings were taken as the average

execution time for ten identical KF executions, resulting in a grand total of 35,250 executions per

GPU. Since the aim of this study is to compare GPU implementations, the reported execution times

do not include memory transfers. Where not stated otherwise, the results are those obtained for the

best-performing combination of by and ty for each KF and each value of rmax. Similarly, for the gather

implementations, for each value of rmax the reported result corresponds to the shared memory variant

that showed the best performance. In the final analysis, the different implementations were grouped

together according to similarity, and within each group, for each value of rmax, the best result was

selected. The following five groups were considered: “exact” gather (identical to the naïve gather

version); 1D interpolation gather; 2D interpolation gather; scatter not relying on warp-synchronous

execution (i.e. the naïve, shared atomics and explicit sync versions); and scatter relying on warp-

synchronous execution.

12

A single-threaded CPU implementation written in C++ was used to verify the output from the KFs.

Since it does not suffer from race conditions, the scatter approach, as outlined in Algorithm 1 (right),

was used. (Comparison confirmed that the scatter implementation performed considerably better on

the CPU.) Although the CPU implementation was written with performance in mind, templating for

rmax to allow for compile-time optimisations and ensuring regular memory access to reduce cache

misses, it could likely be further improved by employing more advanced optimisation techniques [28].

Execution times are therefore provided only to give a rough idea of the performance of a single CPU

core. The CPU implementation was compiled using the Microsoft Visual C++ 2013 compiler and

executed on an Intel i7-3770K 3.5 GHz CPU.

Results

Figure 2 shows the execution times for the gather implementations on the Geforce GTX 580 and GTX

680. On the GTX 580, both 2D implementations showed better performance than the naïve

implementation with the one relying on global memory being the fastest. Over the range of rmax, the

best-performing 2D approach was 1.5–2.2 times faster than the naïve implementation. Surprisingly,

all 1D implementations showed similar performance to the naïve implementation. On the GTX 680,

using texture memory resulted in best performance both for the 1D and the 2D approaches, with all

others showing similar or worse performance than the naïve approach. The fastest 1D and 2D

implementations were, respectively, 1.2–2.2 and 1.9–3.9 times faster than the naïve implementation.

The results of the other GPUs closely reproduced those of the corresponding architecture in Figure 2,

apart from a vertical shift according to their base performance.

The execution times for the scatter implementations are shown in Figure 3. On the GTX 580, the

global atomics version resulted in the slowest execution for all rmax, whereas the volatile version

exhibited best performance, executing 3.7–33.0 times faster than the former. The threadfence and the

explicit sync versions performed very similarly and were second fastest for rmax of 9 and smaller. For

larger values of rmax, the shared atomics version was the second fastest. On the GTX 680, the general

trend was the same: the global atomics version was slowest (or very close to slowest) for all values of

rmax and the volatile version was fastest with a speedup of between 2.1 and 7.7 times. The

13

performance of the explicit sync and threadfence versions was again very similar, with the latter being

the second fastest version for values of rmax of 17 and smaller. Above this number the shared atomics

version performed second best. Again, the results seen in Figure 3 were mimicked by the other GPUs

of the corresponding architectures, as exemplified for the volatile version in Figure 4.

The naïve gather implementation and all scatter implementations accurately reproduced the results

obtained using the CPU implementation. The different 1D and 2D gather approaches showed larger

errors which were dependent on the combination of intensity and σ, with the largest relative errors

seen for points receiving contributions from fewer neighbours. Since the combined error is input-

dependent, and therefore hard to characterise quantitatively, the maximum relative error evaluating

Eq. 4 over the ranges of d and σ was measured. Using previously mentioned sampling, the maxima

were 5.7% and 15.3% respectively for the 1D and 2D approaches.

Figure 5 shows the preferred configurations for by and ty for all implementations and the preferred

number of shared memory arrays for the gather implementations. The gather implementations tended

to perform best when by=ty, i.e. when each thread processes only one output, but no global preference

for either by=ty=8 or by=ty=16 was seen. In terms of shared memory usage, the trend was to prefer

using fewer arrays for smaller values of rmax and none for larger values, with implementations using

texture memory generally using fewer arrays. On the GTX 580, the different scatter implementations

preferred different configurations of by and ty: global atomics by=8, ty=32; shared atomics by=16,

ty=32; explicit sync and threadfence by=8, ty=8; and volatile by=8, ty=16. Curiously, on the GTX 680

the only trend for the scatter implementations was a preference for by=16, ty=16, the only

configuration not preferred by the GTX 580.

Figure 6 shows the best performance for different groups of implementations on the Geforce GTX

580 and GTX 680, with the “bumps” seen in Figure 3 flattened out as discussed in the next section.

For both GPUs, the scatter implementations relying on warp-synchronous execution were fastest for

all values of rmax. Further, both groups of scatter implementations were faster than any of the gather

approach counterparts, except for the two largest values of rmax on the Geforce GTX 680. The range of

14

speedups over the values of rmax when comparing the different groups are summarised in Table 2.

Table 3 lists the ranges of relative execution times for the different groups compared to the fastest

scatter implementation for all benchmarked GPUs. For reference, the single-threaded CPU

implementation running on the i7-3770K processor is also included in this table.

Discussion

The scatter-based approaches of the Gaussian KS implementation achieved considerably better

performance than the gather-based ones. The fastest scatter implementation was 2.1–14.5 and 1.3–4.9

times faster than the fastest gather implementation, respectively, on the Geforce GTX 580 and GTX

680 (Table 2). For both GPUs, the lower end of these ranges corresponded to smaller kernel sizes,

whereas for values of rmax larger than around five, the speedups were all in the upper halves of the

ranges (Figure 6). This was true for all GPUs listed in Table 3 (but not when comparing with the

CPU).

According to the CUDA Visual Profiler tool, all implementations in the best-performing configuration

were bound by either memory bandwidth or latency, except for the naïve gather approach which was

compute bound. Many of the presented results are thus explained simply by the number and type of

memory operations used, e.g. the 2D gather versions requiring one linear interpolation were faster

than the corresponding 1D versions requiring two; the implementations relying on L1 cache or shared

memory were faster than those relying on L2 cache; and the scatter versions with fewer

synchronisation events and less atomic serialisation were faster than those with more. It is not

surprising that the volatile scatter version, which requires N2 shared memory operations per pixel, was

faster than other implementations requiring more memory operations, using slower memory, and/or

requiring synchronisation. Such a scatter KF is therefore expected to perform better for any kernel on

the form given by Eq. 3b for which the evaluation time is non-negligible.

The differences between the two architectures can largely be explained in a similar way. The faster

texture memory on the GTX 680 resulted in better relative performance of the 1D and 2D gather

versions using texture memory and the faster global atomic operations gave better performance of the

15

global atomics scatter version. Conversely, the L1 cached global memory operations on the GTX 580

resulted in better relative performance for the 1D and 2D gather versions using global memory. The

worse absolute performance of the GTX 680 compared to the GTX 580 for some implementations

(e.g. as seen in Figure 4) can further be explained by the number of cores in an SM sharing the same

local resources. On Fermi, 32 or 48 cores have access to the same amount of shared memory as 192

cores on Kepler; when shared memory limits occupancy, there will be fewer threads per core on the

GTX 680, and therefore less latency hiding.

Local maxima, where the execution time was longer for one rmax than for some larger rmax, are seen in

a few places in Figure 3. These bumps are not an effect of the implementations; a larger rmax always

results in increased per-thread computations and use of GPU resources. Instead, it was caused by a

jump in the number of registers allocated to each thread between one value of rmax and the next. Since

there is no way of predicting the optimal trade-off between register usage and occupancy, the

compiler bases the register assignment on heuristics, which in some cases leads to a suboptimal

solution. There is no direct way to increase the register usage in CUDA. In our case, the easiest way

to recover some of the lost performance is to use a slightly larger rmax where it performs better, which

has been done in Figure 6. However, since it does not affect our argument or conclusions, this

curiosity was not further investigated.

For problems of higher dimensionality and small N, the difference between the gather and scatter

approaches may be even greater; the scatter implementations are limited by the number of shared

memory operations, which is Nn per thread, whereas the gather implementations are limited by the

number of kernel evaluations, which is proportional to nNn per thread. However, for higher-

dimensionality implementations, the amount of shared memory available will limit the possible values

of rmax for all implementations relying on shared memory. (On current GPUs, the limit on rmax would

be about six in the 3D case.) For both the gather and scatter approaches, problems requiring a larger

rmax can be divided into Nn−2 separate 2D problems. By exposing this new parallelism to the GPU,

these problems can be solved simultaneously using any of the implementations presented here.

Therefore, the same theoretical performance difference as seen for the 2D case is expected.

16

Using pre-calculated kernel values gave a clear performance boost for the gather approach but

resulted in large errors for unfortunate combinations of rmax and σ. Although performance can be

traded for accuracy by increasing the sampling density (which will increase the number of cache

misses), using pre-calculated kernel values might not be suitable for applications where per-pixel

accuracy is critical. In these cases the performance increase using a scatter approach was even more

pronounced as seen in Table 2 (with the larger values of rmax again corresponding to the upper half of

the range).

In the test case we have considered only kernels that are circularly symmetric. To accommodate

kernels with different σ along the x- and y-axes, the scatter implementation would have to evaluate the

kernel separately in the x- and y-directions. However, the required 3rmax+2 evaluations (or 4rmax+2 for

non-even kernels) still compare favourably to the (2rmax+1)2 evaluations for a gather approach.

Finally, we identified two indirect benefits of using the scatter approach in the intended radiotherapy

application. First, rmax is given by the largest r among the input pixels handled by each block. In the

scatter case, these are defined by the tile, whereas in the gather case they depend also on the value of

rmax itself, requiring an iterative search to find each rmax before starting the KS. Second, it is easy to

check (by calling __syncthreads_or() at the top of the KF) if all input intensities of a block are zero

and, if so, stop the execution of the block to free up space for other blocks on the SM. To avoid

similar redundant calculation with the gather approach, a conditional statement would have to be

evaluated at every iteration of the innermost loop.

Conclusion

We have shown that using a scatter-based approach rather than a conventional, gather-based one

results in significantly better performance for 2D Gaussian KS on modern GPUs. The improvement in

performance was partly achieved through the use of volatile shared memory and warp-synchronous

programming, both sometimes labelled as poor programming practices. Yet, the associated

performance increase in certain cases, as illustrated here, makes these techniques worth considering.

Based on our results and the widespread use of Gaussian and other separable kernels, we anticipate

17

that multi-dimensional KS employed in a range of fields could benefit considerably in terms of

execution time from a scatter-based GPU implementation.

Acknowledgements

We would like to thank Victor da Silva for help with finalising the figures. This research was funded

by the European Commission Seventh Framework People Programme through the ENTERVISION

project, grant agreement number 264552. Dr Jena is funded in part by Cancer Research UK.

Glossary

coalesced memory access memory access where consecutive threads access consecutive
global GPU memory

global [GPU] memory the main GPU random-access memory, typically between 1 and 12
GiB

kernel function (KF) a function that executes on the GPU
kernel superposition (KS) a convolution with spatially-varying kernel or point spread

function
L1 cache the highest level cache, non-coherent and local to each SM.

Occupies the same space as the shared memory.
L2 cache second level cache, fully coherent and global
occupancy the number of threads simultaneously residing on an SM as a

percentage of the maximum. Occupancy is limited by the number
of registers per thread and the amount of shared memory per thread
block for each KF. High occupancy can help hide the effects of
low latency.

shared memory low-latency memory that can be accessed by all threads within the
same thread block. Occupies the same space as the L1 cache and is
divided between blocks executing on the same SM.

streaming multiprocessor (SM) group of cores on the GPU sharing the same resources, i.e. shared
memory/L1 cache and registers. Consists of 32 or 48 cores on the
Fermi architecture and 192 cores on the Kepler architecture.

texture memory physically the same as the global memory but is read through its
own cache. Optimised for spatial locality and supporting linear
interpolation in hardware.

thread block group of threads that share the same shared memory. Consists of
one or more warps.

warp group of threads executing in lock-step acting as a single
instruction, multiple data machine. The warp consists of 32 threads
on both the Fermi and Kepler architectures.

18

Algorithm 1. Pseudocode outlining the gather (left) and scatter (right) implementations of the KS

operation from a thread perspective. X and Y indicate the global thread indices in the x- and y-

directions, respectively, for the current thread. Kernel(d, σ) is the evaluation of the kernel, in our

example a Gaussian as given in Equation 4.

Input: image[M, M]
Input: sigma [M, M]
Output: result[M+2*rmax, M+2*rmax]

GatherApproach(image, sigma, result) ScatterApproach(image, sigma, result)
1: res←0 1: im←image[X, Y]
2: for y=−rmax to rmax 2: σ←sigma[X, Y]
3: for x=−rmax to rmax 3: k[rmax+1]
4: im←image[X+x, Y+y] 4: for d=0 to rmax
5: σ←sigma[X+x, Y+y] 5: k[d] ←Kernel(d, σ)
6: kx←Kernel(x, σ) 6: end
7: ky←Kernel(y, σ) 7: for y=−rmax to rmax
8: res←res+im*kx*ky 8: ky←k[abs(y)]
9: end 9: for x=−rmax to rmax
10: end 10: kx←k[abs(x)]
11: result[X, Y] ←res 11: result[X+x, Y+y] ← result[X+x, Y+y]+im*kx*ky
 12: end
 13: end

Table 1. Overview of GPUs used for benchmarking.

Name Arch. # cores
Core clock

[MHz] # cores/SM

Max shared
mem./SM

[KiB]
Global

mem. cache

Quadro 1000M Fermi 96 1400 48 48 L1

Geforce GTX 580 Fermi 512 1544 32 48 L1

Quadro K1100M Kepler 384 705 192 48 L2

Geforce GTX 680 Kepler 1536 1006 192 48 L2

Geforce GTX 760 Kepler 1152 980 192 48 L2

19

Table 2. Relative speedups between different groups of implementations. The upper right triangle

corresponds to the Geforce GTX 580 and shows the speedup of columns relative to rows. The lower

left triangle corresponds to the Geforce GTX 680 and shows the speedups of rows relative to columns.

 GTX
580
GTX 680

Naïve gather 1D gather 2D gather Safe scatter Warp-sync
scatter

Naïve gather 1.0–1.1x 1.5–2.2x 4.8–11.9x 4.8–28.5x

1D gather 1.2–2.2x 1.5–2.0x 4.3–11.0x 4.4–26.2x

2D gather 1.9–3.9x 1.5–1.9x 2.1–6.7x 2.1–14.5x

Safe scatter 3.2–10.3x 1.5–7.4x 0.9–4.7x 1.0–2.8x

Warp-sync
scatter

3.7–16.8x 2.4–8.5x 1.3–4.9x 1.0–3.4x

Table 3. Relative calculation times for the different groups of implementations as compared with the

fastest scatter implementation on each GPU. The relative calculation time for the single-threaded

implementation on the i7-3770K CPU is also shown for each GPU.

Naïve
gather 1D gather 2D gather Safe scatter Warp-sync

scatter

CPU
(single-
threaded)

Quadro
1000M

4.3–25.4 4.1–21.5 2.3–13.4 1.1–3.2 1.0 13.6–39.4

Geforce
GTX 580

4.8–28.5 4.4–26.2 2.1–14.5 1.0–2.8 1.0 132–285

Quadro
K1100M

4.0–17.2 2.5–8.7 1.2–5.0 1.0–3.3 1.0 12.8–57.7

Geforce
GTX 680

3.7–16.8 3.2–10.3 1.9–3.9 1.2–2.2 1.0 76.4–294

Geforce
GTX 760

3.6–17.2 2.3–8.5 1.2–4.9 1.0–3.4 1.0 61.2–216

20

Figure 1. Overview of the gather (left) and scatter (right) approaches for a KF with rmax=1 and block
size 4×2 (tx=bx=4, ty=by=2). For illustrative purposes each warp is assumed to consist of only four
threads.

Figure 2. Execution times for the gather implementations for different rmax on the Geforce GTX 580

(left) and GTX 680 (right). Only the data points for the best-performing combination of ty, by and

number of shared memory arrays are shown for each implementation. Note the logarithmic scale on

the y-axes.

21

Figure 3. Execution times for the scatter implementations for different rmax on the Geforce GTX 580

(left) and GTX 680 (right). Only the data points for the best-performing combination of ty and by are

shown for each implementation.

Figure 4. Comparison of the execution times for the volatile version of the scatter approach on all

GPUs used. Curves corresponding to GPUs of the same architecture have the same shape but appear

shifted along the y-axis.

22

Figure 5. The preferred configurations for by and ty for all implementations and the preferred number

of shared memory arrays for the gather implementations on the Geforce GTX 580 (left) and GTX 680

(right) for different values of rmax.

Figure 6. Execution times for the best-performing implementations in the different groups of gather

and scatter implementations on the Geforce GTX 580 (left) and GTX 680 (right). Dashed lines show

execution times for instantiations corresponding to the rmax indicated on the x-axis, solid lines show

the fastest execution time for instantiations corresponding to rmax equal to or greater than the indicated

value on the x-axis.

23

References

[1] Ahnesjö A. Collapsed cone convolution of radiant energy for photon dose calculation in
heterogeneous media. Medical Physics 1989;16:577–92.

[2] Hong L, Goitein M, Bucciolini M, Comiskey R, Gottschalk B, Rosenthal S, et al. A pencil beam
algorithm for proton dose calculations. Physics in Medicine and Biology 1996;41:1305–30.

[3] Ng J, Prager R, Kingsbury N, Treece G, Gee A. Modeling ultrasound imaging as a linear, shift-
variant system. Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions on
2006;53:549–63.

[4] Lauritsch G, Tam K, Sourbelle K. Solution to the long object problem by convolutions with
spatially variant 1-D Hilbert transforms in spiral cone-beam computed tomography. Nuclear
Science Symposium Conference Record, 2000 IEEE, vol. 2, 2000, p. 116–20.

[5] Kachelriess M, Watzke O, Kalender WA. Generalized multi-dimensional adaptive filtering for
conventional and spiral single-slice, multi-slice, and cone-beam CT. Medical Physics
2001;28:475–90.

[6] Wiant D, Gersh J, Bennett M, Bourland J. Evaluation of the spatial dependence of the point
spread function in 2D PET image reconstruction using LOR-OSEM. Medical Physics
2010;37:1169–82.

[7] Bitlis B, Jansson PA, Allebach JP. Parametric point spread function modeling and reduction of
stray light effects in digital still cameras. Electronic Imaging 2007, 2007, p. 64980V–64980V.

[8] Lam EY. Image restoration in digital photography. Consumer Electronics, IEEE Transactions
on 2003;49:269–74.

[9] Cobb ML, Hertz PL, Whaley RO, Hoffman EA. Space-variant point-spread-function
deconvolution of Hubble imagery using the Connection Machine. SPIE’s 1993 International
Symposium on Optics, Imaging, and Instrumentation, 1993, p. 202–8.

[10] Alard C. Image subtraction using a space-varying kernel. Astronomy and Astrophysics
Supplement Series 2000;144:363–70.

[11] Shaevitz JW, Fletcher DA. Enhanced three-dimensional deconvolution microscopy using a
measured depth-varying point-spread function. Journal of the Optical Society of America A
2007;24:2622–7.

[12] Al Umairy SA, Van Amesfoort AS, Setija ID, Van Beurden MC, Sips HJ. On the use of small
2d convolutions on gpus. Computer Architecture, 2012, p. 52–64.

[13] Fialka O, Cadik M. FFT and convolution performance in image filtering on GPU. Information
Visualization, 2006. IV 2006. Tenth International Conference on, 2006, p. 609–14.

[14] Terriberry TB, French LM, Helmsen J. GPU accelerating speeded-up robust features.
Proceedings of 3DPVT, vol. 8, 2008, p. 355–62.

[15] Podlozhnyuk V. Image convolution with CUDA. NVIDIA Corporation 2007.

24

[16] Angel E, Jain AK. Restoration of images degraded by spatially varying pointspread functions by
a conjugate gradient method. Applied Optics 1978;17:2186–90.

[17] Nagy JG, O’leary DP. Fast iterative image restoration with a spatially varying PSF. Optical
Science, Engineering and Instrumentation’97, 1997, p. 388–99.

[18] Sawchuk AA. Space-variant image motion degradation and restoration. Proceedings of the
IEEE 1972;60:854–61.

[19] Tan S, Dale JL, Johnston A. Performance of three recursive algorithms for fast space-variant
Gaussian filtering. Real-Time Imaging 2003;9:215–28.

[20] Pratx G, Xing L. GPU computing in medical physics: a review. Medical Physics 2011;38:2685–
97.

[21] Sriram V, Kearney D. A FPGA implementation of variable kernel convolution. Parallel and
Distributed Computing, Applications and Technologies, 2007. PDCAT’07. Eighth International
Conference on, 2007, p. 105–10.

[22] Wang Z, Han G, Li T, Liang Z. Speedup OS-EM image reconstruction by PC graphics card
technologies for quantitative SPECT with varying focal-length fan-beam collimation. Nuclear
Science, IEEE Transactions on 2005;52:1274–80.

[23] Cui J, Pratx G, Prevrhal S, Zhang B, Shao L, Levin CS. Measurement-based spatially-varying
point spread function for list-mode PET reconstruction on GPU. Nuclear Science Symposium
and Medical Imaging Conference (NSS/MIC), 2011 IEEE, 2011, p. 2593–6.

[24] Gomersall H, Hodgson D, Prager R, Kingsbury N, Treece G, Gee A. Efficient implementation
of spatially-varying 3-D ultrasound deconvolution. Ultrasonics, Ferroelectrics and Frequency
Control, IEEE Transactions on 2011;58:234–8.

[25] Hartung S, Shukla H, Miller JP, Pennypacker C. GPU acceleration of image convolution using
spatially-varying kernel. Image Processing (ICIP), 2012 19th IEEE International Conference on,
2012, p. 1685–8.

[26] Fujimoto R, Kurihara T, Nagamine Y. GPU-based fast pencil beam algorithm for proton
therapy. Physics in Medicine and Biology 2011;56:1319–28.

[27] J. Da Silva, R. Ansorge, R. Jena, Sub-second pencil beam dose calculation on GPU for adaptive
proton therapy, Physics in Medicine and Biology 2015;60:4777–4795.

[28] Lee VW, Kim C, Chhugani J, Deisher M, Kim D, Nguyen AD, et al. Debunking the 100X GPU
vs. CPU myth: an evaluation of throughput computing on CPU and GPU. ACM SIGARCH
Computer Architecture News, vol. 38, 2010, p. 451–60.

