Efficient scatter-based kernel superposition on GPU
Joakim da Silv&*, Richard Ansorg® Rajesh Jeria

& Cavendish Laboratory, University of Cambridge, UK

® Department of Oncology, University of Cambridgé U

¢ Cambridge University Hospitals NHS Foundation Trus
*Corresponding author:

jdd491@cam.ac.uk

+44 1223 337010

BSS, Cavendish Laboratory

19 J J Thomson Avenue

Cambridge,

CB3 OHE

Abstract

Kernel superposition, where an image is convolvél w spatially varying kernel, is commonly used
in optics, astronomy, medical imaging and radiapgr This operation is computationally expensive
and generally cannot benefit from the mathemasicaplifications available for true convolutions.
We systematically evaluated the performance ofrabmr of implementations of a 2D Gaussian
kernel superposition on several graphics proceasiitg of two recent architectures. The 2D
Gaussian kernel was used because of its importameal-life applications and representativeness of
expensive-to-evaluate, separable kernels. The mgéations were based both on the gather
approach found in the literature and on the scaftproach presented here. Our results show that,
over a range of kernel sizes, the scatter apprdelivers speedups of 2.1-14.5 or 1.3—4.9 times,
depending on the architecture. These numbers wetesf improved to 4.8-28.5 and 3.7-16.8 times,
respectively, when only “exact” implementations eompared. Speedups similar to those presented
are expected for other separable kernels and, gueeawill also remain applicable for problems of

higher dimensionality.

Keywords

kernel superposition;
variable kernel convolution;
spatially varying;

point spread function;
scatter;

GPU;

Introduction

Kernel superposition vs. convolution

Image filtering finds use in a plethora of imagegessing, applications and can be used for example
to suppress noise, enhance detail, and detect.edfjen, the filtering process consists of a
convolution of the image data with a kernel, somes referred to as a filter or mask. In a true
convolution, the kernel does not vary over the ienagd is a function only of the vector difference
between the input and output coordinates (Eq.lhdhe discrete case, this translates to elemesg-wi
multiplication and summation of a constant kernatnm with the corresponding neighbourhood in
the input (Eqg. 1b). In some applications, howetlex, kernel is also dependent on its absolute $patia
position in either input or output space (Eq. 2d b, respectively). The resulting operation, nefer
to as kernel superposition (KS), variable kernelodution, or convolution using a spatially-varying
point spread function, appears in many differegitl8. Examples include radiotherapy dose
calculation, both using photons [1] and chargediglas [2], ultrasound imaging [3], computed
tomography [4,5], positron emission tomography pslotography [7,8], astronomy [9,10], and

microscopy [11].

(e =] [fx)s(x-x)d Eq. 1a

0@ =) AKE=X) =)) Ly, Ko, Eq. 1b
Direct evaluation of an-dimensional convolution between an image and adtaf side lengthi
andN, respectively, requires a total number of operatiproportional td1"N". Several techniques
can be employed to make the evaluation more efificespecially when working with large kernels or
images of higher dimensionality. These includeyéag out the calculation in Fourier space; dividing
ann-dimensional convolution into 1D convolutions (for spatially separable kernedsii
approximating more complicated kernels by repeaten/olutions with simpler ones. GPU
implementations employing these techniques, asasdllirect evaluation, have all been described in

detail [12-15].

Kin(X’ X,) = Kin(X - X,7X,) Eq Za

Kout (X, X") = Koy (X = X', X) Eq. 2b

Some of the techniques mentioned can be applispgdoial cases of KSs, such as fully spatially
separable problems (Eq. 3a) [16]; regionally camskarnels or linear combinations thereof [17];
spatially varying kernels that can be made invargrtransforming the input image [18]; and
approximate solutions for slowly varying Gaussiamnrels [19]. However, this is not true for the
general case, which thus requires direct evaluakiarther, good performance of direct evaluation
techniques for true convolution on GPU rely on kegphe kernel values in memory and

broadcasting one value at a time to multiple thsga8], which has no equivalent for KS.

Kpg(x = X', X") = kpg(x; = x" 1, X" | Vkps (xa — X5, x"5) -+ kpg (x, = x",1, X)) Eg. 3a

Kps(x = X',X") = kpg (x; = x|, X)kpg (X3 = X5, X") -+ kpg (x,, = X', X") Eq. 3b

Gather, scatter and system matrix approaches

The KS operation is in itself inherently paral@hce each output value can be calculated
independently given the input image. In a paratigdlementation, it is natural to assign threadsegit

to elements in the input or output image. The forimeeferred to as the scatter approach, where eac
input element “scatters” results to its neighbogitements in the output, whereas the latter is
referred to as the gather approach, where eacltdigithers” results from neighbouring elements in
the input (Figure 1). Conventional wisdom from Gpldgramming, and in particular the true
convolution case, states that the gather appraagteferable, since each thread can accumulate its
output locally and avoid having to resolve writetticts through costly synchronisation or atomic
operations [20]. However, when the kernel is depahdn its position in the input image (Eq. 2a),
which seems to be the case in most real-world egijdins, the scatter approach has the advantage
that the kernel is fixed at the thread level. & Kernel is further spatially separable with respethe
difference between input and output coordinatesraitg to Eq. 3b, this means that each thread only
needs to calculate its 1D kernel values once anag #t&em locally. Therefore, the evaluation of the

kernel at each of thd" neighbours can be replaced by a multiplication pfe-calculated 1D kernel

values. Such separability is common in image Blt@erhaps most notably in the Gaussian kernel. (If
the kernel is of the form of Eqg. 2b and separablkieé first argument, the problem becomes trivial,
the gather approach is used to avoid any syncratimisissues and each thread pre-calculates its 1D

kernel values as described.)

The gather and scatter approaches both perforidi$ha a single step. Alternatively, the kernel
evaluation and the multiplication can be dividebitwo separate steps, by first calculatingXfig!”
non-zero kernel values and storing them in a spgrstem matrix. The KS is then performed by
multiplying the system matrix with the vector cdntag the input image. If the same matrix can be
used for multiple KSs, this effectively replacesleiernel evaluation with a load operation of the
corresponding value from memory. If, however, thenkl parameters are different for each image,
the benefit of using this technique is lost; itolwes the same number of kernel evaluations and
multiplications but, in addition, requires eachtlud N"M" kernel values to be stored and subsequently
retrieved from memory. Further, for higher-dimemsibproblems, the amount of memory required

for this approach may become a concern on GPUs.

Context of the presented work

The work presented here is intended as a systematistigation of efficient, multi-dimensional KS
implementation on GPU, similar to what has previpbgen done for field-programmable gate arrays
[21]. Excluding early GPU work on now outdated aettures, e.g. by Wang et al. [22], four related
studies have been identified in the literature. Oithese present GPU implementations of 1D KSs,
as a part of image reconstruction workflows for@lasound imaging and positron emission
tomography, respectively. Cui et al. started withigh-dimensional model but used symmetry to
reduce the kernel to a 1D asymmetric Gaussian,hwhikes the evaluation technique not applicable
to our case [23]. Gomersall et al. used the systertnix approach, which may be applicable also for
higher-dimensional problems, but due to the lackdvfantages for kernels that change with each
image this technique will not be considered furfl2dj. The remaining two articles focus on 2D KS
used to aid object discovery in astronomical imagesin proton therapy dose calculation,

respectively. For their GPU implementations, bbise studies, by Hartung et al. [25] and Fujimoto

et al. [26], use the gather approach as recommeiodéxadie convolutions. Here we present several
GPU implementations of the KS operation based emg#ther approach and compare their
performance to new scatter-based implementationworcommon GPU architectures for a wide
range of parameters. The study was carried oleircdontext of fast dose calculation for proton
therapy [27], and hence the focus is on 2D Gaudsamels. However, the results should be

applicable also to other problems separable aacupitdi Eq. 3b and those of higher dimensionality.

Methods

General considerations

The presented implementations are written in CUBAroprietary extension to C/C++ used to
program GPUs from Nvidia Corporation (Santa Cl@a, USA). Although the discussion should be
applicable to modern GPUs from any manufactureriéhminology used throughout the paper will
be that of CUDA. In CUDA parlance, a function tiemexecuted on the GPU is known as a kernel
function (KF), which is not to be confused with thathematical kernels or filters used in
convolution or superposition operations. A lisotter terms used can be found in the Glossary

section.

Since the Gaussian function has infinite suppocyteoff, beyond which kernel contributions are
ignored, must be chosen. The cut-off is normaiyegias a multiple of the standard deviatimrzach
value ofg, and hence each input pixel, therefore has arceted minimum necessary kernel radius,

r, given as an integral number of pixels. Due toltlo&-step execution, each execution time of a warp
will be limited by the largest value ofamong its threads,,.,, which can thus be used as the cut-off
for all threads within the warp without loss of fmemance. Here we choose to let all threads wighin
block (which could, in principle, be limited to om&rp) use their largest valuerof ., as a

common cut-off (givingN=2r,»+1 for each block). In doing so, we can implemgpt as a template
parameter, which allows us to benefit from loopallitg and compile-time evaluation of much of the
expensive integer arithmetic. Generally, blockdifferentr., can be present in the same image,
meaning several KFs have to be launched. For the aamany and/or large images, this can be done
sequentially without loss of performance. For ®ngimall images, blocks witl., within specified

6

ranges can be batched together to increase theuS&j# at the expense of some redundant
calculation or, on recent GPUs, KFs correspondingjfferent values of,,x could be launched

concurrently.

The presented implementations assume that the, sypuap, and output reside in global memory and
are arranged to allow for coalesced memory operstid/e usé, andb, to denote the width and
height, respectively, of a thread blotkandt, similarly refer to the width and height of a tileis
assumed throughout thigth,=32, which equals the warp size on the considefed &rchitectures,
and that, is an integer multiple di,. If, for examplet,=2b,, each thread in a thread block handles
two pixels of the input (scatter) or output (gajh®¥herever a call to_syncthreads() was used, care

was taken to ensure that all threads of a bloclewyearanteed to reach this statement.

Gather implementations

The backbone of the gather approach is given iteftheolumn of Algorithm 1. The first thing to

note with this approach is that for each of Mieslements in its neighbourhood, a thread must aead
new pixel intensity and, and then calculate its contribution (Figure 1sifple KF would read

these values directly from consecutive (but noessarily aligned with a cache-line boundary) global
memory. A standard technique for improving perfans®in similar cases, where adjacent threads
repeatedly access nearby memory locations, is ssiaged memory as an explicitly managed cache.
All values required by the thread block are theadri'Fom global memory only once, with subsequent
calculations relying on low-latency, high-bandwidtiared memory. The amount of shared memory
is limited, however, and using large amounts miighit the occupancy, and thereby the opportunity
for latency hiding elsewhere in the KF. Furtheglgll memory is cached (in L1 for Fermi and in L2
for Kepler) which, together with the potential aflher occupancy, might limit the benefit of using
shared memory. Therefore, all the gather approdehwere implemented in three variants, using
shared memory arrays for neither, one, or bothefiriput intensity and. The size, in number of
elements, of each array is given by2rma)*(t,+2rmay), €quivalent to a tile with an added halo of

width r oy (Figure 1). After populating the shared memorg, ttireads within a block must be

synchronised through a call tosyncthreads() in order to ensure that the contribution from each

thread is seen by all others before continuingctieulation.

The second thing to note is that using the gatppraach, each thread has to perfoii 8valuations
of the separable kernel (oN" for n dimensions). In the case of a Gaussian kerneh, ezaluation is

given by

KGauss(d, 0) = % [erf (d - 0'5) - erf (d — 0'5)] Eq. 4

V20 V20

whered is the distance in pixels along the current agisveen the input and output pixels. Evaluating
the error function four times for each neighbourdrees computationally expensive and, as pointed
out by Fujimoto et al. [26], can be avoided by ipt#ating between pre-calculated kernel values.
Two approaches for this were investigated. In tDeafproach, erk{(sqrt(2)*s)) was pre-calculated

for a range of values afand stored as a 1D array. In the 2D approach4 i@s evaluated for

integer values odl and for a range af, and stored as a 2D array in memory. To evalugtetRhe

1D approach requires two linear interpolations wherthe 2D approach requires one (sthisean
integer, the interpolation is 1D in both cases)k @bcuracy and performance of either approach will
be dependent on the sampling of the pre-calculakas. In both cases the functions were sampled
as sparsely as possible whilst keeping the absolatn of the relative error of Eq. 4 below 1%, when
taken over all pixels within the cut-off for all u&s ofe in the considered range. The pre-calculated
values can be kept in global memory, be duplicateshared memory for each block, or be bound to
texture memory. In the former two cases, linearimblation must be carried out explicitly in the KF
whereas in the latter case we can make use oéierée pipeline’s built-in hardware interpolation.
Because shared memory was too small to fit allagfor the 2D approach, we are left with six
possible versions of the gather implementationniige version explicitly evaluating the error
function; versions of the 1D approach using globlagred, and texture memory; and versions of the
2D approach using global and texture memory. Miigtipby the three variants of each, this gives a

total of eighteen implementations based on theegatpproach.

Scatter implementations

The backbone of a scatter-based approach is shothe right column of Algorithm 1. Since the
intensity ands remain constant as a thread loops ovandy, these have to be read only once from
global memory, after which they are kept in regs{&igure 1). Based on the valuespkach thread
calculates it$maxt1 (Or X5+ 1 for non-even kernels) values of the kernel whindstored in an
array. Since the array length is known at compiteetand the indexing is constant, the compiler

decides whether they are stored in registers at lnemory.

The difficulty with implementing this approach ligsfinding an efficient way of avoiding race
conditions for the write operation in the innermiogtp of Algorithm 1 (line 11). As a naive approach
we can make use of atomics to have each threadcatityradd its result directly to the output in
global memory. However, the degree of serialisatibthe atomic operation due to overlap between
threads of different warps is expected to be HBgtter performance may therefore be achieved if the
accumulation for each block is done locally in gldamemory. As in the gather approach, the size of
shared memory required by a single block,B82f na)*(ty+2rmay, €lements (Figure 1), although here
one array is sufficient. Once a block finishesakulations, the total result is transferred fretmared

to global memory, again using atomic addition toidwvace conditions in the overlapping halos of

different blocks.

Five versions of a scatter-based KF were develdpdtie global atomics version, each thread adds
its partial result directly to global memory asatlissed above. In the shared atomics version, each
thread atomically adds its partial result to thayof shared memory in the innermost loop of
Algorithm 1 (line 11). This is similar to the gldl&tomics version, but is expected to achieve bette
performance for two reasons: lower latency of sthanemory and less serialisation due to fewer write
conflicts. In the explicit sync version, the threamthin a block are synchronised by calling
__syncthreads() after the write operation (between lines 11 andii2he innermost loop of

Algorithm 1. This ensures synchronised executiothefblock which, since for each combination of
the loop variableg andy each thread within a block will write to its ownigue memory location,

avoids race conditions. The call tosyncthreads() further ensures that all write operations made to

shared memory are visible to all threads of thelblzefore continuing execution. In the threadfence
version, the call to_syncthreads() above is replaced with a call tothreadfence_block().
__threadfence_block() ensures that all memory operations carried owt thyead prior to the call are
visible to all other threads in the same block betbe thread is allowed to continue executionc&in
we have assumed that t, is equal to the warp size, for a given value efltop variable/, each
warp writes to its own unique row of the shared mgnarray (Figure 1). Hence, for a given
combination ofk andy, we can be sure to avoid race conditions as Isyg@mains the same for all
warps of a block. This can be ensured by insedingll to__syncthreads() after the end statement of
the innermost loop (between lines 12 and 13) obAtgm 1. In the volatile version, we remove the
call to__threadfence_block() introduced in the previous version, and insteadade the shared
memory used to hold the result volatile. This easuhat accesses to the memory in question are
compiled to explicit instructions rather than opsied to registers (in which case they are not Msib
to other threads). In the innermost loop of Aldaritl, the threads of a warp will therefore exgdicit
read, add their contribution, and write back taadpt positions in the same row of shared memory,
before each shifting one step and repeating theepkge. Since only one warp writes to a specific
row of the shared memory for a given valug,dfeeping the call to_syncthreads() from the

previous version is enough to avoid race conditions

Benchmarking

Benchmarking was carried out on five Nvidia GPUshef Fermi and Kepler architectures listed in
Table 1. Detailed analysis was carried out forhighest-performance card of both architectures, the
Geforce GTX 580 and GTX 680. All systems hosting PUs were running 64-bit Microsoft

Windows environments and the KFs were compileccfarh GPU type using CUDA 6.0.

All 23 implementations described above were tereglatithr .« as the argument. The KFs were
compiled and benchmarked figg ranging from 1 to 32, corresponding to kernelsad side length
N between 3 and 65. (For variants where the shaesdary requirement dictated a largest possible
value ofr . smaller than 32, this number replaced 32 as tperdpnit.) All calculations were

carried out using single precision floating poipemtions and all implementations were compiled

10

with the flag-use fast_math. A #pragma unroll statement was inserted just before the innernoogt |

of all kernels (between lines 2 and 3 and linea@® respectively, in Algorithm 1) since this was
seen to increase the performance of some KFs witiegatively impacting that of others. The

CUDA cache configuration was set to prefer sharechory (48KiB shared memory, 16KiB L1
cache) for all kernels with the exception of thegather variants that do not hold input intensity

in shared memory and the naive scatter implementdir which the configuration was instead set to

prefer L1 cache (16KiB shared memory, 48KiB L1 agch

A 512x512 pixel image of evenly distributed psewahaiom floating point values on the interval [0, 1)
was used as input intensities for the test case KHs corresponding to each,, were tested
individually usinge-maps where the values ®fvere chosen pseudorandomly from the interval [0,
Irmad{Ns), Wheren, is the kernel cut-off expressed as a multiple.af, =3 was chosen for the
benchmarking. (The value of for a fixedr .« should not alter the performance of the KFs except
indirectly by slightly changing the sampling in thB and 2D gather approaches.) The performance
was measured by executing each combination of kenpéementation and,,. for each of the five
feasible combinations dfe{8, 16} andt{8, 16, 32}. The KF timings were taken as the agera
execution time for ten identical KF executionsuigsg in a grand total of 35,250 executions per
GPU. Since the aim of this study is to compare @GRplementations, the reported execution times
do not include memory transfers. Where not stathdrwise, the results are those obtained for the
best-performing combination of andt, for each KF and each valuergf,,. Similarly, for the gather
implementations, for each valuergf, the reported result corresponds to the shared myevaciant
that showed the best performance. In the finalyaiglthe different implementations were grouped
together according to similarity, and within eacbup, for each value of,., the best result was
selected. The following five groups were considefexact” gather (identical to the naive gather
version); 1D interpolation gather; 2D interpolatigether; scatter not relying on warp-synchronous
execution (i.e. the naive, shared atomics and@kpiinc versions); and scatter relying on warp-

synchronous execution.

11

A single-threaded CPU implementation written in Gaas used to verify the output from the KFs.
Since it does not suffer from race conditions,dbatter approach, as outlined in Algorithm 1 (fjght
was used. (Comparison confirmed that the scattgleimentation performed considerably better on
the CPU.) Although the CPU implementation was writivith performance in mind, templating for
I'max t0 allow for compile-time optimisations and ensgrregular memory access to reduce cache
misses, it could likely be further improved by emyphg more advanced optimisation techniques [28].
Execution times are therefore provided only to giveugh idea of the performance of a single CPU
core. The CPU implementation was compiled usingMiwosoft Visual C++ 2013 compiler and

executed on an Intel i7-3770K 3.5 GHz CPU.

Results

Figure 2 shows the execution times for the gatinptémentations on the Geforce GTX 580 and GTX
680. On the GTX 580, both 2D implementations sholetter performance than the naive
implementation with the one relying on global meynoeing the fastest. Over the range &f, the
best-performing 2D approach was 1.5-2.2 timesiféiséan the naive implementation. Surprisingly,

all 1D implementations showed similar performarcéhe naive implementation. On the GTX 680,
using texture memory resulted in best performartk for the 1D and the 2D approaches, with all
others showing similar or worse performance thamtive approach. The fastest 1D and 2D
implementations were, respectively, 1.2-2.2 and3d ®times faster than the naive implementation.
The results of the other GPUs closely reproducesélof the corresponding architecture in Figure 2,

apart from a vertical shift according to their baseformance.

The execution times for the scatter implementatamesshown in Figure 3. On the GTX 580, the
global atomics version resulted in the slowest etien for allr ., Wwhereas the volatile version
exhibited best performance, executing 3.7-33.04ifaster than the former. The threadfence and the
explicit sync versions performed very similarly amére second fastest fioy., of 9 and smaller. For
larger values of ., the shared atomics version was the second fa€ieghe GTX 680, the general
trend was the same: the global atomics versionsteagest (or very close to slowest) for all valués o

Irmax @nd the volatile version was fastest with a sppedietween 2.1 and 7.7 times. The

12

performance of the explicit sync and threadfengsioas was again very similar, with the latter lgein
the second fastest version for values,@f of 17 and smaller. Above this number the sharedhiis
version performed second best. Again, the resa#a i Figure 3 were mimicked by the other GPUs

of the corresponding architectures, as exemplfiedhe volatile version in Figure 4.

The naive gather implementation and all scattetampntations accurately reproduced the results
obtained using the CPU implementation. The diffeféhand 2D gather approaches showed larger
errors which were dependent on the combinationtehisity ands, with the largest relative errors
seen for points receiving contributions from fewerghbours. Since the combined error is input-
dependent, and therefore hard to characterise itatargly, the maximum relative error evaluating
EqQ. 4 over the ranges dfands was measured. Using previously mentioned sampiiegmaxima

were 5.7% and 15.3% respectively for the 1D and@proaches.

Figure 5 shows the preferred configurationsdoandt, for all implementations and the preferred
number of shared memory arrays for the gather impfgations. The gather implementations tended
to perform best wheb=t,, i.e. when each thread processes only one oltpuho global preference
for eitherb,=t,=8 orb,=t,=16 was seen. In terms of shared memory usagéethe was to prefer

using fewer arrays for smaller values gf, and none for larger values, with implementatiosiagl
texture memory generally using fewer arrays. OnGhi& 580, the different scatter implementations
preferred different configurations bf andt,: global atomic$,=8,t,=32; shared atomids=16,

t,=32; explicit sync and threadfenbg=8,1,=8; and volatildy,=8, t,=16. Curiously, on the GTX 680
the only trend for the scatter implementations waseference fon=16,t,=16, the only

configuration not preferred by the GTX 580.

Figure 6 shows the best performance for differeatigs of implementations on the Geforce GTX
580 and GTX 680, with the “bumps” seen in FiguftaBened out as discussed in the next section.
For both GPUs, the scatter implementations relgimgvarp-synchronous execution were fastest for
all values ofr .. Further, both groups of scatter implementatioeseWaster than any of the gather

approach counterparts, except for the two largalstes ofr ., 0n the Geforce GTX 680. The range of

13

speedups over the valuesrgf, when comparing the different groups are summaiisda@ble 2.
Table 3 lists the ranges of relative execution $irfiee the different groups compared to the fastest
scatter implementation for all benchmarked GPUs.réference, the single-threaded CPU

implementation running on the i7-3770K process@i$® included in this table.

Discussion

The scatter-based approaches of the Gaussian K8nmaptation achieved considerably better
performance than the gather-based ones. The fastastr implementation was 2.1-14.5 and 1.3-4.9
times faster than the fastest gather implementatéspectively, on the Geforce GTX 580 and GTX
680 (Table 2). For both GPUs, the lower end of¢hrasges corresponded to smaller kernel sizes,
whereas for values of..x larger than around five, the speedups were @lierupper halves of the
ranges (Figure 6). This was true for all GPUs tisteTable 3 (but not when comparing with the

CPU).

According to the CUDA Visual Profiler tool, all ingmentations in the best-performing configuration
were bound by either memory bandwidth or latenggept for the naive gather approach which was
compute bound. Many of the presented results aredkplained simply by the number and type of
memory operations used, e.g. the 2D gather versamsring one linear interpolation were faster
than the corresponding 1D versions requiring twe;implementations relying on L1 cache or shared
memory were faster than those relying on L2 caahd;the scatter versions with fewer
synchronisation events and less atomic serialisatiere faster than those with more. It is not
surprising that the volatile scatter version, whiefuiresN’ shared memory operations per pixel, was
faster than other implementations requiring morenawy operations, using slower memory, and/or
requiring synchronisation. Such a scatter KF iseftee expected to perform better for any kernel on

the form given by Eq. 3b for which the evaluationg is non-negligible.

The differences between the two architectures aayely be explained in a similar way. The faster
texture memory on the GTX 680 resulted in bettktnee performance of the 1D and 2D gather

versions using texture memory and the faster glatmhic operations gave better performance of the

14

global atomics scatter version. Conversely, theddhed global memory operations on the GTX 580
resulted in better relative performance for thealid 2D gather versions using global memory. The
worse absolute performance of the GTX 680 comptarélde GTX 580 for some implementations
(e.g. as seen in Figure 4) can further be explaiyathe number of cores in an SM sharing the same
local resources. On Fermi, 32 or 48 cores havesadoghe same amount of shared memory as 192
cores on Kepler; when shared memory limits occupathere will be fewer threads per core on the

GTX 680, and therefore less latency hiding.

Local maxima, where the execution time was longenher .« than for some larger.,, are seen in

a few places in Figure 3. These bumps are notfantedf the implementations; a largggy always
results in increased per-thread computations ae@u&PU resources. Instead, it was caused by a
jump in the number of registers allocated to eackad between one valuergfx and the next. Since
there is no way of predicting the optimal tradetmdtween register usage and occupancy, the
compiler bases the register assignment on hewistitich in some cases leads to a suboptimal
solution. There is no direct way to increase thyister usage in CUDA. In our case, the easiest way
to recover some of the lost performance is to useghtly largerm .« Where it performs better, which
has been done in Figure 6. However, since it doeaffect our argument or conclusions, this

curiosity was not further investigated.

For problems of higher dimensionality and sniNlthe difference between the gather and scatter
approaches may be even greater; the scatter imptetiwns are limited by the number of shared
memory operations, which i§' per thread, whereas the gather implementationknaited by the
number of kernel evaluations, which is proporticieaiN" per thread. However, for higher-
dimensionality implementations, the amount of stianemory available will limit the possible values
of rmax for all implementations relying on shared mem@@n current GPUs, the limit an,,, would

be about six in the 3D case.) For both the gathérsaatter approaches, problems requiring a larger
I'max can be divided intt"? separate 2D problems. By exposing this new péisatigo the GPU,

these problems can be solved simultaneously usipgfthe implementations presented here.

Therefore, the same theoretical performance diffsges seen for the 2D case is expected.

15

Using pre-calculated kernel values gave a cledopeance boost for the gather approach but
resulted in large errors for unfortunate combinaiofr.x ando. Although performance can be
traded for accuracy by increasing the samplingithewhich will increase the number of cache
misses), using pre-calculated kernel values mighba suitable for applications where per-pixel
accuracy is critical. In these cases the performa@mrease using a scatter approach was even more
pronounced as seen in Table 2 (with the largeregadir ..., again corresponding to the upper half of

the range).

In the test case we have considered only kernatsatie circularly symmetric. To accommodate
kernels with different along thex- andy-axes, the scatter implementation would have ttuatathe
kernel separately in the andy-directions. However, the required,3+2 evaluations (or,+2 for

non-even kernels) still compare favourably to tre.{+1)? evaluations for a gather approach.

Finally, we identified two indirect benefits of ngithe scatter approach in the intended radiotlyerap
application. Firstrn.xis given by the largestamong the input pixels handled by each blockhin t
scatter case, these are defined by the tile, whéndhae gather case they depend also on the wélue
Imax itself, requiring an iterative search to find eagh before starting the KS. Second, it is easy to
check (by calling_syncthreads or() at the top of the KF) if all input intensities@block are zero
and, if so, stop the execution of the block te fug space for other blocks on the SM. To avoid
similar redundant calculation with the gather appig a conditional statement would have to be

evaluated at every iteration of the innermost loop.

Conclusion

We have shown that using a scatter-based appra#ioér than a conventional, gather-based one
results in significantly better performance for aussian KS on modern GPUs. The improvement in
performance was partly achieved through the uselatile shared memory and warp-synchronous
programming, both sometimes labelled as poor progriag practices. Yet, the associated
performance increase in certain cases, as illestiatre, makes these techniques worth considering.

Based on our results and the widespread use ofstaausnd other separable kernels, we anticipate

16

that multi-dimensional KS employed in a range efds could benefit considerably in terms of

execution time from a scatter-based GPU implemiemtat

Acknowledgements
We would like to thank Victor da Silva for help Wwitinalising the figures. This research was funded
by the European Commission Seventh Framework P&uplgramme through the ENTERVISION

project, grant agreement number 264552. Dr Jefumded in part by Cancer Research UK.

Glossary

coalesced memory access memory access where ctivsdbreads access consecutive
global GPU memory

global [GPU] memory the main GPU random-access mgniypically between 1 and 12
GiB

kernel function (KF) a function that executes on @GPU

kernel superposition (KS) a convolution with spitimarying kernel or point spread
function

L1 cache the highest level cache, non-coherentaadito each SM.
Occupies the same space as the shared memory.

L2 cache second level cache, fully coherent andajlo

occupancy the number of threads simultaneousldiresbn an SM as a
percentage of the maximum. Occupancy is limitethigynumber
of registers per thread and the amount of sharedamneper thread
block for each KF. High occupancy can help hidedtfects of
low latency.

shared memory low-latency memory that can be aeddsgall threads within the

same thread block. Occupies the same space a4 tteche and is
divided between blocks executing on the same SM.

streaming multiprocessor (SM) group of cores onGR&J sharing the same resources, i.e. shared
memory/L1 cache and registers. Consists of 32 @o4&s on the
Fermi architecture and 192 cores on the Kepleritatare.

texture memory physically the same as the globahomg but is read through its
own cache. Optimised for spatial locality and suppg linear
interpolation in hardware.

thread block group of threads that share the s&ared memory. Consists of
one or more warps.
warp group of threads executing in lock-step actiag single

instruction, multiple data machine. The warp cassié 32 threads
on both the Fermi and Kepler architectures.

17

Algorithm 1. Pseudocode outlining the gather (left) and scétigit) implementations of the KS
operation from a thread perspecti¥eandY indicate the global thread indices in taeandy-
directions, respectively, for the current threadriel(, o) is the evaluation of the kernel, in our

example a Gaussian as given in Equation 4.

Input: imageM, M]
Input: sigma M, M]
Output: resultM+2*r s, M+2%r 15.]

GatherApproach(image, sigma, result) ScatterApgraage, sigma, result)

1:res0 1:im—imagelX, Y]

2:for y=—rma, tO Ias 2: o<—sigmalX, Y]

3: for X=—rma tO 'may 3 K[rmaxt1]

4: im—image)X+x, Y+y] 4: for d=010 r

5: o—sigmaX+x, Y+y] 5. k[d] <—Kerneld, o)

6: k.—Kernel, o) 6: enc

7: k,—Kernelfy, o) 7:for Yy==ra 1O I'nas

8: res—restim*k*k, 8: ky—k[absf)]

9: end 9: for X=—Tma, 1O I'mas

10:end 10: ke—k[abs)]

11: resultK, Y] «res 11: resuliX+x, Y+y] « resultX+x, Y+y]+im*k*k,
12: end
13:end

Table 1.Overview of GPUs used for benchmarking.

Max shared
Core clock mem./SM Global
Name Arch. # cores [MHZ] # cores/SM [KiB] mem. cache
Quadro 1000M Fermi 96 1400 48 48 L1
Geforce GTX 580 Fermi 512 1544 32 48 L1
Quadro K1100M Kepler 384 705 192 48 L2
Geforce GTX 680 Kepler 1536 1006 192 48 L2
Geforce GTX 760 Kepler 1152 980 192 48 L2

18

Table 2. Relative speedups between different groups ofémphtations. The upper right triangle
corresponds to the Geforce GTX 580 and shows thedyp of columns relative to rows. The lower

left triangle corresponds to the Geforce GTX 680 simows the speedups of rows relative to columns.

GTX Warp-sync
580 Naive gather 1D gather 2D gather Safe scatter SCFE)l.'[th‘
GTX 680
Naive gathe 1.0-1.1x 1.5-2.2x 4.8-11.9x 4.8-28.5x
1D gather | 1.2-2.2x 1.5-2.0x 4.3-11.0x 4.4-26.2X
2D gather | 1.9-3.9x 1.5-1.9x 2.1-6.7x 2.1-14.5x
Safe scattenn 3.2-10.3x 1.5-7.4x 0.9-4.7x 1.0-2.8x
Warp-sync| 37 158« 2.4-85x 1.3-49x 1.0-3.4x
scatter

Table 3.Relative calculation times for the different grewgf implementations as compared with the
fastest scatter implementation on each GPU. Tlaivelcalculation time for the single-threaded

implementation on the i7-3770K CPU is also showrefach GPU.

Naive Warp-sync CPU
1D gather 2D gather Safe scatter b-sy (single-
gather scatter
threaded)

Quadro . _ _ . .
1000M 4.3-25.4 4.1-215 2.3-134 1.1-3.2 1.0 13.6-39.4
Geforce
GTX 580 4.8-28.5 4.4-26.2 2.1-145 1.0-2.8 1.0 132-285
Quadro - . _ . _
K1100M 4.0-17.2 2.5-8.7 1.2-5.0 1.0-3.3 1.0 12.8-57.7
Geforce
GTX 680 3.7-16.8 3.2-10.3 1.9-3.9 1.2-2.2 1.0 76.4-294
Geforce
GTX 760 3.6-17.2 2.3-8.5 1.2-4.9 1.0-34 1.0 61.2-216

19

Gather Scatter A7 input and kernel parameter

y. 7 L / B read bloc
Wl ol ol o /S /=‘= -/ , /:)hutpu(:blk

s f= Lo / i — tile

- == warp
X))) Memory access, highlighted thread:

-

/) ‘- R —> current step
: T : : / /;I \& { S — steps in current row
: i i / /4 l{“ ‘:‘ / 7 ¢ » steps in other rows
/{ v /v/ /v/ / a /7 Memory access, other threads in warp:
L / A » current step

5
o

Figure 1. Overview of the gather (left) and scatter (rigippproaches for a KF with.,,=1 and block
size 4x2 (=b=4,1,~=b,=2). For illustrative purposes each warp is assutb@bnsist of only four
threads.

Gather, Geforce GTX 580 Gather, Geforce GTX 680
Trrrr{rrrr[rrrrrrrrrrrr1rryg Frr T rrrrrrrrrrrrrrrrr Iy
10°F 10%F ;
o ‘o
£ E
£ £
= 10" = 10" 3
cC F c
9 [ke
§ - ——Naive § —4—Naive
m 10O__ : —¥—1D texture| u>j 100 vy —v—1D texture|-
/ 2D texture|] 2D texture|3
3 —<—1D global | i —<—1D global |]
—»—2D global | 5 —»—2D global |
- 1D shared R 1D shared
10 E i e 0 R e T
0 5 10 15 20 25 30 0 5 10 15 20 25 30
rmax rmax

Figure 2. Execution times for the gather implementationgdiferentr ., on the Geforce GTX 580
(left) and GTX 680 (right). Only the data points the best-performing combination tfb, and
number of shared memory arrays are shown for eaplementation. Note the logarithmic scale on

they-axes.

20

L | LI e L | T T
102 102 F -
i 0
E, E
g 10'F g10'F E
< =
5] el
=] 5
3 10°F — 1 8 10°F —
5 E —4—Global atomics |3 5 F —4—Global atomics |3
—¥—Shared atomics| —v—Shared atomics|]
Explicit sync Explicit sync
4 —<—Threadfence 1 —<&—Threadfence
10 —>—\olatile 3 107 E —>—\Volatile 3
1 PR R A T T T L 1 ol oo o b o o o g a1 a7

Scatter, Geforce GTX 580
L L I LA L

O rrm

5 10 15 20 25 30

max

Scatter, Geforce
——

GTX 680
T

15 20 25 30

Figure 3. Execution times for the scatter implementatiomgdiftierentr ., on the Geforce GTX 580

(left) and GTX 680 (right). Only the data points the best-performing combination tpfandb, are

shown for each implementation.

Volatile scatter, all GPUs

LA | LI | T L L L
102 o
o vy 1
)
E 10"k
° E
£
5
g oL £
g 10°E 4
m s —4—Quadro 1000M]
[—v—Geforce GTX 580|]
Quadro K1100M
A —<—Geforce GTX 680
107 E —>—Geforce GTX 7603
R T T T T R A A R T
0 5 10 15 20 25 30
rmax

Figure 4. Comparison of the execution times for the volatéesion of the scatter approach on all

GPUs used. Curves corresponding to GPUs of the aachéecture have the same shape but appear

shifted along the y-axis.

21

(.

max

30

25

20

15

10

(¢}

Preferred configurations, Geforce GTX 580
Gather
0 arrays

abcdef

Preferred configurations, Geforce GTX 680
Gather Gather Gather Gather Scatter
Oarrays 1array 2arrays # arrays

30

25

20

15
10
abcdef abcdef abcdef abcdef

Gather Gather Gather Scatter

1array 2arrays # arrays

- Naive

- 1D texture

: 2D texture

: 1D global

: 2D global

: 1D shared

: Global atomics

: Shared atomics

: Explicit sync

: Threadfence 3
- Volatile <
by=t,~8

b,=8, t,=16
by=t,~=16

b,=8, t,=32
b,=16, t,=32

0 arrays

1 array

2 arrays

a
b
c
d
e
f
g
h
i
j
k
N
R
=:
O:
:
N
-
O:

abcdef abcdef abcdef ghijk

ghijk

Figure 5. The preferred configurations fby andt, for all implementations and the preferred number
of shared memory arrays for the gather implemesnaton the Geforce GTX 580 (left) and GTX 680

(right) for different values of .

Grouped, Geforce GTX 580 Grouped, Geforce GTX 680
Trrrrrrrrrrrrrrrrr o Trrrrfrrrrrrrrrrr T
10%F 10%E -
@ @
E E
(V] 1E V] Tk e
£ 10 £ 10 E
C C
Kel kel
3. 3
3 10°F —4—Naive gather L% 10°F —4—Naive gather
—¥—1D gather —¥—1D gather
2D gather 2D gather
A —<—Safe scatter i —<—Safe scatter
10 E ——\Warp-sync scatter|3 10 ——\Warp-sync scatter|3
[PR I T T T T A N T R T T T TR B R T T
0 5 10 15 20 25 30 0 5 10 15 20 25 30
r r

max max

Figure 6. Execution times for the best-performing impleméaotes in the different groups of gather
and scatter implementations on the Geforce GTX(E86 and GTX 680 (right). Dashed lines show
execution times for instantiations correspondinthtr ., indicated on the-axis, solid lines show

the fastest execution time for instantiations cgpomding ta ma.x equal to or greater than the indicated

value on the-axis.

22

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

Ahnesjo A. Collapsed cone convolution of radianergy for photon dose calculation in
heterogeneous media. Medical Physics 1989;16:577-92

Hong L, Goitein M, Bucciolini M, Comiskey R, @G&schalk B, Rosenthal S, et al. A pencil beam
algorithm for proton dose calculations. PhysicMedicine and Biology 1996;41:1305-30.

Ng J, Prager R, Kingsbury N, Treece G, Gee Adkling ultrasound imaging as a linear, shift-
variant system. Ultrasonics, Ferroelectrics, aretjiiency Control, IEEE Transactions on
2006;53:549-63.

Lauritsch G, Tam K, Sourbelle K. Solution tetlong object problem by convolutions with
spatially variant 1-D Hilbert transforms in spicane-beam computed tomography. Nuclear
Science Symposium Conference Record, 2000 IEEE2y@000, p. 116-20.

Kachelriess M, Watzke O, Kalender WA. Generdiznulti-dimensional adaptive filtering for
conventional and spiral single-slice, multi-slieed cone-beam CT. Medical Physics
2001,28:475-90.

Wiant D, Gersh J, Bennett M, Bourland J. Evélwaof the spatial dependence of the point
spread function in 2D PET image reconstructiong&i®@R-OSEM. Medical Physics
2010;37:1169-82.

Bitlis B, Jansson PA, Allebach JP. Parametompspread function modeling and reduction of
stray light effects in digital still cameras. Elextic Imaging 2007, 2007, p. 64980V-64980V.

Lam EY. Image restoration in digital photogrgp&onsumer Electronics, IEEE Transactions
on 2003;49:269-74.

Cobb ML, Hertz PL, Whaley RO, Hoffman EA. Spaaiant point-spread-function
deconvolution of Hubble imagery using the Connectiachine. SPIE’s 1993 International
Symposium on Optics, Imaging, and Instrumentatl®93, p. 202-8.

Alard C. Image subtraction using a space-vayernel. Astronomy and Astrophysics
Supplement Series 2000;144:363-70.

Shaevitz JW, Fletcher DA. Enhanced three-dsi@mal deconvolution microscopy using a
measured depth-varying point-spread function. Jdwhthe Optical Society of America A
2007;24:2622-7.

Al Umairy SA, Van Amesfoort AS, Setija ID, Vaeurden MC, Sips HJ. On the use of small
2d convolutions on gpus. Computer Architecture, 2@l 52—64.

Fialka O, Cadik M. FFT and convolution perf@ante in image filtering on GPU. Information
Visualization, 2006. IV 2006. Tenth Internationadr@erence on, 2006, p. 609-14.

Terriberry TB, French LM, Helmsen J. GPU aecating speeded-up robust features.
Proceedings of 3DPVT, vol. 8, 2008, p. 355-62.

Podlozhnyuk V. Image convolution with CUDA. NMA Corporation 2007.

23

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

Angel E, Jain AK. Restoration of images degathy spatially varying pointspread functions by
a conjugate gradient method. Applied Optics 1972136—90.

Nagy JG, O’leary DP. Fast iterative image oemgtion with a spatially varying PSF. Optical
Science, Engineering and Instrumentation’97, 199388-99.

Sawchuk AA. Space-variant image motion degtiadeaand restoration. Proceedings of the
IEEE 1972;60:854—-61.

Tan S, Dale JL, Johnston A. Performance ade¢tmecursive algorithms for fast space-variant
Gaussian filtering. Real-Time Imaging 2003;9:215-28

Pratx G, Xing L. GPU computing in medical plogs a review. Medical Physics 2011;38:2685—
97.

Sriram V, Kearney D. A FPGA implementationvairiable kernel convolution. Parallel and
Distributed Computing, Applications and Technolagi2007. PDCAT’07. Eighth International
Conference on, 2007, p. 105-10.

Wang Z, Han G, Li T, Liang Z. Speedup OS-EMage reconstruction by PC graphics card
technologies for quantitative SPECT with varyingdblength fan-beam collimation. Nuclear
Science, IEEE Transactions on 2005;52:1274-80.

Cui J, Pratx G, Prevrhal S, Zhang B, Shaodyih CS. Measurement-based spatially-varying
point spread function for list-mode PET reconsinrcbn GPU. Nuclear Science Symposium
and Medical Imaging Conference (NSS/MIC), 2011 IEEELL, p. 2593-6.

Gomersall H, Hodgson D, Prager R, KingsburyTkgece G, Gee A. Efficient implementation
of spatially-varying 3-D ultrasound deconvolutidfitrasonics, Ferroelectrics and Frequency
Control, IEEE Transactions on 2011;58:234-8.

Hartung S, Shukla H, Miller JP, PennypackeGPU acceleration of image convolution using
spatially-varying kernel. Image Processing (ICE)12 19th IEEE International Conference on,
2012, p. 1685-8.

Fujimoto R, Kurihara T, Nagamine Y. GPU-badast pencil beam algorithm for proton
therapy. Physics in Medicine and Biology 2011;569-38.

J. Da Silva, R. Ansorge, R. Jena, Sub-secamtipbeam dose calculation on GPU for adaptive
proton therapy, Physics in Medicine and Biology 260:4777-4795.

Lee VW, Kim C, Chhugani J, Deisher M, Kim Dgtlyen AD, et al. Debunking the 100X GPU

vs. CPU myth: an evaluation of throughput computngCPU and GPU. ACM SIGARCH
Computer Architecture News, vol. 38, 2010, p. 4516

24

