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Federico Sillaa

aDepartment of Computer Engineering,
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Abstract

Graphics Processing Units (GPUs) are becoming popular accelerators in

modern High-Performance Computing (HPC) clusters. Installing GPUs on each

node of the cluster is not efficient resulting in high costs and power consumption

as well as underutilisation of the accelerator. The research reported in this paper

is motivated towards the use of few physical GPUs by providing cluster nodes

access to remote GPUs on-demand for a financial risk application. We hypoth-

esise that sharing GPUs between several nodes, referred to as multi-tenancy,

reduces the execution time and energy consumed by an application. Two data

transfer modes between the CPU and the GPUs, namely concurrent and sequen-

tial, are explored. The key result from the experiments is that multi-tenancy

with few physical GPUs using sequential data transfers lowers the execution

time and the energy consumed, thereby improving the overall performance of

the application.
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1. Introduction1

Hardware accelerators are achieving a prominent role in modern High-Performance2

Computing (HPC) clusters for making applications faster. This is evidenced by3

four out of top ten supercomputers listed on Top500 (http://top500.org) and4

the top ten supercomputers listed on Green500 (http://www.green500.org) in5

November 2015 have employed hardware accelerators, such as Graphics Process-6

ing Units (GPU). Incorporating GPUs in large clusters allows for heterogeneity,7

thus making it possible for an application to exploit the regular processor as8

well as the accelerator [1, 2].9

Clusters can now be set up to employ a small number of GPUs by provid-10

ing applications shared access to remote GPUs on-demand [3, 4]. Such a set11

up is feasible on a limited budget because not only are a few GPUs used to12

provide acceleration, but also the energy consumed is well justified since the13

GPUs are well utilised in the cluster [5, 6]. This is possible as a result of ma-14

turing GPU virtualisation technologies that facilitate virtual GPUs (vGPUs) in15

a cluster. An application can request Acceleration-as-a-Service[7] from one or16

many vGPUs. One vGPU can reside on a physical GPU (pGPU), referred to17

as single tenancy, but is limiting in that multiple applications cannot make use18

of the same pGPU since it is exclusively locked for a single application. When19

multiple vGPUs reside on the same pGPU, otherwise known as multi-tenancy,20

either the same application has access to a pool of vGPUs on the same pGPU21

or multiple applications can share the same pGPU. We hypothesise that using22

multi-tenancy can improve the performance of an application.23

Numerous challenges arise when multiple GPUs are shared across a cluster24

for an application, of which three are considered in this paper. The challenges25

are addressed in this paper by exploring remote CUDA (rCUDA) [8], a GPU26

virtualisation framework, for improving the performance of a real-world case27

study employed in the financial industry. The application typically runs in a28

cluster environment, but can hugely benefit from GPU acceleration for deriving29

important risk metrics in real-time. The benefit of executing the application30
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Figure 1: Execution time of the financial application on multiple local GPUs

on multiple physical GPUs is shown in Figure 1. We hypothesise that using a31

large number of vGPUs can further optimise application performance. However,32

the following three challenges and research questions arise, which are addressed33

in this paper: (i) Data will need to be transferred from the CPU to the vG-34

PUs for computations. However, data transfer will be restricted by bottlenecks35

due to limited bandwidth which affects the overall scalability of the applica-36

tion. Hence, “What data transfer approaches can mitigate the effect of data37

bottlenecks?” (ii) Multi-tenancy may degrade application performance since38

the underlying hardware resource is shared. This results in increased execution39

time and consequently higher energy consumption. Hence, “How can vGPUs be40

shared effectively to optimise application performance and energy consumed?”41

(iii) Using multi-tenancy an application can be deployed in multiple ways. For42

example, an application can be executed on 2 vGPUs residing on 1 pGPU or 843

vGPUs residing on 1 pGPU. These possibilities significantly increase with mul-44

tiple pGPUs. Each deployment option consumes different amounts of energy45

and impacts the overall execution time. Hence, “Can performance and energy46

of an application be estimated in the multi-tenancy approach?”47

To address the above challenges we propose two data transfer approaches,48

namely concurrent and sequential, for transferring data with the aim of mitigat-49

ing the effect of data bottlenecks. In the context of the financial application, the50
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sequential data transfer approach is expected to improve performance since data51

transfers from the CPU to the GPU and GPU computations can be overlapped52

for multiple pGPUs. The approach is further extended for overlapping the data53

movement and computation time for multiple vGPUs on the same pGPU result-54

ing in a further improvement in performance of the application. The key result55

is that the financial application can be executed under two seconds for deriving56

risk metrics in an energy efficient manner on the same hardware compared to57

single tenancy thus confirming our initial hypothesis. Performance and energy58

consumed by the application are modelled to determine the combination of vG-59

PUs on a pGPU that can maximise performance and GPU utilisation and at60

the same time minimise the energy consumed.61

The key contributions of this research are: (i) investigating the lack of scala-62

bility due to data transfer from CPU to the GPU in the context of the financial63

risk application, (ii) proposing two approaches to transfer data, namely concur-64

rent and sequential, (iii) evaluating the above data transfer approaches in the65

context of single-tenancy for overlapping computations and data transfer of mul-66

tiple pGPUs, (iv) developing an approach that exploits multi-tenancy for over-67

lapping computations and data transfer of multiple virtual GPUs on the same68

physical GPU to optimise the performance of the application, (v) evaluating the69

performance of the application, considering execution time, GPU utilisation and70

energy consumed by the application, and (vi) developing a mathematical model71

to derive deployment options for the application by estimating performance and72

energy of different combinations of virtual GPUs mapped onto physical GPUs.73

The remainder of this paper is organised as follows. Section 2 highlights re-74

lated work in the area of HPC solutions for GPU virtualisation and financial risk75

applications. Section 3 briefly presents the rCUDA framework. Section 4 con-76

siders a financial risk application for evaluating the feasibility of multi-tenancy77

for improving performance. Section 5 presents the platform, experiments per-78

formed and the key results obtained. Section 6 concludes this paper.79
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2. Related Work80

High Performance Computing (HPC) solutions are exploited in the financial81

risk industry to accelerate the underlying computations of applications. This82

reduces overall execution times making such applications fit for real-time use.83

Solutions range from small scale clusters [9, 10] to large supercomputers [11, 12].84

More recently, hardware accelerators with multi-core and many-core processors85

are employed. For example, financial risk applications are accelerated on Cell86

BE processors [13, 14], FPGAs [15, 16] and GPUs [17, 18].87

HPC clusters offering heterogeneous solutions by using hardware accelera-88

tors, such as GPUs, along with processors on nodes are feasible [1, 2]. Clusters89

can be set up to incorporate a GPU on each node. This is not an efficient solu-90

tion for accelerating an application because of the relatively high cost of GPUs,91

high power consumption of nodes using GPUs and the under utilisation of GPUs92

(applications do not require acceleration of GPUs during their entire execution).93

However, a more efficient solution would be if nodes executing an application94

can access GPUs when required. This can be facilitated by GPU virtualisation.95

Currently there are no solutions available for the financial risk industry to har-96

ness the potential of GPU virtualisation. In this paper, we investigate the use97

of virtual GPUs for a financial risk application.98

The mechanism of GPU virtualisation allows nodes of a cluster that do not99

own a physical GPU for accelerating computations of applications that run on100

it to remotely access GPUs. Acceleration is obtained as a service seamlessly101

to a requesting node without being aware of accessing remote GPUs. A single102

application (running on a Virtual Machine (VM) or on a node of a cluster103

without a hardware accelerator) benefits from the acceleration of a remotely104

located single GPU or multiple GPUs to reduce execution time. The rate of105

GPU utilisation can be increased since multiple applications can access the same106

GPU. This in turn reduces the number of GPUs that need to be installed in107

a cluster, and reduces the cost spent on energy consumption, cooling, physical108

space and maintenance, usually referred to as the Total Cost of Ownership109
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(TCO). Furthermore, the source code of an application usually does not need110

any modification to reap the benefits of virtual GPUs.111

GPU virtualisation is usually applied at the high-level Application Program-112

ming Interface (API) of GPUs because low level protocols used to interact with113

accelerators are proprietary and, additionally, not publicly available. Hence,114

APIs such as CUDA [19] or OpenCL [20] are used. In this paper we use CUDA115

(Compute Unified Device Architecture) for an application that is used in the116

financial risk industry.117

There are several remote GPU virtualization frameworks supporting CUDA.118

GridCuda [21] supports CUDA 3.2, although it is not publicly available. vCUDA [22]119

supports the CUDA 3.2 and implements an unspecified subset of the CUDA120

runtime API. The communication protocol between the node that executes the121

application and the remote GPU has a considerable overhead, because of the122

costs incurred during encoding and decoding, which results in a noticeable drop123

of overall performance. GViM [23] is based on CUDA 1.1 and does not imple-124

ment the entire runtime API. Furthermore, GViM is designed to be used on125

VMs so that applications executed on them can access GPUs located in the126

real host; GViM does not support the access of GPUs in remote nodes. gVir-127

tuS [24] supports CUDA 2.3 an again implements only a small portion of the128

runtime API. For example, in the case of the memory management module, it129

implements only 17 out of the 37 available functions. Although it is intended130

mainly to be used by VMs for accessing real GPUs located in the same node, it131

facilitates TCP/IP communications between clients and servers, thus allowing132

the access to GPUs located in other nodes. DS-CUDA [25] supports CUDA 4.1133

and includes specific communication support for InfiniBand Verbs, thus reduc-134

ing the overhead of communications between the node executing the application135

and the node owning the GPU. However, DS-CUDA is limited in that it does not136

allow data transfers with pinned memory and supports maximum data transfer137

of 32 MB.138

The rCUDA framework [8] is binary compatible with CUDA 6.5 and im-139

plements the entire CUDA Runtime and Driver APIs (with the exception of140
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graphics functions). It provides support for the libraries included within CUDA,141

such as cuBLAS or cuFFT. In addition, a number of underlying interconnection142

technologies are supported by making use of a set of runtime-loadable, network-143

specific communication modules (currently TCP/IP and InfiniBand). Concur-144

rent virtualization services are made available to remote clients simultaneously145

demanding GPU acceleration by managing an independent GPU context for146

each client. rCUDA performs better than other publicly available GPU virtu-147

alisation frameworks (considered in Section 3) and is therefore chosen for this148

research.149

3. rCUDA150

The rCUDA framework, otherwise referred to as remote CUDA, is used in the151

research presented in this paper. As shown in Figure 2, the rCUDA framework is152

a client-server architecture. Numerous Clients executing applications that can153

benefit from hardware acceleration can concurrently access Servers that have154

physical GPUs on them. The client makes use of the remote GPU to accelerate155

part of the software code of the application, referred to as kernel, running on it.156

The framework transparently handles the data management and the execution157

management; the transfer of data between the local memory of the client, the158

local memory of the server and the GPU memory, and the remote execution of159

the kernel.160

Figure 3 shows the hardware and software stack of the client and the rCUDA161

Figure 2: Distributed acceleration architecture facilitated by rCUDA
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server. The client nodes that execute the application (shown in Figure 2), make162

use of the rCUDA Client Library, which is a wrapper around the CUDA Runtime163

and Driver APIs. The library is responsible for (i) intercepting calls made by164

the application to a CUDA device, (ii) processing them for forwarding the calls165

to the remote rCUDA server, and (iii) retrieving the results of the calls from the166

rCUDA server. On the other hand, each GPU server has an rCUDA daemon167

running on it which receives CUDA requests and executes them on the physical168

GPU.169

Figure 3: rCUDA client and server software/hardware stack

An efficient communication protocol is developed for seamless execution be-170

tween rCUDA clients and servers. This protocol, using either regular TCP/IP171

sockets or the InfiniBand Verbs API when this high performance interconnect is172

available in the cluster, is designed to provide lightweight support to the remote173

CUDA operations provided by the external accelerator. The CUDA commands174

intercepted by the rCUDA client wrapper are encapsulated into messages in175

the form of one or more packets that travel across the network towards the176

rCUDA server. The format of the messages depends on the specific CUDA177

command transported. In general, the messages have low network overheads.178

Every CUDA command forwarded to the remote GPU server is followed by179

8



a response message, which acknowledges the success/failure of the operation180

requested on the remote server.181

Figure 4 shows an example of the communication between the rCUDA client182

and the rCUDA daemon executing on the remote server. In this example, the183

following steps occur:184

Step 1 - Initialise: The client establishes connection with the remote server185

automatically, and the request for acceleration services is intercepted and the186

GPU kernel along with related information such as statically allocated variables187

are sent to the server.188

Step 2 - Allocate Memory : Based on the client request device memory is al-189

located on the GPU for data that will be required by the GPU kernel. The190

cudaMalloc requests are intercepted by the client and forwarded to the remote191

server.192

Step 3 - Transfer Data to Device: All data required by the kernel is transferred193

from the host to the remote device.194

Step 4 - Execute Kernel : The GPU kernel is executed remotely on the rCUDA195

server.196

Step 5 - Transfer Data to Host : After the execution of the kernel on the remote197

server the data is transmitted back to the host.198

Step 6 - Release Memory : The memory allocated on the remote device is re-199

leased.200

Step 7 - Quit : In this final step the client application stops communicating with201

the remote server. The rCUDA daemon executing on the server stops servicing202

the execution and releases the resources associated with the execution.203

Figure 5 compares the performance of publicly available GPU virtualisation204

frameworks, namely DS-CUDA, gVirtuS and rCUDA by using the bandwidthTest205

benchmark from the NVIDIA CUDA Samples [26]. Our choice of selecting206
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Figure 4: Communication sequence between a client and the rCUDA server daemon

rCUDA for this research is based on its superior performance over other frame-207

works as shown in the figure. The performance of CUDA 6.5 is used as the208

baseline reference. Bandwidth is used as a measure for comparing performance209

since it is a limiting factor for data transfers between host (CPU) memory and210

device (GPU) memory (data size can be in the order of MB) and affects the211
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(a) Host pinned memory to device memory (b) Device memory to host pinned memory

(c) Host pageable memory to device memory (d) Device memory to host pageable memory

Figure 5: Comparison of bandwidth for pinned memory and pageable memory of rCUDA,

DS-CUDA and gVirtuS using CUDA as a baseline reference (DS-CUDA does not support

pinned memory)

performance of the virtualisation frameworks. Other metrics such as latency212

are less relevant in this context.213

The test-bed employed for carrying out the bandwidth performance exper-214

iments is presented later in Section 5.1. Virtual Machine (VMs) were not em-215

ployed to simplify the experiments. The bandwidth test was run on a native216

domain and the server side of the virtualisation framework used was executed in217

a remote node. The InfiniBand FDR network technology was used to connect218

both nodes. The rCUDA and DS-CUDA frameworks made use of the InfiniBand219

Verbs API and gVirtuS made use of TCP/IP over InfiniBand since it cannot220

take advantage of the InfiniBand Verbs API.221

The three virtualisation frameworks support different versions of CUDA222
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which had to be used for obtaining the bandwidth benchmarks. DS-CUDA223

is compatible with CUDA 4.1, gVirtuS supports CUDA 2.3 and rCUDA sup-224

ports CUDA 6.5. In our experience, employing different CUDA versions has225

minimal impact on bandwidth performance and therefore no additional noise226

was introduced by using different versions.227

The following observations are made from Figure 4. Firstly, CUDA achieves228

highest performance when pinned memory is used (refer Figure 5a and Fig-229

ure 5b), achieving nearly a bandwidth of 6000 MB/s. The bandwidth is however230

reduced for copies using pageable memory (refer Figure 5c and Figure 5d).231

Secondly, Figure 5 shows that rCUDA outperforms DS-CUDA and gVirtuS.232

For copies using pageable memory rCUDA even performs better than CUDA;233

this has been previously reported, which is due to the use of an efficient pipelined234

communication between rCUDA clients and servers based on the use of internal235

and pre-allocated pinned memory buffers [8]. rCUDA and DS-CUDA support236

InfiniBand Verbs API and therefore have access to large bandwidths which are237

available on this interconnect. However, DS-CUDA has relatively poor perfor-238

mance when compared to rCUDA. Therefore, it is assumed that both frame-239

works manage the InfiniBand interconnect differently. DS-CUDA neither sup-240

ports memory copies larger than 32MB nor pinned memory. The performance241

of gVirtuS is significantly lower than the other frameworks. It may be immedi-242

ately inferred that this is because TCP/IP is used and has a lower bandwidth in243

comparison to InfiniBand Verbs. However, using the iperf tool [27], TCP/IP244

over InfiniBand FDR provides approximately 1190 MB/s, which is a noticeably245

larger bandwidth than the one achieved by gVirtuS. Therefore, the poor per-246

formance of gVirtuS may be due to the inefficient handling of communication.247

4. Financial Risk Application248

A candidate application that can benefit from Acceleration-as-a-Service (AaaS)249

in HPC clusters is investigated in this section. We present such an application250

employed in the financial risk industry, referred to as ‘Aggregate Risk Analy-251
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sis’ [28] for validating the feasibility of our proposed multi-tenancy approach.252

The analysis of financial risk is underpinned by a simulation that is computa-253

tionally intensive. Typically, this analysis is periodically performed on a routine254

basis on production clusters to derive important risk metrics. Such a set up is255

sufficient when the analysis does not need to be performed outside routine.256

Risk metrics will need to be obtained in real-time, such as in an online pricing257

scenario, in addition to routine executions. In such settings, a number of input258

parameters to the analysis will need to be varied to satisfy the customer. This259

generates a large number of requests to execute the analysis multiple times based260

on the complexity of the client’s portfolio. It may not be feasible to furnish all261

these requests generated by single or multiple clients; it will be impossible to262

quickly obtain a large set of resources on an in-house cluster already provisioned263

for executing other routine jobs. Here, GPUs can play an important role in264

furnishing a large number of requests.265

While GPUs can provide a feasible solution, employing a large number of266

GPUs to furnish bursts of requests will be expensive. As considered in Section 1267

virtual GPUs are pragmatic and cost effective to minimise under utilisation. In268

this context, we leverage the acceleration offered by virtual GPUs in an HPC269

cluster to develop a faster application fit for use in real-time settings. The270

rCUDA framework suits such an application because minimal changes need to271

be brought about to the production cluster and the acceleration required for the272

analysis is obtained as a service from a remote host. The analysis has previously273

been investigated in the context of many-core architectures [29], but we believe274

virtual GPUs can be a better option.275

Aggregate risk analysis is performed on a portfolio of risk held by an insurer276

or reinsurer and provides actuaries and decision makers with millions of alter-277

nate views of catastrophic events, such as earthquakes, that can occur and the278

order in which they can occur in a year. To obtain millions of alternate views,279

millions of trials are simulated with each trial comprising a set of possible future280

earthquake events and the probable loss for each trial is estimated.281
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4.1. Input and Output Data282

Three data tables are required for the analysis, which are as follows:283

i. Year Event Table, which is a database of pre-simulated occurrences of284

events from a catalogue of stochastic events that is denoted as Y ET . Each285

record in a Y ET called a ‘trial’, denoted as Ti, represents a possible sequence286

of event occurrences for any given year. The sequence of events is defined by287

an ordered set of tuples containing the ID of an event and the time-stamp of its288

occurrence in that trial Ti = {(Ei,1, ti,1), . . . , (Ei,k, ti,k)}.289

The set is ordered by ascending time-stamp values. A typical Y ET may290

comprise thousands to millions of trials, and each trial may have approximately291

between 800 to 1500 ‘event time-stamp’ pairs, based on a global event catalogue292

covering multiple perils. The representation of the Y ET is shown in Equation 1,293

where i = 1, 2, . . . and k = 1, 2, . . . , 1500.294

Y ET = {Ti = {(Ei,1, ti,1), . . . , (Ei,k, ti,k)}} (1)

ii. Event Loss Tables, which is a representation of collections of specific295

events and their corresponding losses with respect to an exposure set denoted296

as ELT . Each record in an ELT is denoted as ELi = {Ei, li} and the financial297

terms associated with the ELT are represented as a tuple I = (I1, I2, . . . ).298

A typical aggregate analysis may comprise 10,000 ELTs, each containing

10,000-30,000 event losses with exceptions even up to 2,000,000 event losses. The

ELTs can be represented as shown in Equation 2, where i = 1, 2, . . . , 30, 000.

ELT =

 ELi = {Ei, li},

I = (I1, I2, . . . )

 (2)

iii. Portfolio, which is denoted as PF and contains a group of Programs, P299

represented as PF = {P1, P2, . . . , Pn} with n = 1, 2, . . . , 10.300

Each Program in turn covers a set of Layers, denoted as L, cover a collection301

of ELTs under a set of layer terms. A single layer Li is composed of two at-302

tributes. Firstly, the set of ELTs E = {ELT1, ELT2, . . . , ELTj}, and secondly,303

the Layer Terms, denoted as T = (T1, T2, . . . ).304

14



A typical Layer covers approximately 3 to 30 individual ELTs and is repre-

sented as shown in Equation 3, where j = 1, 2, . . . , 30.

L =

 E = {ELT1, ELT2, . . . , ELTj},

T = (T1, T2, . . . )

 (3)

The output of the analysis is a loss value associated with each trial of the305

Y ET . A reinsurer can derive important portfolio risk metrics such as the Prob-306

able Maximum Loss (PML) [30] and the Tail Value-at-Risk (TVaR) [31] which307

are used for both internal risk management and reporting to regulators and308

rating agencies. Furthermore, these metrics flow into a final stage of the risk309

analytics pipeline, namely Enterprise Risk Management, where liability, asset,310

and other forms of risks are combined and correlated to generate an enterprise311

wide view of risk.312

4.2. Algorithm and GPU Implementation313

Given the above three inputs, Aggregate Risk Analysis is shown in Algo-314

rithm 1. The data tables, Y ET , ELT and PF , are loaded into host (CPU)315

memory. The analysis is performed for each Layer and for each Trial in the316

Y ET and a Year Loss Table (Y LT ) is produced. In this paper, we assume a317

Portfolio comprising one Program and one Layer, and therefore the for loops of318

lines 1 and 2 iterate once. If there are N available devices (GPUs), then the319

Y ET is split to N smaller Y ETs, represented as Y ETi, where i = 1, 2, . . . , N .320

There are two functions that facilitate device execution. The first function321

TransferDataToDevice copies Y ETi and the ELT to the device memory as322

shown in Algorithm 2.323

The second function LaunchDeviceKernel executes the function on the de-324

vice as shown in Algorithm 3. Each event of a trial and its corresponding event325

loss in the set of ELTs associated with the Layer is determined. A set of con-326

tractual financial terms (I) are applied to each loss value of the Event-Loss pair327

extracted from an ELT to the benefit of the layer. The event loss for each event328

occurrence in the trial, combined across all ELTs associated with the layer, are329

subject to further financial terms (T ) [28].330
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Algorithm 1: Aggregate Risk Analysis

Input : Y ET , ELT , PF

Output: Y LT

1 for each Program, P , in PF do

2 for each Layer, L, in P do

3 Split Y ET to Y ETi, where i = 1, 2, . . . , N

4 for each i do

5 TransferDataToDevice (i, Y ETi, ELT )

6 LaunchDeviceKernel (i)

7 end

8 end

9 end

10 Populate Y LT from Y LTi, where i = 1, 2, . . . , N

11 return

Two occurrence terms, namely (i) Occurrence Retention, TOccR, which is the331

retention or deductible of the insured for an individual occurrence loss, and (ii)332

Occurrence Limit, TOccL, which is the limit of coverage the insurer will pay for333

occurrence losses in excess of the retention are applied. Occurrence terms are334

applicable to individual event occurrences independent of any other occurrences335

in the trial. The event losses net of occurrence terms are then accumulated into336

a single aggregate loss for the given trial. The occurrence terms are applied as337

lT = min(max(lT − TOccR), TOccL).338

Algorithm 2: TransferDataToDevice Function

Input : i

1 Select device i

2 Copy Y ETi, ELT to device i

3 return

16



Algorithm 3: LaunchDeviceKernel Function

Input : i

Output: Y LTi

1 Select device i

2 for each Trial, T , in Y ETi do

3 for each Event, E, in T do

4 for each ELT covered by L do

5 Lookup E in the ELT and find corresponding loss, lE

6 Apply Financial Terms to lE

7 lT ← lT + lE

8 end

9 Apply Financial Terms to lT

10 end

11 end

12 return

Two aggregate terms, namely (i) Aggregate Retention, TAggR, which is the339

retention or deductible of the insured for an annual cumulative loss, and (ii)340

Aggregate Limit, TAggL, which is the limit or coverage the insurer will pay for341

annual cumulative losses in excess of the aggregate retention are applied. Ag-342

gregate terms are applied to the trial’s aggregate loss for a layer. The aggregate343

loss net of the aggregate terms is referred to as the trial loss or the year loss.344

The aggregate terms are applied as lT = min(max(lT − TAggR), TAggL).345

A single thread is employed for the computations of each trial of the ap-346

plication. ELTs corresponding to a Layer were implemented as direct access347

tables to facilitate fast lookup of losses corresponding to events. Each ELT is348

implemented as an independent table; therefore, in a read cycle, each thread349

independently looks up its events from the ELTs. All threads within a block350

access the same ELT . The device global memory stores all data required for the351

analysis. Chunking, which refers to processing a block of events of fixed size (or352
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chunk size) for the efficient use of shared memory is employed to optimise the353

implementation; the computations related to the events in a trial and for apply-354

ing financial terms benefit from chunking. The financial terms are stored in the355

streaming multi-processor’s constant memory. In this case, chunking reduces356

the number of global memory update and global read operations.357

In this paper, the implementation of fine-grain parallelism in LaunchDeviceKernel358

is not the focus. Instead, the optimisation of performance and efficiency of re-359

source utilisation by managing the two functions, namely TransferDataToDevice360

and LaunchDeviceKernel on virtual GPUs is considered and reported in the361

next section.362

5. Evaluation363

In this section we optimise the performance of the financial risk application364

to reduce its execution time such that real-time response can be achieved. To365

this end we present (i) the hardware platform on which the experiments are366

performed and, (ii) the use of the remote GPU virtualisation framework, and367

(iii) an approach for transferring data from a CPU to GPUs with the aim of368

reducing the execution time.369

5.1. Platform370

The experimental platform employed in this research comprises 1027GR-371

TRF Supermicro nodes. Each node contains two Intel Xeon E5-2620 v2 proces-372

sors, each with six cores, operating at 2.1 GHz and 32 GB of DDR3 SDRAM373

memory at 1600 MHz. Each node has a Mellanox ConnectX-3 VPI single-port374

InfiniBand adapter (InfiniBand FDR) as well as a Mellanox ConnectX-2 VPI375

single-port adapter (InfiniBand QDR). The nodes are connected either by a Mel-376

lanox switch MTS3600 with QDR compatibility (a maximum rate of 40Gb/s)377

or by a Mellanox Switch SX6025, which is compatible with InfiniBand FDR (a378

maximum rate of 56Gb/s). One NVIDIA Tesla K20 GPU is available for accel-379

eration on each node. Additionally, one SYS7047GR-TRF Supermicro server380
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Table 1: Scalability of the financial risk application when executed using CUDA

No. of GPUs

1 GPU 2 GPUs 4 GPUs

Total execution time 10.928 5.53 2.857

Normalised execution time 1 0.506 0.261

Execution time with perfect scalability 10.928 5.464 2.732

Offset with respect to perfect scalability 0 0.066 0.125

% offset with respect to perfect scalability 0 1.2% 4.57%

with identical processors was populated with 4 NVIDIA Tesla K20 GPUs and381

128 GB of DDR3 SDRAM memory at 1600MHz, to serve as a local server for382

the purpose of comparison. The CentOS 6.4 operating system was used, and383

the Mellanox OFED 2.4-1.0.4 (InfiniBand drivers and administrative tools) was384

used at the servers along with CUDA 6.5.385

5.2. Application Scalability386

As presented in Section 1 the use of multiple GPUs reduces the execution387

time of the application by evenly distributing computations across the GPUs388

assigned to the application. However, a closer look at the performance as shown389

in Figure 1 highlights that the scalability of the application as the number of390

GPUs increases is sub-linear. Table 1 is the result of executing the application391

on the Supermicro SYS7047GR-TRF server using CUDA with up to four GPUs.392

The normalised execution time indicates that perfect scalability is not achieved.393

For example, when two GPUs are used the normalised execution time should be394

0.5 instead of 0.506 and similarly when four GPUs are employed 0.25 is expected395

as against 0.261. The offset of execution time with respect to perfect scalability396

as a reference increases with the number of GPUs involved in the computations.397

To account for sub-linear scalability further investigations were carried out.398

The time taken for computations on the GPUs and the time taken for trans-399

ferring data to the GPUs (1, 2, and 4 GPUs) were considered as shown in400
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Figure 6: Computation and data transfer times for the financial risk application when executed

on single and multiple GPUs with CUDA

Figure 6. The GPU computations take most of the execution time of the ap-401

plication (87.39%, 86.25%, and 63.65% of the total application execution time402

when 1, 2, and 4 GPUs are used respectively). The GPU computations scale in a403

perfect manner as the number of GPUs available to the application is increased.404

However, the time taken for data transfer does not scale well and accounts for405

12.6%, 13.74%, and 16.34% of total execution time when 1, 2, and 4 GPUs are406

used, respectively.407

At first glance, it can be assumed that the increase in data transfer time408

may be due to the lower communication bandwidth of CUDA for transfers of409

small chunks of data (refer Figure 5c and Figure 5d). When pageable memory is410

transferred the attained bandwidth for data smaller than 10 MB is significantly411

reduced. Therefore, given that the size of input data transferred to each GPU412

is progressively reduced as the number of GPUs increases, then the input data413

may be smaller than 10 MB and thus the effective bandwidth for moving data414

to the GPUs is reduced in practice. However, in the case of our application the415

initial data size is 4 GB and when this data is shared among four GPUs the416

data transferred to each GPU is larger than 10 MB. Hence, the data transfer to417

the GPUs is performed at full bandwidth.418

A closer look at the application reveals that the Y ET data structure (4 GB)419
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(a) Data transferred to each GPU (b) Total data transferred to all GPUs

Figure 7: Amount of data transferred during the execution of the financial risk application

presented in Section 4 is uniformly split between the GPUs for computations.420

However, the ELTs and PF data structures (120 MB and 4 MB) are not split421

between the GPUs, instead are transferred fully to each GPU. Consequently, the422

total data movement to GPUs increases which is shown in Figure 7. Excluding423

the ELTs, the data that is not split between the GPUs is less than 10 MB424

resulting in a lower bandwidth for transferring this data requiring an additional425

2.6 milliseconds. However, this cannot fully account for sub-linear performance.426

One important reason for the degradation of performance is data transfers427

to all GPUs are concurrently performed. Although each GPU is located in a428

different PCIe link, all data is extracted from main memory, which results in a429

bottleneck. This memory bottleneck is highlighted in Figure 8, which shows the430

bandwidth attained for each individual data copy when several data transfers431

are carried out concurrently to different destination GPUs by a single memory432

controller.433

We summarise that for the financial risk application executing on multiple434

GPUs data transfers do not scale perfectly as the computations for two reasons.435

Firstly, there are input data structures that cannot be split between the GPUs436

and need to be copied onto each GPU creating an overhead. Secondly, concur-437

rent data transfers from the CPU main memory to GPUs result in a bottleneck438

at the memory controller.439
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Figure 8: Attained bandwidth when concurrent data transfers to GPUs are performed. Source

data is located in the same memory bank.

5.3. Reducing Execution Time Using rCUDA440

Current servers are constrained in the number of GPUs that can be accom-441

modated on them1. We believe remote GPU virtualisation (in this research442

rCUDA is employed) is an appropriate mechanism to make a large number of443

GPUs available to an application. Figure 9a and Figure 9b present the perfor-444

mance of the application using the QDR InfiniBand and the FDR InfiniBand445

networks respectively for up to 16 GPUs.446

Figure 9 indicates that the computation times when using rCUDA on 1, 2,447

and 4 GPUs are the same as shown in Figure 6 using CUDA. This is expected448

given that the computation time on the GPU is independent of whether it is449

on the same node as the application or on a remote node. With increasing450

number of GPUs there is perfect scalability. When 16 GPUs are employed, the451

computation time is less than one second (0.62 seconds) making it possible to452

do an industry size simulation in real-time.453

1Manufacturers, such as Cirrascale and Supermicro, have integrated up to 8 GPU cards

in a single server. However, these are exceptions and costly options. Moreover, there are

performance bottlenecks since the GPUs are usually grouped as a set of four cards that share

a single PCIe x16 link with a processor socket. This results in slower communication between

main memory and the GPUs. Performance is further degraded when a GPU card comprises

multiple devices.
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(a) On QDR InfiniBand (b) On FDR InfiniBand

Figure 9: Scalability of the financial risk application when executed with rCUDA.

Two observations are made regarding data transfers. Firstly, when one re-454

mote GPU is used, the data transfer time using rCUDA is better than using455

CUDA (CUDA requires 1.378 seconds whereas rCUDA takes 1.23 seconds with456

QDR InfiniBand and 0.68 seconds with FDR InfiniBand). This lower transfer457

time as considered in Figure 5c is because rCUDA obtains more bandwidth458

than CUDA by using pageable memory. The improvement of communication459

performance is seen in Figure 9b for 2 GPUs.460

Secondly, data transfer using rCUDA follows a different trend to CUDA. For461

CUDA the data transfer times to each GPU reduced as the number of GPUs462

increased (refer Figure 6). On the contrary, rCUDA time increases when both463

QDR and FDR InfiniBand are used. This is not surprising since the reasons for464

sub-linear scalability of data transfer time considered in the previous section is465

applicable for rCUDA. In this case, the bandwidth bottleneck is the InfiniBand466

card in the cluster node executing the application, which is a single communi-467

cation link for all the GPUs. This bottleneck is highlighted in Figure 10.468
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(a) On QDR InfiniBand
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Figure 10: Bandwidth attained for multiple data transfers concurrently to different remote

GPUs using rCUDA.

Figure 10 shows the bandwidth achieved for individual data transfer to a469

different remote GPU when multiple transfers are executed concurrently. The470

bandwidth for each transfer is proportional to the number of data movement471

operations in progress. In addition to the previous observations that result in472

an increase of data transfer times, there are a large number of cudaMalloc()473

functions that are invoked prior to the data transfer (the memory allocation474

time is included in the data transfer time). In rCUDA, memory allocations for475

a large number of data structures on remote GPUs requires 2.7 milliseconds with476

FDR InfiniBand (compared to 1.7 milliseconds in CUDA on a local GPU) and477

2.67 milliseconds with QDR InfiniBand (lower time due to low latency, despite478

reduced bandwidth [32]). Therefore, when a large number of GPUs are used479

by an application the time required for memory allocations can increase up to480

43.2 milliseconds for 16 remote GPUs; this is 4.2% of the total data transfer481

time.482

The use of rCUDA allows to leverage a large number of GPUs to speed up483

the application despite poor performance for data transfers. The total execution484

time is reduced from 2.86 seconds when using local GPUs on CUDA to 1.66485

seconds when using remote GPUs on rCUDA. Reducing the total execution486

time enables the application to provide a solution in real-time.487
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Figure 11: Communication approaches for transferring data to GPUs.

5.4. Mitigating the Impact of Data Transfers in rCUDA488

In this section, we consider two data transfer modes, namely concurrent and489

sequential, and further develop an approach based on multi-tenant GPUs in490

rCUDA.491

5.4.1. Concurrent vs Sequential Data Transfers492

Figure 11a shows the life cycle of execution of a real application using rCUDA493

with four remote GPUs and FDR InfiniBand. Each cell represents execution494

time of 35 milliseconds. This corresponds to the four GPU execution shown in495

Figure 9b. The same amount of data is moved to the four GPUs concurrently496

by interleaving across the network and the remote GPUs start computations at497

the same time approximately. However, from Figure 10 it was noted that the498

bandwidth achieved is inversely proportional to the number of multiple data499

transfers concurrently performed which results in degrading performance.500

An alternate method is shown in Figure 11b. Data to the first GPU is trans-501

ferred without sharing the bandwidth for the remaining three data streams.502

Since there is no competition for bandwidth it only takes a quarter of the time503

required when data is concurrently transferred (shown in Figure 11a). Compu-504

tations on the first GPU start while data is transferred to the second GPU. In505

this manner, data transfer is performed on fully available network bandwidth.506

This is referred to as the sequential data transfer method.507

Data is transferred at full network bandwidth and there is an overlap with508

GPU computations in the sequential data transfer approach. However, it is509
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(a) Concurrent
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(b) Sequential

Figure 12: GPU utilisation, power and energy consumption of concurrent and sequential data

transfers to GPUs considered in Figure 11

noted that the execution time is not reduced since the fourth GPU begins its510

computations when it would in concurrent data transfers. Figure 12 shows the511

GPU utilisation, power and energy consumption of concurrent and sequential512

data transfers to GPUs. The average values of the four GPUs considered in513

Figure 11 are used. The Y-axis on the left indicates GPU utilisation and the514

Y-axis on the right shows power (in Watts) and energy (in Watts per second,515

denoted as Ws in the figure) consumed. The power and energy of GPUs are516

measured instead of the cluster since multiple GPU configurations (n GPUs517

per node) could be employed, which results in different energy measurements.518

There are no gains in the energy consumed and very little difference in GPU519

utilisation for both concurrent and sequential transfers.520

Regardless, in this research sequential data transfer is foundational in devel-521
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Figure 13: Sequential data copies with several vGPUs per GPU.

oping an optimised approach for executing the application using remote GPUs522

which is based on multi-tenancy of virtual GPUs.523

5.4.2. Multi-tenancy Approach524

The key concept of the multi-tenancy approach is based on the fact that525

current GPUs perform kernel executions and DMA (Direct Memory Access)526

operations concurrently. If it were possible to move data to a GPU the same527

time it was executing a kernel, there could be gains in further improving the528

performance of the executing application.529

This can be facilitated by a multi-tenancy approach in which a number of530

remote GPUs (or virtual GPUs referred to as vGPUs) reside on or are mapped531

onto the same physical GPU (pGPU)2. Figure 13 shows the concept of multi-532

tenancy when 2 and 4 vGPUs are mapped to a pGPU.533

When 2 vGPUs are mapped on to a pGPU as shown in Figure 13a 8 GPUs534

are available to the application (4 pGPUs are used). Input data will be split535

2Multi-tenancy is achieved on rCUDA by setting two environment variables prior to appli-

cation execution, namely RCUDA DEVICE COUNT and RCUDA DEVICE j. The first variable indi-

cates the number of GPUs accessible to the application. The second variable indicates the clus-

ter node in which the jth GPU is located. For example, “export RCUDA DEVICE COUNT=2”

when 2 GPUs are assigned to the application and “export RCUDA DEVICE 0=192.168.0.1”

and “export RCUDA DEVICE 1=192.168.0.2”. The server of the RCUDA DEVICE j variables

need to point to the same node. Hence, the application does not require to be modified to

accommodate multi-tenancy using rCUDA.
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such that 8 GPUs will be used for computations. The initial data transfer is536

shown as “Data Transfer” followed by computations by the first vGPU labelled537

as “1st vGPU Computation. After transferring data in the 12th time step, there538

are four more vGPUs that will require their input data. Data transferred to539

the remaining four vGPUs beginning at time step 13 are overlapped with the540

computations of the first four vGPUs. Since two vGPUs are mapped onto a541

single pGPU, computations of both vGPUs cannot progress in parallel as they542

belong to different GPU contexts. Therefore, the NVIDIA driver executes them543

sequentially (using as many GPU resources required by each kernel). So the544

second kernel must wait until the execution of the first kernel is completed.545

Two key observations are made from multi-tenant executions. Firstly, the546

total execution time has reduced in contrast to the execution life cycle presented547

in Figure 11b although the same hardware resources are used. The application548

completed execution in time step 80 using 2 vGPUs per pGPU compared to549

time step 88 when no multi-tenancy is employed. The time that each GPU550

computes is exactly the same. The time saved is because of the overlap between551

computations and data transfers of multiple vGPUs on the same pGPU. In552

Figure 11b data transfers overlapped with computations of other pGPUs but553

there were no overlaps on the same GPU.554

Secondly, the data transfer time takes longer when more vGPUs are em-555

ployed. In Figure 11b, data is transferred completely to all GPUs at time step556

20, whereas in Figure 13a, the input data arrives at time step 24. The reasons557

for longer data transfer times have been considered in the previous section. De-558

spite the larger data transfer time, the total execution time gains since there is559

an overlap between computation and data movement.560

Figure 13b shows the use of 16 vGPUs mapped on to 4 pGPUs. The execu-561

tion time is further reduced due to the larger overlap between computation and562

data transfers when compared to 2 vGPUs residing on a single pGPU. Again563

the time for computing is the same on each physical GPU but the data copying564

time has increased. The overall execution time is further reduced to 76 time565

steps.566
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(a) 2 vGPUs per pGPU
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(b) 4 vGPUs per pGPU

Figure 14: GPU utilisation, power and energy consumption of the multi-tenancy approach

considered in Figure 13.

Multi-tenancy can be analysed from the perspective of energy required to567

complete the execution of the application. Figure 14 shows the energy con-568

sumed during the execution of the application along with the utilization of the569

physical GPU. The multi-tenancy energy consumption is lower than sequential570

communications without an overlap between data transfers and computations571

on the same GPU seen in Figure 12. The energy consumed is 1145 Watts per572

second without using multi-tenancy and 1094 and 1041 Watts per second when573

2 and 4 vGPUs are tenants on a pGPU, respectively. It is observed that GPU574

utilisation increases in the multi-tenancy approach. The average GPU utilisa-575

tion rises from 71.44% without multi-tenancy up to 79.65% for 2 vGPUs per576

pGPU and up to 81.93% when 4 vGPUs are mapped on to a pGPU.577

In short, multi-tenancy allows for data transfers to be overlapped with com-578

putations on the same GPUs thereby reducing total execution time of the fi-579
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Figure 15: Application performance for different combinations of pGPUs and vGPUs using

QDR InfiniBand
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Figure 16: Application performance for different combinations of pGPUs and vGPUs using

FDR InfiniBand

nancial risk application. Furthermore, the energy required to execute the appli-580

cation is reduced and the GPU utilisation is increased.581

5.5. Performance Analysis Using Multi-tenancy582

An analysis of the application performance as measured by execution time is583

presented in this section. The cluster nodes in our experimental set up have 12584

cores (up to 24 threads with hyper-threading) and therefore we use a maximum585

of 24 vGPUs (to avoid any noise due to CPU overhead). Up to 12 pGPUs will586

be used to map the vGPUs.587

Figure 15 and Figure 16 show the time taken for data transfer and compu-588

tation for varying pGPUs when the rCUDA framework is used over QDR and589
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FDR InfiniBand. The ‘Overlapped data transfer and computation’ label denotes590

that data transfers and computation are carried out concurrently on the same591

pGPU. The behaviour of the application is as expected. Multi-tenancy with592

sequential transfers allows for overlapping computations and data movement on593

the same pGPU, thus reducing the execution time. When QDR InfiniBand is594

used, time for data transfer without overlaps with communication is reduced up595

to 70%, 84%, 66%, and 42% when vGPUs are mapped to 1, 2, 4, and 6 pGPUs,596

respectively. In the case of FDR InfiniBand, the same time is 65%, 77%, 57%,597

and 56%. Consequently, the total power consumed is reduced but not indicated598

on the graph.599

It is noted that when 12 pGPUs are used the data transfer times are not600

reduced further because (i) the execution time decreases with more pGPUs,601

and (ii) the data transfer time increases when more vGPUs are used allowing602

for little overlap between data transfers and computation on the same pGPU.603

This necessitates the need for determining the effective combination of pGPUs604

and vGPUs by estimating application perfomance both in terms of execution605

time and energy consumption.606

5.6. Modelling Multi-tenancy for Performance and Energy Estimation607

An important challenge is to automatically determine the best multi-tenancy608

configuration for a deployment that can maximise performance (minimising ex-609

ecution time), but at the same time minimise the energy consumed.610

5.6.1. Performance Model611

We firstly consider a basic model to account for execution time of the ap-612

plication when sequential data transfers are used with rCUDA, but without613

exploiting multi-tenancy. Subsequently, the model is optimised to take multi-614

tenancy into account. The model is then applied in the context of the hardware615

(NVIDIA Tesla K20 GPUs with QDR and FDR InfiniBand) we have employed616

in this research.617
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The total execution time depends on: (i) time for transferring data and (ii)

time for computing on the GPUs as shown in Equation 4, which inherently de-

pends on the number of GPUs (pGPUs or vGPUs) available to the application.

TotalExecutionT ime = Ttransfer(#GPUs) + Tcomputation(#GPUs) (4)

Since there is perfect scalability for the computation times on the GPU

(Section 5.2 and Section 5.3), the time required for computations by a given

number of GPUs can be obtained as shown in Equation 5.

Tcomputation(#GPUs) = ComputationT ime 1pGPU / #GPUs (5)

The time to transfer the input data to all GPUs is shown in Equation 6.618

The time taken to allocate memory on each GPU using cudaMalloc() and the619

time for moving small and large data structures to the GPUs are taken into620

account. Different data sizes achieve varying network bandwidth (Figure 5c).621

To simplify the equation, the time to transfer data structures smaller than 100622

bytes is denoted as Tsmall transfers
3

623

Ttransfer(#GPUs) = #GPUs ∗ (TcudaMalloc + Tsmall transfers

+ Ttransfer 4MB + Ttransfer 120MB)

+ Ttransfer 4GB

(6)

When multi-tenancy is taken into account there is an overlap between data624

transfers and computations on the same pGPU which reduces the total execu-625

tion time. As shown in Figure 13a, when 2 vGPUs are mapped onto a single626

pGPU, the time for data transfer is the time taken to move the first chunks627

of data to the pGPUs (until the completion of time step 12). The time for628

3Data structures smaller than 100 bytes achieve the same bandwidth and are therefore

grouped together. The InfiniBand frame size is typically 2 KB, which will be sent to the GPU

in all cases where data is smaller than 100 bytes.
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moving the remaining data chunks are not accounted for since it is overlapped629

by computation time. This is captured in Equation 7.630

ExecT ime Multitenancyfully overlapped = Ttransfer(#vGPUs) / vGPUs per pGPU

+ vGPUs per pGPU ∗ Tcomputation(#vGPUs)

(7)

If a very large number of vGPUs are used, then all data transfer times631

may not be overlapped with computation times. This can happen when the632

computation on the vGPU is not long enough to overlap data transfers to the633

pGPU and the computations on it. In this case, the total execution time depends634

on the time required to copy data to all the vGPUs and is shown in Equation 8.635

ExecT ime Multitenancynot fully overlapped = Ttransfer(#vGPUs)

+ Tcomputation(#vGPUs)
(8)

As shown in Equation 9 the maximum value from Equation 7 and Equa-636

tion 8 determines whether the application has significant overlaps between data637

transfer and computations.638

ExecT ime Multitenancy = MAX(ExecT ime Multitenancyfully overlapped,

ExecT ime Multitenancynot fully overlapped)

(9)

Table 2 shows actual values of the model for the experimental platform used639

in this research.640

Figure 17 and Figure 18 use these values in Equation 9 for 1 to 16 pGPUs641

and up to 12 vGPUs per pGPU. The combinations of pGPUs and vGPUs that642

require the lowest execution time can be explored in this space. The estimated643

execution times are grouped for 1 to 4 pGPUs, 5 to 8 pGPUs, 9 to 12 pGPUs,644

and 13 to 16 pGPUs. In Figure 17a and Figure 18a, for one pGPU up to 4645

vGPUs can be used. The total memory on the Tesla K20 devices is 4799 MB646
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Table 2: Time in seconds for GPU memory allocation and data transfer tasks of the financial

risk application

Parameter QDR FDR

ComputationT ime 1pGPU 9.55

TcudaMalloc 0.00267 0.0027

Tsmall transfers 0.0048 0.0028

Ttransfer 4MB 0.00133 0.00079

Ttransfer 120MB 0.036 0.0205

Ttransfer 4GB 1.171 0.67

(from the nvidia-smi command), which is exhausted by more than 4 vGPUs647

(total memory size consumed by the application on 4 vGPUs is 4484 MB). It is648

inferred from the figures that a large number of vGPU has detrimental effect on649

performance due to the overheads in data movements. Using QDR InfiniBand650

the model predicts a saturation sooner than FDR InfiniBand because of the651

overhead of data transfers due to a lower bandwidth available on the QDR652

network. The optimal deployment configuration of the application is 7 pGPUs653

with 2 vGPUs per pGPU and 9 pGPUs with 2 vGPUs per pGPU using QDR654

InfiniBand and FDR InfiniBand respectively.655

5.6.2. Energy Model656

The amount of energy required to execute the application is modelled in this657

section. From Figure 13 it is inferred that a GPU can be in the following four658

different states: (1) idle, (2) receive data, but no computations, (3) receive data659

and compute simultaneously, and (4) compute, but no data to receive.660

Power is measured by querying nvidia-smi every 200 milliseconds. The661

power required by the GPU in the first two states is the same. The NVIDIA662

Tesla K20 device requires 47 Watts while idling4 and receiving data. The GPU663

4The idle state in Figure 13 is distinguished from the commonly known “idle” state. In
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Figure 17: Results from performance model for QDR InfiniBand

requires 102 Watts in the last two states.664

Using the above power readings for the four GPU states along with total665

execution time obtained from Equation 9 an energy model is developed as shown666

in Equation 10. The energy required by the GPU for computations (time spent667

on computations is obtained from Equation 5) is eliminated to obtain the energy668

spent in the first and second states. The computation time on the pGPUs is669

Figure 13, the GPU has already been assigned to the application and therefore has been

initialised by the GPU driver(this requires approximately 1.3 seconds in CUDA). After ini-

tialisation, the GPU does not perform any task, but actively waits for commands. In the

commonly known “idle” state, the GPU is not assigned to an application and is not initialised

by the driver. In this state, the Tesla K20 GPU requires 25 Watts.
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Figure 18: Results from performance model for FDR InfiniBand

vGPUs per pGPUs ∗ Tcomputation(#vGPUs).670

TotalEnergy = #pGPUs ∗ (Tcomputation(#pGPUs) ∗ 102 Watts +

(ExecT ime Multitenancy − Tcomputation(#pGPUs)) ∗ 47 Watts)

(10)

Figure 19 and Figure 20 present the results of the energy model from Equa-671

tion 10. It is noted that an energy efficient deployment is obtained using 4672

vGPUs on 1 pGPU for both QDR InfiniBand and FDR InfiniBand. This is as673

expected given that the least amount of hardware is employed. However, there674

is a trade off since the lowest execution times are not obtained in this configura-675

tion. In Figure 21 and Figure 22, an alternate space (energy ∗ execution time)676

is explored to find configurations that can maximise performance and minimise677

energy consumption.678
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Figure 19: Results from energy model for QDR InfiniBand

5.7. Generality of Proposed Approaches679

The financial risk application chosen in this paper is embarrasingly parallel680

and is representative of one class of workloads that execute in high-performance681

computing environments. The research challenges which were initially posed are682

hence relevant to a wide range of applications that aim to exploit vGPUs, partic-683

ularly in the context of multi-tenant vGPUs on a single pGPU. The approaches684

we have proposed as solutions to mitigate the challenges can be broadly applied685

to the benefit of these applications.686

Typically, when accelerators are employed for applications the data neces-687

sary for computations needs to be transferred from the host to the memory of688

vGPUs before computations can be actually performed. In the face of limited689

bandwidth for data transfers, linear scalability of the application will be affected690

degrading the overall performance of the application. However, by using our pro-691

posed approach of sequential data transfer performance can be improved; data692
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Figure 20: Results from energy model for FDR InfiniBand

transfers from the host to the GPU and GPU computations can be overlapped693

for multiple pGPUs. Performance can be further improved by incorporating our694

approach for overlapping data transfers and computation on multiple vGPUs695

which reside on the same pGPU. Such an approach effectively shares vGPUs to696

optimise an application’s execution time and energy consumption.697

There are multiple deployment options for an application when multi-tenancy698

is exploited. Each application will have its own best combination of vGPUs699

that need to be mapped onto a pGPU for best performance. Here our offline700

approach of modelling performance both in terms of energy and performance701

for estimations will be a handy method that can be broadly applied for other702

applications.703
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Figure 21: Combined space of energy and execution time using QDR InfiniBand

0	

2000	

4000	

6000	

8000	

10000	

12000	

1	 2	 3	 4	 5	 6	 7	 8	

En
er
gy
	*
	E
xe
cu
,o

n	
Ti
m
e	
(W

s2
)	

#	pGPUs	

1	vGPU	per	pGPU	 2	vGPUs	per	pGPU	 3	vGPUs	per	pGPU	 4	vGPUs	per	pGPU	
5	vGPUs	per	pGPU	 6	vGPUs	per	pGPU	 7	vGPUs	per	pGPU	 8	vGPUs	per	pGPU	
9	vGPUs	per	pGPU	 10	vGPUs	per	pGPU	 11	vGPUs	per	pGPU	 12	vGPUs	per	pGPU	

(a) 1 to 8 pGPUs

0	

5000	

10000	

15000	

20000	

25000	

30000	

9	 10	 11	 12	 13	 14	 15	 16	

En
er
gy
	*
	E
xe
cu
,o

n	
Ti
m
e	
(W

s2
)	

#	pGPUs	

1	vGPU	per	pGPU	 2	vGPUs	per	pGPU	 3	vGPUs	per	pGPU	 4	vGPUs	per	pGPU	
5	vGPUs	per	pGPU	 6	vGPUs	per	pGPU	 7	vGPUs	per	pGPU	 8	vGPUs	per	pGPU	
9	vGPUs	per	pGPU	 10	vGPUs	per	pGPU	 11	vGPUs	per	pGPU	 12	vGPUs	per	pGPU	

(b) 9 to 16 pGPUs

Figure 22: Combined space of energy and execution time using FDR InfiniBand
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6. Conclusions704

In this paper, we have demonstrated the benefits of virtual GPUs for an705

application. Single tenancy (using one virtual GPU on a single physical GPU)706

and multi-tenancy (using a number of virtual GPUs on a physical GPU) were707

explored in this context. Concurrent and sequential data transfer models were708

considered. We hypothesised that multi-tenancy can improve the performance709

of the application. To validate the hypothesis the application was executed710

using rCUDA (remote CUDA), a framework that virtualises GPUs in a High-711

Performance Computing (HPC) cluster and provides remote GPUs to nodes712

that require acceleration on demand. Experimental results indicate that multi-713

tenant virtual GPUs with sequential data transfers optimise the performance of714

the application with less hardware when compared to single tenancy.715

This research highlights that multi-tenant virtual GPUs can improve per-716

formance of an application. To achieve this we brought together the concepts717

of virtual GPUs and multi-tenancy in a single framework. The contribution of718

this research is to leverage multi-tenancy in the context of virtual GPUs within719

the rCUDA framework. Further, we have demonstrated this concept using a720

real world financial risk application of industrial use to optimise performance in721

terms of metrics, namely execution time, energy consumption and GPU utilisa-722

tion. Given the application our research explores data transfer approaches with723

the aim of improving performance and how it is affected by memory and band-724

width bottlenecks. The experimental results provide insight that would not be725

apparent without a thorough evaluation. For example, it may be assumed that726

concurrent data transfers would improve performance, but the effect of memory727

and bandwidth limitations make sequential data transfers more appealing. The728

offline performance model is derived by making use of the experimental results729

which determines the configuration of the vGPU mapping on the pGPU for730

maximising performance.731
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Figure Captions831

Figure 1: Execution time of the financial application on multiple GPUs832

Figure 2: Distributed acceleration architecture facilitated by rCUDA833

Figure 3: rCUDA client and server software/hardware stack834

Figure 4: Communication sequence between a client and the rCUDA server835

daemon836

Figure 5: Comparison of bandwidth for pinned memory and pageable memory837

of rCUDA, DS-CUDA and gVirtuS using CUDA as a baseline reference (DS-838

CUDA does not support pinned memory)839

Figure 5(a): Host pinned memory to device memory840

Figure 5(b): Device memory to host pinned memory841

Figure 5(c): Host pageable memory to device memory842

Figure 5(d): Device memory to host pageable memory843

Figure 6: Computation and data transfer times for the financial risk application844

when executed on single and multiple GPUs with CUDA845

Figure 7: Amount of data transferred during the execution of the financial risk846

application847

Figure 7(a): Data transferred to each GPU848

Figure 7(b): Total data transferred to all GPUs849

Figure 8: Attained bandwidth when concurrent data transfers to GPUs are850

performed. Source data is located in the same memory bank.851

Figure 9: Scalability of the financial risk application when executed with852

rCUDA853

Figure 9(a): On QDR InfiniBand854

Figure 9(b): On FDR InfiniBand855

Figure 10: Bandwidth attained for multiple data transfers concurrently to856

different remote GPUs using rCUDA857

Figure 10(a): On QDR InfiniBand858

Figure 10(b): On FDR InfiniBand859

Figure 11: Communication approaches for transferring data to GPUs.860
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Figure 11(a): Concurrent data transfers861

Figure 11(b): Sequential data transfers862

Figure 12: GPU utilisation, power and energy consumption of concurrent and863

sequential data transfers to GPUs considered in Figure 11864

Figure 12(a): Concurrent865

Figure 12(b): Sequential866

Figure 13: Sequential data copies with several vGPUs per GPU.867

Figure 13(a): 2 vGPUs per GPU868

Figure 13(b): 4 vGPUs per GPU869

Figure 14: GPU utilisation, power and energy consumption of the multi-870

tenancy approach considered in Figure 13.871

Figure 14(a): 2 vGPUs per pGPU872

Figure 14(b): 4 vGPUs per pGPU873

Figure 15: Application performance for different combinations of pGPUs and874

vGPUs using QDR InfiniBand.875

Figure 16: Application performance for different combinations of pGPUs and876

vGPUs using FDR InfiniBand.877

Figure 17: Results from performance model for QDR InfiniBand878

Figure 17(a): 1 to 4 pGPUs879

Figure 17(b): 5 to 8 pGPUs880

Figure 17(c): 9 to 12 pGPUs881

Figure 17(d): 13 to 16 pGPUs882

Figure 18: Results from performance model for FDR InfiniBand883

Figure 18(a): 1 to 4 pGPUs884

Figure 18(b): 5 to 8 pGPUs885

Figure 18(c): 9 to 12 pGPUs886

Figure 18(d): 13 to 16 pGPUs887

Figure 19: Results from energy model for QDR InfiniBand888

Figure 19(a): 1 to 4 pGPUs889

Figure 19(b): 5 to 8 pGPUs890

Figure 19(c): 9 to 12 pGPUs891
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Figure 19(d): 13 to 16 pGPUs892

Figure 20: Results from energy model for FDR InfiniBand893

Figure 20(a): 1 to 4 pGPUs894

Figure 20(b): 5 to 8 pGPUs895

Figure 20(c): 9 to 12 pGPUs896

Figure 20(d): 13 to 16 pGPUs897

Figure 21: Combined space of energy and execution time using QDR Infini-898

Band899

Figure 21(a): 1 to 8 pGPUs900

Figure 21(b): 9 to 16 pGPUs901

Figure 22: Combined space of energy and execution time using FDR Infini-902

Band903

Figure 22(a): 1 to 8 pGPUs904

Figure 22(b): 9 to 16 pGPUs905

Table Captions906

Table 1: Scalability of the financial risk application when executed using CUDA907

Table 2: Time in seconds for GPU memory allocation and data transfer tasks908

of the financial risk application909
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