
Distributed Newest Vertex Bisection

Martin Alkämpera and Robert Klöfkornb

aInstitut für Angewandte Analysis und Numerische Simulation,
Fachbereich Mathematik, Universität Stuttgart, Pfaffenwaldring

57, D-70569 Stuttgart, Germany,
www.ians.uni-stuttgart.de/nmh/,
alkaemper@ians.uni-stuttgart.de

bInternational Research Institute of Stavanger, P. O. Box 8046,
4068 Stavanger, Norway, http://www.iris.no,

robert.kloefkorn@iris.no

October 28, 2018

Abstract

Distributed adaptive conforming refinement requires multiple itera-
tions of the serial refinement algorithm and global communication as the
refinement can be propagated over several processor boundaries. We show
bounds on the maximum number of iterations. The algorithm is imple-
mented within the software package Dune-ALUGrid.

Keywords: Adaptive method, mesh refinement, parallel, Dune

1 Introduction

Conforming finite elements over conforming, unstructured, adaptive grids have
been shown to behave very well for numerical simulations of diffusive processes
([7]). On the other hand new computer architectures demand parallelism in
algorithms and grids to reach their full potential. For an adaptive, parallel, un-
structured and conforming grid we need a parallel (or distributed) refinement
strategy.
In this paper we analyze the distributed refinement strategy called Distributed
Newest Vertex Bisection. It is the straightforward extension [11] of the serial
Newest Vertex Bisection (NVB) introduced by Sewell [18] and we will show that
the parallel overhead is bounded, in particular by a constant independent of the
number of processors (Theorem 4.8). The Distributed NVB as described in this
paper has been implemented in the open-source package Dune-ALUGrid [1]
which is a module for the Dune software framework [3, 4]. Domain decompo-
sition in combination with adaptivity requires load balancing to equidistribute
the workload. In Dune-ALUGrid this is done by equilibrating the number
of cells belonging to each processor. We make the common assumption that

1

ar
X

iv
:1

60
3.

04
89

1v
1

 [
cs

.D
C

]
 1

5
M

ar
 2

01
6

www.ians.uni-stuttgart.de/nmh/
http://www.iris.no

load balancing is done after the refinement algorithm is finished. Hence we will
not consider its effect on the computational cost of the refinement algorithm.
However, we will show that it is possible to implement the Distributed NVB
using modern techniques of parallel computing such as communication hiding
to achieve excellent strong scaling on a petascale super computer.

Most implementations of parallel adaptive grids use nonconforming hexahedral
(or quadrilateral in 2 dimensions) cells with some mesh-balance to acquire a
mesh grading required for stability estimates. Implementations of conforming
adaptive parallel meshes are scarce, as especially in more than two dimensions
the refinement propagation is non-trivial.
The Distributed NVB refinement strategy is also implemented in the toolbox
AMDiS [21], and we will show, that the bound they give on the communication
(O(logP), where P is the number of partitions in [21, Sec. 2.4]) is too weak for
large P , unless the decomposition fulfills additional assumptions.
Another approach to parallel simplex refinement has been published by Rivara
et al. [17]. In this work a parallel algorithm is introduced that produces an un-
structured conforming mesh, which is not parallel in the domain decomposition
sense, but instead the whole grid is known on each processor and the algorithm
itself is executed in parallel. Furthermore, the refinement strategy differs, as it
is not Newest Vertex Bisection(NVB), but Longest Edge Bisection which was
introduced by Rivara in [16]. In [9] a fully distributed parallel Longest Edge
Bisection is implemented based on the package DOLFIN and reasonable scaling
results up to 1024 cores are presented, however, by sacrificing the theoretical
backing of the adaptation algorithm.
The rest of the paper is structured as follows. First we introduce NVB with
examples for 2-dimensional grids. Then the NVB refinement algorithm is ex-
tended to work in decomposed domains. Afterwards we analyze the Distributed
NVB and show bounds on the parallel overhead which are reflected in the nu-
merical experiments. The results hold for grids of any dimension unless stated
otherwise.

2 Newest Vertex Bisection

In this section we shortly introduce NVB for conforming triangulations in two
space dimensions. It was introduced by Sewell [18] and enhanced by Mitchell
with a recursive refinement algorithm [13, 14]; compare also with [2, 12, 19, 20].
We follow the notation of [8].

2.1 Recurrent bisection of a simplex

−→ −→
Figure 2.1: NVB: a triangle with its two children and four grandchildren. The
refinement edges are indicated in red.

2

In order to easily describe NVB we identify a simplex T with its set of ordered
vertices

T = [z0, z1, z2].

The edge between the first and last vertex we call refinement edge. NVB refines
T by inserting a new vertex in the midpoint z̄ = 1

2 (z0 + z2) of the refinement
edge z0z2 and

T1 = [z0, z̄, z1] and T2 = [z2, z̄, z1]

are the two children of T . This procedure automatically presets the children’s
refinement edges by the local ordering of their vertices. NVB thereby determines
the refinement edge of any descendant produced by recurrent bisection of a given
initial element T0 from the vertex order of T0; see Figure 2.1.
Recurrent bisection induces the structure of an infinite binary tree F(T0): Any
node T inside the tree is an element generated by recurrent application of NVB.
The two successors of a node T are the children T1, T2 created by a applying
NVB to T .

A B C
A A

D D

A A
C B

B C

Figure 2.2: NVB: The four similarity classes for an initial element T0.

Finally, NVB produces shape regular descendants since all T ∈ F(T0) belong to
at most four similarity classes; compare with Figure 2.2. This is a consequence
of the fact that NVB always bisects the angle at the newest vertex. In the end,
any angle of any simplex is bisected at most once. This can be extended to
any dimension d, see e.g. [19]. In the following, unless specified explicitly, we
assume a general d ≥ 2.

2.2 Recurrent refinement of triangulations with NVB

Let T0 be a conforming and exact triangulation of a bounded polygon Ω ⊂ Rd.
We can refine T0 or a refinement T of T0 by applying the NVB to selected
simplices. More than the selected elements have to be refined when striking
for conforming triangulations. Here we refer to [13] for a recursive refinement
algorithm and to [2] for an iterative one.
We next introduce notations related to triangulations. The master forest

F := F(T0) =
⋃

T0∈T0

F(T0)

holds full information about all possible refinements of T0. We denote by T =
T(T0) the class of all conforming refinements of T0.
For T ∈ T the sets of all its vertices and edges are V and E , respectively. For
T ∈ T we set V(T) := V ∩ T and for z ∈ V we define T (z) := {T ∈ T | z ∈ T}.
The finite element star at a vertex z is then Ωz :=

⋃
{T : T ∈ T (z)}. We let

hT ∈ L∞(Ω) be the piecewise constant mesh-size function with hT |T = hT :=

|T |1/2 h diam(T) for T ∈ T . We use hmin,max(T) for the smallest and largest
element size of T . We say T, T ′ ∈ T are direct neighbours iff there is an E ∈ E
with E ⊂ T ∩ T ′.

3

Important in the course of this article is the generation of an element. For each
T ∈ T there is a T0 ∈ T0 such that T ∈ F(T0). The generation gen(T) is
the number of its ancestors in the tree F(T0), or, equivalently, the number of
bisections needed to create T from T0.
The following simple properties are useful.

Lemma 2.1. (1) For T ∈ F(T0) with T0 ∈ T0 we have

hT = 2− gen(T)/2hT0
.

(2) Defining α0 := max{#T (z0) | z0 ∈ V0} we have for d = 2 and z ∈ V the
bound

#T (z) ≤

{
8 if z ∈ V \ V0,
2α0 if z ∈ V0.

Proof. Bisection halves the volume of a simplex. The definition of gen(T) then
gives the first claim. During refinement any angle is bisected at most once,
which yields the second assertion.

The following assumption on a compatible distribution of refinement edges in
T0 is instrumental in the analysis of NVB, like the complexity estimates in
[5, 19, 10].

Assumption 2.2 (Compatibility Condition). Suppose T, T ′ ∈ T0 are direct
neighbours with common edge T ∩ T ′ = E ∈ E0. Then either E is the common
refinement edge of both T and T ′, or E is the refinement edge of descendants
T ′′ of T and T ′′′ of T ′ such that genT ′′ = genT ′′′ < d.

Mitchell has shown that a distribution of refinement edges, s.t. assumption
2.2 holds, can be found for any initial triangulation T0 [13, Theorem 2.9] in 2
dimensions; compare also with [5, Lemma 2.1]. The assumption particularly
implies that any uniform refinement of T0 is conforming, i. e., for any g ∈ N0

we find that {T ∈ F(T0) | gen(T) = g} ∈ T. The proof of this property is a
combination of [20, §4] and [19, Theorem 4.3]. It is the key to show the following
property of NVB; compare with [19, Corollary 4.6].

Proposition 2.3 (Characteristics of NVB). Suppose that the initial triangula-
tion T0 satisfies Assumption 2.2. Let T ∈ T be given and suppose that T, T ′ ∈ T
are direct neighbours such that the common edge E = T ∩ T ′ is the refinement
edge of T . Then we either have gen(T ′) = gen(T) and E is also the refinement
edge of T ′, or gen(T ′) = gen(T)− i with 1 ≤ i < d.

A simple consequence is |gen(T)− gen(T ′)| ≤ d−1 for direct neighbours T, T ′ ∈
T .

3 Distributed Newest Vertex Bisection

The extension of NVB to the domain decomposition case is necessary, as the
decomposed grid needs to be conforming across processor/partition boundaries.
The basic idea is to execute the serial algorithm on each partition, communicate
the refinement status of the partition boundary to the corresponding neighbour,
refine conformingly and iterate.

4

In [11] it is shown that this parallel Algorithm 3.1 yields the same final trian-
gulation as the serial version for meshes that fulfill the compatibility condition
2.2. This is essentially due to the fact that there is a unique mapping from the
set of marked elements to the final refinement situation.

Algorithm 3.1: Distributed Newest Vertex Bisection

1 Initialize set of elements marked for refinement on each Partition Mi,
0 ≤ i < P .

2 while Mi 6= ∅∀ i do
3 Refine Partition Pi using NVB until Mi is empty
4 Communicate refinement status of partition boundary to

corresponding neighbour
5 Add nonconforming simplices to Mi

6 Communicate globally, whether Mi is empty.

7 end

We improved the algorithm introduced in [11] by additionally communicating
the edge status (i.e. whether the edge has been bisected) of edges belonging
to the process boundaries. This is slightly more communication expensive in
3 or more dimensions but it reduces the number of iterations needed. For 2
dimensions both algorithms coincide as faces are always 1 dimensional.
The stopping criteria of the while loop requires a global communication (Allre-
duce, O(log p) where p is the number of partitions), which cannot be expected
to scale well onto many cores. On the other hand communicating the refine-
ment status to the neighbour can be expected to scale quite well as long as the
number of neighbouring partitions stays small, which relates to the quality of
the decomposition.

4 Communication of the Distributed Newest Ver-
tex Bisection

Bounds for the amount of communication necessary to reach a conforming trian-
gulation are directly related to bounding the number of iterations in Algorithm
3.1. While the first bound from Theorem 4.6 does not need more assumptions
than Compatibility Condition 2.2, Theorem 4.8 additionally requires dimension
d = 2 and a certain form of mesh decomposition.
The following first lemma helps to understand the direct consequences of a single
refinement.

Lemma 4.1. For all direct neighbours T ′ of an element T ∈ T with refinement
edge E with E ⊂ T ′ ∩ T one of the following two statements holds

1 Refinement of E in T ′ induces no further refinement (it already is the refine-
ment edge)

2 E is the refinement edge of a child of T ′ and refinement of E induces up to
d− 1 refinements of elements Ti ⊂ T ′ with gen(Ti) < gen(T).

Proof. Two cases:

1 gen(T) = gen(T ′)⇒ no further refinement. It is the refinement edge of both
elements because of the compatibility condition.

5

2 gen(T) = gen(T ′) + i with 1 ≤ i ≤ d − 1 ⇒ induces i further refinements.
The refinement edge can only be the same, if both elements have the same
generation and direct neighbours can only differ in generation by d at most.
The generation is increased by one with each refinement, so there have to be
i refinements of descendants of T ′ that are refined, until the i-th descendant
shares the refinement edge with T and yields the conforming closure of that
element.

Lemma 4.1 can be applied recursively. A single refinement may lead to refine-
ments of direct neighbours at 1 to (d−1) generations lower and these may again
lead to refinements at even lower generations.

Example 4.2. Let us assume a simplex T with generation gen(T) = 0 and its
direct neighbour T ′ with gen(T ′) = d− 1 and refinement edge E = T ∩T ′. Now
we refine T ′, so we refine E and hence T . The compatibility condition 2.2 yields
that E is the refinement edge of a descendant T ′′ of T with gen(T ′′) = d − 1.
We denote by T i

E the descendant of T with generation i that contains E and we
denote its refinement edge by Ei. So T ′′ = T d−1

E , T = T 0
E and Ed−1 = E. Then

the Refinement Propagation can be depicted in the following graph of figure 4.1.
The dashed lines denote the direct closure. It cannot induce further refinement

gen 3

gen 2

gen 1

gen 0

T ′ E T ′′

E2

E1

E0

T 2
E

T 1
E

T

Figure 4.1: The direct Refinement Propagation of example 4.2 with d = 4.

and can be neglected. More general we have to analyze the direct Refinement
Propagation for any element that contains E and additionally for all elements
containing any of the edges Ei, as their refinement may also induce further
refinement in the grid.

This leads us to the following definition.

Definition 4.3. Refinement of an element T with refinement edge e0 and gen-
eration gen(T) = l induces refinement propagation in form of a directed graph
with root e0. For any element T ′ with e0 ⊂ T ′ and gen(T ′) =: l′ < l we have
a directed edge from e0 to the refinement edge E′i of T ′ie0 for l′ ≤ i < l as new
nodes. We repeat by setting every newly introduced node as a local root.
We call this the Refinement Propagation Graph.

Example 4.4. Figure 4.2 depicts an example of the Refinement Propagation
graph of an initial refinement of an element T with refinement edge e0. For some
elements the refinement results in the direct closure, so they are not included in

6

gen l

gen l-1

gen l-2

gen l-3

e0

e4

e8e7

e6

e5

(T4)l−2e4

T5

T6

e3

e2

e1

(T1)l−1e0

T2

T3

T1

T4

T7

Figure 4.2: An example for an Refinement Propagation Graph.

the graph as well as T . For three direct neighbours T1, T2, T3 of T the refinement
does not result in the direct closure. For T1 it even results in an additional
refinement of its child (T1)l−1e0 that contains e0. Bisection of e4 to refine T3 is
locally similar to the refinement of T by e0. Note that the graph is not a tree,
as refinement edges may be shared (e5 in our example). All leafs do not induce
further refinement, so all adjacent elements are of the same level and refinement
is the direct closure, which is not included in the graph.

Remark 4.5. In 2 dimensions the Refinement Propagation Path consists solely
of nodes of degree 2 (and the root and the leaf), since in 2 dimensions every
edge is shared by exactly two elements and the direct closure is not included.
Hence in 2 dimensions we call it the Refinement Propagation Path.

With this preliminary work and exploiting the compatibility condition 2.2 we
state the following theorem.

Theorem 4.6. Let M ⊂ T be the set of elements marked for refinement. Then
the number N of iterations in the Algorithm 3.1 to reach a conforming state
satisfies

N ≤ max
T∈M

max
T ′∈T

(gen(T)− gen(T ′)) + 2.

Proof. Let T ∈M with gen(T) = l. We will bound the maximum depth of the
Refinement Propagation Graph of T , which is an upper bound for the number
of iterations as in the worst-case scenario refinement needs to be communicated
at every edge.
Due to Lemma 4.1 refinement can be propagated at generation l−d < gen(T ′) <
l, in particular at generation l − 1 and no propagation at generation l. So
the maximum number of propagations NT resulting from refining T is l −
minT ′∈T gen(T ′). This is clearly also the maximum depth of the Refinement
Propagation graph.
We have to take into account, that the Refinement Propagation graph does not
consider the direct closure, which could need an additional communication. It
follows

NT ≤ l − min
T ′∈T

gen(T ′) + 1

If we now take the maximum over all T ∈M this results in

max
T∈M

max
T ′∈T

(l(T)− l(T ′)) + 1 .

7

We have to add another 1 as Algorithm 3.1 has to communicate that it has
finished.

The following example demonstrates that this bound is sharp and that we cannot
expect anything better even in the simple case of 2 partitions. In particular the
bound O(log p) from [21, Sec. 2.4] cannot hold without further assumptions on
the decomposition.

Figure 4.3: A distributed refined mesh to illustrate that the bound of theorem
4.6 is sharp. Partitions are indicated by the color of the cells. Black lines denote
macro element borders. Dotted lines denote the initial refinement situation. The
refinement request is marked in red. Blue dashed lines denote its Refinement
Propagation.

Example 4.7. Figure 4.3 shows a mesh consisting of three initial triangles fulfill-
ing the compatibility condition 2.2. One triangle has been refined into a corner,
so the minimum generation in the mesh is minT ′∈T gen(T ′) = 0 and the gener-
ation of the marked element T ∈ M = {T} is gen(T) = 6, so the bound from
Theorem 4.6 is 8 iterations. Every refinement induces additional refinement at
exactly one generation lower, so the refinement propagation path traverses 7
edges. The mesh is partitioned in such a way that every edge lies on a processor
boundary, which implies that after every refinement Algorithm 3.1 has to stop
and globally communicate. This means we get 7 iterations, where the marked
set is not empty on all processors and one final iteration to communicate, that
we are finished. In total this is 8 iterations, which is the bound predicted from
Theorem 4.6.
Distributing the elements into partitions as depicted in figure 4.3 is not purely
artificial. Sorting the leaf elements in vertical direction with respect to their
center coordinates leads to these partitions.

Example 4.7 demonstrates that we have to impose additional assumptions on
the decomposition to expect better bounds on the number of iterations of Al-
gorithm 3.1.
A reasonable assumption could be that the partitions are created by a hierarchi-
cal space-filling curve, such that elements that are close in the refinement-tree
are probably on the same partition.
Another assumption is that the mesh is partitioned solely on elements of a
generation l∗ which are then distributed onto partitions together with their

8

respective refinement trees. This second assumption will be analyzed in this pa-
per, because this is the partitioning currently implemented in our grid manager
Dune-ALUGrid. Without loss of generality we can assume that we distribute
elements on the macro level (i.e. elements T with gen(T) = 0) with their re-
spective refinement trees. If this was not the case we could set the uniformly
refined grid as our new initial grid, as for this kind of partitioning coarsening
below generation l∗ is forbidden.
The following results hold for partitioning on any fixed level but only for 2-
dimensional grids, as we rely on the fact that we have a Refinement Propagation
Path instead of a full graph.

Theorem 4.8. Let dimension d = 2 and the mesh be partitioned as described
above. Let z ∈ V and let Nz = {T ∈ T0 : z ⊂ T} the set of macro elements
containing that vertex. For an element T in the set of marked elements M
let T0(T) ⊃ T be the element of the macro grid T0 that contains T . Then the
number of global communications N in Algorithm 3.1 satisfies

N ≤ max
T∈M

max
z∈T0(T)

3

4
#Nz +

7

4
≤ max

z∈T0

3

4
#Nz +

7

4
.

Proof. The second inequality is trivial. The proof of the first inequality splits
into two parts.

1. Refinement propagation around vertex z.

2. Refinement propagation inside of macro elements that contain vertex z.

We start with a similar observation as in the proof of Theorem 4.6. By bound-
ing the traversals of edges of T0 within the refinement propagation path, we
bound the number of global communications. We count edges of the refinement
propagation path that are contained in edges of T0.
Let T ∈ M with z ∈ T0(T) be the element to be refined. Refinement of T
leads to elements of generation l = gen(T) + 1. All refinement propagation of
refinement of T is contained in the refinement propagation of uniformly refining
T0 to this level, which we will investigate. (cf. Figure 4.4)
(1): Refinement propagation around vertex z.
We are now investigating the effect of refinement of T0 at its vertex z. There
are two possibilities:

a. z is opposite of the initial refinement edge of T0.
Then there are two leaf elements T 0,1 with z ∈ T 0,1 ⊂ T0 and gen(T 0) =
gen(T 1). If gen(T 0,1)/2 mod 2 = 0, the refinement edge of T 0 and T 1 is
the shared edge. If gen(T 0,1)/2 mod 2 = 1 the refinement edge of T 0,1 is a
subedge of an edge of T0 containing z and as we are uniformly refining up to
level l, every odd level there is refinement propagation across these edges.

b. z is contained in the initial refinement edge of T0.
Then there is one leaf element with z ∈ T ′ ⊂ T0. The refinement edge of T ′

is always contained in one of the edges of T0. So every level refinement of T ′

leads to refinement propagation across one of the two edges of T0 containing
z.

We know that elements around the vertex z form the refinement propagation
path of T ′, as they all differ by one in generation and due to the argument above.

9

The path evolves around the vertex until it encounters an element with the
lowest level. The maximum level difference around the vertex is (#T (z)− 1)/2
as there have to exist at least two elements with lowest generation. So the
maximum length of the refinement propagation path around z is (#T (z)−1)/2.
We want to bound the refinement propagation path edge traversals with respect
to #Nz. #Nz is smaller than #T (z), as for every element in #Nz where the
refinement edge is opposite of z, there are two elements in #T (z). Now there
are two cases:

a. #Nz is even:
The worst case is #T (z) = 3/2#Nz and all refined macro angles are neigh-
bouring. Then, in one of the circumvention direction all edge traversals
are traversals in Nz and so we may need (3/2#Nz − 1)/2 traversals in Nz

until we encounter the element with the lowest level.

b. #Nz is odd:
The worst case is #T (z) = 3/2#Nz +1/2 and all refined angles are neigh-
bouring. Then, in one of the circumvention direction all edge traversals
are traversals in Nz and so we may need (3/2(#Nz)+1/2−1)/2 traversals
in Nz until we encounter the element with the lowest level.

So the number of macro edge traversals Ne
z within the refinement propagation

path around z satisfies

Ne
z ≤ (3/2(#Nz − 1/2)/2 = 3/4#Nz − 1/4.

(2): Refinement propagation inside of macro elements that contain vertex z.
We already know that the uniform refinement propagates into all macro ele-
ments, which share z. So we can neglect macro elements that share an edge
with T0 as we know that their refinement propagation does not yield any addi-
tional information.
So we consider a macro element T1 that contains z and does not share an edge
with T0. We know that we have a refinement at vertex z and want to investigate,
whether we can reach the edge opposite of z. The other edge does not matter,
as it contains z.
The size of an element of generation l is 2−l|T0| (Lemma 2.1). The refine-
ment propagation path consists of elements that differ by one in level. So the
size of the refinement propagation path inside the element T1 is

∑
k 2−k|T1| =

|T1|(2−n − 2−l). So to get to another element from the opposite vertex it has
to include an element of level 0, a macro element. This is only possible, if the
initial refinement edge is opposite of z.
In combination with the previous result this yields

N ≤ (3/2#Nz − 1/2)/2 + 1 = 3/4#Nz + 3/4.

Now we finish the proof by adding another +1 for communicating the final
status and taking the maximum over all vertices of T0 and over all marked
elements.

Remark 4.9. From part (2) of the proof one can see, that if the mesh is uni-
formly refined up to one level below the macro level, then the +1 from this part
disappears and we get.

N ≤ max
T∈M

max
z∈T0(T)

3/4#Nz + 3/4 ≤ max
z∈T0

3/4#Nz + 3/4

10

Figure 4.4: Refinement propagation from uniform refinement of a single macro
element.

Remark 4.10. If we do not count all edges of T0, but only those that are actually
processor boundaries, we get the following bound that is better as long as every
processor gets ”nice” partitions.

N ≤ max
T∈M

max
z∈T0(T)

#Pz − 1 + 1 = max
T∈M

max
z∈T0(T)

#Pz

where #Pz is now the number of partitions that share a vertex. The proof is
similar to the proof of theorem 4.8, but we get #Pz−1 as we cannot argue with
circumventions in both directions and the +1 is again due to the final commu-
nication. Note that if a processors partition p has several elements containing
z and there is no path of elements T ∈ p containing z connecting two elements,
every connected subdomain has to be counted as a partition.

Remark 4.11. Theorem 4.8 provides a mesh constant. So no dependence on
number of processors is required, but just a regular initial mesh (see α0 in
Lemma 2.1).

Remark 4.12. We believe that theorem 4.8 holds in a similar way for higher
dimensions. It is a hard problem as the shape of the Refinement Propagation
graph is not known.

Based on the estimate in remark 4.10 we propose a new improved algorithm for

11

compatible meshes.

Algorithm 4.1: Improved Distributed Newest Vertex Bisection

1 Initialize set of elements marked for refinement on each Partition Mi,
0 ≤ i < P .

2 for i = 0, . . . ,maxz∈T0#Pz − 1 do
3 Refine Partition Pi using NVB until Mi is empty
4 Communicate refinement status of partition boundary to

corresponding neighbour
5 Add nonconforming simplices to Mi

6 end

For compatible meshes we have proven, that this algorithm yields the conforming
closure and reaches the final status. So communicating the final status is no
longer necessary. Hence we take the better bound maxz∈T0 #Pz − 1 instead of
maxz∈T0 #Pz. We can directly use the bound from Theorem 4.8 and get an
algorithm, which does not need global communication at all. Unfortunately
we cannot expect meshes to be compatible, especially in 3 dimensions. In this
case we propose to use a mixture of both algorithms, where a fixed number of
loops is done like in 4.1 before switching to the Algorithm 3.1 after a global
communication, whether Mi 6= ∅ ∀ i.

5 Implementation

The NVB algorithm is implemented in the open-source package Dune-ALUGrid
available at https://gitlab.dune-project.org/extensions/dune-alugrid.
[1] contains a description of the software and various examples.
In this section we discuss the implementation of the communication procedures
which is not contained in detail in [1]. Communication is needed to exchange
the refinement flags, e.g. line 4 in Algorithm 3.1 and 4.1. It is essential for
the Distributed NVB that this is done in a very efficient way to guarantee ex-
cellent scalability. In Dune-ALUGrid we have chosen to interleave the send
and receive procedures with the packing and unpacking of refinement informa-
tion. This way we are able to hide some of the communication latency behind
the necessary pack and unpack of information. We briefly sketch the send and
pack routine as well as the receive and unpack routine used in Dune-ALUGrid.

Let Ls
p be the set of all ranks that process p ∈ [0, P − 1] sends data to and

Lr
p the corresponding set p received messages from. We call the communication

symmetric if Ls
p = Lr

p. Asymmetric communication occurs, for example, during
the load balancing, where the list of send and receive ranks can differ. The
communication algorithm, however, is the same. Using the sets Ls

p,Lr
p the

corresponding methods for pack-and-send and receive-and-unpack are briefly
explained in Algorithm 5.1 and 5.2, respectively. In the following T q

p denotes
the set of simplices on process p with linkage to rank q ∈ Ls,r

p .
Both algorithms are implemented in Dune-ALUGrid and work for very general
data sets and are thus used for all point to point communications in the package.

12

https://gitlab.dune-project.org/extensions/dune-alugrid

Algorithm 5.1: Pack and send

1 for q ∈ Ls
p do

2 for T ∈ T q
p do

3 pack refinement information for simplex T and communication
link q

4 end
5 post non-blocking MPI Isend for communication link q

6 end

Algorithm 5.2: Receive and unpack

1 for q ∈ Lr
p do

2 rq ← 0
3 end
4 nr ← 0
5 while nr < |Lr

p| do
6 for q ∈ Lr

p do
7 if rq = 0 then
8 rq ← MPI Iprobe(q)
9 if rq = 1 then

10 s← MPI Getcount(q)
11 resize buffer for received message size s
12 post MPI Recv(q) to write message from q to buffer
13 for T ∈ T q

p do
14 unpackData(T , q)
15 end
16 nr ← nr + 1

17 end

18 end

19 end

20 end
21 MPI Waitall(Ls

p), see Algorithm 5.1

6 Numerical Experiments

In this section we show for various examples that the theoretical results can
be reproduced and that very good scalability for the adaptation algorithm is
observed on a petascale super computer.

6.1 Verification of theoretical results

The first experiment aims to reflect the theoretical results as we construct a
worst-case experiment. A mesh is partitioned such that each process gets exactly
one macro element. Then we refine a single element at one of its vertices up
to level 20 and we examine the number of iterations necessary to reach the
conforming status.
From figure 6.1 we see that for compatible 2d grids both bounds(red lines) are

13

0 5 10 15 20

2

3

4

5

6

7

Max Level

R
efi

n
em

en
t

L
o
op

s

Figure 6.1: A 2d unit square with 18 macro elements on 18 processors. The
central yellow element gets refined at the top vertex. The number of macro
neighbours #Nz = 6. In the right plot red lines denote the two bounds from
the Theorems 4.8 and 4.6.

not violated by the current implementation. As this is a worst-case scenario, in
the average case the behaviour is better. Now we perform the same experiment
on a non-compatible grid.

0 5 10 15 20

2

4

6

8

Max Level

R
efi

n
em

en
t

L
o
op

s

Figure 6.2: A non-compatible 2d grid with 60 macro elements on 60 processors.
An element (with #Nz = 6) gets refined at a vertex. In the right plot red lines
denote the two bounds from the Theorems 4.8 and 4.6.

As expected, the plot in Figure 6.2 illustrates that compatibility is a necessary
condition for both theorems. This means although the implementation is ca-
pable of handling non-compatible 2d grids, the bounds from the theory do not
hold.
We expect the bound from Theorem 4.6 to hold in any dimension. This is not
the case in figure 6.3. This failure arises from an implementation detail, that
refinement status is communicated for faces instead of edges. After implementa-
tion of an additional communication of edges statuses during refinement we see
that the theoretical result holds. In addition, the plot indicates the existence of
a constant to bound the number of iterations in 3d similar to Theorem 4.8.

14

0 5 10 15 20

2

4

6

8

10

12

Max Level

R
efi

n
em

en
t

L
o
op

s

0 5 10 15 20

2

4

6

8

10

12

Max Level

R
efi

n
em

en
t

L
o
o
p

s

Figure 6.3: Unit cube. 162 Macro Elements/ 162 processors (3 × 3 × 3 Kuhn-
dice). Central element gets refined at one vertex. On the left refinement status
is communicated on faces. On the right refinement status is first communicated
over edges and then additionally over faces.

6.2 Strong scaling experiments

In Figure 6.4 we show the refinement of a doughnut that rotates around the
center (doughnut refinement). Triangles inside the doughnut are refined and
triangles outside are coarsened. This test was introduced in [1] and serves as an
excellent test for the Distributed NVB since frequent refinement and coarsening
occurs throughout the simulation. In fact, the adaptation and load balancing is
performed in each time step. The domain decomposition is based on the Hilbert
space filling curve approach implemented in Zoltan [6]
Figures 6.5 and 6.6 we provide strong scaling results obtained for the doughnut
refinement test in 2d and 3d, respectively. The scaling experiment have been
performed on the super computer Yellowstone [15]. The observed strong scaling
for the adaptation cycle (green triangular line) is excellent for all experiments
and very close to the optimal scaling. The load balancing (pink boxed line) on
the other hand at some points fails to scale well because the number of macro
simplices per core becomes to small as the number of processes grows which
results from the drawback of basing the partitioning upon the macro mesh.
This is currently under investigation and will be reported in a separate article.
In contrast to [21, Fig. 8], where for a different adaptation experiment the
mesh adaptation loop yielded non-optimal strong scaling, we conclude from our
investigations that the Distributed NVB scales well and depending on the macro
mesh a fixed or very limited number global communications is needed.

Figure 6.4: Refinement and coarsening of a doughnut like area that rotates
around the center. From left to right the simulation time is increased from
t = 0 to t = 1 by ∆t = 0.25.

15

 0.01

 0.1

32 64 128 256 512

#cores

macro triangles: 8192

OPT
TS
AD
LB

 0.01

 0.1

 1

32 64 128 256 512 1024 2048

#cores

macro triangles: 131072

OPT
TS
AD
LB

Figure 6.5: 2d results for the doughnut refinement test on a coarse triangular
macro mesh (left) and a finer triangular macro mesh (right). For different
number of cores the graph shows average run time per timestep in seconds for
the different parts of the algorithm: a full time step (TS), the adaptation loop
(AD), the load balancing (LB), and the expected optimal scaling (OPT). The
scaling study has been performed on Yellowstone [15]. The test case is part of
the Dune-ALUGrid code and described in [1].

 0.01

 0.1

 1

32 64 128 256 512 1024 2048 4096

ru
n

 t
im

e

#cores

macro tetrahedron: 48000

OPT

TS

AD

LB

 0.1

 1

 10

64 128 256 512 1024 2048 4096 8192

ru
n

 t
im

e

#cores

macro tetrahedron: 196608

OPT

TS

AD

LB

Figure 6.6: 3d results for the doughnut refinement test on a coarse tetrahedral
macro mesh (left) and a finer tetrahedral macro mesh (right). For different
number of cores the graph shows average run time per timestep in seconds for
the different parts of the algorithm: a full time step (TS), the adaptation loop
(AD), the load balancing (LB), and the expected optimal scaling (OPT). The
scaling study has been performed on Yellowstone [15]. The test case is part of
the Dune-ALUGrid code and described in [1].

7 Summary

We have shown (and proven in 2d), that the number of iterations in Algorithm
3.1 to reach a conforming situation is bounded. In particular for grid imple-
mentations that do not partition the mesh on the leaf level, but on a certain
fixed level, the bound is constant and independent of the current refinement
situation. As the purpose of conforming grids is usually solving elliptic equa-
tions, the total run time is usually dominated by solving the equation. The
performed worst-case experiments are reflected by the theory. These experi-
ments also prove that the compatibility condition in Assumption 2.2 is essential
and cannot be neglected. In addition, we presented a state of the art implemen-
tation of the Distributed NVB including asynchronous communication which is

16

needed to achieve excellent scaling on a petascale super computer.
As a next step we will improve the flexibility of the load balancing algorithm
which currently only allows to partition the macro mesh. For certain prob-
lems where singularities might arise, this might not be sufficient and yield poor
scalability.

Acknowledgements

Martin Alkämper acknowledges the Cluster of Excellence in Simulation Tech-
nology (SimTech) at the University of Stuttgart for financial support.
Robert Klöfkorn acknowledges NCAR/CISL’s Research and Supercomputing
Visitor Program (RSVP) and the Research Council of Norway and the industry
partners – ConocoPhillips Skandinavia AS, BP Norge AS, Det Norske Oljesel-
skap AS, Eni Norge AS, Maersk Oil Norway AS, DONG Energy A/S, Denmark,
Statoil Petroleum AS, ENGIE E&P NORGE AS, Lundin Norway AS, Hallibur-
ton AS, Schlumberger Norge AS, Wintershall Norge AS – of The National IOR
Centre of Norway for financial support.

References

[1] Alkämper, M., Dedner, A., Klöfkorn, R., and Nolte, M. The
DUNE-ALUGrid Module. Archive of Numerical Software 4, 1 (2016), 1–
28.

[2] Bänsch, E. Local mesh refinement in 2 and 3 dimensions. IMPACT of
Computing in Science and Engineering 3, 3 (1991), 181 – 191.

[3] Bastian, P., Blatt, M., Dedner, A., Engwer, C., Klöfkorn, R.,
Kornhuber, R., Ohlberger, M., and Sander, O. A Generic Grid
Interface for Parallel and Adaptive Scientific Computing. Part II: Imple-
mentation and Tests in DUNE. Computing 82, 2–3 (2008), 121–138.

[4] Bastian, P., Blatt, M., Dedner, A., Engwer, C., Klöfkorn, R.,
Ohlberger, M., and Sander, O. A Generic Grid Interface for Parallel
and Adaptive Scientific Computing. Part I: Abstract Framework. Comput-
ing 82, 2–3 (2008), 103–119.

[5] Binev, P., Dahmen, W., and DeVore, R. Adaptive Finite Element
Methods with convergence rates. Numerische Mathematik 97, 2 (2004),
219–268.

[6] Boman, E. G., Catalyurek, U. V., Chevalier, C., and Devine,
K. D. The Zoltan and Isorropia parallel toolkits for combinatorial scientific
computing: Partitioning, ordering, and coloring. Scientific Programming
20, 2 (2012).

[7] Bonito, A., and Nochetto, R. H. Quasi-optimal convergence rate of
an adaptive discontinuous Galerkin method. SIAM J. Numer. Anal. 48, 2
(2010), 734–771.

17

[8] Gaspoz, F. D., Heine, C.-J., and Siebert, K. G. Optimal grading
of the newest vertex bisection and H1-stability of the L2-projection. IMA
Journal of Numerical Analysis (2015).

[9] Jansson, N., Hoffman, J., and Jansson, J. Framework for massively
parallel adaptive finite element computational fluid dynamics on tetrahe-
dral meshes. SIAM J. Sci. Comput. 34, 1 (Feb. 2012), 24–41.

[10] Karkulik, M., Pavlicek, D., and Praetorius, D. On 2D Newest
Vertex Bisection: Optimality of Mesh-Closure and H1-Stability of L2-
Projection. Constructive Approximation 38, 2 (2013), 213–234.

[11] Liu, Q., Mo, Z., and Zhang, L. A parallel adaptive finite-element pack-
age based on ALBERTA. International Journal of Computer Mathematics
85, 12 (2008), 1793–1805.

[12] Maubach, J. Local Bisection Refinement for N-Simplicial Grids Generated
by Reflection. SIAM Journal on Scientific Computing 16, 1 (1995), 210–
227.

[13] Mitchell, W. F. Unified multilevel adaptive finite element methods for
elliptic problems. Phd thesis, University of Illinois, Urbana, IL,, 1988.

[14] Mitchell, W. F. A comparison of adaptive refinement techniques for
elliptic problems. ACM Trans. Math. Softw. 15, 4 (1989), 326–347.

[15] NCAR/CISL. Computational and Information Systems Laboratory. Yel-
lowstone: IBM iDataPlex System (Climate Sim ulation Laboratory). Boul-
der, CO: National Center for Atmospheric Research, 2012.

[16] Rivara, M.-C. Mesh Refinement Processes Based on the Generalized
Bisection of Simplices. SIAM Journal on Numerical Analysis 21, 3 (1984),
604–613.

[17] Rivara, M.-C., Calderon, C., Fedorov, A., and Chrisochoides, N.
Parallel decoupled terminal-edge bisection method for 3D mesh generation.
Engineering with Computers 22, 2 (2006), 111–119.

[18] Sewell, E. Automatic Generation of Triangulations for Piecewise Poly-
nomial Approximation. Phd thesis, Purdue University, 1972.

[19] Stevenson, R. The completion of locally refined simplicial partitions
created by bisection. Math. Comput. 77, 261 (2008), 227–241.

[20] Traxler, C. An algorithm for adaptive mesh refinement in n dimensions.
Computing 59, 2 (1997), 115–137.

[21] Witkowski, T., Ling, S., Praetorius, S., and Voigt, A. Software
concepts and numerical algorithms for a scalable adaptive parallel finite
element method. Advances in Computational Mathematics (2015), 1–33.

18

	1 Introduction
	2 Newest Vertex Bisection
	2.1 Recurrent bisection of a simplex
	2.2 Recurrent refinement of triangulations with NVB

	3 Distributed Newest Vertex Bisection
	4 Communication of the Distributed Newest Vertex Bisection
	5 Implementation
	6 Numerical Experiments
	6.1 Verification of theoretical results
	6.2 Strong scaling experiments

	7 Summary

