
24 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Power-performance assessment of different DVFS control policies in NoCs / Casu, MARIO ROBERTO; Giaccone, Paolo.
- In: JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING. - ISSN 0743-7315. - STAMPA. - 109:(2017), pp. 193-
207. [10.1016/j.jpdc.2017.06.004]

Original

Power-performance assessment of different DVFS control policies in NoCs

Publisher:

Published
DOI:10.1016/j.jpdc.2017.06.004

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2675947 since: 2018-02-27T14:52:02Z

Elsevier

Power-Performance Assessment of Different DVFS

Control Policies in NoCs

Mario R. Casu1, Paolo Giaccone1

Department of Electronics and Telecommunications, Politecnico di Torino, Italy

Abstract

We analyze the power-delay trade-off in a Network-on-Chip (NoC) under

three Dynamic Voltage and Frequency Scaling (DVFS) policies. The first

rate-based policy sets frequency and voltage of the NoC to the minimum

value that allows to sustain the injection rate without reaching saturation.

The second queue-based policy uses a feedback-loop approach to throttle the

NoC frequency and voltage such that the average backlog of the injection

queues tracks a target value. The third delay-based policy uses a closed-loop

strategy that targets a given NoC end-to-end average delay. We first show

that, despite the different mechanism and implementation, both rate-based

and queue-based policies obtain very similar results in terms of power and

delay, and we propose a theoretical interpretation of this similarity. Then we

show that delay-based policy generally offers a better power-delay trade-off.

We obtained our results with an extensive set of experiments on synthetic

traffic, as well as multimedia, communications and PARSEC benchmarks.

For all the experiments we report both cycle-accurate simulation results for

the analysis of NoC delay, and accurate power results obtained targeting a

standard-cell library in an advanced 28-nm FDSOI CMOS technology.

Preprint submitted to Journal of Parallel and Distributed Computing June 14, 2017

1. Introduction

Large-scale on-chip systems increasingly require high performance networks

for efficiently connecting cores, caches, and hardware accelerators. As a result,

the network-on-chip (NoC) is one of the leading contributors to the chip total

power consumption [1][2][3][4]. To reduce the NoC power, researchers propose

to apply Dynamic Voltage and Frequency Scaling (DVFS) with two different

approaches, which can be termed as local and global DVFS. In the former

approach, each NoC router belongs to a separate voltage/frequency (V/F)

domain and has its own DVFS controller [5][6][7]. In the latter approach, the

entire NoC belongs to a single V/F domain separated from the V/F domains

of the processing elements, and is managed by a single DVFS controller [4][8].

Although local DVFS has potential for greater power savings, especially

in NoC traffic scenarios where the load is not uniformly distributed, it also

entails severe cost and performance overhead. We focus therefore on a global

approach, which removes the cost of locally replicated DVFS controllers and

DC-DC converters, and minimizes the extra latency caused by the resynchro-

nization required at each clock-domain crossing. We assume, however, that

the processing elements can have separate DVFS controllers.

Fig. 1 exemplifies this approach, by showing an NoC with a power manager

(PM) that controls the NoC V/F domain, and the nodes connected to the

NoC that belong to different V/F domains. Packets pay the latency penalty

for clock-domain crossing only twice, when they enter and when they exit the

NoC passing through the Network-Interface (NI). For reasons of scalability,

for NoC mesh sizes greater than 8×8, we envision that multiple instances of

the NoC V/F domain in Fig. 1 can be arranged, each with its own controller.

2

We consider that such a coarse-grain approach to multiple V/F domains is

affordable. In this paper, though, we consider one instance of size up to 8×8.

In this context, we focus on the implementation of an NoC global DVFS

controller and analyze the power-performance trade-off under three different

power management policies. We term the first policy as Rate-based Max Slow

Down (RMSD), because it runs the NoC at the slowest frequency—and so

at the least voltage—compatible with the injected traffic rate. The second

policy, which we term as Queue-based Max Slow Down (QMSD), slows down

the NoC frequency in such a way that the injection queues located in the NIs

remain loaded at a given target occupation. This result is obtained with a

feedback-loop Proportional-Integral (PI) controller that tends to minimize

the error between the average queue occupation and the target occupation. A

similar closed-loop PI controller is used in the third policy, termed Delay-based

Max Slow Down (DMSD), which tunes the NoC frequency to minimize the

N
I

N
I

R
O
U
T
E
R

R
O
U
T
E
R

R
O
U
T
E
R

R
O
U
T
E
R

R
O
U
T
E
R

R
O
U
T
E
R

R
O
U
T
E
R

R
O
U
T
E
R

R
O
U
T
E
R

N
I

N
I

N
I

N
I

N
I

N
I

N
I

N
O
D
E

N
O
D
E

N
O
D
E

N
O
D
E

N
O
D
E

N
O
D
E

N
O
D
E

N
O
D
E

N
O
D
E

POWER

MANAGER

Figure 1: An NoC has its own voltage/frequency domain (in green) separated from the

domains of the nodes connected to it (blue). Network-Interfaces sit at the crossing between

two domains. A power manager is located in the central element (yellow).

3

error between the average end-to-end packet delay and a target delay.

Despite the apparent differences between RMSD and QMSD, we show

that they behave in a very similar way, obtaining analogous results in terms of

delay and power. We prove with a simplified model, based on a single-queue,

that a sound theoretical reason holds for this equivalence.

We implemented the three power management policies in our modified

version of Booksim2 [9], the Stanford’s NoC cycle accurate simulator [10].

Moreover, targeting a 28-nm standard-cell technology, we ran logic synthesis

and transistor-level simulations of the virtual-channel router used in network-

level simulations to accurately characterize its power as a function of voltage,

frequency, injection rate, and activity in the links, buffers, and crossbar.

Our main aim is to illustrate the trade-offs between performance and

power saving that different DVFS policies obtain at the NoC level. We

observe, though, that the DVFS policies analyzed share, for the most part,

the underlying hardware structures, hence switching between policies at run-

time to match the characteristics of the architecture and the workload is

possible.

In summary, we provide the following novel contributions:

• We show that the QMSD and RMSD policies behave very similarly and

typically pay a very high cost in terms of NoC delay compared to the

DMSD policy. This is confirmed by experimental results obtained both

with synthetic traffic and traffic generated by NoC benchmarks.

• Although RMSD and QMSD save more power, their delay degradation

is often superior to the power advantage, when the NoC traffic is high.

We conclude that a better trade-off between power and delay is typically

4

obtained with the DMSD policy. Instead, for the scenarios that generate a

very low NoC traffic, for which delay degradation and power advantage are

comparable, QMSD and RMSD appear to achieve the best tradeoff.

• We test our policies using different realistic benchmarks. In particular, we

also simulate the PARSEC benchmarks in order to preserve the original

packet dependencies and to achieve a similar accuracy than system-level

simulations. The results show that all the policies behave as expected also

under such realistic traffic patterns.

• We present a microarchitectural implementation of the DVFS controller

that can be reconfigured to support all the DVFS policies.

This is the paper organization. Upon presenting the related work in Sec. 2,

we focus on the policies implementation in Sec. 3: their performance is initially

evaluated under simple traffic scenarios and then explained theoretically with

an analytical queuing model. In Sec. 4 we outline the methodology through

which we extend our performance analysis under realistic scenarios and power

model. The results on performance and power are in Sec. 5 where we also

discuss the implementation costs and evaluate a hardware implementation of

the PM. We conclude in Sec. 6.

2. Related Work

Researchers have mostly focused on a fine-grain approach to DVFS, in

which routers and links have separate DVFS controllers [5][6][11][12][13].

In these previous works, the overhead of replicated voltage regulators and

frequency synthesizers, as well as the penalty for crossing many frequency

5

domains, is either not considered or assumed to be tolerable. Under a practical

perspective, however, it is more realistic to assume that multiple domains

with full-fledged voltage regulators and PLLs are reserved to the elements

connected to the NoC, whereas the NoC forms a single separate domain. This

global approach was proposed by Intel in the SCC chip [4] and in more recent

works [8][14][15]. To make the local approach affordable, Yadav et al. in [7]

propose a simplified DVFS with two voltages and discrete frequencies.

Admittedly, a fine-grain approach, if implementation cost and performance

penalty were tolerable, can save more power than a global approach can. To

close this gap, researchers use multiple NoC planes controlled by separate

DVFS PMs [16]. We argue that a coarse-grain approach, with multiple DVFS

domains each covering around 64 nodes, is affordable.

A DVFS controller that uses the occupancy of queues to automatically set

voltage and frequency was first proposed in processors, in which the content

of the queues represents the pending workload [17]. The application to NoCs

consists in monitoring the flit queues located at the crossing between different

voltage-frequency islands [18][7]. Although this queue-based approach to

DVFS in NoCs is not new, here we discuss for the first time the drawbacks of

this method in terms of degradation in the delay performance.

A similar performance problem affects the method suggested by Liang

and Jantsch in [19] in the context of a global approach to NoC DVFS. Their

method consists in slowing down the NoC frequency and forcing it to operate

around its saturation point. We consider Liang and Jantsch’s technique as

an instance of the Rate-based Max Slow Down (RMSD) policy.

A delay-based approach to global DVFS using a PI controller has been

6

HW−Ctrl

NoC
Average
quantity

F(Q)

NoC Clock

& Voltage

Fnoc

Power manager average
quantity (Q) computation

NI quantity measurement

Q
F

Fmin

Fmax

min maxQ Q
Q

DVFS

Figure 2: The power manager receives measurements from NoC nodes, computes the global

average quantity Q, and computes the NoC clock frequency.

proposed in the context of a Chip Multi-Processor (CMP) [8][14], in which

DVFS is applied simultaneously to the NoC and to the last-level cache. A

different approach to this problem is proposed in [15], in which the DVFS

controller is based on an artificial neural network trained with the help of a PI

controller. Although we propose a similar delay-based approach, differently

from these works, we propose a comparative analysis of the delay-based policy,

the queue-based one, and the rate-based one. In addition, we do not focus

on a specific architecture, like the CMP one in previous works, and put the

accent instead on the network, with the aim of obtaining more general results.

3. DVFS Policies

In this section we describe a general framework that is common to the three

policies. We introduce the required notation and discuss our assumptions.

Then we describe each policy in a separate subsection. Finally, the last

subsection introduces a theoretical framework based on an M/D/1 queueing

model, which helps to clarify some of the findings related to the three policies.

Fig. 2 describes our framework for DVFS control. In each NI that connects

7

avg delay

global time

global time

avg delay

global time

avg delay

voltage

level

shifter

MGR

Power

2−clock FIFO

2−clock FIFO voltage

level

shifter

voltage

level

shifter

2−clock FIFO

2−clock FIFO voltage

level

shifter

voltage

level

shifter

2−clock FIFO voltage

level

shifter

voltage

level

shifter

Input Rate

Measurement

ctrl
pkt

2−clock FIFO

pkt in

pkt out

2−clock FIFO

FIFO avg

backlog

voltage

level

shifter

voltage

level

shifter

MGR

Power

ctrl
pkt

ctrl pkt

2−clock FIFO

pkt in

pkt out

2−clock FIFO

FIFO avg

backlog

voltage

level

shifter

voltage

level

shifter

N
e
tw

o
rk

−
o

n
−

C
h

ip

ctrl pkt

pkt out

MGR

Power

time
stamp

c
tr

l
p

k
t

pkt

ctrl

pkt out

pkt in

2−clock FIFO voltage

level

shifter

voltage

level

shifter

Input Rate

Measurement

ctrl
pkt

2−clock FIFO

pkt in

2−clock FIFO

2−clock FIFO voltage

level

shifter

pkt out

(a) (b) (c)

time
stamp

c
tr

l
p

k
t

pkt in

pkt out

time
stamp

c
tr

l
p

k
t

pkt in

pkt out

Network Interfaces

N
e
tw

o
rk

−
o

n
−

C
h

ip

Network Interfaces Network Interfaces

N
e
tw

o
rk

−
o

n
−

C
h

ip

ctrl
pkt

2−clock FIFO

pkt in

Figure 3: Network Interfaces send periodic control packets to the PM (in red dashed paths):

(a) in RMSD the average input rate is measured; (b) in QMSD the average backlog is

measured; (c) in DMSD the average delay is measured (the purple dashed lines shows the

path of the data packet from its source NI to its destination).

node i to the NoC, a quantity is measured: In the RMSD policy it is the

average injection rate at node i; in the QMSD policy, it is the average backlog

of the injection queue located in the ith NI; in the DMSD one, it is the

average end-to-end latency of all the packets received by the ith NI.

In each of the three policies the locally measured quantities are sent

periodically to the global PM with period Tctrl, as sketched in Fig. 3. In

particular, Fig. 3(a) shows that in the RMSD policy each NI measures the

rate of the flits injected by each node, and sends periodically to the PM a

control packet with the average measured rate as payload. Fig. 3(b) shows

that in the QMSD policy the control packet contains a locally measured

average FIFO backlog. Fig. 3(c) shows that in the DMSD policy delays

are measured at the receiver side, rather than at the transmitter side as

8

it happens in the other two policies, and control packets with the average

delay are sent to the PM; to compute the delays of received data packets, a

timestamp is added at the ingress NI. Note that control packets overhead is

negligible, because one control packet per node made of two flits is sent every

Tctrl, which is on the order of on the order of 10 µs [8]1.

The PM uses the received measurements to compute a global quantity Q;

then it uses a quantity-to-frequency mapping function to obtain the network

clock of frequency Fnoc. This mapping function is represented by the piecewise

linear model in Fig. 2, which can be expressed as follows:

Fnoc =


Fmin if Q < Qmin

F0 +
(Fmax − Fmin)

(Qmax −Qmin)
Q if Qmin ≤ Q ≤ Qmax

Fmax if Q > Qmax

(1)

where F0 is the extrapolated value for Q = 0. Here Qmin and Qmax are

introduced to linearize the controller behavior between Fmin and Fmax; all the

frequency values outside such range are clipped.

Depending on the frequency Fnoc, the NoC voltage Vnoc is also chosen in

range [Vmin, Vmax]. The role of the DVFS hardware controller (HW-ctrl) in

Fig. 2 is to tune a PLL and an on-chip DC-DC converter to ultimately set,

respectively, the NoC clock to Fnoc and the NoC voltage to Vnoc. We assume

that the DVFS HW-Ctrl is capable of nanosecond-scale voltage switching

[20][21] and sub-nanosecond frequency switching [4].

1Although we did not perform an extensive sensitivity analysis, we found out, in

accordance to [8], that this value is enough to collect traffic information and short enough

to capture application phase changes.

9

Frequency and voltage are interdependent, because for a given circuit

there is a minimum voltage value that guarantees correct operation at a

given frequency. In Sec. 4 we discuss in detail this interdependence in the

NoC routers implemented in our target technology. For now let us simply

assume that once frequency F is chosen, voltage V is immediately obtained

as a function of frequency V (F) : [Fmin, Fmax]→ [Vmin, Vmax]. This function

is encoded in the DVFS hardware controller, which receives the information

about the frequency selected by the DVFS policy and consequently sends a

proper command to the DC-DC regulator for setting the appropriate voltage.

We assume that a node clock of frequency Fnode is available at each injection

node. For simplicity, we let Fnode be fixed and equal for all the nodes: We

prefer to keep the exposition simpler and more intuitive, but a more general

treatment with different and variable node frequencies is possible. Without

loss of generality, let the value of Fnode be fixed to the maximum value Fmax.

Aim of each DVFS policy is to slow down the network clock with respect

to the node clock (i.e., Fnoc < Fmax) to reduce the power consumption while

sustaining the traffic and keeping the throughput unaffected. The three

policies achieve this goal in a different way, as we explain in Secs. 3.1-3.3.

In those sections, we introduce the policies and analyze their performance

in two basic scenarios that represent two opposite cases: in the uniform case,

the traffic matrix is such that all the nodes generate the same amount of

traffic, destined uniformly to all other nodes; in the hotspot case, all the nodes

generate the same amount of traffic destined to the same hotspot node. We

do not introduce yet the power analysis, which we report instead later in

Sec. 5, after the introduction of the detailed power model discussed in Sec. 4.

10

Table 1: Main NoC parameters: baseline case and cases considered for sensitivity analysis.

NoC parameter Baseline Sensitivity

analysis

Mesh size 4 × 4 5 × 5, 8 × 8

Routing XY XY

Virt. Channels (VCs) 8 2, 4, 8

Buffers per VC 4 4, 8, 16

NoC parameter Baseline Sensitivity

analysis

Flits per packet 20 10, 15, 20

Flit width (bit) 64 64

allocation iSlip iSlip

[Fmin, Fmax] (GHz) [0.333, 1] [0.333, 1]

In Sec. 5, we extend our comparison under realistic traffic scenarios.

We implemented our policies in a micro-architectural cycle-accurate NoC

simulator based on Stanford’s Booksim2 [10], which we modified in various

ways, but primarily by decoupling the NoC and the nodes frequencies. We

considered the NoC baseline parameters in Tab. 1, but we also performed a

sensitivity analysis, whose results are in Sec. 5. We obtained Fmin and Fmax

in Tab. 1 with the circuit-level analysis presented in Sec. 4. We also set Fnode

equal to 1 GHz. Packets are generated according to a Bernoulli process.

We estimate the average packet latency Lnoc, measured in terms of network

clock cycles. Since the network clock may be slowed down with respect to the

node clock, it is interesting to see the actual absolute delay Dnoc, which is

the ratio Lnoc/Fnoc. This delay will be denoted as packet delay and measured

in nanoseconds. In addition, we evaluate the average backlog and report also

the adopted NoC frequency. All these metrics will be shown as a function of

the average injection rate, measured in terms of flits per node cycle.

As term of comparison, we report also the results for the case in which

DVFS is not used (denoted as “No-DVFS”) and Fnoc is fixed at 1 GHz.

11

3.1. RMSD Policy

In the RMSD policy, Q is the average number of flits injected by each

node in a node clock cycle, Q = λnode. To obtain λnode, each NI measures the

rate of the flits injected by each node, Qi = λnode,i, and, as shown in Fig. 3(a),

it sends periodically to the PM a control packet with λnode,i as payload. Since

the NoC and the nodes belong to different Voltage/Frequency (V/F) domains,

the NI is where the V/F crossing occurs. Therefore, the packet injection and

ejection queues located in the NIs serve also as dual-clock resynchronizing

FIFOs. To adapt the two voltage levels, level shifters are required.

Upon receiving all the λnode,i values, the PM computes the global average

λnode. To obtain the frequency-scaling law of (1), we first note that the

average injection rate in flits per second at each node is simply obtained

as the product of λnode and the node clock frequency, Rnode = λnodeFnode.

Equivalently, the rate in flits per second seen by the NoC is Rnoc = λnocFnoc,

where λnoc is the rate in flits per network clock cycle seen by the NoC.

The sustain the traffic, we must set Rnode = Rnoc and we get:

λnoc = λnode
Fnode

Fnoc

. (2)

Thus, when DVFS is applied and Fnoc < Fnode, the network sees more flits

injected per network clock cycle and operates closer to its saturation point.

The main idea of RMSD is to minimize the network power consumption

by slowing down Fnoc as much as possible while preserving the maximum

throughput. For a given traffic scenario, this is obtained by having the

network work at an injection rate near but still below its saturation point.

12

We define this target rate as λmax. By setting λnoc = λmax in (2), we obtain:

Fnoc = Fnode
λnode
λmax

. (3)

For a given value of λnode, by choosing Fnoc as in (3), the network injection

rate will be constant and equal to λmax. As a result, the average network

latency will also be constant.

The frequency-scaling law in (3) is valid whenever Fnoc is in range

[Fmin, Fmax]. This frequency range corresponds, through (3), to a range

of node injection rates [λmin, λmax]. The network injection rate λnoc is equal

to λmax, and the latency Lnoc is constant, as long as the node injection rate

λnode stays within this range.

Under the assumption that Fnode = Fmax, we can easily determine this

range of node injection rates. In particular, from (3) we obtain Fnoc = Fmax

when λnode = λmax, and Fnoc = Fmin when λnode = λmaxFmin/Fmax. We

define this lower node injection rate as λmin. When λnode is outside the range

[λmin, λmax], the network clock frequency is clipped to either Fmin or Fmax.

In summary, the frequency-scaling law of (1) becomes

Fnoc =


Fmin if λnode < λmin

Fmax

λmax

λnode if λmin ≤ λnode ≤ λmax

Fmax if λnode > λmax

(4)

where the extrapolated value for Q = λnode = 0 is F0 = 0 and the slope of

the line is Fmax/λmax.

3.1.1. RMSD Performance

13

 0

 50

 100

 150

 200

 250

 300

 350

 0.015 0.03 0.045 0.06

P
a

c
k

e
t

L
a

te
n

c
y

 (
c

y
c

le
)

Injection Rate (flits/cycle)

(e)

No-DVFS RMSD

λmin λmax

Hotspot Traffic

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0.015 0.03 0.045 0.06

P
a

c
k

e
t

D
e

la
y

 (
n

s
)

Injection Rate (flits/cycle)

(f)

No-DVFS RMSD

λmin λmax 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0.015 0.03 0.045 0.06

N
o

C
 C

lo
c

k
 F

re
q

.
(G

H
z
)

Injection Rate (flits/cycle)

(g)

No-DVFS RMSD

λmin λmax
 0

 1

 2

 3

 4

 5

 6

 7

 8

 0.015 0.03 0.045 0.06

A
v

e
ra

g
e

 B
a

c
k

lo
g

 (
fl

it
s

)

Injection Rate (flits/cycle)

(h)

No-DVFS RMSD

λmin λmax

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 0.1 0.2 0.3 0.4

P
a

c
k

e
t

L
a

te
n

c
y

 (
c

y
c

le
s

)

Injection Rate (flits/cycle)

(a)

No-DVFS RMSD

λmin λmax

Uniform Traffic

 0

 100

 200

 300

 400

 500

 0 0.1 0.2 0.3 0.4
P

a
c

k
e

t
D

e
la

y
 (

n
s

)

Injection Rate (flits/cycle)

(b)

No-DVFS RMSD

λmin λmax 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0 0.1 0.2 0.3 0.4

N
o

C
 C

lo
c

k
 F

re
q

.
(G

H
z
)

Injection Rate (flits/cycle)

(c)

No-DVFS RMSD

λmin λmax
 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 0.1 0.2 0.3 0.4

A
v

e
ra

g
e

 B
a

c
k

lo
g

 (
fl

it
s

)

Injection Rate (flits/cycle)

(d)

No-DVFS RMSD

λmin λmax

Figure 4: Performance figures without DVFS and with a RMSD policy in a 4×4 NoC.

For a given traffic scenario, RMSD requires to first set the value of λmax.

This is obtained at design-time by slowing down Fnoc till the NoC enters

saturation. The value of λnode at the onset of saturation is recorded and λmax

is set to a value 10% lower than this value. As an example, we report in

Fig. 4 our simulation results for the uniform and the hotspot traffic scenarios.

The saturation rate is 0.45 flits injected per clock cycle by each node for the

uniform case and 0.06 for the hotspot case. At run-time, therefore, different

values of λmax will be used depending on the traffic scenario. In addition, if an

application exhibits traffic phases with significantly different traffic patterns,

we profile them at design-time and associate to them different λmax values2.

2Phase switching, of course, requires cooperation between the DVFS hardware controller

and the OS, whose description is out of the scope of this paper.

14

As expected from (4), Fnoc varies linearly between Fmin = 333 MHz and

Fmax = 1 GHz, as shown in Figs. 4(c),(g).

Figs. 4(a),(e) show that the latency Lnoc, as expected, is rather constant

as long as λnode is within the range [λmin, λmax]. What may be appar-

ently surprising, is the behavior of the delay Dnoc = Lnoc/Fnoc, reported in

Figs. 4(b),(f). In the range [λmin, λmax] the delay decreases because Lnoc is

constant and Fnoc increases. In [0, λmin), the delay increases because Fnoc is

fixed to Fmin and Lnoc increases due to the increasing load. As a result, the

delay is non-monotonic with very high values around the peak.

We have been the first to observe this non-monotonic behavior in a

preliminary version of this paper [22] and in a previous work on DVFS

policies for controlling the power of queue-based systems with a single server

model [23]. The theoretical analysis of [23], albeit limited to a single queue,

can be useful to understand what happens in a complex system of queues like

the NoC. Therefore, we report in Sec. 3.4 a short summary of that analysis.

3.2. QMSD Policy

Both QMSD and DMSD policies use the Proportional-Integral (PI) loop

controller of Fig. 5. In the QMSD case, the average backlog in the NI injection

queues is compared with a reference backlog BT , the target in Fig. 5. At each

control update period n, the error signal En is computed as the difference

between the sensed quantity (average backlog in QMSD) and the target value.

En and the previous value of the error En−1 are linearly combined—using

proportional and integral gains KI and KP—with the previous value of the

actuation function Un−1 so as to obtain the new value Un.

As shown in Fig. 5, the role of the generic quantity Q in (1) is played

15

I +KP(En−En−1)

Fmin

Fmax

E

U
K I,KP

VNoC

FNoC

Un=Un−1+K En

max
Target

(error)
PI−Ctrl

U
DVFS−Ctrl

delay
or

backlog

F

Umin U

NOC

POWER MANAGER

Figure 5: DVFS based on a Proportional-Integral control loop.

here by U , which is used to determine the NoC clock frequency Fnoc within

the range [Fmin, Fmax] that corresponds to the range [Umin, Umax]. Since there

is no reason not to keep the range of U symmetric around zero, we set

Umin = −Umax. Therefore the frequency scaling law for QMSD becomes

Fnoc =


Fmin if U < −Umax

F0 +
(Fmax − Fmin)

2Umax

U if − Umax ≤ U ≤ Umax

Fmax if U > Umax

(5)

where F0 is the average of the two extreme frequencies, F0 = (Fmax +Fmin)/2.

To compute the average backlog of the various injection queues, the PM

waits until it receives a control packet from all the NIs containing the locally

measured backlog, as depicted by the red path in Fig. 3(b). Like in the RMSD

case, the queues are dual-clock FIFOs and voltage-level shifters are required.

The control packet is sent periodically to the PM, at the update rate of the

PI controller. Its payload is a time-averaged value of the FIFO occupation. In

more detail, during the tth tick of the NI local clock, the “FIFO avg backlog”

block in Fig. 3(b) computes the average number of flits in the ith NI queue,

Bave,i[t], by means of a Cumulative Moving Average (CMA) as follows:

Bave,i[t] =
N − 1

N
Bave,i[t− 1] +

1

N
Bi[t] (6)

16

where Bi[t] is the instantaneous backlog of the ith queue, and N is a CMA

parameter describing the averaging period. N cannot be set independently

from the PI controller gains: We follow the procedure outlined in [24] to set

these values such that the roots of the system characteristic equation are

within the unit circle in the z-plane, which guarantees stability. We obtain

a good compromise between response time and reduction of overshoot and

oscillations with KI = 0.8, KP = 0.4 and N = 8192, for Tctrl = 10 µs.

The most critical parameter to determine is, however, the target average

queue BT . A too small value will cause the PI controller to almost always

set the NoC frequency to Fmax and the voltage to Vmax, hence reducing the

potential advantage of the power management. Vice versa, a too large value

will force the queues to fill even when the load is low or moderate, hence

leading to very poor delay performance.

To choose the correct value, we propose the following method. For a given

traffic scenario, we run an initial training at design-time to determine the

open-loop average queue backlog, which is obtained when the PI controller

is inactive and the NoC always runs at Fmax and Vmax. Similarly to the

RMSD tuning procedure, by progressively decreasing Fnoc, we first empirically

determine the saturation point. Then, by setting Fnoc 10% greater than the

value at saturation, we determine the operating point, which corresponds to

an NoC injection rate 90% of the saturation rate. After a warm-up period, we

measure the average queue content in that condition. That value is used at

run-time as a reference BT for that scenario: the entire procedure is repeated

for possibly different traffic scenarios. In the case of applications with traffic

phases, the procedure is repeated for each phase.

17

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 1 2 3 4 5 6

ra
te

 (
fl

it
s

/c
y

c
le

)

time (ms)

(e)

Hotspot Traffic

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1 2 3 4 5 6

P
a

c
k

e
t

D
e

la
y

 (
n

s
)

time (ms)

(f)

Hotspot Traffic

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 2 3 4 5 6

N
o

C
 C

lo
c

k
 F

re
q

.
(G

H
z
)

time (ms)

(g)

Hotspot Traffic

 0

 2

 4

 6

 8

 10

 1 2 3 4 5 6

A
v

e
ra

g
e

 B
a

c
k

lo
g

 (
fl

it
s

)

time (ms)

(h)

target BT

Hotspot Traffic

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 1 2 3 4 5 6

ra
te

 (
fl

it
s

/c
y

c
le

)

time (ms)

(a)

Hotspot Traffic

Uniform Traffic

 0

 200

 400

 600

 800

 1000

 1 2 3 4 5 6
P

a
c

k
e

t
D

e
la

y
 (

n
s

)

time (ms)

(b)

Hotspot Traffic

Uniform Traffic

 0.32

 0.34

 0.36

 0.38

 0.4

 0.42

 0.44

 0.46

 1 2 3 4 5 6

N
o

C
 C

lo
c

k
 F

re
q

.
(G

H
z
)

time (ms)

(c)

Hotspot Traffic

Uniform Traffic

 0

 20

 40

 60

 80

 100

 120

 140

 1 2 3 4 5 6

A
v

e
ra

g
e

 B
a

c
k

lo
g

 (
fl

it
s

)

time (ms)

(d)

target BT

Hotspot Traffic

Uniform Traffic

Figure 6: QMSD policy: rate step response in a 4×4 NoC.

When the PI controller works in closed-loop, by setting Fnoc such that the

average backlog tracks BT , we obtain that, when the injection is between 90%

and 100% of the saturation rate, the average queue tends to be larger than

BT and Fnoc is set to Fmax. When instead the injection is less than 90% of the

saturation rate, Fnoc varies between Fmin and Fmax. In conclusion, imposing

a 90% saturation point allows to exploit DVFS for a wide rate range.

3.2.1. QMSD Performance

Fig. 6 shows the system response to a rate step occurring at 3 ms in case

of uniform and hotspot traffic scenarios. We observe the abrupt frequency

change in Figs. 6(c),(g) and the corresponding variation of the backlog in

Figs. 6(d),(h) and the packet delay in Figs. 6(b),(f). Notice that after the rate

step the average backlog tends to reach the target BT , which indeed depends

18

 0

 50

 100

 150

 200

 250

 300

 350

 0.015 0.03 0.045 0.06

P
a

c
k

e
t

L
a

te
n

c
y

 (
c

y
c

le
)

Injection Rate (flits/cycle)

(e)

No-DVFS QMSD

Hotspot Traffic

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0.015 0.03 0.045 0.06

P
a

c
k

e
t

D
e

la
y

 (
n

s
)

Injection Rate (flits/cycle)

(f)

No-DVFS QMSD

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0.015 0.03 0.045 0.06

N
o

C
 C

lo
c

k
 F

re
q

.
(G

H
z
)

Injection Rate (flits/cycle)

(g)

No-DVFS QMSD

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0.015 0.03 0.045 0.06

A
v

e
ra

g
e

 B
a

c
k

lo
g

 (
fl

it
s

)

Injection Rate (flits/cycle)

(h)

No-DVFS QMSD

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 0.1 0.2 0.3 0.4

P
a

c
k

e
t

L
a

te
n

c
y

 (
c

y
c

le
s

)

Injection Rate (flits/cycle)

(a)

No-DVFS QMSD

Uniform Traffic

 0

 100

 200

 300

 400

 500

 0 0.1 0.2 0.3 0.4
P

a
c

k
e

t
D

e
la

y
 (

n
s

)

Injection Rate (flits/cycle)

(b)

No-DVFS QMSD

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0 0.1 0.2 0.3 0.4

N
o

C
 C

lo
c

k
 F

re
q

.
(G

H
z
)

Injection Rate (flits/cycle)

(c)

No-DVFS QMSD

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 0.1 0.2 0.3 0.4

A
v

e
ra

g
e

 B
a

c
k

lo
g

 (
fl

it
s

)

Injection Rate (flits/cycle)

(d)

No-DVFS QMSD

Figure 7: Performance figures without DVFS and with a QMSD policy in a 4×4 NoC.

on the traffic scenario: according to the previously outlined procedure, we

obtain 50 and 2 flits for the two scenarios, respectively. Notice also that in the

uniform scenario, the low rate before the step sets the frequency to Fmin and

the corresponding backlog settles to a value lower than BT . Notice also that

in the hotspot case a frequency overcorrection (capped at 1 GHz) is necessary

to counteract the sudden backlog increase at 3 ms.

In Fig. 7 we report the simulation results obtained at steady-state (i.e. when

all transients are expired). Under both traffic cases, QMSD keeps the backlog

close to the target in a wide range of injection rates (Figs. 7(d),(h)). This range

corresponds to the frequency range between Fmin and Fmax (Figs. 7(c),(g)).

As expected, at around 90% of the saturation rate the average backlog in the

QMSD case equals that of the No-DVFS case, and Fnoc reaches Fmax.

By keeping the average occupancy constant, the QMSD policy obtains that

19

the end-to-end latency Lnoc in terms of clock cycles remains constant in the

range [Fmin, Fmax], as shown in Figs. 7(a),(e). Since Lnoc is constant and Fnoc

increases in that range, the end-to-end delay in nanoseconds, Dnoc = Lnoc/Fnoc,

decreases as we approach 90% of the saturation rate, as shown in Figs. 7(b),(f).

Past this point, since Lnoc increases and Fnoc is constant and equal to Fmax,

the delay increases, hence showing a minimum point.

The delay curve exhibits a peak in correspondence of the injection rate

at which Fnoc = Fmin. This happens because for lower rates Fnoc is fixed to

Fmin and Lnoc decreases, hence causing the delay to decrease; for higher rates,

Lnoc is constant and Fnoc increases, hence also causing the delay to decrease.

Such non-monotonic behavior is similar to what we obtained in the RMSD

case. An explanation of such similarity is presented later in Sec. 3.4.

By comparing the two traffic scenarios we can observe that the level of

average occupancy is very different, because the maximum injection rates in

the two traffic cases differ by more than one order of magnitude. As a result,

the target average occupancy depends strongly on the traffic scenario.

3.3. DMSD Policy

In the DMSD policy, the target of the PI controller is a fixed end-to-

end packet delay, denoted as DT , instead of the fixed backlog of the packet

injection queues used in the QMSD policy. The scheme of the PI controller

is, however, the same as the one previously shown in Fig. 5.

As shown in Fig. 3(c), like in the RMSD and QMSD cases, the NI packet

queues serve also as resynchronizing FIFOs, and voltage-level shifters are

needed. One main difference between the previously described policies and

DMSD is that delays are measured at the receiver side, rather than at the

20

transmitter side: To measure packet delays, a timestamp is inserted in the

header flit of each transmitted packet according to a global time reference

and is extracted by the receiver NI (purple path in Fig. 3(c)).

To implement the NI global time references we use counters clocked at

the same reference frequency from which the PM’s PLL synthesizes the NoC

clock frequency. A global reset synchronizes all the counters. The receiver

NI extracts the timestamp and computes the packet delay as the difference

(modulo 2b, being b the bits of the counter and the timestamp) between the

values of its counter and the timestamp. The number of bits b depends on

the expected maximum delay. In all our experiments we measured end-to-end

latencies less than 16,000 cycles, hence we used 14 bits. There are typically

sufficient unused bits in the header flit for a 14-bit timestamp [8].

At every update period of the PI controller, which happens every 10 µs

like in the QMSD case, each NI sends a control packet to the PM with

the measured average delay and the number of received packets (red path

in Fig. 3(c)). After collecting the control packets from all the nodes, the

PM computes a weighted average delay (by weighting the delays with the

corresponding number of received packets). Finally, the target delay DT is

subtracted from the average delay to obtain the error signal En of the PI

controller in Fig. 5. The best values of the controller gains that we obtain in

our simulations are KI =0.025 and KP=0.0125, which are obtained like in

the QMSD controller in a way that guarantees stability [24].

Like in QMSD, the choice of the target is crucial. To determine the most

suitable DT value we propose a method similar to the one adopted in QMSD

to determine BT . With the PI controller disabled, we slow down Fnoc until we

21

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 1 2 3 4 5 6

ra
te

 (
fl

it
s

/c
y

c
le

)

time (ms)

(e)

Hotspot Traffic

Uniform Traffic

 80

 100

 120

 140

 160

 180

 200

 220

 240

 260

 1 2 3 4 5 6

P
a

c
k

e
t

D
e

la
y

 (
n

s
)

time (ms)

(f)

target DT

Hotspot Traffic

Uniform Traffic

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 1 2 3 4 5 6

N
o

C
 C

lo
c

k
 F

re
q

.
(G

H
z
)

time (ms)

(g)

Hotspot Traffic

Uniform Traffic

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 1 2 3 4 5 6

A
v

e
ra

g
e

 B
a

c
k

lo
g

 (
fl

it
s

)

time (ms)

(h)

Hotspot Traffic

Uniform Traffic

 0.09

 0.1

 0.11

 0.12

 0.13

 0.14

 0.15

 0.16

 0.17

 1 2 3 4 5 6

ra
te

 (
fl

it
s

/c
y

c
le

)

time (ms)

(a)

Hotspot Traffic

Uniform Traffic

 140

 150

 160

 170

 180

 190

 200

 210

 220

 230

 1 2 3 4 5 6
P

a
c

k
e

t
D

e
la

y
 (

n
s

)

time (ms)

(b)

target DT

Hotspot Traffic

Uniform Traffic

 0.4

 0.42

 0.44

 0.46

 0.48

 0.5

 0.52

 1 2 3 4 5 6

N
o

C
 C

lo
c

k
 F

re
q

.
(G

H
z
)

time (ms)

(c)

Hotspot Traffic

Uniform Traffic

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

 1 2 3 4 5 6

A
v

e
ra

g
e

 B
a

c
k

lo
g

 (
fl

it
s

)

time (ms)

(d)

Hotspot Traffic

Uniform Traffic

Figure 8: DMSD policy: rate step response in a 4×4 NoC.

reach saturation and we record the average delay at an injection equal to 90%

of the saturation rate; finally we set this value as the target delay DT . In this

way, when the PI controller operates in closed-loop and the injection is less

than 90% of the saturation rate, the controller will tune Fnoc between Fmin

and Fmax such that the average packet delay tracks DT . When the injection

is between 90% and 100% of the saturation rate, Fnoc will be set to Fmax.

3.3.1. DMSD Performance

For the uniform and hotspot traffic, we have found the most suitable

target packet delays are DT = 160 ns and 140 ns, respectively. The delay

target is different in the two scenarios, but not as much as the backlog target

was in the QMSD case. Like for the QMSD policy, we report in Fig. 8 the

DMSD response to a rate step. We observe that the frequency increases after

22

 0

 50

 100

 150

 200

 250

 300

 350

 0.015 0.03 0.045 0.06

P
a

c
k

e
t

L
a

te
n

c
y

 (
c

y
c

le
)

Injection Rate (flits/cycle)

(e)

No-DVFS DMSD

Hotspot Traffic

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0.015 0.03 0.045 0.06

P
a

c
k

e
t

D
e

la
y

 (
n

s
)

Injection Rate (flits/cycle)

(f)

No-DVFS DMSD

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0.015 0.03 0.045 0.06

N
o

C
 C

lo
c

k
 F

re
q

.
(G

H
z
)

Injection Rate (flits/cycle)

(g)

No-DVFS DMSD

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0.015 0.03 0.045 0.06

A
v

e
ra

g
e

 B
a

c
k

lo
g

 (
fl

it
s

)

Injection Rate (flits/cycle)

(h)

No-DVFS DMSD

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 0.1 0.2 0.3 0.4

P
a

c
k

e
t

L
a

te
n

c
y

 (
c

y
c

le
s

)

Injection Rate (flits/cycle)

(a)

No-DVFS DMSD

Uniform Traffic

 0

 100

 200

 300

 400

 500

 0 0.1 0.2 0.3 0.4
P

a
c

k
e

t
D

e
la

y
 (

n
s

)

Injection Rate (flits/cycle)

(b)

No-DVFS DMSD

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0 0.1 0.2 0.3 0.4

N
o

C
 C

lo
c

k
 F

re
q

.
(G

H
z
)

Injection Rate (flits/cycle)

(c)

No-DVFS DMSD

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 0.1 0.2 0.3 0.4

A
v

e
ra

g
e

 B
a

c
k

lo
g

 (
fl

it
s

)

Injection Rate (flits/cycle)

(d)

No-DVFS DMSD

Figure 9: Performance figures without DVFS and with a DMSD policy in a 4×4 NoC.

the rate step such that the delay correctly tracks the target DT , both for the

uniform and the hotspot scenarios.

Fig. 9 shows the DMSD performance obtained in steady-state, which

can be compared with Fig. 4 and Fig. 7 for the RMSD and QMSD policies,

respectively. The PI controller effectively keeps the delay constant for a wide

range of injection rates, as shown in Figs. 7(b),(f). As expected, when the

injection reaches 90% of the saturation rate, Fnoc reaches Fmax and the DMSD

delay becomes equal to the No-DVFS delay. To keep the delay constant, the

average backlog changes and increases almost linearly with the increase of

the injection rate. This behavior can be explained with Little’s law3.

3Little’s law is a well-known property [25] holding under remarkably general network

scenarios (individual queues, networks) and very generic arrival and service processes, given

that the system reaches a stationary regime. The property states that the average total

23

By comparing the results in the uniform and hotspot cases, we observe

that the target delay DT has been set equal to about 160 ns and 140 ns,

respectively, according to the previously described tuning procedure for DT .

This is a striking difference with the previous policies, in which target rate and

target backlog depend significantly on the traffic scenario. A target almost

independent on the traffic makes the DMSD policy more appealing from a

practical viewpoint. We also do not observe any apparent difference in the

efficiency in keeping the delay close to the target in the two scenarios.

The comparison between end-to-end delays obtained in the RMSD and

QMSD cases, Figs. 7(b),(f), and those obtained in the DMSD one, Figs. 9(b),(f),

clearly shows a large difference in terms of delay. In Sec. 5, we will show that

this performance gap is typically not equally compensated in terms of power.

3.4. Theoretical ground for the three policies

It is possible to obtain results very similar to those obtained with NoC

simulations under the three policies by using a simple M/D/1 queueing model,

in which the service time depends on the frequency chosen by the DVFS

control. Indeed, we can associate this M/D/1 model to the queuing occurring

to the flits before being injected through the NoC.

Let us assume that λ is the number of arrived flits per node clock cycle.

For simplicity, we assume that the delay experienced by a flit transmitted

through the NoC depends only on the transmission time of the flit at the

ingress of the NoC, measured in terms of node clock cycles, equal to Fnode/Fnoc.

backlog in the system equals the product of the average delay and the overall arrival rate

into the system. Using the notation of the M/D/1 model adopted in Sec. 3.4: B = λD.

24

Thus, we can formally define the inverse of the service time of the queue as

µ = Fnoc/Fnode, with µ ≤ 1. Notably, the service time in the M/D/1 model is

fixed, whereas Fnoc varies over time due to the control loop. Thus, we assume

that µ is actually computed based on the average NoC frequency E[Fnoc]

observed on a time window: µ = E[Fnoc]/Fnode. This simplification leads

to an approximated model, nevertheless quite accurate as shown below. By

defining the classical utilization factor as

ρ = λ/µ, (7)

we can use the standard M/D/1 formula to compute the average delay D as

D =
2− ρ

2(1− ρ)
· 1

µ
. (8)

By exploiting Little’s law in (8), we can also obtain the average backlog B

B =
2− ρ

2(1− ρ)
· ρ (9)

We now observe that DMSD and QMSD policies set the delay and the

backlog equal to a target, i.e. D = DT and B = BT , respectively. As for

RMSD, setting the NoC injection rate equal to λmax is equivalent to setting

the utilization factor equal to a given target, i.e. ρ = ρT , with ρT ∈ (0, 1).

Thus, by setting some target value in (7)-(9), we can analytically derive the

required µ. In particular, by setting the utilization factor ρT , we obtain that

the RMDS policy in (4) corresponds exactly to the following one:

µ = max

{
min

{
λ

ρT
, 1

}
,
Fmin

Fmax

}
. (10)

By setting instead B = BT in (9) we obtain the QMSD policy:

µ = max

{
min

{ λ

2BT

·
(
BT + 1 +

√
B2

T + 1
)
, 1
}
,
Fmin

Fmax

}
. (11)

25

 0

 5

 10

 15

 20

 0 0.2 0.4 0.6 0.8 1

F
li
t

D
e
la

y
 (

n
o

d
e
 c

lo
c
k
 c

y
c
le

s
)

Injection Rate (flits/cycle)

RMSD, QMSD-5
QMSD-3

DMSD

 0

 2

 4

 6

 8

 10

 0 0.2 0.4 0.6 0.8 1

B
a
c
k
lo

g
 (

fl
it

s
)

Injection Rate (flits/cycle)

RMSD,QMSD-5
QMSD-3

DMSD

Figure 10: Average delay (left) and backlog (right) obtained through the M/D/1 model.

Finally, if we set a target delay DT in (8) we obtain the DMSD policy:

µ = max

{
min

{λDT + 1 +
√
λ2D2

T + 1

2DT

, 1
}
,
Fmin

Fmax

}
. (12)

In all the three different expressions, µ is chosen to keep the quantity in

question equal to the target whenever µ is in the interval [Fmin/Fmax, 1];

outside such interval µ is clipped within the same interval.

The left graph in Fig. 10 shows the theoretical delay obtained by combining

(8) with the specific policies expressed by (10)-(12), in the case Fmin =

333 MHz, Fmax = 1 GHz and the target utilization in RMSD is ρT = 0.9.

The right graph shows instead the average backlog. For the QMSD case, in

particular, we show the results for two target backlog values: BT = 3 flit

(denoted as “QMSD-3”) and BT = 5 flit (denoted as “QMSD-5”). The DMSD

curves are instead obtained by setting DT = 7 timeslots.

The curves obtained with the M/D/1 model and reported in Fig. 10 lead

to a number of observations.

First, by comparing Fig. 4(b) and Fig. 7(b) with the theoretical RMSD

and QMSD delays in Fig. 10, we note that the simple M/D/1 model accurately

captures the non-monotonic behavior. For the QMSD case, the fact that the

delay decreases as the load increases has a rather intuitive explanation: thanks

26

to Little’s law λD is constant, therefore if λ increases, D must decrease.

Second, we notice that the behavior of QMSD-5 is exactly the same

as RMSD with ρT = 0.9. This is due to the equivalence between QMSD

and RMSD policies, for an appropriate choice of the design parameters, i.e.

the target utilization ρT in RMSD and the target backlog BT in QMSD.

Indeed, from (10)-(11) we obtain that the two policies are equivalent if

ρT = BT + 1−
√
B2

T + 1. This property was already proven formally in [23]

for the same M/D/1 model adopted here. This property remarkably holds

also in the NoC scenario, as shown by comparing the behavior of RMSD in

Figs. 4(d),(h) with the behavior of QMSD in Figs. 7(d),(h).

Finally, we observe that the DMSD average delay is kept mostly constant,

whereas the backlog grows linearly with the load, as expected by Little’s

law. If we compare the M/D/1 delay and backlog curves with the delays in

Figs. 9(b),(f) and the backlog in Figs. 9(d),(h), we notice that our M/D/1

model remarkably and accurately mimics the performance of the NoC.

4. Accurate Power Evaluation for DVFS

To evaluate the NoC power consumption, we first determined F (V), i.e.

the maximum clock frequency for a given voltage, which we hinted at in Sec. 3.

We used the flow illustrated in the left part of Fig. 11.

We first synthesized with Synopsys Design Compiler (DC), an RTL ver-

sion of the virtual-channel router used in simulations, targeting a low-power

standard-cell library in a 28-nm FDSOI CMOS technology. After converting

the gate-level netlist into a transistor-level netlist, we extracted the netlist

portion related to the critical path, which we simulated with Mentor Graph-

27

Switch
Verilog RTL

FDSOI 28nm
Library

Synopsys DC

Gate-level netlist

Verilog-to-Spice

Spice netlist

MG Eldo Variable
Voltage

F(V)

 Traffic
(synthetic or
benchmarks)

 NoC params
•  VC num/size
•  Packet size
•  Mesh size

Booksim 2

Activity in links,
buffers, Xbar, …

Synopsys PT

NoC level power

Figure 11: Methodology for the power evaluation.

ics’ Eldo transistor-level simulator. For each given supply voltage Vdd, we

simulated the critical path with proper input patterns aimed to obtain the

maximum clock frequency that resulted in no timing errors. The result of

this analysis is the F (V) curve that we also report in Fig. 11. A reasonable

range for the clock frequency goes from Fmin = 333 MHz to Fmax = 1 GHz,

which corresponds to a voltage range from 0.56 V to 0.9 V.

The so-obtained F (V) curve is used in our power estimation flow, as

shown in the right part of Fig. 11. We fed Booksim cycle accurate simulator

with all the required NoC parameters and with the traffic scenario. Thanks to

the capabilities of Booksim, not only we obtained cycle-accurate performance

measurements, but we could also save information of activity in the links,

buffers, crossbar, etc. Therefore we imported this information in Synopsys

Prime Time and obtained an accurate power estimation for any input rate,

any router in the NoC, and any frequency-voltage pair.

28

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 0.015 0.03 0.045 0.06

P
o

w
e

r
(m

W
)

Injection Rate (flits/cycle)

(e)

No-DVFS

RMSD

QMSD

DMSD

Hotspot Traffic

 0

 100

 200

 300

 400

 500

 0 0.015 0.03 0.045 0.06

P
a

c
k

e
t

D
e

la
y

 (
n

s
)

Injection Rate (flits/cycle)

(f)

No-DVFS

RMSD

QMSD

DMSD

 0

 5

 10

 15

 20

 25

 0 0.015 0.03 0.045 0.06

P
o

w
e

r
X

 D
e

la
y

 (
n

J
)

Injection Rate (flits/cycle)

(g)

No-DVFS

RMSD

QMSD

DMSD

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0 0.015 0.03 0.045 0.06E
n

e
rg

y
 p

e
r

c
lo

c
k

 p
e

ri
o

d
 (

n
J

)

Injection Rate (flits/cycle)

(h)

No-DVFS

RMSD

QMSD

DMSD

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 0.1 0.2 0.3 0.4

P
o

w
e

r
(m

W
)

Injection Rate (flits/cycle)

(a)

No-DVFS

RMSD

QMSD

DMSD

Uniform Traffic

 0

 100

 200

 300

 400

 500

 600

 0 0.1 0.2 0.3 0.4
P

a
c

k
e

t
D

e
la

y
 (

n
s

)

Injection Rate (flits/cycle)

(b)

No-DVFS

RMSD

QMSD

DMSD

 0

 10

 20

 30

 40

 50

 60

 70

 0 0.1 0.2 0.3 0.4

P
o

w
e

r
X

 D
e

la
y

 (
n

J
)

Injection Rate (flits/cycle)

(c)

No-DVFS

RMSD

QMSD

DMSD

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 0.1 0.2 0.3 0.4E
n

e
rg

y
 p

e
r

c
lo

c
k

 p
e

ri
o

d
 (

n
J

)

Injection Rate (flits/cycle)

(d)

No-DVFS

RMSD

QMSD

DMSD

Figure 12: Power and performance metrics for the baseline case in Tab. 1.

5. Experimental Results

We report three kinds of experimental results, each in a separate subsection.

We present power and performance results obtained under synthetic and

realistic traffic in Sec. 5.1 and Sec. 5.2-5.3, respectively. The results have

been obtained through the methodology for the power evaluation described

in Sec. 4. We also evaluate a hardware implementation of the PM in Sec. 5.4.

5.1. Synthetic Traffic

For the baseline NoC parameters in Tab. 1, under the same uniform and

hotspot synthetic traffic scenarios of Sec. 3, we report power consumption in

Figs. 12(a),(e), packet delay in Figs. 12(b),(f), product of delay and power in

Figs. 12(c),(g), and energy spent per network clock period in Figs. 12(d),(h).

We observe that all the three policies significantly reduce power compared

29

to the No-DVFS case. RMSD and QMSD show the best power saving, but at

the same time they exhibit the worst delay increase. DMSD consumes more

power, but such power increase is compensated by a larger decrease of delay.

This is apparent in the curves reporting the power-delay product: under this

metric, DMSD is the winner among the three policies4. The energy per clock

period is similar, only slightly larger for DMSD in the hotspot scenario.

For the case of uniform traffic pattern, we performed a sensitivity analysis

by varying the NoC parameters as shown in Tab. 1. The results in Fig. 13

confirm that the delay-power trade-off always tips in favor of DMSD.

5.2. NoC Communication and Multimedia Benchmarks

We selected nine NoC benchmarks from the fields of signal and image

processing for communications and multimedia [26][27][28][29][30], whose

main features are summarized in Tab. 2. This selection offers sufficiently

diverse characteristics—number of nodes and row/columns arrangement in

an NoC mesh, injection rates, distribution of the load across the NoC—to

enable an in-depth exploration and validation of the three DVFS policies.

The maximum throughput per node is 8 GB/s at Fmax = 1 GHz and

with a 64-bit flit width. By comparing the injection rates (per node) in

Tab. 2 with the maximum throughput, we can classify the benchmarks in two

groups: ERICSSON, AV, MPEG4, VOPD, and H264 have a high injection

rate; EQUALIZER, PIP, MWD, and VCE have a low injection rate.

The maps in Fig. 14 illustrate with a colored shading the injection rates in

4Clearly, the results depend on the metric used. The power-delay product gives equal

importance to power and delay.

30

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 0.1 0.2 0.3 0.4 0.5

P
o

w
e

r
(m

W
)

Injection Rate (flits/cycle)

(m)

No-DVFS

RMSD

QMSD

DMSD

Mesh Size

4x4

5x5

8x8

 0

 100

 200

 300

 400

 500

 600

 0 0.1 0.2 0.3 0.4 0.5

P
a

c
k

e
t

D
e

la
y

 (
n

s
)

Injection Rate (flits/cycle)

(n)

No-DVFS

RMSD

QMSD

DMSD

4x4

5x5

8x8

 0

 50

 100

 150

 200

 250

 300

 0 0.1 0.2 0.3 0.4 0.5

P
o

w
e

r
X

 D
e

la
y

 (
n

J
)

Injection Rate (flits/cycle)

(o)

No-DVFS

RMSD

QMSD

DMSD

4x4

5x5

8x8

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 0.1 0.2 0.3 0.4E
n

e
rg

y
 p

e
r

c
lo

c
k

 p
e

ri
o

d
 (

n
J

)

Injection Rate (flits/cycle)

(p)

No-DVFS

RMSD

QMSD

DMSD

4x4

5x5

8x8

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 0.1 0.2 0.3 0.4 0.5

P
o

w
e

r
(m

W
)

Injection Rate (flits/cycle)

(i)

No-DVFS

RMSD

QMSD

DMSD

Packet Size

10

15

20

 0

 100

 200

 300

 400

 500

 600

 0 0.1 0.2 0.3 0.4 0.5

P
a

c
k

e
t

D
e

la
y

 (
n

s
)

Injection Rate (flits/cycle)

(j)

No-DVFS

RMSD

QMSD

DMSD

10

15

20

 0

 10

 20

 30

 40

 50

 60

 0 0.1 0.2 0.3 0.4 0.5

P
o

w
e

r
X

 D
e

la
y

 (
n

J
)

Injection Rate (flits/cycle)

(k)

No-DVFS

RMSD

QMSD

DMSD

10

15
20

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 0.1 0.2 0.3 0.4 0.5E
n

e
rg

y
 p

e
r

c
lo

c
k

 p
e

ri
o

d
 (

n
J

)

Injection Rate (flits/cycle)

(l)

No-DVFS

RMSD

QMSD

DMSD
10

15

20

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 0.15 0.3 0.45 0.6

P
o

w
e

r
(m

W
)

Injection Rate (flits/cycle)

(e)

No-DVFS

RMSD

QMSD

DMSD

Buffer Size

4

8

16

 0

 100

 200

 300

 400

 500

 600

 0 0.15 0.3 0.45 0.6

P
a

c
k

e
t

D
e

la
y

 (
n

s
)

Injection Rate (flits/cycle)

(f)

No-DVFS

RMSD

QMSD

DMSD

4

8
16

 0

 20

 40

 60

 80

 100

 120

 140

 0 0.15 0.3 0.45 0.6

P
o

w
e

r
X

 D
e

la
y

 (
n

J
)

Injection Rate (flits/cycle)

(g)

No-DVFS

RMSD

QMSD

DMSD

4
8

16

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.15 0.3 0.45 0.6E
n

e
rg

y
 p

e
r

c
lo

c
k

 p
e

ri
o

d
 (

n
J

)

Injection Rate (flits/cycle)

(h)

No-DVFS

RMSD

QMSD

DMSD

4

8

16

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 0.1 0.2 0.3 0.4

P
o

w
e

r
(m

W
)

Injection Rate (flits/cycle)

(a)

No-DVFS

RMSD

QMSD

DMSD

Number of Virtual Channels

2

4

8

 0

 100

 200

 300

 400

 500

 600

 0 0.1 0.2 0.3 0.4
P

a
c

k
e

t
D

e
la

y
 (

n
s

)

Injection Rate (flits/cycle)

(b)

No-DVFS

RMSD

QMSD

DMSD

2 4
8

 0

 10

 20

 30

 40

 50

 60

 70

 0 0.1 0.2 0.3 0.4

P
o

w
e

r
X

 D
e

la
y

 (
n

J
)

Injection Rate (flits/cycle)

(c)

No-DVFS

RMSD

QMSD

DMSD

2

4

8

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 0.1 0.2 0.3 0.4E
n

e
rg

y
 p

e
r

c
lo

c
k

 p
e

ri
o

d
 (

n
J

)

Injection Rate (flits/cycle)

(d)

No-DVFS

RMSD

QMSD

DMSD

2

4

8

Figure 13: Sensitivity analysis under uniform traffic as a function of: number of virtual

channels (a)-(d), buffer size in flits (e)-(h), packet size in flits (i)-(l), and mesh size (m)-(p).

the nine selected benchmarks, clearly showing that these can be partitioned

in two groups according to the above criteria. We can also easily notice that

31

Table 2: Main features of nine selected NoC benchmarks.

Benchmark Nodes Type
Min/Max/Ave

Rate (GB/s)

Min/Max/Ave

Rate (flits/cycle)

ERICSSON [26] 16 (4x4) high-rate 0.0/3.0/0.27 0.0/0.395/0.036

AV [28] 16 (4x4) high-rate 0.0/1.83/0.38 0.0/0.24/0.05

MPEG4 [29] 12 (4x3) high-rate 0.0/1.75/0.42 0.0/0.23/0.056

VOPD [29] 12 (4x3) high-rate 0.0/0.58/0.213 0.0/0.076/0.028

H264 [30] 12 (4x3) high-rate 0.0/0.55/0.278 0.0/0.072/0.037

EQUALIZER [27] 15 (5x3) low-rate 0.0/3.4E-3/7.4E-4 0.0/4.3E-5/4.9E-6

PIP [29] 8 (4x2) low-rate 0.0/0.19/0.035 0.0/0.025/4.6E-3

MWD [29] 12 (4x3) low-rate 0.0/0.19/0.068 0.0/0.025/9.0E-3

VCE [30] 25 (5x5) low-rate 0.0/0.088/0.022 0.0/0.012/2.9E-3

 0

 1

 2

 3

 4

 0 1 2 3 4

VCE

 0

 1

 2

 0 1 2 3 4

EQUALIZER

 0

 1

 2

 3

 0 1 2 3

AV

 0

 1

 2

 3

 0 1 2 3

ERICSSON

 0

 1

 0 1 2 3

PIP

 0

 1

 2

 0 1 2 3

MPEG4

 0

 1

 2

 0 1 2 3

VOPD

 0

 1

 2

 0 1 2 3

MWD

 0

 1

 2

 3

 0 1 2 3

H264

 0.0001

 0.001

 0.01

 0.1

 1

 10

in
je

c
ti

o
n

 r
a
te

 (
G

B
/s

)

Figure 14: Injection rate in GByte/s for each node in the selected NoC benchmarks.

in various cases the injected traffic is far from uniform, and usually one node

injects much more traffic, hence likely leading to hot-spot situations.

To evaluate performance and power savings under our DVFS policies, it

has been necessary to first set proper references (i.e. λmax, BT , and DT). We

propose a similar approach as the one devised for the synthetic benchmarks.

We slow down Fnoc by some factor φ > 1 until we could bring the NoC into

saturation. Then we determined the value of φ that corresponds to 90% of

the saturation rate and recorded network injection rate, average backlog and

32

 0

 50

 100

 150

 200

 250

 300

ER
IC

SSO
N A

V

M
PEG

4

VO
PD

H
26

4

EQ
U
A
LIZ

ER
PIP

M
W

D
VC

E

n
s

Delay

(a)

NO-DVFS RMSD QMSD DMSD

2.
09

x

3.
35

x

4.
50

x

3.
35

x

5.
16

x

1.
86

x

3.
68

x 4.
15

x

3.
39

x

4.
59

x

1.
55

x 2.
24

x

2.
17

x

1.
90

x
1.

86
x

3.
01

x

3.
08

x

3.
09

x

3.
08

x

3.
01

x

3.
09

x

3.
09

x

3.
03

x

2.
51

x

2.
13

x

2.
15

x
2.

26
x

high injection rate low injection rate

 0

 2

 4

 6

 8

 10

 12

ER
IC

SSO
N A

V

M
PEG

4

VO
PD

H
26

4

EQ
U
A
LIZ

ER
PIP

M
W

D
VC

E

n
J

Power X Delay

(c)

NO-DVFS RMSD QMSD DMSD
1.

15
x

0.
93

x 1.
14

x

0.
57

x

0.
92

x

1.
02

x

1.
03

x

1.
08

x

0.
58

x

0.
92

x

0.
99

x

0.
77

x

0.
79

x

0.
61

x 0.
67

x

0.
48

x

0.
50

x
0.

51
x

0.
50

x

0.
48

x

0.
50

x
0.

51
x

0.
48

x

0.
49

x

0.
54

x
0.

54
x

0.
51

x

high injection rate low injection rate

 0

 25

 50

 75

 100

 125

 150

 175

 200

ER
IC

SSO
N A

V

M
PEG

4

VO
PD

H
26

4

EQ
U
A
LIZ

ER
PIP

M
W

D
VC

E

m
W

Power

(b)

NO-DVFS RMSD QMSD DMSD

0.
55

x

0.
28

x

0.
25

x

0.
17

x
0.

18
x

0.
55

x

0.
28

x

0.
26

x

0.
17

x
0.

20
x

0.
64

x

0.
34

x

0.
36

x

0.
32

x 0.
36

x

0.
16

x

0.
16

x

0.
17

x 0.
16

x

0.
16

x

0.
16

x

0.
17

x 0.
16

x0.
20

x

0.
25

x
0.

25
x 0.

23
x

high injection rate low injection rate

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

ER
IC

SSO
N A

V

M
PEG

4

VO
PD

H
26

4

EQ
U
A
LIZ

ER
PIP

M
W

D
VC

E

n
J

Energy per clock period

(d)

NO-DVFS RMSD QMSD DMSD

0.
72

x

0.
57

x

0.
56

x

0.
51

x
0.

52
x

0.
72

x

0.
57

x

0.
56

x

0.
52

x
0.

52
x

0.
77

x

0.
60

x

0.
61

x

0.
58

x 0.
60

x
0.

47
x

0.
49

x
0.

50
x

0.
49

x

0.
47

x

0.
49

x
0.

50
x

0.
48

x

0.
49

x

0.
53

x
0.

53
x

0.
51

x

high injection rate low injection rate

Figure 15: Power and performance metrics in the benchmark traffic scenarios.

average delay, which we set as references. Finally, we ran simulations with

DVFS enabled and let the PM set autonomously Fnoc, and we determined

delay and power consumption with the methodology described in Sec. 4.

Results of delay, power, power-delay product, and energy per clock period

for the nine benchmarks are reported in the histograms in Fig. 15. Notably,

the actual injection rate is fixed and depends on the considered benchmark.

The histogram in Fig. 15(a) shows that the packet delay degradation under

QMSD and RMSD policies with respect to the No-DVFS case is very high,

with both large average and deviation across the benchmarks. On the contrary,

the delay under the DMSD policy increases much less on average and has

a small deviation. Interestingly, the absolute delay under the DMSD policy

(i.e. not in relative terms) remains more or less constant for all the benchmarks,

33

even if in theory the tracked reference value could be different for each of them.

This means that, regardless of the benchmark, the delay at 90% of saturation

remains more or less constant, and suggests that it could be possible to

determine a priori the reference delay in DMSD.

Fig. 15(b) shows that all the policies effectively reduce power compared

to the No-DVFS case. Coherently with what we observed under synthetic

traffic, QMSD and RMSD outperform DMSD in terms of power reduction.

In terms of power-delay trade-off, we observe that in the group of high-

injection-rate benchmarks the average power advantage of QMSD and RMSD

over DMSD is compensated by a larger average delay degradation, which

results in a low power-delay product, as shown in Fig. 15(c) (with the

exception of VOPD benchmark, in which the power-delay product is similar

in all policies). In the group of low-injection-rate benchmarks, instead, the

power advantage of QMSD and RMSD over DMSD is larger or equal to the

delay degradation. We conclude that the DMSD policy offers a better power-

delay trade-off for high-rate applications, whereas for low-rate applications

QMSD and RMSD appear to be preferable solutions.

As for RMSD and QMSD, we already noticed that they lead to very similar

results. The choice between the two depends on practical implementation

issues. Since QMSD and DMSD use a PI controller, the same PM can be

reconfigured to use one or the other depending on specific requirements,

e.g. privileging power reduction or power-delay trade-off.

5.3. NoC PARSEC Benchmarks

The network simulations of the previous sections allows to get important

insights on the performance of the NoC based on different power control

34

 0
 1
 2
 3
 4
 5
 6
 7

 0 1 2 3 4 5 6 7

BLACKSCHOLES

 0
 1
 2
 3
 4
 5
 6
 7

 0 1 2 3 4 5 6 7

FLUIDANIMATE

 0
 1
 2
 3
 4
 5
 6
 7

 0 1 2 3 4 5 6 7

DEDUP

 0
 1
 2
 3
 4
 5
 6
 7

 0 1 2 3 4 5 6 7

SWAPTIONS

 0
 1
 2
 3
 4
 5
 6
 7

 0 1 2 3 4 5 6 7

X264

 0
 1
 2
 3
 4
 5
 6
 7

 0 1 2 3 4 5 6 7

BODYTRACK

 0
 1
 2
 3
 4
 5
 6
 7

 0 1 2 3 4 5 6 7

FERRET

 0
 1
 2
 3
 4
 5
 6
 7

 0 1 2 3 4 5 6 7

CANNEAL

 0.01 0.1 1

Injection Rate (GB/s)

Figure 16: Injection rate in GByte/s for each node in the PARSEC benchmarks.

algorithms. Nevertheless, the accuracy of the results obtained with system-

level simulations cannot be achieved with such network simulations.

To improve the accuracy of our comparison, we adopted the Netrace

methodology proposed by [31], since it was shown to provide an accuracy

comparable with system-level simulations but with a simpler approach. Indeed,

Netrace allows to inject the packets into the NoC based on realistic workload

traces in a such a way that the temporal dependency among packets is

preserved. We modified the specific development branch of Booksim2 that

integrates the native support of Netrace (available in [32]), in order to support

the DVFS model and our PM policies.

We ran simulations on 8 different PARSEC traces available on [33]. In

Fig. 16 we show the maps of the injections rates for each NoC node. The

traffic appears clearly unbalanced among the different nodes. The offered

load in each node is very small, varying from 3.2 MB/s up to 268 MB/s, with

an average equal to 58 MB/s, computed across all the traces and nodes.

The results of Fig. 17 are coherent with the ones obtained in Sec. 5.2,

35

 0

 20

 40

 60

 80

 100

 120

 140

B
LA

C
K
SC

H
O
LES

FLU
ID

A
N
IM

A
TE

SW
A
PTIO

N
S

B
O
D
YTR

A
C
K

FER
R
ET

D
ED

U
P

X26
4

C
A
N
N
EA

L

n
s

Delay

(a)

NO-DVFS RMSD QMSD DMSD

3.
00

x
3.

00
x

3.
00

x

3.
00

x
3.

00
x

3.
00

x
3.

00
x

3.
00

x

3.
00

x
3.

00
x

3.
00

x

3.
00

x
3.

00
x

3.
00

x
3.

00
x

3.
00

x

1.
88

x

1.
84

x

1.
85

x

1.
86

x

1.
63

x

1.
71

x

1.
65

x

1.
85

x

 0

 2

 4

 6

 8

 10

B
LA

C
K
SC

H
O
LES

FLU
ID

A
N
IM

A
TE

SW
A
PTIO

N
S

B
O
D
YTR

A
C
K

FER
R
ET

D
ED

U
P

X26
4

C
A
N
N
EA

L

n
J

Power X Delay

(c)

NO-DVFS RMSD QMSD DMSD

0.
47

x
0.

47
x

0.
47

x

0.
47

x 0.
47

x

0.
47

x
0.

47
x

0.
47

x

0.
47

x
0.

47
x

0.
47

x

0.
47

x 0.
47

x

0.
47

x
0.

47
x

0.
47

x0.
54

x
0.

55
x

0.
54

x

0.
54

x
0.

59
x

0.
57

x
0.

58
x

0.
54

x

 0

 25

 50

 75

 100

 125

 150

 175

 200

 225

 250

 275

B
LA

C
K
SC

H
O
LES

FLU
ID

A
N
IM

A
TE

SW
A
PTIO

N
S

B
O
D
YTR

A
C
K

FER
R
ET

D
ED

U
P

X26
4

C
A
N
N
EA

L

m
W

Power

(b)

NO-DVFS RMSD QMSD DMSD

0.
16

x

0.
16

x

0.
16

x

0.
16

x

0.
16

x

0.
16

x

0.
16

x

0.
16

x

0.
16

x

0.
16

x

0.
16

x

0.
16

x

0.
16

x

0.
16

x

0.
16

x

0.
16

x

0.
29

x
0.

30
x

0.
29

x

0.
29

x 0.
36

x

0.
33

x
0.

35
x

0.
29

x

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

B
LA

C
K
SC

H
O
LES

FLU
ID

A
N
IM

A
TE

SW
A
PTIO

N
S

B
O
D
YTR

A
C
K

FER
R
ET

D
ED

U
P

X26
4

C
A
N
N
EA

L

n
J

Energy per clock period

(d)

NO-DVFS RMSD QMSD DMSD

0.
47

x

0.
47

x

0.
47

x

0.
47

x

0.
47

x

0.
47

x

0.
47

x

0.
47

x

0.
47

x

0.
47

x

0.
47

x

0.
47

x

0.
47

x

0.
47

x

0.
47

x

0.
47

x0.
54

x

0.
55

x

0.
54

x

0.
54

x
0.

59
x

0.
57

x
0.

58
x

0.
54

x

Figure 17: Power and performance metrics in the PARSEC benchmarks.

specifically with the benchmarks characterized by a low injection rate. Indeed,

QMSD and RMSD behave identically, since the low injection rate permits

reducing the voltage and the frequency to the minimum one for both policies.

Interestingly, all the benchmarks show almost the same performance, despite

their different traffic patterns, due to the experienced low injection rate.

By comparing the delays, DMSD is able to correctly stabilize the delay

around the target DT = 60 ns, which was set to be smaller than the one

achieved by QMSD and RMSD. This delay reduction comes at a power cost,

since DMSD is not as power-efficient as the other PM policies. In absolute

terms, the power experienced for all the benchmarks is coherent with the

actual reductions observed in Sec. 5.2 for the traces with low injection rates.

The power-delay product for DMSD is slightly worse than QMSD and

36

RSMD and this suggests that the best tradeoff is achieved for QMSD and

RMSD in the scenarios when the injection rates are so small that the experi-

enced delay is still acceptable.

All these results depend strongly on the specific system-level architecture

considered in Netrace, according to which the original PARSEC traces were

obtained. For different architectures, the injection rates could be higher, thus

motivating a careful selection of the optimal PM policy.

5.4. Hardware Support for the DVFS Policies

We focus on the implementation of QMSD and DMSD, having noticed

the equivalence between RMSD and QMSD.

Each NI in QMSD computes the average backlog according to (6). By

choosing N in (6) as a power of 2, the multiplication by N − 1 is replaced

by a hard-wired left shift (by log2N positions) and a subtraction, and the

division by N is a log2N hard-wired right-shift. Therefore, the additional NI

complexity in QMSD (one subtracter and one adder: hard-wired shifts add

negligible complexity) is negligible compared to the complexity of a regular

NI dominated by the packet FIFOs. As for the PM, it computes first the final

average backlog by summing all the partial quantities and dividing by the

number of NIs. Then, it computes the U term through two multiplications by

KI and KP , a subtraction to get the error En, and a final addition. A further

division and addition are required by (5). As a result, the PM datapath

requires an adder/subtracter, a multiplier, a divider, and some registers.

Each NI in DMSD has a counter for the timestamp, a subtracter to

evaluate the delay, a counter of the received packets, and an accumulator

for the accumulated delay. This additional complexity is negligible given the

37

3636

3636

dinB dinA
wrA

addrA

doutAdoutB

wrB

addrB

2R/2W Register File

selA

selB

add/sub

new_div

7

7

0
1 << 16

24

Microcode

ROM

10

Program
Counter

Micro
sum_latency

sum_packets

sum_flits
sum_queue

sign

36 36 36 36

F(Q)

ROM

[30:26]5 36 36

5 5
quotfractprod_hi

36 36 36 36

sum/sub36prod_lo

D M

start

end
K << 20

packet

I
K << 20P

Figure 18: Microcoded DSP implementing the power manager.

complexity of a standard NI. As for the PM, it gets from each NI the number

of received packets and the accumulated delay, which are used to evaluate

the final average delay through addition and division. Since the PI control is

the same of the QMSD, the PM datapath is similar.

In summary, QMSD and DMSD need hardware of marginal added com-

plexity for the NIs, and one unique PM. We propose for it the microcoded

DSP in Fig. 18. One datapath (yellow) serves both policies; what changes is

the content of the microcode ROM (purple). After receiving the NIs local

quantities, the DSP executes in around 130 clock cycles. Its output is used to

look-up the F(Q) ROM, whose outputs M and D feed a PLL that synthesizes

clock frequency Fnoc = M/D · Fref, where Fref is the PLL input frequency.

Regarding scalability, note that the hardware cost of this implementation

is independent on the number of nodes of the NoC. In addition, we did not

observe a relevant performance impact in our experiments of up to 64 nodes.

For larger size, however, we believe that using different V/F domains with

separate controllers is a more effective design solution.

38

We first validated the design of the NIs and the PM DSP on a Field-

Programmable Gate Array (FPGA) emulation platform based on a Xilinx

Virtex-4 FPGA. Here we could successfully deploy a 3×3 NoC with frequency-

scaling only (voltage scaling is not possible in a standard FPGA emulation

platform) thanks to the Xilinx Digital Clock Managers that permit on-the-fly

clock frequency reconfiguration [34]. In a second step, we evaluated the silicon

area of the PM in the same CMOS 28-nm FDSOI technology that we used

for power and performance evaluation of the NoC. We obtained that the area

of the PM is 0.038 mm2, which corresponds, for example, to 27% of the area

of an NoC switch in the baseline configuration of Tab. 1, which is 0.14 mm2.

The average power consumption of the PM is only 7 mW at 1 GHz.

6. Conclusions

We investigated three different policies to support DVFS in NoCs: one

based on a target utilization factor given the arrival data rate (RMSD), one

based on a target queue size (QMSD) and one based on a target packet

delay (DMSD). Throughout extensive simulations, based on both synthetic

and realistic benchmark traffic patterns, we analyzed the variety of tradeoffs

between performance and power consumption in a target CMOS 28-nm

technology. We also provided a sound theoretical insight of the policies’

behavior through a simple queuing model, which highlighted the theoretical

equivalence between RMSD and QMSD. Finally, we described in details

the hardware implementation of a power manager (PM) able to support

QMSD and DMSD policies. We validated the functionality of our design with

an implementation on an FGPA emulation platform, and showed that the

39

additional complexity of the PM once implemented in the 28-nm technology

is small.

As main result we show that for scenarios in which the injection rates are

high, DMSD appears to achieve an efficient tradeoff between performance,

power consumption and implementation complexity. Instead, for low injection

rates, RMSD and QMSD tend to outperform DMSD since the achieved delays

are small in absolute terms.

From our results, it is clear that the optimal selection of the policy to

support DVFS requires to analyze carefully not only the requirements in terms

of performance and power of the NoC, but also the actual traffic injection

rates.

40

Bibliography

[1] S. R. Vangal, J. Howard, G. Ruhl, S. Dighe, H. Wilson, J. Tschanz,

D. Finan, A. Singh, T. Jacob, S. Jain, V. Erraguntla, C. Roberts,

Y. Hoskote, N. Borkar, S. Borkar, An 80-tile sub-100-W teraFLOPS

processor in 65-nm CMOS, IEEE Journal of Solid-State Circuits 43 (1)

(2008) 29–41. doi:10.1109/JSSC.2007.910957.

[2] Y. Hoskote, S. Vangal, A. Singh, N. Borkar, S. Borkar, A 5-GHz mesh

interconnect for a teraflops processor, IEEE Micro 27 (5) (2007) 51–61.

doi:10.1109/MM.2007.4378783.

[3] J. S. Kim, M. B. Taylor, J. Miller, D. Wentzlaff, Energy characterization

of a tiled architecture processor with on-chip networks, in: Proceedings

of the 2003 International Symposium on Low Power Electronics and

Design, ISLPED ’03, ACM, New York, NY, USA, 2003, pp. 424–427.

doi:10.1145/871506.871610.

[4] P. Salihundam, S. Jain, T. Jacob, S. Kumar, V. Erraguntla, Y. Hoskote,

S. Vangal, G. Ruhl, N. Borkar, A 2 Tb/s 6x4 mesh network for a single-

chip cloud computer with DVFS in 45 nm CMOS, IEEE Journal of

Solid-State Circuits 46 (4) (2011) 757–766.

[5] A. K. Mishra, R. Das, S. Eachempati, R. Iyer, N. Vijaykrishnan, C. R.

Das, A case for dynamic frequency tuning in on-chip networks, in:

Proc. 42nd Int. Symp. Microarchitecture (MICRO-42), 2009, pp. 292–303.

[6] L. Guang, E. Nigussie, L. Koskinen, H. Tenhunen, Autonomous DVFS

on supply islands for energy-constrained NoC communication, in:

41

Arch. Comput. Sys. ARCS 2009, Vol. 5455 of Lect. Notes Comput. Sc.,

Elsevier, 2009, pp. 183–194.

[7] M. K. Yadav, M. R. Casu, M. Zamboni, LAURA-NoC: Local auto-

matic rate adjustment in network-on-chips with a simple DVFS, IEEE

Transactions on Circuits and Systems II: Express Briefs 60 (10) (2013)

647–651.

[8] X. Chen, Z. Xu, H. Kim, P. Gratz, J. Hu, M. Kishinevsky, U. Ogras,

In-network monitoring and control policy for DVFS of CMP networks-

on-chip and last level caches, ACM Trans. on Design Automation of

Electronic Systems 18 (4) (2013) 1–21. doi:10.1145/2504905.

[9] Booksim2.

URL https://github.com/booksim/booksim2

[10] N. Jiang, D. U. Becker, G. Michelogiannakis, J. Balfour, B. Towles,

D. E. Shaw, J. Kim, W. J. Dally, A detailed and flexible cycle-accurate

network-on-chip simulator, in: Proc. Int. Symp. Performance Analysis

Systems and Software (ISPASS), 2013, pp. 86–96.

[11] L. Shang, L.-S. Peh, N. K. Jha, Dynamic voltage scaling with links

for power optimization of interconnection networks, in: Proc. 9th

Int. Symp. High-Perf. Comput. Arch. (HPCA), 2003, pp. 123–124.

[12] J. Zhan, N. Stoimenov, J. Ouyang, L. Thiele, V. Narayanan, Y. Xie, Opti-

mizing the NoC slack through voltage and frequency scaling in hard real-

time embedded systems, IEEE Trans. Comput.-Aided Design Integr. Cir-

cuits Syst. 33 (11) (2014) 1632–1643. doi:10.1109/TCAD.2014.2347921.

42

[13] R. Hesse, N. E. Jerger, Improving DVFS in NoCs with coherence predic-

tion, in: Proceedings of the 9th International Symposium on Networks-

on-Chip, NOCS ’15, ACM, New York, NY, USA, 2015, pp. 24:1–24:8.

[14] X. Chen, Z. Xu, H. Kim, P. V. Gratz, J. Hu, M. Kishinevsky, U. Ogras,

R. Ayoub, Dynamic voltage and frequency scaling for shared resources

in multicore processor designs, in: Proc. 50th Design Automation Con-

ference (DAC), ACM Press, 2013, pp. 114:1–114:7.

[15] J.-Y. Won, X. Chen, P. Gratz, J. Hu, V. Soteriou, Up by their boot-

straps: Online learning in artificial neural networks for cmp uncore

power management, in: High Performance Computer Architecture

(HPCA), 2014 IEEE 20th International Symposium on, 2014, pp. 308–319.

doi:10.1109/HPCA.2014.6835941.

[16] A. Bianco, P. Giaccone, M. R. Casu, N. Li, Exploiting space diversity and

dynamic voltage frequency scaling in multiplane network-on-chips, in:

2012 IEEE Global Communications Conference (GLOBECOM), IEEE,

2012, pp. 3080–3085.

[17] Q. Wu, P. Juang, M. Martonosi, L.-S. Peh, D. W. Clark, Formal control

techniques for power-performance management, IEEE Micro 25 (5) (2005)

52–62.

[18] U. Y. Ogras, R. Marculescu, D. Marculescu, Variation-adaptive feedback

control for networks-on-chip with multiple clock domains, in: Proc. 45th

Design Automation Conference (DAC), ACM Press, 2008, pp. 614–619.

43

[19] A. Jantsch, L. Guang, Adaptive power management for the on-chip com-

munication network, in: Proc. 9th EUROMICRO Conf. on Digital System

Design (DSD’06), IEEE, 2006, pp. 649–656. doi:10.1109/DSD.2006.21.

[20] W. Kim, D. M. Brooks, G.-Y. Wei, A fully-integrated 3-level DC/DC

converter for nanosecond-scale DVS with fast shunt regulation, in: 2011

IEEE International Solid-State Circuits Conference Digest of Technical

Papers (ISSCC), IEEE, 2011, pp. 268–270.

[21] T. M. Andersen, F. Krismer, J. W. Kolar, T. Toifl, C. Menolfi, L. Kull,

T. Morf, M. Kossel, M. Brandli, P. Buchmann, et al., 4.7 a sub-ns

response on-chip switched-capacitor DC-DC voltage regulator delivering

3.7 w/mm2 at 90% efficiency using deep-trench capacitors in 32nm SOI

CMOS, in: 2014 IEEE International Solid-State Circuits Conference

Digest of Technical Papers (ISSCC), IEEE, 2014, pp. 90–91.

[22] M. R. Casu, P. Giaccone, Rate-based vs delay-based control for DVFS in

NoC, in: Proceedings of the 2015 Design, Automation & Test in Europe

Conference & Exhibition, EDA Consortium, 2015, pp. 1096–1101.

[23] A. Bianco, M. R. Casu, P. Giaccone, M. Ricca, Joint delay and

power control in single-server queueing systems, in: Proc. IEEE On-

line Conf. on Green Communications (GreenCom), 2013, pp. 50–55.

doi:10.1109/OnlineGreenCom.2013.6731028.

[24] Q. Wu, P. Juang, M. Martonosi, D. W. Clark, Formal online meth-

ods for voltage/frequency control in multiple clock domain micropro-

cessors, in: Proceedings of the 11th International Conference on Ar-

44

chitectural Support for Programming Languages and Operating Sys-

tems, ASPLOS XI, ACM, New York, NY, USA, 2004, pp. 248–259.

doi:10.1145/1024393.1024423.

URL http://doi.acm.org/10.1145/1024393.1024423

[25] J. D. C. Little, Little’s law as viewed on its 50th anniversary, Operations

Research 59 (3) (2011) 536–549. doi:10.1287/opre.1110.0940.

[26] Z. Lu, A. Jantsch, TDM virtual-circuit configuration for network-

on-chip, IEEE Trans. VLSI Syst. 16 (8) (2008) 1021–1034.

doi:10.1109/TVLSI.2008.2000673.

[27] A. Moonen, M. Bekooij, R. van den Berg, J. van Meerbergen, Evaluation

of the throughput computed with a dataflow model - a case study,

Tech. Rep. ESR-2007-01, ES Reports – Eindhoven Univ. of Technology,

Dept. Electrical Engineering, Electronic Systems (Mar 2007).

[28] J. Hu, U. Y. Ogras, R. Marculescu, System-level buffer allocation

for application-specific networks-on-chip router design, IEEE Trans.

Comput.-Aided Design Integr. Circuits Syst. 25 (12) (2006) 2919–2933.

[29] D. Bertozzi, A. Jalabert, S. Murali, R. Tamhankar, S. Stergiou, L. Benini,

G. De Micheli, NoC synthesis flow for customized domain specific mul-

tiprocessor systems-on-chip, IEEE Trans. Parallel Distrib. Syst. 16 (2)

(2005) 113–129.

[30] K. Latif, Design space exploration for MPSoC architectures, Ph.D. thesis,

Univ. of Turku, Turku Center for Computer Science (TUCS), Finland

45

(Dec. 2013).

URL http://www.doria.fi/handle/10024/93883

[31] J. Hestness, B. Grot, S. W. Keckler, Netrace: Dependency-driven trace-

based network-on-chip simulation, in: Proceedings of the Third Interna-

tional Workshop on Network on Chip Architectures, NoCArc ’10, ACM,

New York, NY, USA, 2010, pp. 31–36.

[32] Booksim2 (“classes” branch).

URL https://github.com/booksim/booksim2/tree/classes

[33] Netrace: Dependency-tracking trace-based network-on-chip simulation.

URL http://www.cs.utexas.edu/∼netrace/

[34] Xilinx, Virtex-4 FPGA Configuration User Guide UG071 (v1.11) (June

2009).

46

