
ar
X

iv
:1

70
1.

02
99

1v
1

 [c
s.

D
C

]
11

 J
an

 2
01

7

Node-Independent Spanning Trees in Gaussian Networks

Z. Hussain1, B. AlBdaiwi1, and A. Cerny2
1Computer Science Department, Kuwait University, Kuwait

2Department of Information Science, Kuwait University, Kuwait

Abstract— Message broadcasting in networks could be car-
ried over spanning trees. A set of spanning trees in the same
network is node independent if two conditions are satisfied.
First, all trees are rooted at noder. Second, for every nodeu
in the network, all trees’ paths fromr to u are node-disjoint,
excluding the end nodesr and u. Independent spanning
trees have applications in fault-tolerant communicationsand
secure message distributions.

Gaussian networks and two-dimensional toroidal networks
share similar topological characteristics. They are regular
of degree four, symmetric, and node-transitive. Gaussian
networks, however, have relatively lesser network diameter
that could result in a better performance. This promotes
Gaussian networks to be a potential alternative for two-
dimensional toroidal networks.

In this paper, we present constructions for node indepen-
dent spanning trees in dense Gaussian networks. Based on
these constructions, we design routing algorithms that canbe
used in fault-tolerant routing and secure message distribution.
We also design fault-tolerant algorithms to construct these
trees in parallel.

Keywords: Circulant Graphs, Gaussian Networks, Spanning Trees,
Independent Spanning Trees, Fault-Tolerant Routing.

1. Introduction
A parallel computing system interconnection topology de-

cides the system fault-tolerance capabilities as well as the
system over all communication efficiency. There are many
researches on interconnection networks such as hypercube
[12][13], generalized hypercube [5], mesh,k–ary n–cube
[6], torus [8], REFINE [4], and RMRN [2][3] networks;
more examples of interconnection netowkrs can be found in
[9][11].

An efficient interconnection topology called Gaussian net-
work has been studied in [21][22]. Gaussian networks and
two-dimensional toroidal networks share similar topological
properties. They are symmetric, node-transitive, and regular
degree four. Gaussian networks, however, have relatively
lesser diameter which suggests that they could be a potential
alternative for two-dimensional toroidal networks. Gaussian
networks have been studied in [7][10][16], and they are
briefly reviewed in Section 2.

In parallel computing as well as in distributed systems, a
network can be represented as a graph where nodes and edges
represent processors and communication links among the

processors, respectively. A path from a nodes to a noded in
a graph is a sequence of edges, which connects a sequence of
nodes froms to d. Two such paths are said to be independent
if their nodes are disjoint except for the end nodess andd,
i.e. there are no common intermediate nodes in the two paths.
A spanning tree is a connected loop-free subgraph of graph
G containing all the nodes of graphG. Spanning trees rooted
at noder are said to be independent if the paths fromr to
any other nodeu in any two of the trees are independent.

Node independent spanning trees used to resolve important
issues in network applications such as fault-tolerant broad-
casting [17][19] and secure message distribution [23][24].
These applications are briefly described below:

• Consider the existence oft node independent spanning
trees rooted at noder in network N . Assume that
N contains at mostt − 1 faulty nodes. Then,r can
broadcast a message to every non-faulty nodeu in N

by broadcasting the message over all thet trees. Since
the number of faulty nodes is less thant, at least one of
the t node disjoint paths fromr to u is fault free.

• Node independent spanning trees could be used in
secure message distribution over a fault-free network
as follows. A message can be divided intot packets
where each packet is sent by noder to its destination
using a different spanning tree. Thus, each node in the
network receives at most one of thet packets except
the destination node that receives all thet packets
[20][24][25].

In [1], AlBdaiwi et. al. two edge-disjoint node-independent
spanning trees were constructed in dense Gaussian network.
Such network contains the maximum number of nodes for a
given diameterk [22], where the depth of each tree is2k, k ≥
1. Based on those constructions, algorithms were provided for
fault-tolerant routing and secure message distribution where
the source node can be any node in the network.

In [15], we gave algorithms for constructing four node
independent spanning trees in a dense Gaussian network
of depth k working in 2k steps where the trees are not
necessarily edge-disjoint. In this paper, we extend our work
and present ak–steps construction algorithm. Furthermore,
we develop routing algorithms based on these trees that can
be used in fault-tolerant communication and secure message
distribution.

The rest of this paper is organized as follows. The Gaussian
network is reviewed in Section 2. In Section 3, we introduce
a construction of four node independent spanning trees in

http://arxiv.org/abs/1701.02991v1

Gaussian networks. Based on the constructed trees, routing
algorithms from a given source node to a given destination
node are described in Section 4. Section 5 presents parallelal-
gorithms for constructing the four node independent spanning
trees, and Section 6 presents simulation analysis for these
algorithms. Finally, The paper is concluded in Section 7.

2. Background
Gaussian networks are regular symmetric networks of

degree 4. These networks are based on quotient rings of
Gaussian integersZ[i] = {x + yi | x, y ∈ Z} where
i =
√
−1 [14]. Z[i] is an Euclidean domain. The nodes of

the network are elements of the residue class modulo some
α ∈ Z[i], whereα is considered as a network generator. The
norm N(α) = a2 + b2 of a Gaussian network generated by
α = a+ bi, is the total number of nodes in this network. A
dense diameter-optimal Gaussian network denoted byG(αk),
whereαk = k + (k + 1)i, is ak diameter Gaussian network
that contains the maximum number of nodes. Note thatαk

always generates the maximum possible number of nodes
within diameterk since GCD(k, k + 1) = 1.

Gaussian networks can be represented in several different
ways as described in [18]. In this paper, we deal with graphs
isomorphic to dense diameter-optimal Gaussian networks. We
denoteGk = (Vk, Ek) = G(αk), k ≥ 1. Each node in the
graph is labeled asx+ yi where|x|+ |y| ≤ k. Two nodesA
andB are adjacent if and only if(A − B) mod α is equal
to ±1 or ±i. As described in [21], the number of nodes at
distancej from any single node in a dense Gaussian network
is D(j) = 4j for j = 1, 2, . . . , k. Figure 1 shows an example
of Gaussian network generated byα = 3 + 4i.

-1+2i 2i 1+2i

3i

-3 -2 -1 0 1 2 3

-2+i -1+i i 1+i 2+i

-1-2i -2i 1-2i

-2-i -1-i -i 1-i 2-i

-3i

Fig. 1: Gaussian network generated byα = 3 + 4i

The wraparound edges in Figure 1 can be illustrated as
straight lines by tiling the Gaussian network on an infinite
grid as depicted in Figure 2. Consider the boundary node
3i. Its −1, +i, and +1 edges are wraparound links that
are connected to the boundary nodes3, −3, and−2 − i,
respectively. We have kept these edges as wraparounds to
show the equivalence of the two illustrations. Note that the
different gray color nodes are related to different network
tiles.

-1+2i 2i 1+2i

3i

-3 -2 -1 0 1 2 3

-2+i -1+i i 1+i 2+i

-1-2i -2i 1-2i

-2-i -1-i -i 1-i 2-i

-3i

-3

-1-2i

-2-i

-3i

3

1-2i

2-i

-3i

1+2i

3i

3

2+i

-1+2i

3i

-3

-2+i

=

=

=

=

=
=

=

=

= =

=

=

=

=

=

=

 4i mod α

 1+3i mod α

2+2i mod α

 3+i mod α

4 mod α

3-i mod α

2-2i mod α

1-3i mod α

-4i mod α

-1-3i mod α

-2-2i mod α

-3-i mod α

-4 mod α

-3+i mod α

-2+2i mod α

-1+3i mod α

Fig. 2: Wraparound links in Gaussian network generated by
α = 3 + 4i

3. Spanning Trees in Gk = (Vk, Ek)
In this section we describe four spanning trees rooted at

node 0 in Gk = (Vk, Ek), k ≥ 2, and we will show that
they are pairwise node independent in Section 4. Any two
spanning trees rooted at0 are node independent whenk = 1.
However, a motivation of our research is to tolerate transient
node failures, and thus it is assumed thatk ≥ 2.

Lemma 1: In Gk, k ≥ 2, there are at most four pairwise
node independent spanning trees rooted at node0.

Proof: Let there be five such trees. Consider a nodev at
distance2 from the node0. In each of the trees there is a path
of length at least 2 from the root0 to v. By the pigeonhole
principle, there are two of the trees where such path starts by
the same edge. Such two trees are not node-independent.

To define our four trees, we will introduce some auxiliary
notations. Recall thatαk = k + (k + 1) i. Let EV

k =
{(v, (v + i)modαk) ; v ∈ Vk} denote the set of all vertical
edges inEk. Clearly,

∣

∣EV
k

∣

∣ = |Vk|. We define the counter
clockwise 90o rotation mappingρ on Vk as ρ (x+ yi) =
(−y + xi). The rotationρ is a bijection onVk. We extend

this mapping to the setEk; for (u, v) ∈ Ek we define
ρ (u, v) = (ρ (u) , ρ (v)). For a subgraphG′ = (V ′, E′) of
Gk we denoteρ (G′) = (ρ (V ′) , ρ (E′)).

Now we are ready to describe four treesT (j)
k =

(

Vk.E
(i)
k

)

, j = 1, 2, 3, 4 - see Figures 3–6. In fact, we will

define the treeT (1)
k only, since the remaining three trees

can be described asT (j)
k = ρj−1

(

T
(1)
k

)

, j = 2, 3, 4. It is

therefore sufficient to define the edge setE
(1)
k as follows:

E
(1)
k = EV

k − {(qi, (q + 1) i|0 ≤ q ≤ k − 1)}
− {(q − 1, q) ;−k + 1 ≤ q ≤ 0}
− {(−k, ki)}
∪ {(q, q + 1) |0 ≤ q ≤ k − 1}
∪ {(−1 + qi, qi) |1 ≤ q ≤ k − 1}
∪ {(k, ki)}

0-1 1 2-2 3-3 4-4

i-1+i 1+i 2+i-2+i 3+i-3+i

-2i-1-2i 1-2i 2-2i-2-2i

-i-1-i 1-i 2-i-2-i 3-i-3-i

-4i

-3i-1-3i 1-3i

2i-1+2i 1+2i 2+2i-2+2i

3i-1+3i 1+3i

4i

Fig. 3: The treeT1, k = 4

Lemma 2:T (j)
k , j = 1, 2, 3, 4 are spanning trees inGk.

Proof: Sinceρ is a bijection, it is enough to prove that
T

(1)
k is a spanning tree. Based on the definition ofE(1), the

graphT (1)
k consists of

∣

∣EV
k

∣

∣ − k − k − 1 + k + (k − 1) +

1 = |Vk| − 1 edges. We will show thatT (1)
k is connected

by showing that there is a path inT (1)
k from the node0

to each other nodev ∈ Vk. We will describe the path by a
word on the alphabet{1,−1, i,−i} , the symbols denoting the
direction of the edges to be passed. The paths are described in
Table 1, where the nodev = c+ di, for the values satisfying
|c|+ |d| ≤ k, is considered.

0-1 1 2-2 3-3 4-4

i-1+i 1+i 2+i-2+i 3+i-3+i

-2i-1-2i 1-2i 2-2i-2-2i

-i-1-i 1-i 2-i-2-i 3-i-3-i

-4i

-3i-1-3i 1-3i

2i-1+2i 1+2i 2+2i-2+2i

3i-1+3i 1+3i

4i

Fig. 4: The treeT2, k = 4

0-1 1 2-2 3-3 4-4

i-1+i 1+i 2+i-2+i 3+i-3+i

-2i-1-2i 1-2i 2-2i-2-2i

-i-1-i 1-i 2-i-2-i 3-i-3-i

-4i

-3i-1-3i 1-3i

2i-1+2i 1+2i 2+2i-2+2i

3i-1+3i 1+3i

4i

Fig. 5: The treeT3, k = 4

Table 1: Steps from node 0 to nodev = c+ di in T
(1)
k

Nodec+ di 6= 0 Path
1 ≤ c ≤ k − 1 1 ≤ d ≤ k − c 1cid

c = 0 d = k 1k+1

c = 0 1 < d ≤ k − 1 1k (−i)k−d 1

−k ≤ c ≤ −1 0 ≤ d ≤ k + c 1k+c+1 (−i)k−d

−k + 1 ≤ c ≤ 0 −k − c ≤ d ≤ −1 1k+cik+d+1

1 ≤ c ≤ k −k + c ≤ d ≤ 0 1c (−i)−d

Lemma 3:The height of each of the treesT (j)
k is 2k, j =

0-1 1 2-2 3-3 4-4

i-1+i 1+i 2+i-2+i 3+i-3+i

-2i-1-2i 1-2i 2-2i-2-2i

-i-1-i 1-i 2-i-2-i 3-i-3-i

-4i

-3i-1-3i 1-3i

2i-1+2i 1+2i 2+2i-2+2i

3i-1+3i 1+3i

4i

Fig. 6: The treeT4, k = 4

1, 2, 3, 4.
Proof: Based on Table 1, the longest path inT

(1)
k starting

from the root0 of length2k leads to nodei or to node−1.

Example 4:The path from the root0 to the node−2+2i

in T
(1)
4 is described as14−2+1 (−i)4−2 = 13 (−i)2. The path

is the sequence

0, 1, 2, 3, 3− i,−2 + 2i. (1)

The path from the root0 to the node−2− 2i in T
(2)
4 can

be obtained the following way. SinceT (2)
k = ρ

(

T
(1)
4

)

, we

have to observe the path inT (1)
k from the root0 to the node

ρ−1 (−2− 2i) = −2+2i, which is the path (1). The required
path inT (2)

k is obtained from (1) by rotating each node using
the mappingρ. The resulting path is

0, i, 2i.3i, 1+ 3i,−2− 2i.

4. Routing Using Node-Independent
Spanning Trees

In Section 3, we defined four spanning trees of the graph
Gk and in Section 5 we give algorithms for their construction.
In this section we present routing algorithms for delivering
messages along any of the four trees.

Routing a message consists of three types of nodes: source
node, transient nodes, and destination node. The source node
is the sender who sends a message to a destination node.
A transient node is an intermediate node that forwards the
message toward the destination node. We will provide a
routing algorithm for delivering a message virtually from any

node s to any noded in Gk along any of the four trees
rooted atr. We will provide the routing decision in any
transient nodet on the path froms to d and we will show
that such decision can be taken uniquely without information
on which of the four trees is involved. This fact implies the
independence of the four trees.

Let s ∈ Vk. Considering the automorphismτs on Gk

defined forx ∈ Vk as τs (x) = (x+ s)modαk and for
(x, y) ∈ Ek as τs ((x, y)) = (τs (x) , τs (x)) allows us to
describe routing for the cases = 0 only. The routing
decisions for messages sent from a nodes 6= 0 to some node
d is then implied by the routing decisions for messages sent
from node0 to node(d− s)modαk.

To simplify the routing process, we partition the Gaussian
network into disjoint subsets as follows (see Figure 7):
B1 = {x+ yi | 1 < x < k, y = 0},
R1 = {x+ yi | k > x > 0, y = 1},
Q1 = {x+ yi | x > 0, y > 1, x+ y ≤ k},
P1 = {x+ yi | x = k, y = 0},
S1 = {x+ yi | x = 1, y = 0},
for j ∈ {2, 3, 4}:
Bj = ρ−j+1(B1), Rj = ρ−j+1(R1), Qj = ρ−j+1(Q1),
Pj = ρ−j+1(P1), andSj = ρ−j+1(S1).

R3

B3 B1

R1

B4

R4

R2

B2

0 P1P3

P2

P4

Q2

Q1

Q4

Q3

S1

S2

S3

S4

Fig. 7: The partitions of Gaussian network

Based on Figure 7, Table 2 shows the direction to which
a message sent from the source node0 is forwarded by a
transient nodet = tx + tyi, based on the location of the
destination noded = dx + dyi 6= t. The left column denotes
the location of the current transient node, the remaining
columns denote the location of the destination node. The
direction is described by one of the elements in{1,−1, i,−i}.
The superscripts in brackets are to be understood as com-

Table 2: Message routing direction

S1 ∪ B1 R1 Q1 P1

S1 ∪B1 C1 C2 C2 1[1]

R1 C3 C4 i[1] –
Q1 – −i[3] C5 –
P1 −i[2] – – –

S2 ∪B2 i[2] C6 C6 i[2]

R2 – – – i[3]

Q2 i[3] – – –
P2 −1[2] – – −1[2]

S3 ∪B3 C7 C7 C7 i[3]

R3 – −i[3] −i[3] –
Q3 – −i[3] −i[3] –
P3 i[3] – – –

S4 ∪B4 −i[4] −i[4] C8 −i[4]

R4 – – – –
Q4 i[3] – – –
P4 −1[4] −1[4] – −i[4]

Table 3: Conditional moves in
message routing direction

C1 If tx < dx then 1[1]

else −1[2]

C2 If tx = dx then i[1]

else 1[1]

C3 If tx = dx then −i[4]

else −1[4]

C4 If tx < dx then 1[2]

else −1[4]

C5 If tx = dx then
If ty < dy then i[1]

else−i[3]

else
If tx < dx then1[2]

else−1[4]

C6 If ty = dy then 1[2]

else i[2]

C7 If tx = −k − 1 + dx then i[3]

else −1[3]

C8 If ty = −k − 1 + dy then −1[4]

else −i[4]

ments denoting which tree the message is passed along.
To determine the direction, in several cases an additional
condition is to be evaluated. The direction is then the result of
one of the conditional statements listed in the table 3, denoted
asC1, . . . , C8.

Table 2 describes the action of any transient node for the
cases when the destination node is in one of the areas from
B1, R1, Q1, P1, S1, only. For the remaining cases, the action
is obtained by applying the proper rotation.

Example 5:Assume we want to determine the action of
a transient node fromB2 given that the destination node
is in Q4. Since Q4 = ρ3(Q1), we have to observe the
action described in our table in the rowS3 ∪B3 and column
ρ−3(Q4) = Q1. The action is determined by the conditional
statementC7. Stated as “Ift′x = −k − 1 + d′x then−i[3]
else−1[3]”, wheret′x+ t′yi = ρ−3(tx+ tyi) = −ty + txi and

d′x+d′yi = ρ−3(dx+dyi) = −dy+dxi. Moreover, the actions
in the “then” and “else ”cases (as well as the tree indexes) are
to be mapped byρ3. Therefore, if the transient node is inB2

and the destination node is inQ4, the action to be performed
is given by the conditional statement “If−ty = −k− 1− dy
then−1[2] elsei[2]”.

Lemma 6:The treesT (j)
k , j = 1, 2, 3, 4 are pairwise inde-

pendent.
Proof: The independence follows from the fact that the

action of a transient node in each case in Table 2 (and the
corresponding rotations) is unique.

The above routing algorithm is simplified in Algorithms
1 and 2 as follows. LetS = sx + syi be the source node,
T = tx + tyi be the transient node,D = dx + dyi be the
destination node, andT (j)

k , 1 ≤ j ≤ 4, be the tree used for
routing. Furthermore, letρj be the previously defined rotation
wherej denotes the number of rotationsmod 4. We define
the function degreej(C) that returns the degree of nodeC
in treeT (j)

k . The partitions in Figure 7 are considered in the
following algorithms.

To send a message fromS to D using treeT (j)
k , the node

S calls StartRouting(S, D, j) as described in Algorithm 1.
Since the network is symmetric, initially, the algorithm maps
the source nodeS to node 0 and all other nodes are assumed
mapped accordingly. Then, it starts the routing process by
sending the message through the edge that is connected to the
neighbor node corresponding to the treeT

(j)
k , 1 ≤ j ≤ 4. For

example, calling StartRouting(S, D, 2) will send a message
from nodeS to nodeS+ i through the+i edge since the+i

edge of nodeS is the initial direction of the treeT (2)
k .

Algorithm 1 StartRouting(S, D, j)

1: Map the nodeS to node 0 and assume all other nodes
are mapped accordingly including nodeD

2: if j = 1 then
3: Send through+1 packet (S, D, j)
4: else if j = 2 then
5: Send through+i packet (S, D, j)
6: else if j = 3 then
7: Send through−1 packet (S, D, j)
8: else
9: Send through−i packet (S, D, j)

10: end if

After that, each receiving node performs the steps de-
scribed in Algorithm 2 as follows. In lines 1-2, the current
nodeC computes its address relatively to nodeS after being
mapped. In lines 3-5, every transient node which receives the
packet (S, D, j) sets the variablesdir to be the direction of
the receiving edge,j to hold the tree number that is being
used for the routing, andr to be the number of rotations
required to set the direction of the forwarding edge. Then,
in lines 13-14, the transient node checks weather it is the

destination node to consume the packet. Otherwise, the rest
of the algorithm, the transient node forwards the message
through a certain direction (edge) based on its degree and
the location of the destination node. Note that, Algorithms
1 and 2 can be used for anyS being a root by mapping
S and all other nodes accordingly. Since all other nodes are
also mapped then the transient node’s addresses are computed
relatively to address of nodeS.

Algorithm 2 Routing: Transient node process based the
received packet (S, D, j)

1: Let C be the current working node of formx+ yi

2: Compute the current node’s (C) relative address toS
3: Let dir be the receiving direction
4: Let j denotes the treeTj to be used for the routing
5: Let r ← 4− j + 1 mod 4 be the number of rotations
6: CND1← ρr(D) ∈ Vk − {R1 ∪Q1 ∪B3 ∪ P3 ∪ S3}
7: and
8: Fx(ρ

r(C)) mod k 6= (Fx(ρ
r(D)) + k) mod k

9: CND2← ρr(D) ∈ R2 ∪Q2 ∪B3 ∪ P3 ∪ S3 and
10: Fx(ρ

r(C)) 6= Fx(ρ
r(D)) + k + 1

11: CND3← Fx(ρ
r(C)) + 1 = Fx(ρ

r(D))
12: CND4← ρr(D) ∈ R1 ∪Q1 ∪R3 ∪Q3 ∪B4 ∪ P4 ∪ S4

13: if C = D then
14: Consume packet
15: else
16: if degreej(C) = 4 then
17: if CND1 or CND2 or CND3 then
18: Send throughρ2(dir) packet (S, D, j)
19: else if CND4 then
20: Send throughρ3(dir) packet (S, D, j)
21: else
22: Send throughρ(dir) packet (S, D, j)
23: end if
24: end if
25: if degreej(C) = 3 then
26: if C + ρ3(dir) = D then
27: Send throughρ3(dir) packet (S, D, j)
28: else
29: Send throughρ2(dir) packet (S, D, j)
30: end if
31: end if
32: if degreej(C) = 2 then
33: Send throughρ2(dir) packet (S, D, j)
34: end if
35: end if

Since Algorithm 1 is used only once by the source node,
its total communication overhead is 1. Further, the local com-
putation in the algorithm is based on 5 elementary operations
as follows: 1 operation for mapping the nodeS, at most 3
operations for checking the conditions, and 1 operation for
sending the packet when a condition is satisfied. Thus, the
total computation work needed to forward a message is 5

Table 4: A node parent and children edge directions as per
the partition in Figure 7

Node in Parent Child
B1 −1 +1,±i

R1 −i +i

Q1 −i +i

P1 −1 +1,±i

S1 −1 +1,±i

B2 −1 –
R2 +i +1,−i

Q2 +i −i

P2 −1 –
S2 −1 –
B3 +i –
R3 −i –
Q3 −i +i

P3 +i –
S3 +i –
B4 −i +i

R4 +i −i

Q4 +i −i

P4 −i +i

S4 −i –

elementary operations at most.
Algorithm 2 is invoked by the rest of the nodes (transient

and destination nodes) in the routing process. The com-
munication overhead for a single node is 1 since it only
forwards 1 packet when a certain condition is satisfied. Note
that, for a path of lengthn, the source node is not counted
since it only performs Algorithm 1. Consequently, the total
communication overhead isn − 1. The local computation
of Algorithm 2 for a single node is based on at most 12
operations as follows. 5 of them are assignment operations
from line 3 to line 10. 7 operations are related to the
conditions that check the degree of the current node and to
decide in which direction to forward the packet. 1 operation
is to send a packet when a certain condition is satisfied. Thus,
since the source node is not counted, the local computation
for a path of lengthn is 12(n− 1)

5. Independent Spanning Trees Parallel
Construction

In this section, we present parallel algorithms to construct
the four independent spanning trees. Based on the partition
presented in Section 4, Table 4 shows the parent and children
nodes of each node in the first spanning tree. For example,
as shown in Figure 3, node−i ∈ S4 has parent node−2i
through the edge−i and has no child. Furthermore, node
−1 + i ∈ R2 has parent node−1 + 2i through+i edge
and has child nodesi and −1 through+1 and−i edges,
respectively.

In order to get the tables related to the other trees (T
(2)
k ,

T
(3)
k , T (4)

k), we define a90o counterclockwise rotation map-
ping σ on Table 4 asσ(Table 4) = (δ(Node in), ρ(Paernt),
ρ(Child)). Theδ is a cyclic 5-shift on the "Node in" column

and ρ is the previously defined rotation. Let the column
"Node in" = (B1, R1, Q1, P1, S1, B2, R2, . . . , P4, S4), the
cyclic 5-shift δ on column "Node in" isδ(Node in) =
(B2, R2, . . . , P4, S4, B1, R1, Q1, P1, S1). That is, we move
the first 5 entries of the first column to the end of the same
column. Thus, the parent and child nodes of each node in
treesT (2)

k , T (3)
k , andT

(4)
k are σ(Table 4),σ2(Table 4), and

σ3(Table 4), respectively. Theσt means that the rotation is
appliedt times on Table 4.

The following two parallel algorithms constructs the four
independent spanning trees. Algorithm 3 triggers the parallel
constructions of the trees from rootS.

Algorithm 3 RootK(S): Parallel construction of four node
independent spanning trees form a source nodeS

1: addr← address ofS.
2: S sends through+1 packet (addr)
3: S sends through+i packet (addr)
4: S sends through−1 packet (addr)
5: S sends through−i packet (addr)

In Algorithm 4, we use a static variable as per the C
programming language semantics. We assume that each node
invokes Algorithm 4 as an independent local function. A
static variable is declared and initialized only once at thelocal
function first invocation. Its lifetime extends till the global
termination of the parallel construction, and it preservesits
value between different invocations. Using a static variable
enables deciding whether a node has been visited or not as
in Algorithm 4, steps 1 to 5. If the node has been already
visited, the current node simply ignore the received packet.
Otherwise, the current node computes its relative address
based on the received packet (addr). Then, it matches its
relative address with the entries of Table 4 andσt(Table 4),
for t = 1, 2, 3, to determine the edge directions of its parents
and children in all spanning trees. After that, it forwards the
received packet (addr) to all its neighbor nodes except the
one it has already received it from.

We will derive the algorithms’ number of steps assuming
that each node can simultaneously send and receive on all its
edges. If the network is fault-free, the algorithms construct
the four trees ink + 1 steps. This follows from the facts
that the trees construction propagates in all directions and
the network diameter isk. Thus, each node is reached in at
most k steps. The nodes that receive the packet in thekth

step will forward it to their neighbors, and this constitutes
the one extra step.

If there are one to three node failures, the algorithms
construct at least one fault-free path between each node in
the network and the root node. In this case, however, the
trees are not necessarily constructed as a faulty node could
split a spanning tree into two subgraphs. The construction is
bounded by2k + 1 steps. The trees construction propagates

Algorithm 4 Intermediate node process based on the received
packet (addr)

1: Define a static variablea = 0.
2: if a 6= 0 then
3: Exit as this node already has been visited.
4: end if
5: a = a+ 1.
6: Compute the relative address of the current node based

on the received addr.
7: Match the current node relative address with the entries of

Table 4 andσt(Table 4), fort = 1, 2, 3, to determine the
current node parents and children links in all independent
spanning trees.

8: Send the addr to all neighbor nodes except the one it was
already received from.

in all directions, and hence each tree structure is traced. By
Lemma 3, each tree height is2k. Thus, each node will be
reached through at least one tree in at most2k steps. The
nodes that receive the packet in the2kth step will forward it
to their neighbors, and this adds the one extra step.

The total messages generated by the construction algo-
rithms is6k2+6k+4 as each node generates three messages
except the root node generates four.

Algorithm 3 runs in the root node only. Its local compu-
tation is limited to 5 operations as follows: one operation to
assign theaddr variable and 4 operations to send a message
to all neighbor nodes. Except the root node, all network nodes
execute Algorithm 4 whose local computations is around 15
operations. Thus, the total amount of computation work is
15(2k2 + 2k) + 5 = 30k2 + 30k + 5.

6. Simulation
This section discusses the simulation results of our study.

We analyzed the construction of independent spanning trees
based on the following cases: No faulty node, 1 faulty node, 2
faulty nodes, and 3 faulty nodes in the network. We assumed
that each node can simultaneously send and receive to all its
neighbor nodes. We have simulated all possible faulty node
combinations and measured the average of all maximum steps
to construct the trees or paths in different networks as shown
in Table 5 and Figure 8. We also measured the maximum of
all maximums as displayed in Table 6.

The simulation results are consistent with the bounds we
derived in the previous section.

Table 5: Average maximum number of steps to construct all
trees or paths.

α 1+2i 2+3i 3+4i 4+5i 5+6i 6+7i 7+8i 8+9i 9+10i
No Faulty 2 3 4 5 6 7 8 9 10
1 Faulty 2 3.333 4.5 5.6 6.666 7.714 8.75 9.777 10.8
2 Faulty 2 3.515 4.847 6.061 7.213 8.329 9.421 10.498 11.563
3 Faulty 2 3.618 5.094 6.417 7.658 8.849 10.009 11.145 12.266

0

2

4

6

8

10

12

14

1+2i 2+3i 3+4i 4+5i 5+6i 6+7i 7+8i 8+9i 9+10i

S
te

p
s

Network (✂)

Average Maximum Steps Using All-Port Model

No Faulty Node

1 Faulty Node

2 Faulty Nodes

3 Faulty Nodes

Fig. 8: Average maximum steps.

Table 6: Maximum of all maximums number of steps to
construct all trees or paths.

α 1+2i 2+3i 3+4i 4+5i 5+6i 6+7i 7+8i 8+9i 9+10i
No Faulty 2 3 4 5 6 7 8 9 10
1 Faulty 2 4 6 8 10 12 14 16 18
2 Faulty 2 4 6 8 10 12 14 16 18
3 Faulty 2 4 6 8 10 12 14 16 18

7. Conclusions
In this paper, we presented constructions of four symmetric

node independent spanning trees in Gaussian networks, and
proved their height is2k. Using these trees, we designed
routing algorithms that can be used in fault-tolerant and/or
secure message communication applications. We also pre-
sented fault-tolerant parallel construction algorithms for the
presented trees. These algorithms requirek + 1 steps if
the network is fault-free and2k + 1 steps if one to three
faulty nodes exist. The total communication overhead of
these algorithms is6k2 + 6k + 4, and the total amount of
computation work is30k2 + 30k + 5. We simulated the
constructions of the trees in fault-free and faulty networks.
The simulation analysis is consistent with our theoretical
analysis.

In future research we plan to investigate the constructions
of completely independent spanning trees in Gaussian net-
works and similar regular topology.

References
[1] B. AlBdaiwi, Z. Hussain, A. Cerny, and R. Aldred, “Edge-disjoint

node-independent spanning trees in dense gaussian networks,” The
Journal of Supercomputing, vol. 72, no. 12, pp. 4718 – 4736, December
2016.

[2] H. Arabnia and S. Bhandarkar, “Parallel stereocorrelation on a recon-
figurable multi-ring network,”The Journal of Supercomputing, vol. 10,
no. 3, pp. 243–269, 1996.

[3] S. Bhandarkar and H. Arabnia, “The hough transform on a recon-
figurable multi-ring network,” Journal of Parallel and Distributed
Computing, vol. 24, no. 1, pp. 107 – 114, 1995.

[4] S. M. Bhandarkar and H. R. Arabnia, “The REFINE multiprocessor
– theoretical properties and algorithms,”Parallel Computing, vol. 21,
no. 11, pp. 1783 – 1805, 1995.

[5] L. N. Bhuyan and D. P. Agrawal, “Generalized hypercube and hyperbus
structures for a computer network,”IEEE Transactions on computers,
vol. 100, no. 4, pp. 323–333, 1984.

[6] B. Bose, B. Broeg, Y. Kwon, and Y. Ashir, “Lee distance andtopo-
logical properties of k-ary n-cubes,”IEEE Transactions on Computers,
vol. 44, no. 8, pp. 1021–1030, 1995.

[7] B. Bose, A. Shamaei, and M. Flahive, “Higher dimensionalgaussian
networks,” 2015.

[8] W. J. Dally and C. L. Seitz, “The torus routing chip,”Distributed
computing, vol. 1, no. 4, pp. 187–196, 1986.

[9] J. Duato, S. Yalamanchili, and L. Ni,Interconnection Networks: An
Engineering Approach, 1st ed. Los Alamitos, CA, USA: IEEE
Computer Society Press, 1997.

[10] M. Flahive and B. Bose, “The topology of Gaussian and Eisenstein-
Jacobi interconnection networks,”IEEE Transactions on Parallel and
Distributed Systems, vol. 21, no. 8, pp. 1132–1142, August 2010.

[11] A. Grama, A. Gupta, G. Karypis, and V. Kumar,Introduction to Parallel
Computing, 2nd ed. Boston, MA, USA: Addison-Wesley Longman
Publishing Co., Inc., 2003.

[12] J. P. Hayes and T. Mudge, “Hypercube supercomputers,”Proceedings
of the IEEE, vol. 77, no. 12, pp. 1829–1841, 1989.

[13] J. P. Hayes, T. N. Mudge, Q. F. Stout, S. Colley, and J. Palmer,
“Architecture of a hypercube supercomputer.” inICPP, 1986, pp. 653–
660.

[14] K. Huber, “Codes over Gaussian integers,”IEEE Transactions on
Information Theory, vol. 40, no. 1, pp. 207–216, Jan. 1994.

[15] Z. Hussain, B. AlBdaiwi, and A. Cerny, “Node-independent span-
ning trees in gaussian networks,” inProceedings of the International
Conference on Parallel and Distributed Processing Techniques and
Applications (PDPTA). Las Vegas, NV, USA: The Steering Committee
of The World Congress in Computer Science, Computer Engineering
and Applied Computing (WorldComp), 2016, pp. 24–29.

[16] Z. Hussain, “Better traffic distribution one-to-all broadcast in higher di-
mensional gaussian networks,”The Journal of Supercomputing, vol. 71,
no. 12, pp. 4381–4399, 2015.

[17] A. Itai and M. Rodeh, “The multi-tree approach to reliability in dis-
tributed networks,”Inf. Comput., vol. 79, no. 1, pp. 43–59, Oct. 1988.
[Online]. Available: http://dx.doi.org/10.1016/0890-5401(88)90016-8

[18] C. J. P. J. H. Jordan, “Complete residue systems in the gaussian
integers,” Mathematics Magazine, vol. 38, no. 1, pp. 1–12, 1965.
[Online]. Available: http://www.jstor.org/stable/2688007

[19] M. S. Krishnamoorthy and b. Krishnamurthy, “Fault diameter
of interconnection networks,”Comput. Math. Appl., vol. 13,
no. 5-6, pp. 577–582, Apr. 1987. [Online]. Available:
http://dl.acm.org/citation.cfm?id=35064.36256

[20] J.-C. Lin, J.-S. Yang, C.-C. Hsu, and J.-M. Chang, “Independent
spanning trees vs. edge-disjoint spanning trees in locallytwisted
cubes,” Information Processing Letters, vol. 110, no. 10, pp. 414 –
419, 2010.

[21] C. Martinez, R. Beivide, E. Stafford, M. Moreto, and E. Gabidulin,
“Modeling toroidal networks with the Gaussian integers,”IEEE Trans-
actions on Computers, vol. 57, no. 8, pp. 1046–1056, Aug. 2008.

[22] C. Martinez, E. Vallejo, R. Beivide, C. Izu, and M. Moreto, “Dense
Gaussian networks: Suitable topologies for on-chip multiprocessors,”
International Journal of Parallel Programming, vol. 34, pp. 193–211,
2006.

[23] A. Rescigno, “Vertex-disjoint spanning trees of the star network with
applications to fault-tolerance and security,”Information Sciences, vol.
137, no. 1-4, pp. 259–276, 2001.

[24] J.-S. Yang, H.-C. Chan, and J.-M. Chang, “Broadcasting
secure messages via optimal independent spanning trees in
folded hypercubes,” Discrete Applied Mathematics, vol. 159,
no. 12, pp. 1254 – 1263, 2011. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0166218X11001454

[25] J.-S. Yang, J.-M. Chang, and H.-C. Chan, “Independent spanning trees
on folded hypercubes,” inProceedings of the 2009 10th International
Symposium on Pervasive Systems, Algorithms, and Networks, ser.
ISPAN ’09. Washington, DC, USA: IEEE Computer Society, 2009,
pp. 601–605.

http://dx.doi.org/10.1016/0890-5401(88)90016-8
http://www.jstor.org/stable/2688007
http://dl.acm.org/citation.cfm?id=35064.36256
http://www.sciencedirect.com/science/article/pii/S0166218X11001454

	1 Introduction
	2 Background
	3 Spanning Trees in Gk=(Vk,Ek)
	4 Routing Using Node-Independent Spanning Trees
	5 Independent Spanning Trees Parallel Construction
	6 Simulation
	7 Conclusions
	References

