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Abstract— Message broadcasting in networks could be carprocessors, respectively. A path from a nede a noded in
ried over spanning trees. A set of spanning trees in the saneggraph is a sequence of edges, which connects a sequence of
network is node independent if two conditions are satisfiedhodes froms to d. Two such paths are said to be independent
First, all trees are rooted at node Second, for every node if their nodes are disjoint except for the end nodesndd,
in the network, all trees’ paths fromto « are node-disjoint, i.e. there are no common intermediate nodes in the two paths.
excluding the end nodes and w. Independent spanning A spanning tree is a connected loop-free subgraph of graph
trees have applications in fault-tolerant communicatiamsl G containing all the nodes of grafgh. Spanning trees rooted
secure message distributions. at noder are said to be independent if the paths freno
Gaussian networks and two-dimensional toroidal networksany other node: in any two of the trees are independent.
share similar topological characteristics. They are regul Node independent spanning trees used to resolve important
of degree four, symmetric, and node-transitive. Gaussiaissues in network applications such as fault-tolerant droa
networks, however, have relatively lesser network diametecasting [17][19] and secure message distribution [23][24]
that could result in a better performance. This promotesThese applications are briefly described below:
Gaussian networks to be a potential alternative for two- « Consider the existence oéfnode independent spanning
dimensional toroidal networks. trees rooted at node in network N. Assume that
In this paper, we present constructions for node indepen- N contains at most — 1 faulty nodes. Theny can
dent spanning trees in dense Gaussian networks. Based on broadcast a message to every non-faulty nade N

these constructions, we design routing algorithms thatlman
used in fault-tolerant routing and secure message distigiou
We also design fault-tolerant algorithms to construct thes

by broadcasting the message over all theees. Since
the number of faulty nodes is less thgrat least one of
the ¢t node disjoint paths from to « is fault free.

trees in parallel. « Node independent spanning trees could be used in
secure message distribution over a fault-free network
as follows. A message can be divided intgackets
where each packet is sent by noddo its destination
using a different spanning tree. Thus, each node in the
network receives at most one of thiepackets except

A parallel computing system interconnection topology de-  the destination node that receives all thepackets
cides the system fault-tolerance capabilities as well &s th [20][24][25].
system over all communication efficiency. There are many In [I], AlBdaiwi et. al. two edge-disjoint node-independen
researches on interconnection networks such as hypercupanning trees were constructed in dense Gaussian network.
[12][13], generalized hypercubél[5], mesh-ary n—cube Such network contains the maximum number of nodes for a
[6], torus [8], REFINE [[4], and RMRNI[2][3] networks; given diametek [22], where the depth of each tree2is, k >
more examples of interconnection netowkrs can be found in. Based on those constructions, algorithms were provided fo
[onaay. fault-tolerant routing and secure message distributioereh

An efficient interconnection topology called Gaussian netthe source node can be any node in the network.
work has been studied in_[21][22]. Gaussian networks and In [15], we gave algorithms for constructing four node
two-dimensional toroidal networks share similar topotadi independent spanning trees in a dense Gaussian network
properties. They are symmetric, node-transitive, andleegu of depth k& working in 2k steps where the trees are not
degree four. Gaussian networks, however, have relativelyecessarily edge-disjoint. In this paper, we extend oukwor
lesser diameter which suggests that they could be a pdtentiand present &-steps construction algorithm. Furthermore,
alternative for two-dimensional toroidal networks. Gaass we develop routing algorithms based on these trees that can
networks have been studied inl [7][10][16], and they arebe used in fault-tolerant communication and secure message
briefly reviewed in Sectiohl2. distribution.

In parallel computing as well as in distributed systems, a The rest of this paper is organized as follows. The Gaussian
network can be represented as a graph where nodes and edgeswork is reviewed in Sectidd 2. In Sectioh 3, we introduce
represent processors and communication links among the construction of four node independent spanning trees in

Keywords: Circulant Graphs, Gaussian Networks, Spanning Trees,
Independent Spanning Trees, Fault-Tolerant Routing.

1. Introduction
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Gaussian networks. Based on the constructed trees, routingThe wraparound edges in Figuré 1 can be illustrated as
algorithms from a given source node to a given destinatiostraight lines by tiling the Gaussian network on an infinite
node are described in Sectidn 4. Secfibn 5 presents paahllel grid as depicted in Figurgl 2. Consider the boundary node
gorithms for constructing the four node independent spanni 3i. Its —1, +i, and +1 edges are wraparound links that
trees, and Sectionl 6 presents simulation analysis for thesege connected to the boundary nodes—3, and —2 — 1,
algorithms. Finally, The paper is concluded in Secfibn 7. respectively. We have kept these edges as wraparounds to
show the equivalence of the two illustrations. Note that the
2. Background different gray color nodes are related to different network

tiles.
Gaussian networks are regular symmetric networks of
4i mod o

degree 4. These networks are based on quotient rings of |

Gaussian integer&[i] = {z + yi | =,y € Z} where @
i = +/—1 [14]. Z[3] is an Euclidean domain. The nodes of Pipede S I med
the network are elements of the residue class modulo some @
-2+2i mod « VAN : 2+2i mod &
1] S 1]

« € Z[i], wherea is considered as a network generator. The

norm N(«) = a? + b? of a Gaussian network generated b - e
( ) g y -3+i mod a. @."‘. @ ". 3+ mod o
1l P e 1l

a = a + bi, is the total number of nodes in this network. A

dense diameter-optimal Gaussian network denoted (ay; ), " @"’6 @
“Amoda NG y -

whereay, = k + (k + 1)i, is ak diameter Gaussian network > g
that contains the maximum number of nodes. Note that g \
always generates the maximum possible number of nodes @ ° @
within diameterk since GCOk, k + 1) = 1. @ .

Gaussian networks can be represented in several different .

ways as described in [118]. In this paper, we deal with graphs ot e sima

isomorphic to dense diameter-optimal Gaussian networks. W

] H H
denoteGy = (Vi, Ex) = G(ag), k > 1. Each node in the 22imoda @@ i
graph is labeled as + yi where|z| + |y| < k. Two nodesA ; : .
and B are adjacent if and only ifA — B) mod « is equal 13 mod @ 1-3i mod
to £1 or +i. As described in[[21], the number of nodes at -
distancej from any single node in a dense Gaussian network “imoda
is D(j) =4j forj =1,2,..., k. Figure[l shows an example Fig. 2: Wraparound links in Gaussian network generated by
of Gaussian network generated by= 3 + 4. a=3+4i

3. Spanning Treesin Gy, = (Vi, Ex)

In this section we describe four spanning trees rooted at
node0 in Gy = (Vi, Ex), k > 2, and we will show that
they are pairwise node independent in Secfibn 4. Any two
spanning trees rooted atare node independent whén= 1.
However, a motivation of our research is to tolerate tramsie
node failures, and thus it is assumed that 2.

Lemma 1:In Gg, k > 2, there are at most four pairwise
node independent spanning trees rooted at riode

Proof: Let there be five such trees. Consider a node
distance2 from the nodd). In each of the trees there is a path
of length at least 2 from the rodtto v. By the pigeonhole
principle, there are two of the trees where such path stgrts b
the same edge. Such two trees are not node-indepenmient.

To define our four trees, we will introduce some auxiliary
notations. Recall thaty, = k + (k+1)i. Let B} =
{(v, (v +i)moday);v € V;} denote the set of all vertical
edges inEy. Clearly, |EY | = |Vi|. We define the counter
_ ) ) clockwise 90 rotation mappingp on Vi as p(x + yi) =
Fig. 1: Gaussian network generated dy= 3 + 4 (—y + xi). The rotationp is a bijection onV;. We extend




this mapping to the sef; for (u,v) € E; we define
p(u,v) = (p(u),p(v)). For a subgraptG’ = (V', E’) of
G we denotep (G') = (p (V') , p (E')).

Now we are ready to describe four treesT,gj) =
(Vk.E,(j)) ,7 =1,2,3,4 - see Figure§]316. In fact, we will
define the treéTél) only, since the remaining three trees
can be described a8 = pi~! (T,ﬁl)) j=2,3,4. 1tis

therefore sufficient to define the edge @f) as follows:

EY = EY —{(gi.(¢+1)il0<q<k-1)}
—{(¢g—1,9);-k+1<q<0}
—{(=k, ki)}
U{(g,q+1)[0<¢g<k—-1}
U{(-1+4qi,qi)[1 <g<k-1}
U{(k, ki)}

Fig. 3: The treel, k = 4

Lemma 2:T,§j),j =1,2,3,4 are spanning trees i@¥y.

Proof: Sincep is a bijection, it is enough to prove that
7" is a spanning tree. Based on the definitionfst), the
graph 7" consists offEY | —k—k—-1+k+(k—1)+
1 = |Vix| — 1 edges. We will show thaT,gl) is connected
by showing that there is a path [ﬁ,gl) from the node0
to each other node € V. We will describe the path by a
word on the alphabstl, —1,4, —i}, the symbols denoting the
direction of the edges to be passed. The paths are desanibed i
Table[1, where the node= ¢+ di, for the values satisfying
le| + |d| < k, is considered.

Fig. 5: The tre€el;, k = 4

Table 1: Steps from node O to node= ¢ + di in T,gl)

Nodec + di # 0 Path
1<c<k-1 1<d<k-—c 1649

c=0 d=k 1FF1

c=0 1<d<k-1 1% (—i)F=91
—k<c< -1 0<d<k+c 1htetl (k=4
—k+1<c<0 | —k—c<d< —1 | 1FFektdtl
1<c<k —k+c<d<0 1€ (=)~ ¢

Lemma 3:The height of each of the treééj) is 2k, j =



node s to any noded in Gy along any of the four trees
rooted atr. We will provide the routing decision in any
transient nodée on the path froms to d and we will show
that such decision can be taken uniquely without infornmatio
on which of the four trees is involved. This fact implies the
independence of the four trees.

Let s € Vj. Considering the automorphism on Gy
defined forx € Vi, as7s(z) = (z+ s)moday and for
(z,y) € Ey as7s ((z,y)) = (75 (x),7s (z)) allows us to
describe routing for the case = 0 only. The routing
decisions for messages sent from a negée 0 to some node
d is then implied by the routing decisions for messages sent
from node0 to node(d — s) mod a.

To simplify the routing process, we partition the Gaussian
network into disjoint subsets as follows (see Figure 7):
Bi={z+vyi|l<z<k,y=0},
Ri={z+yi|k>x>0y=1},
Qr={zx+yi|lz>0,y>1,z+y <k},

P ={z+vyi|z=ky=0},
Fig. 6: The treel’,, k = 4 Si={z+yilz=1y=0},
for j € {2,3,4}:
Bj = p 7t (By), R; = p 7t (R1), Q; = p7/TH(Qu),
1,2,3,4. Pj:pijJrl(Pl), ande :pijJrl(Sl).
Proof: Based on Tablgl1, the longest patmﬁ)starting
from the root0 of length2% leads to node or to node—1. ©)
- _

Example 4:The path from the rooi to the node—2 + 2i
in T\" is described ag4—2+1 (—i)*~2 = 13 (—i). The path
is the sequence

R, Q
0,1,2,3,3—14,—2+ 2. (1)

Q

The path from the roob to the node-2 — 2i in Tf) can @ |

be obtained the following way. SinCE,f) =p (Tf)), we

R, |

®
have to observe the path Iﬁgl) from the root0 to the node @ @ @ I —

p~ (=2 — 2i) = —2+2i, which is the path[{1). The required | R |
path inT,f) is obtained from[{l1) by rotating each node using Q
the mappingp. The resulting path is

0,4,2i.3i,1 4 3i, —2 — 2i.

4. Routing Using Node-Independent -
Spanning Trees

In Section B, we defined four spanning trees of the graph Fig. 7: The partitions of Gaussian network
Gy and in Sectiofil5 we give algorithms for their construction.
In this section we present routing algorithms for delivgrin ~ Based on FigurE]7, Tabld 2 shows the direction to which
messages along any of the four trees. a message sent from the source nodes forwarded by a
Routing a message consists of three types of nodes: sourtansient node = ¢, + t,i, based on the location of the
node, transient nodes, and destination node. The sour@e nodestination nodé = d, + d,i # t. The left column denotes
is the sender who sends a message to a destination nodlee location of the current transient node, the remaining
A transient node is an intermediate node that forwards theolumns denote the location of the destination node. The
message toward the destination node. We will provide airection is described by one of the element$in—1,4, —i}.
routing algorithm for delivering a message virtually fromya The superscripts in brackets are to be understood as com-



Table 2: Message routing direction diy+dyi = p~3(dy+dyi) = —dy+d,i. Moreover, the actions

S1UB | Ri Q1 2 in the “then” and “else "cases (as well as the tree indexeas) ar

S1UB; C1 Co Cy | 1 to be mapped by?>. Therefore, if the transient node is B,

i3] Cs CflsJ il - and the destination node is @y, the action to be performed

?)1 ;2] - 6:5 — is given by the conditional statement “Ht, = -k — 1 —d,
Sa U1B2 i Cs Ce i then—1%) elsei”. .

Ra - — . RE) Lemma 6:The treeﬂ“,ﬁj),j =1,2,3,4 are pairwise inde-

Q2 3] _ - Z pendent.

Py —10 - - [ -1 Proof: The independence follows from the fact that the
598 | O a1 i action of a transient node in each case in Table 2 (and the

Rs - _Z-L} _Z-L} - corresponding rotations) is unique. [ |

?): ] e — The above routing algorithm is simplified in Algorithms
S,UB, | —id AT o | o [ and[2 as follows. LetS = s, + s,i be the source node,

Ry - - - - T = t, + tyi be the transient nodd) = d, + dyi be the

Q4 i - - - destination node, and@”), 1 < j < 4, be the tree used for

i —18 —14 - —i routing. Furthermore, lg#’ be the previously defined rotation

wherej denotes the number of rotationsod 4. We define
the function degregC) that returns the degree of node
in treeT,EJ). The partitions in Figurgl7 are considered in the

Table 3: Conditional moves in
message routing direction

Cr | f te <do then 11 following algorithms. .
Co | If ty =d erise 111][2] To send a message frofito D using treeT,iJ), the node
2| Mo =do ;:2 I S calls StartRoutingf, D, j) as described in Algorithri] 1.
Cs (o= ds then A Since the network is symmetric, initially, the algorithm psa
else 104 the source nodé to node 0 and all other nodes are assumed
Cy | Ifty < dy then 112] mapped accordingly. Then, it starts the routing process by
S ?Ase —1 sending the message through the edge that is connected to the
5| Mie=do o < thensll neighbor node corresponding to the g, 1 < j < 4. For
T seild) example, calling StartRouting( D, 2) will send a message
else from nodesS to nodeS + i through the+: edge since the-:
If 1 <dg thlenl[l} edge of nodes is the initial direction of the tred(.
else —
Cs | If ty =dy then 10 i i
else i(2] Algorithm 1 StartRouting6, D, j)
Cr | ity =—k—1+ds :;eg i[dl]m 1: Map the nodeS to node 0 and assume all other nodes
G (6, = —h—1+d, then —T are mapped accordingly including node
else _il4] 2. if j =1 then

3:  Send throught1 packet §, D, j)
4: dseif j = 2 then

ments denoting which tree the message is passed along:
To determine the direction, in several cases an additional®:
condition is to be evaluated. The direction is then the tesful 7
one of the conditional statements listed in the table 3, tigho 8
,Cs. 9:
Table[2 describes the action of any transient node for thé®:

asCq,...

Send throughti packet 5, D, j)
elseif j = 3 then

Send through-1 packet §, D, j)
else

Send through-i packet §, D, j)
end if

cases when the destination node is in one of the areas from

By, R1, Q1, P1, S1, only. For the remaining cases, the action After that, each receiving node performs the steps de-

is obtained by applying the proper rotation.

scribed in Algorithn2 as follows. In lines 1-2, the current

Example 5:Assume we want to determine the action ofnodeC' computes its address relatively to nolafter being
a transient node fronB, given that the destination node mapped. In lines 3-5, every transient node which receives th

is in Q4. Since Qy =
action described in our table in the ra%y U Bs and column

0p3(Q1), we have to observe the packet G, D, j) sets the variabledir to be the direction of
the receiving edge;j to hold the tree number that is being

p~3(Q4) = Q1. The action is determined by the conditional used for the routing, and to be the number of rotations

statementC;. Stated as “Ift, = —k — 1 + d’, then —il®l
else—1B1", wheret] +t/i = p=3(ty +tyi) = —t, + t,i and

required to set the direction of the forwarding edge. Then,
in lines 13-14, the transient node checks weather it is the



destination node to consume the packet. Otherwise, the re5gPle 4: A node parent and children edge directions as per

of the algorithm, the transient node forwards the messagt@e partition in Figurél7

through a certain direction (edge) based on its degree and Node in | Parent| Child
the location of the destination node. Note that, Algorithms B R e Y
and[2 can be used for any being a root by mapping gl :z iz
S and all other nodes accordingly. Since all other nodes are P11 By R Ry g
also mapped then the transient node’s addresses are campute S1 —1 | +1,+i
relatively to address of nodg. B2 —1 -
Ro +i +1,—1

Algorithm 2 Routing: Transient node process based the 1%2 fi =
received packety, D, j) So —1 -

1: Let C be the current working node of form+ yi gz J_rz -

2: Compute the current node’s’] relative address té' op = i

3: Let dir be the receiving direction Ps +i -

4: Let j denotes the tre); to be used for the routing *;’ J_F? J:

5: Letr < 4 — j 4+ 1 mod 4 be the number of rotations Ri +z _z

6: CND1 « pT(D) e Vi —{R1UQ1UB3UP3U53} Q4 +1 —1

7: and Py —1 +i

8: F.(p"(C)) mod k # (Fy(p" (D)) + k) mod k 54 — -

9: CNDZ(—p( )GRQUQQUB;gUPgUSgand

10 Fu(p"(C)) # Fa(p" (D)) + K + 1 |

11: CND3 « F,(p"(C)) + 1 = F,(p" (D)) eIemenFary op_ergnons at most. .

12: CND4 « p"(D) € Ry UQ1 UR3 U Q3 U By UPy U Sy Algorithm[2 is invoked by the rest of the nodes (transient
13- if C = D then and destination nodes) in the routing process. The com-
14:  Consume packet munication overhead for a single node is 1 since it only
15 else forwards 1 packet when a certain condition is satisfied. Note
16 if degreg(C) = 4 then that, for a path of lengtm, the source node is not counted
17- if CND1 or CND2 or CND3 then since it only performs Algorithi]1. Consequently, the total
18: Send throughp?(dir) packet 6, D, j) communication overhead i8 — 1. The local computation

19: else if CND4 then of Algorithm [2 for a single node is based on at most 12
20: Send throughp®(dir) packet G, D, ) operations as follows. 5 of them are assignment operations
21 else from line 3 to line 10. 7 operations are related to the
20 Send througtp(dir) packet 6, D, ) conditions that check the degree of the current node and to
23 end if decide in which direction to forward the packet. 1 operation
240 end if is to send a packet when a certain condition is satisfied.,Thus
25:  if degreg(C) = 3 then since the source nod_e is not counted, the local computation
26: if ¢ + p3(dir) = D then for a path of lengths is 12(n — 1)

27: Send throughy®(dir) packet G, D, j) )

8. ese Independent Spanning Trees Parallel

22: enSeifnd throughy?(dir) packet G, D, ) Construction

31:  end if In this section, we present parallel algorithms to construc
32:  if degreg(C) = 2 then the four independent spanning trees. Based on the partition
33 Send throughp?(dir) packet 8, D, 7) presented in Sectidd 4, Talile 4 shows the parent and children
34 end if nodes of each node in the first spanning tree. For example,
35: end if as shown in Figur€l3, node: € S, has parent node-2i

through the edge-i and has no child. Furthermore, node

Since Algorithml is used only once by the source node;"! + @ € Ro has parent node-1 + 2; through +i edge
its total communication overhead is 1. Further, the locahco and has child nodes and —1 through+1 and —i edges,
putation in the algorithm is based on 5 elementary operatiorf€Spectively.

as follows: 1 operation for mapping the node at most 3

In order to get the tables related to the other trdeg)

operations for checking the conditions, and 1 operation foiT(3 T(4 ), we define &0° counterclockwise rotation map-
sending the packet when a condition is satisfied. Thus, thpmg o on Table[4 asr(Table[4) = §(Node in), p(Paernt),
total computation work needed to forward a message is b(Child)). Thed is a cyclic 5-shift on the "Node in" column



and p is the previously defined rotation. Let the columnAlgorithm 4 Intermediate node process based on the received
"Node in" = (Bl, Ry, Ql, Py,S1,B>,Rs,..., Py, 54), the paCket (addr)

cyclic 5-shift § on column "Node in" isé(Node in) = 1: Define a static variable = 0.

(327 Ry, ..., Py, S4,B1, R1,Q1, P, Sl) That is, we move 2: if a #0 then

the first 5 entries of the first column to the end of the same 3.  Exit as this node already has been visited.

column. Thus, the parent and child nodes of each node ina: end if

treesT,Eg), T,E3), and T,E4) are o(Table[4),0%(Table[4), and 5 a=a+ 1.

o3(Table[4), respectively. The! means that the rotation is 6. Compute the relative address of the current node based
appliedt times on Tablé}4. on the received addr.

The following two parallel algorithms constructs the four 7: Match the current node relative address with the entries of
independent spanning trees. Algorithin 3 triggers the fmral Table[4 andri(Table[3), fort = 1,2, 3, to determine the
constructions of the trees from ro6t current node parents and children links in all independent

spanning trees.
Algorithm 3 RootK(S): Parallel construction of four node 8: Send the addr to all neighbor nodes except the one it was
independent spanning trees form a source ngde already received from.

1: addr< address ofS.
2: S sends through-1 packet (addr)

3: S sends through-i packet (addr) in all directions, and hence each tree structure is tracgd. B
4: S sends through-1 packet (addr) Lemmal[3, each tree height &. Thus, each node will be
5. S sends through-i: packet (addr) reached through at least one tree in at nmiiststeps. The

nodes that receive the packet in te” step will forward it
to their neighbors, and this adds the one extra step.

In Algorllthm [, we use a s.tatlc variable as per the C The total messages generated by the construction algo-
programming language semantics. We assume that each norﬂ'ﬁms is6k2 4 6k+ 4 as each node generates three messages
invokes Algorithm[% as an independent local function. A

. . . L except the root node generates four.
funciion frst imocation. ks ffetime extends il the gial ,_ A9ormI runs i the root node only. ts ocal compus-
termination of the araI.IeI construction. and it resed:jites tation is limited to 5 operations as follows: one operation t

= P . ) ' pre .~ assign thexddr variable and 4 operations to send a message
value between different invocations. Using a static vdeiab

bles decidi heth de has b sited i to all neighbor nodes. Except the root node, all network sode
enables deciding whether a node has been visited of not g . 1o Algorithni 4 whose local computations is around 15

n Algorlthm [, steps 1 to .5' If the node has be_zen alread)é)perations. Thus, the total amount of computation work is
visited, the current node simply ignore the received packet15(2k2 +2k) + 5 = 30k + 30k + 5

Otherwise, the current node computes its relative address
based on the received packet (addr). Then, it matches ité . .
relative address with the entries of Table 4 ari@Table[3), . Simulation

fort=1,2,3, to determine the edge directions of its parents s section discusses the simulation results of our study.
and children in all spanning trees. After that, it forwartle t \we analyzed the construction of independent spanning trees
received packet (addr) to all its neighbor nodes except thgased on the following cases: No faulty node, 1 faulty node, 2
one it has already received it from. ~faulty nodes, and 3 faulty nodes in the network. We assumed
We will derive the algorithms’ number of steps assuminghat each node can simultaneously send and receive to all its
that each node can simultaneously send and receive on all igighbor nodes. We have simulated all possible faulty node
edges. If the network is fault-free, the algorithms cordtru compinations and measured the average of all maximum steps
the four trees ink + 1 steps. This follows from the facts tg construct the trees or paths in different networks as show
that the trees construction propagates in all directiond ann Taple[B and FigurEl8. We also measured the maximum of
the network diameter i&. Thus, each node is reached in at 5| maximums as displayed in Tallé 6.
most £ steps. The nodes that receive the packet mldﬁe The simulation results are consistent with the bounds we
step will forward it to their neighbors, and this constiite yearived in the previous section.
the one extra step.
If there are one to three node failures, the algorithmsraple 5: Average maximum number of steps to construct all
construct at least one fault-free path between each node {fes or paths.
the network and the root node. In this case, however, th , _ _ _ _ , _ _ _
. L@ 1+2i | 2430 | 3+4i | 4+5i | 5+6i | 6+7i 7+8i 8+9i 9+10i
trees are not necessarily constructed as a faulty node coufdoraiy [ 2 | 3 | 4 5 6 7 8 9 10
split a spanning tree into two subgraphs. The conStruCHON i\ ey 7 {3515 | 4847|6061 7213 | 326 | 5421 | 10,498 | 11563
bounded byzk +1 StepS. The trees construction propagatec 3 Faulty 2 3.618 | 5.094 | 6.417 [ 7.658 | 8.849 | 10.009 | 11.145] 12.266




Average Maximum Steps Using All-Port Model [6]

[7]
(8]
[9]

No Faulty Node

Steps

= == = ] Faulty Node
2 Faulty Nodes

e 3 Faulty Nodes

(10]

1+2i

2+3i

3+4i 4450 5+6i  6+7i

Network (a)

7+8i  8+9i 9+10i

[11]

Fig. 8: Average maximum steps.
[12]

. . 13
Table 6: Maximum of all maximums number of steps to[ ]

construct all trees or paths.

14

o 1+2i | 2+3i | 3+4i | 4+5i | 5+6i | 6+7i | 7+8i | 8+9i | 9+10i 4]

No Faulty 2 3 4 5 6 7 8 9 10 [15]
1 Faulty 2 4 6 8 10 12 14 16 18
2 Faulty 2 4 6 8 10 12 14 16 18
3 Faulty 2 4 6 8 10 12 14 16 18

7. Conclusions [16]

In this paper, we presented constructions of four symmetric
node independent spanning trees in Gaussian networks, apg,
proved their height ik. Using these trees, we designed
routing algorithms that can be used in fault-tolerant and/o 18]
secure message communication applications. We also pr%-
sented fault-tolerant parallel construction algorithras the
presented trees. These algorithms require- 1 steps if
the network is fault-free an@k + 1 steps if one to three
faulty nodes exist. The total communication overhead of
these algorithms i$k2 + 6k + 4, and the total amount of [20]
computation work is30k* + 30k + 5. We simulated the
constructions of the trees in fault-free and faulty netvgork
The simulation analysis is consistent with our theoretical?!l
analysis.

In future research we plan to investigate the constructiong2]
of completely independent spanning trees in Gaussian net-
works and similar regular topology.

(19]

[23]
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