

Repositorio Institucional de la Universidad Autónoma de Madrid

https://repositorio.uam.es

Esta es la versión de autor del artículo publicado en:
This is an author produced version of a paper published in:

Journal of Parallel and Distributing Computing
117 (2018): 180-191

DOI: https://doi.org/10.1016/j.jpdc.2017.09.006

Copyright: © Elsevier 2018

El acceso a la versión del editor puede requerir la suscripción del recurso

Access to the published version may require subscription

https://repositorio.uam.es/
https://doi.org/10.1016/j.jpdc.2017.09.006

EvoDeep: a new Evolutionary approach for automatic
Deep Neural Networks parametrisation

Alejandro Mart́ına, Raúl Lara-Cabreraa, Félix Fuentes-Hurtadob, Valery
Naranjob, David Camachoa,∗

aComputer Science Department, Universidad Autónoma de Madrid, Spain
bInstituto de Investigación e Innovación en Bioingenieŕıa, Universitat Politècnica de

València, Spain

Abstract

Deep Neural Networks (DNN) have become a powerful, and extremely popu-
lar mechanism, which has been widely used to solve problems of varied com-
plexity, due to their ability to make models fitted to non-linear complex prob-
lems. Despite its well-known benefits, DNNs are complex learning models whose
parametrization and architecture are made usually by hand. This paper pro-
poses a new Evolutionary Algorithm, named EvoDeep, devoted to evolve the
parameters and the architecture of a DNN in order to maximize its classifica-
tion accuracy, as well as maintaining a valid sequence of layers. This model is
tested against a widely used dataset of handwritten digits images. The exper-
iments performed using this dataset show that the Evolutionary Algorithm is
able to select the parameters and the DNN architecture appropriately, achieving
a 98.93% accuracy in the best run.

Keywords: Deep Learning, Evolutionary Algorithms, Finite-State
Machines, Automated Parametrisation

1. Introduction

In many real life applications experts face problems that are complex enough
to be solved with traditional hand-coded algorithms. Furthermore, these prob-
lems may change over time, which forces the latter to continuously adapt them-
selves. That is why learning algorithms are being increasingly adopted in various
applications. Among other learning algorithms, such as logistic regression or de-
cision trees, Deep Learning has acquired importance in recent years due to its
great success when dealing with pattern recognition problems. Deep Learning
methods can be seen as an extension of the classic Artificial Neural Networks

∗Corresponding author
Email addresses: alejandro.martin@uam.es (Alejandro Mart́ın), raul.lara@uam.es

(Raúl Lara-Cabrera), ffuentes@upv.es (Félix Fuentes-Hurtado), vnaranjo@dcom.upv.es
(Valery Naranjo), david.camacho@uam.es (David Camacho)

Preprint submitted to Journal of Parallel and Distributed Computing September 25, 2018

that take advantage of the current reduced cost of computation, as well as the
new paradigms of parallel and distributed computation.

The features of Deep Neural Networks (DNNs) make them a powerful and
appealing tool to solve problems of different nature and where there is a common
element: complexity. Although there exist many techniques and algorithms
designed to solve problems composed of thousand of features, or where the
relation between inputs and outputs relies on large non-linear equation systems,
these methods have been proved not to be adequate to solve certain kind of
problems. These problems are mainly related to recognition processes, and
they are usually focused on tasks that are solved intuitively by humans [1].

DNNs are currently being used in a wide range of problems of different
nature, mainly due to their capabilities of building strong prediction and clas-
sification systems, and its adapting capacity to non-linear spaces. On the other
hand, the training process is more difficult when it is compared against other
methods as Decision Trees or Support Vector Machines. Another difference with
respect to other Machine Learning methods is the fact that the models gener-
ated are not self-explanatory, thus disallowing to comprehend the knowledge
collected.

As a trade-off to the high precision achieved by Deep Neural Networks,
they should be considered as complex learning models: they are made up of
complex architectures built by a large number of layers and neurons, each of
them being of a different type or having distinct objectives, with many other
parameters affecting the architecture as well, such as activation functions or the
optimiser applied. Developers usually fix these parameters by hand, following a
trial-and-error scheme. There are several approaches in order to speed up and
improve this stage in classical Neural Networks training, many of them relying
on Evolutionary Computation. However, new features and specifications, as
well as an increased complexity, require from new specialised methods related
to Deep Neural Networks.

This paper presents an evolutionary approach for optimising both, the ar-
chitecture and the parameters of Deep Neural Networks in an automated way.
Thus, each individual represents a possible network architecture, including global
parameters such as the optimiser, or the maximum number of iterations, and
a structure where a variable number of different type of layers is defined (that
includes several details, as the number of outputs or the activation function
for each layer). The main objective of this new evolutionary-based approach
is to maximise the accuracy at classifying handwritten digits samples from the
MNIST1 dataset.

Previous literature has also aimed at defining the topology of the network,
at defining an initial set of weights or at fixing training parameters. However,
and to the best of our knowledge, most of these efforts have been made for
classical Artificial Neural Networks. In this research we focus on Evolutionary
Deep Learning, where complex layers structures, specific layers, constrains in

1http://yann.lecun.com/exdb/mnist/

2

http://yann.lecun.com/exdb/mnist/

the layers order and new parameters, must be taken into account to define a
DNN architecture before starting the training process.

The proposed Evolutionary Algorithm aims to optimize almost all the neces-
sary parameters to train a Deep Neural Network. Its design pursues the exten-
sibility of the model to include new features in the future, avoiding parameter
value restrictions, thus allowing individuals to take any possible value within
the previously defined range, and without the necessity of fixing any training
parameter. At the same time, it is also modelled a Finite-State Machine that
determines the possible transitions between different kind of layers, allowing to
generate valid sequences of layers, where the output of one layer fits the in-
put requirements of the next one. The model described is tested on a specific
problem related to the image recognition field, which consists on detecting the
handwritten digit present on a particular image.

The rest of this paper has been structured as follows: the next section (Back-
ground) describes the related Work and some recent contributions related to this
paper; Section 4 describes the Evolutionary Algorithm, EvoDeep, designed to
search for the best parameters of a Deep Neural Network; Section 5 provides
a detailed description related to the experimental setup, which is later used
and analysed in Section 6 (Experimentation); Finally, Section 7 provides some
conclusions and future lines of work.

2. Background

Artificial Neural Networks, as a computational model, are vaguely inspired
on biological neurons that began to spread in the computer science literature
in 1943 when McCulloch and Pitts presented their initial ideas [2]. Since then,
high and lows have appeared in the popularity of Neural Networks applica-
tion [3], mainly due to the report of some deficiencies and limitations of the
initial model [4]. In the nineties, Deep Neural Networks emerged as an improve-
ment of the classic model, adding a large number of neurons and layers to the
network architecture. In the last years, there has been a rising interest in such
improved models [5], primarily due to the development of new programming
frameworks focused on Deep Learning, such as TensorFlow [6] or Theano [7].

Deep Neural Networks provide some advantages over other Machine Learn-
ing methods, such as classical Artificial Neural Networks, in many fields. For
instance, Computer Vision and Image Recognition use currenlty Deep Neural
Networks [8, 9], where images pass through several layers in order to extract,
or manage, a large number of features. Another field of research where this
technique is being increasingly used is at Malware detection, as shown by recent
publications such as DroidDetector [10], Droid-Sec [11] and DroidDelver [12],
which use Deep Belief Networks to detect Android malicious applications.

Moreover, there are evidences on the use of Deep Neural Networks for audio
recognition, as the work by Hinton et al. [13] presents, or the paper by Lee et
al. [14]. Deep Neural Networks have been used in other research fields such as
time series forecasting [15, 16] and video recognition [17], just to name a few.

3

Selecting the adequate architecture, parameters and weights of a Neural Net-
work has become a recurring problem that, in turn, is usually solved by using
a trial-and-error methodology. The emergence of deep learning techniques in
the form of Deep Neural Networks makes it necessary to develop new methods
and tools capable of successfully searching combinations of parameters and ar-
chitectures that lead to a good performance of the network. In this sense, the
application of Evolutionary Computation to this matter was studied in detail
by Xin Yao [18]. Evolutionary Computation might be applied to many stages
of a Neural Network training: weights, learning rules and architecture. Our
proposal tackles the layer architecture of the network which is, in fact, the less
automated stage of the training process. This issue introduces two conflicting
designing criteria: a network with low connectivity and a low number of nodes,
which could generate a network architecture with a deficient accuracy to solve
a particular problem. But, on the other hand, an excessive complex network
architecture (with a high connectivity, and very large number of nodes) can lead
to include noise in the model, loosing generalisation ability.

There have been several approaches to tackle the optimization problem of
tuning the parameters and architecture of classic Neural Networks [19]. It is
possible to use an Evolutionary Algorithm in which the individuals include
the number of neurons, however, the number of layers is limited to a specific
value [20]. Other approaches include the architecture definition, which may
be combined with the adjustment of the weights as in [21]. A hyper-heuristic
approach based on Evolutionary Algorithms has also been proposed to adjust
the number of layers, the polynomial type and the number of nodes defined in
each layer of the network [22]. This kind of algorithms have also been used to
improve the efficiency [23] or including connection weights in the evolutionary
search [24].

Another research topic focuses on the codification of the individual and
how it is possible to speed up the convergence of the algorithm using a gram-
mar graph generator as an individual [25], or adjusting the level of granular-
ity [26]. Another approach is focused in NeuroEvolution of Augmenting Topol-
ogy (NEAT) methods, consisting of evolving Artificial Neural Networks by em-
ploying an encoding that helps to represent and discover large scale ANNs, such
as HyperNEAT [27] or SUNA [28]. Evolutionary Algorithms have also been suc-
cessfully employed in different optimisation problems, such as adjusting weights
of a boosting process [29], or to build a classifier for the android malware de-
tection domain [30] among other works focused on this topic [31, 32, 33].

The reader may find in the literature some research specifically related to the
application of Evolutionary Algorithms to optimise Neural Networks architec-
tures and parameters, due to the power of these kind of algorithms to leverage
the possibilities of Neural Networks [34]. For instance, in [35] an Evolutionary
Algorithm was used to optimise the parameters and weights of the Neural Net-
work in a two-step process. In [36], the authors applied the Taguchi method
between the mutation and crossover operators and included the initial weights
definition.

To our best knowledge, there is little work on studying the use of Evolution-

4

ary Algorithms to improve Deep Neural Networks beyond using them to evolve
the weights of the network [37]. The main contribution of this paper is to de-
sign and test a new Evolutionary Algorithm capable of performing an integral
optimisation of the parameters and architecture of Deep Neural Networks.

3. Deep Neural Networks

Deep learning leverage computational models composed of a sequence of
processing layers to learn representations of data with multiple levels of abs-
traction [8]. The atomic element of any standard Neural Network (NN) is a
simple mathematical processor called neuron. These neurons are organized in
form of interconnected groups called layers, and a sequence of these layers com-
poses a Neural Network. A DNN is similar to a standard Neural Network and
is able to learn a set of features that will be later used in order to approximate
the objective function.

DNNs are named after networks, because they are typically represented by
composing together many functions. The model is associated with a directed
acyclic graph describing how these functions are composed together.

For instance, a three layer network can be thought of as three functions
f (1), f (2), f (3) connected in a chain to form f(x) = f (3)(f (2)(f (1)(x))). The
overall length of the chain gives the depth of the model. In this case, f (1) is
called the input layer of the network, f (2) is called the hidden layer, and f (3)

is called the output layer. Each hidden layer of the network is typically a vector
of values, and its dimensionality determines the width of the model. In short,
a DNN consists of many layers chained in order to approximate some complex
objective function f∗, where layers compose a mapping y = f(x ; θ) and learn
the value of the parameters θ that result in the best function approximation [1].

3.1. Layers

There are multiple types of layers that can be used to design a Neural Net-
work. Keras [38] implements a wrapper allowing to use TensorFlow layers in
a very simple and efficient way [6]. Layers considered in this work (Dense,
Dropout, Reshape, Flatten, Convolution2D, and MaxPooling2D) are described
in detail in the next subsections.

3.1.1. Dense

Densely connected layers are identical to the layers in a standard multilayer
Neural Network. In this kind of layer, every neuron is connected to every neuron
in the previous layer. A “neuron” is a computational unit that takes as input
[x1, x2, x3, . . . , xn, b], where n is the number of inputs of the neuron, b is the
bias, and outputs hW,b = f(WTx) = f(

∑n
i=1Wixi + b), where f : R 7→ R is

called the activation function.
Let l be the number of layers in the network and Ll the set of layers present in

a particular network architecture, where l : 1, 2, 3, . . . , nl. Then, the whole net-
work architecture is defined by (W, b) = (W (1), b(1),W (2), b(2), . . . ,W (n−1), b(n−1)),

5

where W
(l)
ij denotes the parameter or weight associated with the connection be-

tween unit j in layer l, and unit i in layer l + 1 and b(i) is the bias of layer
li.

The following parameters of Keras functional implementation of Dense layer
are used in this work:

- init: the initialization mode of the weights of the layer W (l),

- activation: the name of the function used as activation function,

- number of outputs: the number of outputs of the current layer l.

The possible weight initialization methods are: uniform, LeCun uniform [39],
normal, zero, Glorot normal [40], Glorot uniform, He normal [41] and He uni-
form. Finally, the possible activation functions are: softmax, softplus, softsign,
relu, tanh, sigmoid, hard sigmoid and linear.

3.1.2. Dropout

This kind of layer applies dropout to the input. Dropout consists of randomly
selecting a fraction rate of input units and setting them to 0 at each update
during training time, which helps to prevent overfitting. The units that are
kept are scaled by 1/(1− rate), so that their sum is unchanged at training and
inference time.

The functional Keras implementation of this layer takes as input argument
the fraction rate of input units, that will be set to 0.

3.1.3. Reshape

This layer is applied to change the shape of the data. In concrete, it takes as
input 1D data and outputs it in the desired shape (1D-data 7→ ND-data). This
is of utmost importance when dealing with layers as Dense and Convolution2D in
the same Neural Network, as Dense takes 1D data as input and Convolution2D
needs at least 2D data.

3.1.4. Flatten

This layer is complementary to Reshape. It takes multidimensional data
(ND data) and flattens it to one dimension (ND-data 7→ 1D-data).

3.1.5. Convolution2D

Convolution is a mathematical operation that is applied on two functions
with a real-valued arguments. The result is the integral of the point-wise mul-
tiplication of the two functions, as a function of the amount that one of the
original functions is translated. It is typically denoted with an asterisk:

s(t) = (x ∗ w)(t) =

∫
x(a)w(t− a)da (1)

6

When using convolution in a Neural Network layer, w needs to be a valid
probability density function so that the output is a weighted average. In addi-
tion, w needs to be 0 for all negative arguments, otherwise it would be looking
into the future.

Convolution layer applies this operator to every element of the input data. In
the case of 2D convolution, which is the one that Convolution2D layer applies,
elements are pixels of the image. In this case, it is necessary to choose the
number of times that the operation will be applied to each pixel (nb filters)
and the size of the neighbourhood (kernel size, specified by nb row rows and
nb col columns).

The functional Keras implementation of Convolution2D takes as input the
following parameters:

- init: the initialization mode of the weights of the layer,

- activation: the name of the function used as activation function,

- nb filter: the number of filters to apply to each element of the input data,

- nb row: the number of rows of the kernel used by the convolution,

- nb col: the number of columns of the kernel used by the convolution,

- border mode: to stablish the behaviour of the operator at the borders
of the image,

- bias: wether to include a bias (i.e. make the layer affine rather than
linear).

The init and activation parameters are the same as were described in Sub-
section 3.1.1, border mode establishes how the filter behaves near the borders
of the image, and takes two values: “valid” and “same”. Whereas, “valid” con-
volution is applied only when the input and the filter fully overlap, yielding a
smaller output than the input, with “same” the area outside the filter when it
is placed near an image border is padded with zeros, yielding an output with
the same size as the input.

3.1.6. MaxPooling2D

Pooling layer is used to reduce the dimensionality of data. To achieve it, a
window is specified and an operator is applied to all elements within this window,
which gives a number as output (Figure 1). There exist several operators which
can be applied to perform the pooling: max, min, average, median, . . .

In Keras implementation, only max and average pooling layers are available,
from which only the former have been used in this work. The parameters used
by this layer are:

- pool size: to specify the size of the pooling,

- strides: to specify the step taken between poolings,

7

1 1 2 4

5 6 7 8

3 2 1 0

1 2 3 4

6 8

3 4

max pool

Figure 1: Max pooling layer detailed. In this case, poolsize = [2, 2] and strides = [2, 2], which
results in the 2-by-2 matrix shown on the right.

- border mode: to stablish the behaviour of the operator at the borders
of the image.

4. EvoDeep: Deep Neural Networks parametrisation using Evolu-
tionary Algorithms

The strengths provided by Deep Learning models are counterbalanced by
their representative complexity and variable architecture. While training a clas-
sical Machine Learning algorithm, such as the well known Random Forest, is a
straight task, where typically only the number of trees has to be adjusted, Deep
Learning requires to define an architecture which is usually problem dependent.
For instance, Deep Learning applied to image recognition, or classification, in-
volves defining several layers in a specified order in charge of applying different
transformations to the data.

This architecture is made by a set of layers, which are distributed with the
goal of laying out the non-linear relationships that solve a specific problem.
Every layer has an arbitrary number of neurons and outputs, as well as dis-
tinct initialization methods, and activation functions. These parameters must
be fixed before the training process of the Neural Network, hence forming a
large search space with the optimal combination of settings being unknown and
dependent to the problem to solve.

The design of a multilayer architecture is limited by different restrictions.
For example, the input shape of a particular layer must fit the output of the
previous one. This can take place when a layer expects a vector as input (i.e. a
typical fully connected layer), restricting the layers which may precede. In this
case, a Reshape layer, which always delivers an output of at least 2 dimensions,
could not be on the left of a fully connected layer. Another restriction to take
into account lies in the parametrisation of each new layer added to the model,
which must also fulfil certain properties. For instance, a Reshape layer expects
a tuple defining the dimensions of the output matrix, which must match the
size of the input vector.

Neural Networks parameters and topology, shape a large search space where
many possible configurations are defined. Since it is expected to maximise the
accuracy of the network in performing a particular task, the selection of the

8

proper configuration can be seen as an optimisation process. In this paper, an
Evolutionary Algorithm has been used to lead a meta-heuristic search to obtain
a configuration that maximises the accuracy in a classification task.

Choosing different combinations and configurations of the aforementioned
parameters and layer architectures, will lead to a different performance when
solving, for instance, a classification problem which, in turn, is the most widely
proposed kind of problem when it comes to DNN. The selection of a good set
of parameters, and the layer architecture, should be seen as an optimisation
problem with improving the classifying accuracy as the main goal.

Due to the huge search space that needs to be explored, we decided to use
Evolutionary Algorithms [42], which have shown good performances when deal-
ing with optimisation problems whose search space is very large. In this work,
an Evolutionary Algorithm, named EvoDeep, has been desigend to perform a
meta-heuristic search over the parameters space, looking for the best possible
combination that leads to a good accuracy in a classification problem, while
reducing the time of a process that is commonly done by hand.

Moreover, the use of an Evolutionary Algorithm might find a combination
of parameters and/or a structure of the layers that an expert would not have
used due to her biased knowledge of the problem. For instance, an expert would
not put two kinds of layers one after another because this combination is not
commonly found in the literature. However, it is possible that the Evolutionary
Algorithm finds a layer sequence that contains this combination and has a good
classifying performance.

In our approach, EvoDeep has been designed and implemented as an Evo-
lutionary Algorithm, where each individual represents a specific network archi-
tecture with its respective parameters. The fitness value for each individual
in EvoDeep, is calculated as the accuracy of the network when a classification
problem is solved. The user only needs to define which parameters are going to
make the search space, as well as the range of values they can adopt. We used
numerical sequences, with a given step between values, in order to reduce the
size of the search space. Regarding categorical parameters, such as the activa-
tion function, a list of possible values has to be provided. All the parameters
act as inputs to the individual’s initialization function, which generates a popu-
lation of λ individuals, as well as restrictions to the mutation operator in order
to perform valid variations.

EvoDeep algorithm has been designed following a (µ + λ) scheme, where λ
represents the number of individuals to generate in each generation, and µ indi-
cates the number of individuals selected to generate the next population. Every
generation, the recombination and variation (mutation) operators are system-
atically applied to the individuals with a probability of pR and pV , respectively,
reproducing them when needed to generate λ individuals which are then evalu-
ated. Once every individual has its fitness updated, a roulette selection method
is performed to select individuals proportionally to their fitness values among
the new population, plus the µ individuals selected from the previous generation,
thus allowing to keep individuals with a good performance while maintaining
the diversity of the population, so the algorithm does not stuck into a local

9

Parameter
setting

Population
initialisation

Evaluation Parents selection

Recombination pR

Variation pV

Evaluation

Roulette selection

Stop criterion reached?Solutions

No

Yes

Figure 2: Breeding pipeline in EvoDeep algorithm.

maximum.

4.1. Generation of valid sequences of layers

In order to include all these restrictions and with the aim of building valid
layers configurations, we have modelled all the possible transitions through a
Finite-State Machine (FSM) in charge of defining possible paths, which are
later used to build the individuals. This FSM, as shown in Fig. 3, takes a
dictionary where each symbol is related to a particular layer type. When gener-
ating individuals, the FSM is used to build all possible paths given a minimum
and maximum length, from which a particular one is randomly chosen. When
crossing and mutating individuals, the FSM is also employed in order to avoid
generating invalid structures or to include new consistent layers in the mutation
operation.

The FSM is initially used to generate the initial population, where all the
individuals are created with a fixed low number of layers, aiming to generate
larger individuals in the course of the evolution if necessary. To this end, an
initial and a final state are marked according to the input and output specifi-
cations. In Figure 3, an initial and final state have been flagged expecting as
input a vector where each position corresponds to a feature, and a vector of
length n as output where n is the number of labels to classify (given that a
One-hot encoding is used to codify the labels). The initial state 0 defines an
empty model where no layer has been added yet. On this basis, only a Dense
or a Dropout layer can be added. This is due to the restrictions on the data
type layers are able to accept as inputs. In this case, the only layers capable of
processing the raw input data (i.e. image as a vector) are Dense, Dropout and
Reshape. The final state 1 can only be reached if the last layer of the model is
of type Dense.

10

0

startstart

7

21 3

4 6

5

d

r
x

d
r

x

c

m

x
r

d

d
x

c

f

m

m
f

c

r
d

Figure 3: State machine that determines the possible transitions between layers. The alphabet
defines each possible layer type: Dense (d), Dropout (x), Reshape (r), Convolutional (c),
Flatten (f) and MaxPooling (m)

As it can be seen in Figure 3, there are two states which can be reached
by adding a Dense layer, 7 and 1. State 7 forces any path defined by the FSM
to contain at least two layers, a restriction that leads to two possible minimum
paths: Dense or Dropout followed by a Dense layer.

4.2. Individual encoding

Each individual has been encoded in EvoDeep to allow representing all the
parameters needed to train a Deep Neural Network (see Figure 4). Each genome
is made of a set of global parameters which defines the general behaviour of the
network, and a sequence of layers with an arbitrary number of them. Each one
should be of a different type and includes a set of parameters according to its
type. Table 2 shows the parameters in the evolutionary search, the scope where

11

Oi NEi BSi

Global parameters

L1 L2 L3 L4 ... Ln

Layers

LT1 NO1 INIT1 ACTi ...

Figure 4: Individual encoding in EvoDeep: any individual is defined by a set of several global
parameters and a sequence of layers, each of them having a certain number of layer parameters.

they are defined (as global or layer parameters) and their range of values. Within
the set of global parameters, Oi defines the optimizer where six different types
have been tested. NEi indicates the maximum number of epochs or iterations of
the training process. However, a dynamic stopping criterion has been applied,
fixing a maximum number of iterations while the maximum accuracy obtained
is not exceeded. BSi states the amount of samples that the Neural Network
receives at a time, updating its weights according to that set of samples.

Regarding layers, each one belongs to a specific type of layer LTi, which
is linked to different parameters. For instance, a Dense layer in Keras imple-
mentation contains a fully connected collection of neurons and implies defining
parameters such as the number of outputs NOi, the initialization function INITi

and the activation function ACTi. Another interesting kind of layer defined in
Keras is the so called Dropout layer, where a fraction Pi of inputs is set to 0,
aiming to avoid overfitting.

It was necessary to design and implement specific evolutionary operators due
to the encoding of the solutions in the algorithm. Following there is a detailed
description of these operators as well as the fitness function that evaluates every
individual.

4.3. Evolutionary operators

The variable size of the individual and the restrictions imposed by a Neural
Network architecture led us to develop specific mutation and crossover operators
which yield valid individuals that were able to train different network models.

4.3.1. Crossover operator

The crossover operator works at two different levels: at the global parameters
level and at the layer level. This is due to the requirements of the encoding
designed, where each individual can be composed of a different number of layers
and where these layers can consist of different parameters depending on their
type. The crossover operation is applied if a cross probability is satisfied.

In the case of the global level, as shown in Figure 5, all global parameters
are crossed following an uniform crossover, where each pair is swapped indepen-
dently based on a probability of 50%. In contrast, a cut and splice crossover

12

O1 NE1 BS1

Global parameters:
uniform crossover

O2 NE2 BS2

L11 L12 L13 ... L1n

Layers: cut-and-splice

L21 L22 L23 ... L2m

After crossover

O1 NE2 BS2

O2 NE1 BS1

L11 L23 ... L2m

L21 L22 L12 L13 ... L1n

Figure 5: External crossover: global parameters are swapped with a probability of 0.5; layers
are crossed using cut-and-splice, that is, one cut point for each individual is randomly selected
and then the left part of first individual is concatenated with the right part of the second, and
vice-versa.

is applied over the layers section. It allows to build new configurations of dif-
ferent sizes, allowing to decrease or increase the network architecture. In this
crossover model, two points p1 and p2 are randomly selected while satisfying
1 < p1 < n and 1 < p2 < m, where n and m are the number of layers of
each individual. These two conditions ensure that the first and last layer are
always located in the correct place, since the number of neurons is linked to
the number of features and the number outputs respectively for the first and
last layer. Moreover, cut points are selected in a way that after swapping parts,
the sequence of layers is still valid (see Section 3.1) and the number of layers
does not exceed the maximum number of layers set at the beginning. This is
achieved taking into account the number of layers left to the maximum number
of layers, and restricting the selection of the cut point to be within a safe range
according to the aforementioned number. In other words, the operator selects
both cut points in a way that the number of layers of the left part for the first
individual, plus the number of layers of the right part for the second individual,
and vice-versa, do not exceed the maximum number of layers allowed. This can
be done because the operator selects first one of those cut points so the second
one can be selected fulfilling the aforementioned requirement.

13

This global crossover method allows to create two new individuals where each
global parameter is crossed uniformly and two new layer structures are composed
by cutting the parent structures at two random points, provided the probabilities
are satisfied. This only move layers between individuals as a whole without
entering into their specific layer parameters, though. To build individuals where
the internal parameters are also exchanged, a layer level crossover is applied
(internal crossover). Starting from the first layer (see Fig. 6), two analogous
parameters (pi and p′j belonging to two layers Ll and L′l placed in the same
position l of two different individuals) are crossed until the penultimate layer of
the shortest individual is reached, while the last layer of each individual is also
crossed:

l < min(n,m) ∨ l = max(n,m). (2)

This approach aims to cross the maximum number of parameters, even if
they come from different layer types, since there is a number of common pa-
rameters.

L11 L12 L13 L14

L21 L22 L23 L24 L25 L26

Figure 6: Internal crossover: layer parameters that appear on both layers in the same relative
position within the individual might be swapped. Parameters from the last layer of one
individual can only be swapped with parameters from the last layer of the other individual.
If individuals have a different number of layers, then there are layers not affected by the
operator.

4.3.2. Mutation operator

In a same way as the crossover method, the mutation, or variation, operator
has been designed with the encoding of the individuals in mind. It also works
at the two previously mentioned levels: global parameters and layers. At the
first one, every global parameter of an individual is mutated following again
a uniform approach, where each parameter is given a new random value with
a probability of 50% (if the global mutation probability is met). Each new
random value is generated based on the range of values in the case of numerical
parameters, or based on the list of values if it is a categorical parameter.

Regarding the layer level mutation, the method randomly selects a point of
insertion within the sequence of layers and then inserts a valid sub-sequence of
1, 2 or 3 layers obtained from the FSM defined at the beginning of this section
to ensure that the new sequence remains valid. This insertion only takes place if

14

the final sequence of layers has at most the number of maximum layers defined
at the beginning of the algorithm.

The internal parameters of each layer are mutated following the same scheme
as global ones, performing an uniform operation parameter by parameter, layer
by layer, allocating new values based on the rules defined by the user.

4.4. Fitness function

Finally, the fitness of each individual in EvoDeep represents a measure about
how good it is, and in our approach it has been defined by the accuracy achieved
after executing a Deep Neural Network whose configuration is determined by
the individual phenotype. This value sets an objective to be maximised, as it is
pursued to obtain an individual able to reach the maximum accuracy possible.
When comparing individuals to detect duplicates, a comparison parameter by
parameter is performed, since the fitness is not a reliable measure as it can vary
between executions of the Neural Network depending on its weight’s initiali-
sation. Finally, although the training process is performed based on the error
performance in the training dataset, at the end of its execution the network
is evaluated in a validation dataset (a portion of the original data randomly
extracted). This allows to calculate the fitness of the individuals based on a set
of data different from the one used to evolve the network weights, and allows
to provide a more realistic value of the evolutionary process. At the same time,
using this validation dataset allows to minimise the possible overfitting effect
produced by the DNN operation.

5. Experimental setup

This section describes the Evolutionary Algorithm parametrisation as well
as the parameters of the Deep Neural Network composing the search space.

5.1. Keras

We used Keras [38], a high-level library for Artificial Neural Networks with
support for both backends Theano and TensorFlow, to execute the Deep Neural
Networks defined by the individuals generated by EvoDeep algorithm. Due
to the capabilities of the library, it is possible to run the experiments using
both Theano and Tensorflow as the execution environment, being the latter the
backend selected for our experimentation.

5.2. TensorFlow

TensorFlow [43] is an Application Programming Interface (API) for defining
and running Machine Learning algorithms developed by Google and available2

under the Apache 2.0 license. The system can be used to express a wide variety

2www.tensorflow.org

15

www.tensorflow.org

Parameter Description Value

Ngen Number of generations 20
Nstop Early stop generations 5

µ Number of individuals selected
to generate next population

5

λ Number of individuals to create
in every generation

10

pR Recombination probability 0.5
pV Mutation probability 0.5
pL Probability of adding new layers 0.5

Table 1: Parameters used to run EvoDeep.

of algorithms, such as training and inference algorithms for Deep Neural Net-
work models, and is capable of running them on many kinds of systems such
as handheld devices, distributed systems including several machines and GPU
cards. TensorFlow has been used broadly for researching and deploying Ma-
chine Learning systems across many areas, including computer vision, speech
recognition, information retrieval and robotics.

5.3. Evolutionary Algorithm parametrisation

Regarding the parametrisation of the Evolutionary Algorithm, we took into
account the time needed to evaluate every individual that, in turn, is pretty
high. In order to mitigate this problem, we decided to limit the maximum
number of generations to 20, although there is an early stop condition that
avoids unnecessary iterations of the algorithm stopping it when the average
fitness of the population does not change over the last 5 generations. As defined
in Section 4, the algorithm follows a (µ+ λ) generational scheme with µ = 5
and λ = 10. The probability of recombination and mutation has been set as
pR = 0.5 and pV = 0.5, respectively, with the probability of adding new layers
during the variation stage being 0.5 as well. These parameters were empirically
chosen in order to meet a trade-off between the execution time and the accuracy
achieved by the algorithm.

5.4. Deep Neural Network parametrisation

In addition to the parameters of the Evolutionary Algorithm, the deep learn-
ing system has its own parameters that are, in turn, optimised by the former.
Table 2 describes every parameter as well as its range of values or list of categor-
ical values that has been encoded in the algorithm. Global parameters are those
that affect the architecture as a whole while those labelled as Layer parameters
are different for each layer in the architecture. Some of the latter are common
to any kind of layer (LTi, INITi, ACTi) while others are specific to a type of
layer (NOi, Pi, NFi, NROWi, NCOLi, BIASi, BDi, POOLi, STRi).

16

Parameter Definition Scope Values

Oi Optimizer Global Adam, SGD, RMSprop, Adagrad,
Adamax, Nadam

NEi Number of epochs Global Min: 2, Max: 20, Step: 2

BSi Batch size Global Min: 100, Max: 5000, Step: 100

LTi Layer type Layer Dense, Dropout, Convolution2D, Max-
Pooling2D, Reshape, Flatten

INITi Initialization function Layer Uniform, Lecun uniform, Normal, Zero,
Glorot normal, Glorot uniform, He nor-
mal, He uniform

ACTi Activation function Layer Relu, Softmax, Softplus, Softsign,
Tanh, Sigmoid, Hard sigmoid, Linear

NOi Number of outputs of each
layer

Layer (Dense) Min: 10, Max: 500, Step: 20

Pi Fraction of the input units
to drop

Layer (Dropout) Min: 10%, Max: 80%, Step: 10%

NFi Number of filters to apply Layer (Convolution2D) Min: 5, Max: 50, Step: 5

NROWi, NCOLi Rows and columns of the
kernel

Layer (Convolution2D) Min: 3, Max: 15, Step: 2

BIASi Whether to include a bias Layer (Convolution2D) True, False

BDi Behaviour of the operator
at the borders

Layer (Convolution2D,
MaxPooling2D)

Valid, Same

POOLi Size of the pooling Layer (MaxPooling2D) Min: 2, Max: 6, Step: 1

STRi Step taken between pool-
ings

Layer (MaxPooling2D) 2, 3, 4, 5, 6

Table 2: Parameters involved in the evolutionary search, the scope (Global or Layer) in which
they are defined, and range of values evaluated.

5.5. Dataset

In this paper, we have performed several experiments using the well known
MNIST dataset3. This dataset contains a huge number of handwritten digits,
which are centered in a 28x28 pixels pictures. Each pixel is linked to an in-
teger value which ranges from 0 to 255, defining the grey level from white to
black. Many works have used this dataset to train and test new classification
algorithms.

6. Experimentation

This section aims to analyse the performance of the solution proposed in
the previous sections at defining a proper selection of parameters for training a
Deep Neural Network. Furthermore, it also provides details related to the most
profitable configurations, such as the importance of each particular initialisation
function and shows the best individuals found by the algorithm.

6.1. Evolutionary search performance analysis

In first place, different executions of the proposed solution have been run in
order to evaluate its ability to maximise the accuracy in a particular problem.

3http://yann.lecun.com/exdb/mnist/

17

http://yann.lecun.com/exdb/mnist/

●

●

● ●
●

● ● ● ● ● ●

●

●
● ● ● ● ● ● ● ● ●

●

●
● ● ● ● ● ● ● ● ●

●

●

●
● ● ● ● ● ● ● ●

●

●

● ● ● ● ● ● ● ● ●

●

●

● ● ● ● ● ● ● ● ●

●

●

● ● ● ● ● ● ● ● ●

●

●
●

● ● ● ● ● ● ● ●

●

● ● ● ● ● ● ● ● ● ●

●

●
● ● ● ● ● ● ● ● ●

0.4

0.6

0.8

1.0

0 1 2 3 4 5 6 7 8 9 10

Generation

A
ve

ra
ge

 a
cc

ur
ac

y

Figure 7: Evolution of the average accuracy achieved by the population for 10 different exe-
cutions through the evolutionary procedure.

Ten different executions have been performed, delivering a sorted list of individ-
uals by their fitness, measured as the accuracy in the validation dataset. Results
are shown in Fig. 7. Each line represents a different execution where each point
indicates the average accuracy achieved by the whole population at a particular
generation. The evolutionary search produces a fast convergence, requiring just
one generation to build promising candidates with 90% of accuracy. Although
the maximum number of generations was fixed to 20, in the fifth generation the
accuracy is stabilised and few changes are reported in the following ones. This
result supports an important goal of this paper: to build accurate models in the
shortest possible time.

The results achieved have also been analysed from the perspective of the
evolution of the accuracy throughout the different executions. Fig. 8 draws
this evolution for the best individual found based on its evaluation with each
different dataset. There are two remarkable findings which can be extracted.
On the one hand, validation and test results are very close, which is a fact of
significant importance, given that the first one is used to lead the evolutionary
search, where an improvement in the validation dataset will be linked to an
enhanced test accuracy. On the other hand, the accuracy shaped by the test
dataset is also near to the results showed by the training dataset. These results
can also be seen in Table 3, which shows the summary of the accuracy achieved
by the best individual for each execution. The average accuracy in the test
dataset was 98.42% ± 0.39, which means just 1.32% of difference. The best
value in the test was obtained in an execution with nearly a 99% of accuracy.

18

●
●

●

●

●

●

●

●
●

●

●

●

● ●

●

●
● ●

● ●

●

●

●
●

●

●

●

● ●

●

0.980

0.985

0.990

0.995

1.000

1 2 3 4 5 6 7 8 9 10

Execution

A
cc

ur
ac

y

Data portion
●

●

●

Training

Validation

Test

Figure 8: Evolution of the average accuracy achieved by the best individual for each execution
in training, validation and test datasets

Training dataset Validation dataset Test dataset

Minimum 99.23% 97.93% 97.89%
Median 99.80% 98.66% 98.51%
Mean 99.74%± 0.25 98.57%± 0.38 98.42%± 0.39

Maximum 99.99% 99.06% 98.93%

Table 3: Mean, median, minimum and maximum values of the best individual for each exe-
cution in the training, validation and test datasets.

6.2. Parameters configurations analysis

Regarding the importance of each parameter in maximising the outcome of
the model, it has also been studied their distribution among the best individual
delivered by each execution. Fig. 9 shows the distribution for the activation
functions (Fig. 9a), the initialisation functions (Fig. 9b) and the layers types
defined (Fig. 9c). These figures are made based on the number of occurrences
of each possible parameter value in the best individuals, which enables to under-
stand the particularities under the most profitable configurations. Each polygon
drawn in these figures represents the best individual for each execution.

By analysing the distribution of the different activation functions employed
in the evolutionary search (Fig. 9a), it can be seen that the hyperbolic tangent,
the Rectified Linear Unit (ReLU), which has a threshold located at zero and
aims to accelerate the convergence, and the Softplus activation function, which
is a smooth version of the ReLU, are those preferred by the algorithm as they
improve the fitness of the global architecture. There is also a specific individual
where the softsign activation function, based on quadratic polynomials, plays
a key role. In contrast, linear, sigmoid, hard sigmoid and softmax activations
adopt clearly a secondary role, as they are not as frequent among the best
configurations.

19

In the case of the initialisation functions (see Fig. 9b), the results show a
significantly different behaviour from that provided by the activation functions.
The individuals distributions are scattered without clear patterns, meaning that
there are not clearly differentiated or promising functions, except for the normal
initialisation function, which is well represented in a subset of the solutions. This
plot also arises that the less helpful for the individuals is the LeCun uniform
function, based on an uniform distribution taking into account the number of
inputs.

Finally, Fig. 9c represents the level of involvement of the different layer
types in building the best individuals. In this case, the fully connected layer
(i.e. Dense) is the most representative layer among all the individuals. This is
to be expected, since this layer is in charge of defining the relations that connect
the inputs with the outputs. Furthermore, there are other two layers that are
used more frequently than the rest: Dropout, which randomly sets the output
of some neuron to 0, and Convolution2D, which is the keystone of convolutional
Deep Neural Networks. In fact, the latter appears on the top 2 architectures,
that is, those individuals that achieved the best accuracies, as it is described in
the following subsection.

6.3. Analysis of the best architectures found by EvoDeep

After analysing the DNN architectures that EvoDeep is able to achieve, the
best two accuracies values, from the final population of each run altogether, we
found that both are mainly made of Dense and Convolution2D layers, which, in
addition and taking into account the results shown on the previous subsection,
points at the good performance achieved by Deep Neural Network architectures
that combines both types of layers.

As shown in Figure 10, best individuals (in terms of accuracy in the valida-
tion dataset) have nearly the same number of layers (7 and 8 respectively) and
a rather similar architecture: both have an initial sequence of Reshape, Convo-
lution and Flatten as well as two Dense layers at the final zone of the sequence.
Although the main difference between them are the Dropout and MaxPooling2D
layers, the global functioning of both architectures is rather similar. Initially,
data is reshaped as a matrix in order to be processed by the convolution layers,
which then extract information and features from the matrix by applying the
filters. After that, the matrix is converted to vectors and then there is some
kind of information summarising in both architectures: by the Dropout layer
in the former, which discard some of the information learned by the previous
Dense layer, and also by the MaxPooling2D layer in the latter, which reduces
the dimensionality of the data.

From the perspective of layers’ parameters, it is noteworthy the size of the
kernel filters applied on both architectures: the former uses a different number
of filters which are, in turn, of different sizes while the latter uses the same
number of filters with a similar size among the three Convolution layers. In
fact, the parameters of the convolution layers in the former architecture are all
distinct, which may suggest that combining very different convolution layers is
better than using the same parameters for them. Regarding the complexity

20

Hard sigmoid

Linear

Relu

Sigmoid

Softmax

Softplus

Softsign

Tanh

(a) Activation functions

Glorot normal

Glorot uniform

He normal

He uniform

Lecun uniform

Normal

Uniform

Zero

(b) Initialisation functions.

Convolution2D

Dense

Dropout

Flatten

MaxPooling2D

Reshape

(c) Layer types

Figure 9: Probability of occurrence of the different parameter values.

Dense layers, both architectures have a high number of neurons in them (350
and 410 respectively).

7. Conclusions and Future Work

Deep Neural Networks are able to tackle complex classification problems us-
ing a large number of features that generate s complicated relationships between
them. In contrast to the good performance of DNNs, their specification involves
designing large architectures of layers and setting up their parameters. This pro-
cess is usually made by hand, hence representing a bottleneck in the process of
designing DNNs to solve complex problems. To tackle the previous problem,

21

(a) (b)

Figure 10: Best two individuals found by the algorithm, achieving accuracies of 98.67% and
98.93% for (a) and (b), respectively.

this paper presents EvoDeep, a new an automated approach that search for the
the best architecture of layers, as well as their optimum parameters, by means of
an Evolutionary Algorithm. The algorithm is guided by the accuracy achieved
by the DNN using one dataset, the MNIST dataset, but it could be changed to
another one with ease. Furthermore, the algorithm includes a Finite-State Ma-
chine to ensure that all the architectures generated are valid sequences of layers,
as they have restrictions on their inputs and outputs types. The experimental

22

results show that EvoDeep is able to build valid DNNs architectures that, in
turn, achieve good accuracies when using the aforementioned dataset.

One of the biggest problems found is the high computational resources
needed to train the DNN, so as future work we are planning to study if it
would be possible to reduce the training time. In addition, it would be interest-
ing to check the algorithm using additional datasets and study its performance,
in a way that it is possible to publish the algorithm as an optimization tool for
Keras and other implementations of TensorFlow.

Acknowledgment

This work has been co-funded by the next research projects: EphemeCH
(TIN2014-56494-C4-4-P) Spanish Ministry of Economy and Competitivity and
European Regional Development Fund FEDER, Justice Programme of the Eu-
ropean Union (2014-2020) 723180 – RiskTrack – JUST-2015-JCOO-AG/JUST-
2015-JCOO-AG-1, and by the CAM grant S2013/ICE-3095 (CIBERDINE: Cy-
bersecurity, Data and Risks). The contents of this publication are the sole
responsibility of their authors and can in no way be taken to reflect the views
of the European Commission.

References

[1] I. Goodfellow, Y. Bengio, A. Courville, Deep Learning, MIT Press, 2016,
http://www.deeplearningbook.org.

[2] W. S. McCulloch, W. Pitts, A logical calculus of the ideas immanent in
nervous activity, The bulletin of mathematical biophysics 5 (4) (1943) 115–
133.

[3] B. J. A. Kröse, P. P. van der Smagt, An Introduction to Neural Networks,
4th Edition, The University of Amsterdam, Amsterdam, The Netherlands,
1991.

[4] M. Minsky, S. Papert, Neurocomputing: Foundations of research, MIT
Press, Cambridge, MA, USA, 1988, Ch. Perceptrons, pp. 157–169.
URL http://dl.acm.org/citation.cfm?id=65669.104395

[5] J. Schmidhuber, Deep learning in neural networks: An overview, Neural
Networks 61 (2015) 85–117.

[6] T. D. Team, TensorFlow: Large-scale machine learning on heterogeneous
systems, software available from tensorflow.org (2015).
URL http://tensorflow.org/

[7] Theano Development Team, Theano: A Python framework for fast com-
putation of mathematical expressions, arXiv e-prints abs/1605.02688.
URL http://arxiv.org/abs/1605.02688

23

http://www.deeplearningbook.org
http://dl.acm.org/citation.cfm?id=65669.104395
http://dl.acm.org/citation.cfm?id=65669.104395
http://tensorflow.org/
http://tensorflow.org/
http://tensorflow.org/
http://arxiv.org/abs/1605.02688
http://arxiv.org/abs/1605.02688
http://arxiv.org/abs/1605.02688

[8] Y. LeCun, Y. Bengio, G. Hinton, Deep learning, Nature 521 (7553) (2015)
436–444.

[9] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recog-
nition, in: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2016, pp. 770–778.

[10] Z. Yuan, Y. Lu, Y. Xue, Droiddetector: android malware characterization
and detection using deep learning, Tsinghua Science and Technology 21 (1)
(2016) 114–123.

[11] Z. Yuan, Y. Lu, Z. Wang, Y. Xue, Droid-sec: deep learning in android mal-
ware detection, in: ACM SIGCOMM Computer Communication Review,
Vol. 44, ACM, 2014, pp. 371–372.

[12] S. Hou, A. Saas, Y. Ye, L. Chen, Droiddelver: An android malware detec-
tion system using deep belief network based on api call blocks, in: Interna-
tional Conference on Web-Age Information Management, Springer, 2016,
pp. 54–66.

[13] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-r. Mohamed, N. Jaitly, A. Senior,
V. Vanhoucke, P. Nguyen, T. N. Sainath, et al., Deep neural networks for
acoustic modeling in speech recognition: The shared views of four research
groups, IEEE Signal Processing Magazine 29 (6) (2012) 82–97.

[14] H. Lee, P. Pham, Y. Largman, A. Y. Ng, Unsupervised feature learning for
audio classification using convolutional deep belief networks, in: Advances
in neural information processing systems, 2009, pp. 1096–1104.

[15] T. Kuremoto, S. Kimura, K. Kobayashi, M. Obayashi, Time series fore-
casting using a deep belief network with restricted boltzmann machines,
Neurocomputing 137 (2014) 47–56.

[16] X. Qiu, L. Zhang, Y. Ren, P. N. Suganthan, G. Amaratunga, Ensemble deep
learning for regression and time series forecasting, in: Computational In-
telligence in Ensemble Learning (CIEL), 2014 IEEE Symposium on, IEEE,
2014, pp. 1–6.

[17] K. Simonyan, A. Zisserman, Two-stream convolutional networks for ac-
tion recognition in videos, in: Advances in neural information processing
systems, 2014, pp. 568–576.

[18] X. Yao, Evolving artificial neural networks, Proceedings of the IEEE 87 (9)
(1999) 1423–1447.

[19] M. Srinivas, L. Patnaik, Learning neural network weights using genetic
algorithms-improving performance by search-space reduction, in: Neural
Networks, 1991. 1991 IEEE International Joint Conference on, IEEE, 1991,
pp. 2331–2336.

24

[20] F. H.-F. Leung, H.-K. Lam, S.-H. Ling, P. K.-S. Tam, Tuning of the struc-
ture and parameters of a neural network using an improved genetic algo-
rithm, IEEE Transactions on Neural networks 14 (1) (2003) 79–88.

[21] J. R. Koza, J. P. Rice, Genetic generation of both the weights and architec-
ture for a neural network, in: Neural Networks, 1991., IJCNN-91-Seattle
International Joint Conference on, Vol. 2, IEEE, 1991, pp. 397–404.

[22] J. Gascón-Moreno, S. Salcedo-Sanz, B. Saavedra-Moreno, L. Carro-Calvo,
A. Portilla-Figueras, An evolutionary-based hyper-heuristic approach for
optimal construction of group method of data handling networks, Informa-
tion Sciences 247 (2013) 94–108.

[23] X. Yao, Y. Liu, A new evolutionary system for evolving artificial neural
networks, IEEE transactions on neural networks 8 (3) (1997) 694–713.

[24] A. Abraham, Meta learning evolutionary artificial neural networks, Neuro-
computing 56 (2004) 1–38.

[25] H. Kitano, Designing neural networks using genetic algorithms with graph
generation system, Complex systems 4 (4) (1990) 461–476.

[26] V. Maniezzo, Genetic evolution of the topology and weight distribution of
neural networks, IEEE Transactions on neural networks 5 (1) (1994) 39–53.

[27] K. O. Stanley, D. B. D’Ambrosio, J. Gauci, A hypercube-based encoding for
evolving large-scale neural networks, Artificial life 15 (2) (2009) 185–212.

[28] D. V. Vargas, J. Murata, Spectrum-diverse neuroevolution with unified
neural models, IEEE Transactions on Neural Networks and Learning Sys-
tems.

[29] A. Martin, H. D. Menéndez, D. Camacho, Genetic boosting classification
for malware detection, in: Evolutionary Computation (CEC), 2016 IEEE
Congress on, IEEE, 2016, pp. 1030–1037.

[30] A. Mart́ın, H. D. Menéndez, D. Camacho, Mocdroid: multi-objective evo-
lutionary classifier for android malware detection, Soft Computing (2016)
1–11.

[31] A. Mart́ın, H. D. Menéndez, D. Camacho, Studying the influence of static
api calls for hiding malware, in: Conference of the Spanish Association for
Artificial Intelligence, Springer, 2016, pp. 363–372.

[32] A. Mart́ın, H. D. Menéndez, D. Camacho, String-based malware detection
for android environments, in: International Symposium on Intelligent and
Distributed Computing, Springer International Publishing, 2016, pp. 99–
108.

25

[33] A. Mart́ın, A. Calleja, H. D. Menéndez, J. Tapiador, D. Camacho, Adroit:
Android malware detection using meta-information, in: Computational In-
telligence (SSCI), 2016 IEEE Symposium Series on, IEEE, 2016, pp. 1–8.

[34] J. D. Schaffer, D. Whitley, L. J. Eshelman, Combinations of genetic algo-
rithms and neural networks: A survey of the state of the art, in: Combi-
nations of Genetic Algorithms and Neural Networks, 1992., COGANN-92.
International Workshop on, IEEE, 1992, pp. 1–37.

[35] S. Marshall, R. Harrison, Optimization and training of feedforward neu-
ral networks by genetic algorithms, in: Artificial Neural Networks, 1991.,
Second International Conference on, IET, 1991, pp. 39–43.

[36] O. A. Abdalla, A. O. Elfaki, Y. M. Almurtadha, Optimizing the multilayer
feed-forward artificial neural networks architecture and training parameters
using genetic algorithm, International Journal of Computer Applications
96 (10).

[37] O. E. David, I. Greental, Genetic algorithms for evolving deep neural net-
works, in: Proceedings of the Companion Publication of the 2014 Annual
Conference on Genetic and Evolutionary Computation, ACM, 2014, pp.
1451–1452.

[38] F. Chollet, Keras, https://github.com/fchollet/keras (2015).

[39] Y. LeCun, L. Bottou, G. B. Orr, K. R. Müller, Efficient backprop, Lecture
notes in computer science (1998) 9–50.

[40] X. Glorot, Y. Bengio, Understanding the difficulty of training deep feed-
forward neural networks., in: Aistats, Vol. 9, 2010, pp. 249–256.

[41] K. He, X. Zhang, S. Ren, J. Sun, Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification, in: Proceedings of the
IEEE international conference on computer vision, 2015, pp. 1026–1034.

[42] A. E. Eiben, J. E. Smith, Introduction to Evolutionary Computing, Natural
Computing, Springer-Verlag Berlin Heidelberg, 2003.

[43] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, et al., Tensorflow: Large-scale
machine learning on heterogeneous distributed systems, arXiv preprint
arXiv:1603.04467.

26

	plantilla_postprintsA
	Journal of Parallel and Distributing Computing

	evodeep_martin_JPDC_2018ps
	Introduction
	Background
	Deep Neural Networks
	Layers
	Dense
	Dropout
	Reshape
	Flatten
	Convolution2D
	MaxPooling2D

	EvoDeep: Deep Neural Networks parametrisation using Evolutionary Algorithms
	Generation of valid sequences of layers
	Individual encoding
	Evolutionary operators
	Crossover operator
	Mutation operator

	Fitness function

	Experimental setup
	Keras
	TensorFlow
	Evolutionary Algorithm parametrisation
	Deep Neural Network parametrisation
	Dataset

	Experimentation
	Evolutionary search performance analysis
	Parameters configurations analysis
	Analysis of the best architectures found by EvoDeep

	Conclusions and Future Work

