arXiv:1702.01785v1 [cs.DC] 6 Feb 2017

Model-driven Scheduling for Distributed Stream
Processing Systems

Anshu Shukla and Yogesh Simmhan

Department of Computational and Data Sciences
Indian Institute of Science (IISc), Bangalore 560012, India

Email: shukla@grads.cds.iisc.ac.in, simmhan@cds.iisc.ac.in

Abstract

Distributed Stream Processing frameworks are being commonly used
with the evolution of Internet of Things(IoT). These frameworks are de-
signed to adapt to the dynamic input message rate by scaling in/out.Apache
Storm, originally developed by Twitter is a widely used stream processing
engine while others includes Flink Spark streaming . For run-
ning the streaming applications successfully there is need to know the
optimal resource requirement, as over-estimation of resources adds ex-
tra cost.So we need some strategy to come up with the optimal resource
requirement for a given streaming application. In this article, we pro-
pose a model-driven approach for scheduling streaming applications that
effectively utilizes a priori knowledge of the applications to provide pre-
dictable scheduling behavior. Specifically, we use application performance
models to offer reliable estimates of the resource allocation required. Fur-
ther, this intuition also drives resource mapping, and helps narrow the
estimated and actual dataflow performance and resource utilization. To-
gether, this model-driven scheduling approach gives a predictable applica-
tion performance and resource utilization behavior for executing a given
DSPS application at a target input stream rate on distributed resources.

1 Introduction

Big Data platforms have evolved over the last decade to address the unique
challenges posed by the ability to collect data at vast scales, and the need
to process them rapidly. These platforms have also leveraged the availability
of distributed computing resources, such as commodity clusters and Clouds, to
allow the application to scale out as data sizes grow. In particular, platforms like
Apache Hadoop and Spark have allowed massive data volumes to be processed
with high throughput, and NoSQL databases like Hive and HBase support low
latency queries over semi-structured data at large scales.

However, much of the research and innovation in Big Data platforms has
skewed toward the wvolume rather than the wvelocity dimension . On the

other hand, the growing prevalence of Internet of Things (IoT) is contributing
to the deployment of physical and virtual sensors to monitor and respond to
infrastructure, nature and human activity is leading to a rapid influx of stream-
ing data [29]. These emerging applications complement the existing needs of
micro-blogs like Twitter that already contend with the need to rapidly process
tweet streams for detecting trends or malicious activity [38]. Such streaming
applications require low-latency processing and analysis of data streams to take
decisions that control the physical or digital eco-system they observe.

A Distributed Stream Processing System (DSPS) is a Big Data platform
designed for online processing of such data streams [14]. While early stream
processing systems date back to applications on wireless sensor networks [11],
contemporary DSPS’s such as Apache Storm from Twitter, Flink and Spark
Streaming are designed to execute complex dataflows over tuple streams using
commodity clusters [8,|62,|73]. These dataflows are typically designed as Di-
rected Acyclic Graphs (DAGs), where user tasks are vertices and streams are
edges. They can leverage data parallelism across tuples in the stream using mul-
tiple threads of execution per task, in addition to pipelined and task-parallel
execution of the DAG, and have been shown to process 1000’s of tuples per
second [56,62).

A DSPS executes streaming dataflow applications on distributed resources
such as commodity clusters and Cloud Virtual Machines (VMs). In order to
meet the required performance for these applications, the DSPS needs to sched-
ule these dataflows efficiently over the resources. Scheduling for a DSPS has
two parts: resource allocation and resource mapping. The former determines
the appropriate degrees of parallelism per task (e.g., threads of execution) and
quanta of computing resources (e.g., number and type of VMs) for the given
dataflow. Here, care has to be taken to avoid both over-allocation, that can have
monetary costs when using Cloud VMs, or under-allocation, that can impact
performance. Resource mapping decides the specific assignment of the threads
to the VMs to ensure that the expected performance behavior and resource
utilization is met.

Despite their growing use, resource scheduling for DSPSs tends to be done
in an ad hoc manner, favoring empirical and reactive approaches, rather than a
model-driven and analytical approach. Such empirical approaches may arrive at
an approximate resource allocation for the DSPS based on a linear extrapolation
of the resource needs and performance of dataflow tasks, and hand-tune these
to meet the Quality of Service (QoS) [5571]. Mapping of tasks to resources may
be round-robin or consider data locality and resource capacities [37,/50]. More
sophisticated research techniques support dynamic scheduling by monitoring
the queue waiting times or tuple latencies to incrementally increase/decrease
the degrees of parallelism for individual tasks or the number of VMs they run
on [25[40]. While these dynamic techniques have the advantage of working for
arbitrary dataflows and stream rates, such schedules can lead to local optima for
individual tasks without regard to global efficiency of the dataflow, introduce
latency and cost overheads due to constant changes to the mapping, or offer
weaker guarantees for the QoS.

In this article, we propose a model-driven approach for scheduling stream-
ing applications that effectively utilizes a priori knowledge of the applications
to provide predictable scheduling behavior. Specifically, we leverage our ob-
servation that dataflow tasks have diverse performance behavior as the degree
of parallelism increases, and use performance models to offer reliable estimates
of the resource allocation required. Further, this intuition also drives resource
mapping to mitigate the impact of multi-tenancy of different tasks on the same
resource, and helps narrow the estimated and actual dataflow performance and
resource utilization. Together, this model-driven scheduling approach gives a
predictable application performance and resource utilization behavior for exe-
cuting a given DSPS application at a target input stream rate on distributed
resources. Often, importance is given to lower latency of resource usage rather
than predictable behavior. But in stream processing that can be latency sensi-
tive, it may be more important to offer tighter bounds rather than lower bounds.

We limit this article to static scheduling of the dataflow on distributed re-
sources, before the application starts running. This is complementary to dy-
namic scheduling algorithms that can react to changes in the stream rates [72],
application composition [40] and make use of Cloud elasticity [52]. However,
our work can be extended and applied to a dynamic context as well. Rather
than incrementally increase or decrease resource allocation and the mapping
until the QoS stabilizes, a dynamic algorithm can make use of our model to
converge to a stable configuration more rapidly. Our work is of particular use
for enterprises and service providers who have a large class of infrastructure
applications that are run frequently [35L58], or who reuse a library of common
tasks when composing their applications [7.|13,/24], as is common in the scien-
tific workflow community [15]. This amortizes the cost of building task-level
performance models. Our approach also resembles scheduling in HPC centers
that typically have a captive set of scientific applications that can benefit from
such a model-driven approach [17] [65].

Specifically, we make the following key contributions in this article:

1. We highlight the gap between ideal and actual performance of dataflow
tasks using performance models, that causes many existing DSPS schedul-
ing algorithms to fail and motivates our model-based approach for reliable
scheduling.

2. We propose an allocation and a mapping algorithm that leverage these
performance models to schedule DSPS dataflows for a fixed input rate,
minimizing the distributed resources used and offering predictable perfor-
mance behavior.

3. We offer detailed experimental results and analysis evaluating our schedul-
ing algorithm using the Apache Storm DSPS, and compare it against the
state-of-the-art scheduling approaches, for micro and application dataflows.

The rest of the article is organized as follows: § [2| introduces the problem
motivation and § [3| formalizes the scheduling problem; § [4] offers a high-level

intuition of the analytical approach taken to solving the problem; § [5] offers
evidence on the diversity of task’s behavior using performance models, leveraged
in the solution; § |§| proposes a novel Model Based Allocation (MBA) algorithm
using these models, and also describes a Linear Scaling Allocation (LSA) used as
a contemporary baseline; §|z|presents our Slot-Aware Mapping (SAM) algorithm
that leverages thread-locality in a resource slot, and lists two existing algorithms
from literature and practice used as comparison; we offer detailed experimental
results and analysis of these allocation and mapping algorithms in §[8} contrast
our work against related literature in § [0} and lastly, present our conclusions in

§[10]

2 Background and Motivation

We offer an overview of the generic composition and execution model favored by
contemporary DSPSs such as Apache Storm, Apache Spark Streaming, Apache
Flink and IBM InfoSphere Streams in this section. We further use this to
motivate the specific research challenges and technical problems we address in
this article; a formal definition follows in the subsequent section, § |3l While we
use features and limitations of the popular Apache Storm as a representative
DSPS here, similar features and short-comings of other DSPSs are discussed in
the related work, §[J]

Streaming applications are composed as a dataflow in a DSPS, represented
as a directed acyclic graph (DAG), where tasks form vertices and tuple streams
are the edges connecting the output of one task to the input of its downstream
task. Contents of the tuples (also called events or messages) are generally
opaque to the DSPS, except for special fields like IDs and keys that may be
present for recovery and routing. Source tasks in the DAG contain user logic
responsible for acquiring and generating the initial input stream to the DAG,
say by subscribing to a message broker or pulling events over the network from
sensors. For other tasks, their logic is executed once for each input tuple arriving
at that task, and may produce zero or more output tuples for each invocation.
These output tuples are passed to downstream tasks in the DAG, and so on
till the Sink tasks are reached. These sinks do not emit any output stream but
may store the tuples or notify external services. Apache Storm uses the terms
topology and component for a DAG and a task, and more specifically spout and
bolt for source tasks and non-source tasks, respectively.

Multiple outgoing edges connecting one task to downstream tasks may in-
dicate different routing semantics for output tuples on that edge, based on the
application definition — tuples may be duplicated to all downstream tasks, passed
in a round-robin manner to the tasks, or mapped based on an output key in the
tuple. Likewise, multiple input streams incident on a task typically have their
tuples interleaved into a single logical stream, though semantics such as joins
across tuples from different input streams are possible as well. Further, the
selectivity of an outgoing edge of a task is the ratio between the average number
of tuples generated on that output stream for each input tuple to the task.

Streaming applications are designed to process tuples with low latency. The
end-to-end latency for processing an input tuple from the source to the sink
task(s) is typically a measure of the Quality of Service (QoS) expected. This
QoS depends on both the input stream rate at the source task(s) and the resource
allocation to the tasks in the DSPS. A key requirement is that the execution
performance of the streaming application remains stable, i.e., the end-to-end
latency is maintained within a narrow range over time and the queue size at
each task does not grow. Otherwise, an unstable application can lead to an
exponential growth in the latency and the queue size, causing hosts to run out
of memory.

The execution model of a DSPS can naturally leverage pipelining and task
parallelism due to the composition of linear and concurrent tasks in the DAG,
respectively. These benefits are bound by the length and the number of tasks in
the DAG. In addition, they also actively make use of data-parallel execution for
a single task by assigning multiple threads of execution that can each operate
on an independent tuple in the input stream. This data parallelism is typically
limited to stateless tasks, where threads of execution for a task do not share
a global variable or state, such as a sum and a count for aggregation; stateful
tasks require more involved distributed coordination [68]. Stateless tasks are
common in streaming dataflows, allowing the DSPS to make use of this impor-
tant dimension of parallelism that is not limited by the dataflow size but rather
the stream rate and resource availability.

In operational DSPSs such as Apache Storm, Yahoo S4 [45], Twitter Heron [3§]
and IBM InfoSphere Streams [7], the platform expects the application developer
to provide the number of threads or degrees of data parallelism that should be
exploited for a single task. As we show in §[5] general rules of thumb are inade-
quate for deciding this and both over- and under-allocation of threads can have
a negative effect on performance. This value may also change with the input
rate of the stream. Thread allocation is one of the challenges we tackle in this
paper.

In addition, the user is responsible for deciding the number of compute re-
sources to be allocated to the DAG. Typically, as with many Big Data plat-
forms, each host or Virtual Machine (VM) in the DSPS cluster exposes multiple
resource slots, and those many worker processes can be run on the host. Typi-
cally, there are as many workers as the number of CPU cores in that host. Each
worker process can internally run multiple threads for one or more tasks in the
DAG. The user specifies the number of hosts or slots in the DSPS cluster to be
used for the given DAG when it is submitted for execution. For e.g., in Apache
Storm, the threads for the dataflow can use all available resource slots in the
DSPS cluster by default. In practice, this again ends up being a trial and error
empirical process for the user or the system to decide the resource allocation
for the DAG, and will change for each DAG or the input rate that it needs to
support. Ascertaining the Cloud VM resource allocation for the given DAG and
input rate is another problem that we address in this article, and this is equally
applicable to commodity hosts in a cluster as well.

The DSPS, on receiving a DAG for scheduling, is responsible for deploying

the dataflow on the cluster and coordinating its execution. As part of this de-
ployment, it needs to decide the mapping from the threads of the tasks to the
slots in the workers. There has been prior work on making this mapping effi-
cient for stream processing platforms [19] [37]. For e.g., the native scheduler of
Apache Storm uses a round-robin technique for assigning threads from different
tasks to all available slots for the DAG. Its intuition is to avoid contention for
the same resource by threads for the same task, and also balance the work-
load among the available workers. More recently, Storm has incorporated the
R-Storm scheduler [48] that is both resource and network topology aware, and
this offers better efficiency by considering the resource needs for an individual
task thread. In InfoSphere Streams [7] and our own prior work [39], the map-
ping decision is dynamic and relies on the current load and previous resource
utilization for the tasks.

This placement decision is important, as an optimal resource allocation for a
given DAG and input rate may still under-perform if the task thread to worker
mapping is not effective. This inefficiency can be due to additional costs for
resource contention between threads of a task or different tasks on a VM, ex-
cess context switching between threads in a core, movement of tuples between
distributed tasks over the network, among other reasons. This inefficiency is
manifest in the form of additional latency for the messages to be processed, or a
lower input rate that is supported in a stable manner for the DAG with the given
resources and mapping. In this article, we enhance the mapping strategy for
the DSPS by using a model-driven approach that goes beyond a resource-aware
approach, such as used in R-Storm.

In summary, the aim of this paper is to use a model-driven approach to
perform predictable and efficient resource scheduling for a given DAG and input
event rate. The specific goals are to determine:

e the thread allocation per task,
e the VM allocation for the entire DAG, and
e the resource mapping from a task thread to a resource slot.

The outcome of this schedule will be to improve the efficiency and reduce
the contention for VM resources, reduce the number of VM resources, and hence
monetary costs, for executing the DAG, and ensure a stable (and preferably low)
latency for execution. The predictable performance of the proposed schedule is
also important as it reduces uncertainty and trial and error. Further, when using
this scheduling approach for handling dynamism in the workload or resources,
say when the input rate or the DAG structure changes, this predictability allows
us to update the schedule and pay the overhead cost for the rebalancing once,
rather than constantly tweak the schedule purely based on monitoring of the
execution.

While our article does not directly address dynamism, such as changing in-
put rates, non-deterministic VM performance or modifications to the DAG, the
approach we propose offers a valuable methodology for supporting it. Likewise,

NoTATION DESCRIPTION
G = (T,E) DAG to be scheduled
T={t1,...,tn} Set of n task vertices in the DAG

E = {esjlei; = (tit;)}
Q

Set of stream edges in the DAG
Input rate (tuples/sec) to be supported for DAG

v; €V VMs available
D; Number of resource slots available in VM v;
q; Number of threads allocated to task t;
rf €ER Set of task threads allocated to tasks in DAG
p Sum of the resource slots allocated to the DAG
v; €V VMs allocated to the DAG
sé- €S Resource slots in VMs allocated to DAG
M:R— S Mapping function from a thread to its slot

Pi: T — {w,c,m)

Performance model for task ¢;. Maps from 7 threads to the peak input rate
supported w, CPU% ¢ and Memory% m

Ci(q), Mi(q) Incremental CPU%, memory% used by task t; with ¢ threads on a single resource slot
e = Ci(1), m; = M;(1) CPU% and memory% required by 1 thread of the task t; on a single slot
Z:i(q) Peak input rate supported by the task t; with ¢ threads on a single slot
Ti(w) Smallest thread count g needed to satisfy the input rate w for task ¢; on a single slot
Wi Peak rate sustained by 1 thread of task t; running in 1 slot
@w; Peak rate sustained across any number of threads of task ¢; running in 1 slot
Cj, M; Available CPU%, memory% on a VM
M]l Available memory% on single slot
T Number of threads allocated to task t;
0 Reference VM, VM on which last task thread was mapped
C’;, Mjl Available CPU%, memory% on single slot
T Number of threads needed to support peak rate w; for task ¢; on 1 slot

Figure 1: Summary of notations used in article

we limit our work here to scheduling a single streaming application on an ex-
clusive cluster, that is common in on-demand Cloud environments, rather than
multi-tenancy of applications in the same cluster. Our algorithm in fact helps
determine the smallest number of VMs and their sizes required to meet the
application’s needs.

3 Problem Definition

Let the input DAG be given as G = (T, E), where T = {¢1,...,t,} is the set of n
tasks that form the vertices of the DAG, and E = {e;;|e;; = (i, t;), ti,t; € T}
is the set of tuple stream edges connecting the output of a task ¢; to the input
of its downstream task t;. Let o;; be the selectivity for the edge e;;. We assume
interleave semantics on the input streams and duplicate semantics on the output
streams to and from a task, respectively.

Further, we are given a set of VMs, v; € V, with each VM v; having multiple
identical resource slots, s}sﬁ’ . Each slot is homogeneous in resource capacity
and corresponds to a single CPU core of a rated speed and a specific quanta
of memory allocated to that core. Let p; be the number of processing slots

present in VM v;. The VMs themselves may be heterogeneous in terms of the
number of slots that they have, even as we assume for simplicity that the slots
themselves are homogeneous. This is consistent with the “container” or “slot”
model followed by Big Data platforms like Apache Hadoop [63] and Storm,
though it can be extended to allow heterogeneous slots as well.

Task threads, r}..rl, are responsible for executing the logic for a task ¢; on
a tuple arriving on the input stream for the task. Each task has one or more
threads allocated to it, and each thread is mapped to a resource slot. Different
threads can execute different tuples on the input stream, in a data-parallel
manner. The order of execution does not matter. Each resource slot can run
multiple threads from one or more tasks concurrently.

We are given an input stream rate of 2 tuples/sec (or events/sec) that should
be supported for the DAG G. Our goal is to schedule the tasks of the DAG on
VMs with the least number of cumulative resource slots, to support a stable
execution of the DAG for the given input rate. This problem can be divided
into two phases:

1. Resource Allocation: Find the minimum number ¢; of task threads re-
quired per task t;, and the cumulative resource slots p required to meet
the input rate to the DAG. Minimizing the slots translates to a minimiza-
tion of costs for these on-demand VM resources from Cloud providers since
the pricing for VMs are typically proportional to the number of slots they
offer.

2. Resource Mapping: Given the set of task threads r¥ € R for all tasks
in the DAG, and the number of resource slots p allocated to the DAG,
determine the set of VMs V such that they have an adequate number of
slots, p < Zvj cv pj. Further, for resource slots sé. € S present in the

VMs v; € V, find an optimal mapping function M : R — S for the

allocated task threads on to available slots, to match the resources needed

to support the required input rate €2 in a stable manner.

There are several qualitative and quantitative measures we use to evaluate
the solution to this problem.

1. The number of resource slots and VMs estimated by the allocation algo-
rithm should be minimized.

2. The actual number of resource slots and VMs required by the mapping
algorithm to successfully place the threads should be minimized. This is
the actual cost paid for acquiring and using the VMs. Closeness of this
value to the estimate from above indicates a reliable estimate.

3. The actual stable input rate that is supported for the DAG by this al-
location and mapping at runtime should be greater than or equal to the
required input rate Q. A value close to 2 indicates better predictability.

4. The expected resource usage as estimated by the scheduling algorithm
and the actual resource usage for each slot should be proximate. The
closer these two values, the better the predictability of the dataflow’s
performance and the scheduling algorithm’s robustness under dynamic
conditions.

4 Solution Approach

We propose a model-based approach to solving the two sub-problems of resource
allocation and resource mapping, in order to arrive at an efficient and predictable
schedule for the DAG to meet the required input rate. The intuition for this is
as follows.

The stable input rate that can be supported by a task depends on the the
number of concurrent threads for that task that can execute over tuples on
the input stream in a data-parallel manner. The number of threads for a task
in turn determines the resources required by the task. Traditional scheduling
approaches for DSPSs assume that both these relationships — between thread
count and rate supported, and thread count and resources required — are a linear
function. That is, if we double the number of threads for a task, we can achieve
twice the input rate and require twice the computing resources.

However, as we show later in § [5| and Fig. this is not true. Instead,
we observe that depending on the task, both these relationships may range
anywhere from flat line to a bell curve to a linear function with a positive or
a negative slope. The reason for this is understandable. As the number of
threads increase in a single VM or resource slot, there is more contention for
those specific resources by threads of a task that can mitigate their performance.
This can also affect the actual resource used by the threads. For simplicity, we
limit our analysis to CPU and memory resources, though it can be extended
to disk IOPS and network bandwidth as well. As a result of this real-word
behavior of tasks, scheduling that assumes a linear behavior can under-perform.

In our approach, we embrace this non-uniformity in the task performance
and incorporate the empirical model of the performance into our schedule plan-
ning. First, we use micro-benchmarks on a single resource slot to develop a
performance model function P; for each task ¢; which, given a certain number
of threads 7 for the task on a single resource slot, provides the peak input rate
w supported, and the CPU and memory utilization, ¢ and m, at that rate. This
is discussed in §

Second, we use these performance models to determine the number of threads
q; for each task t; in the DAG that is required to support a given input rate,
and the cumulative number of resource slots p for all threads in the DAG. This
Model Based Allocation (MBA) described in § [6] offers an accurate estimate
of the resource needs and task performance, for individual tasks and for the
entire DAG. We also discuss a commonly used baseline approach, Linear Scaling
Allocation (LSA), in that section. As mentioned before, it assumes that the
performance of a single thread on a resource slot can be linearly extrapolated

Model with threads, peak rate & resource usage
<Gy, Gy mp>

B
B | Bt —<m,cm>
— T 0 | <q,,c,m>
Q T N e L ~ o7 Cor Mo
2 = mobeung)= O TiT—s@om> 7 AUOCATION O
N J \ (LSA/MBA) % Y | <q,c,mp>
—— Y | Bt —<o,cm> ~—
¥: Yellow

G | <q,c,m>

6 | Bir—<mom>

DAG G with required Input rate Q m Allocated threads, CPU, MEM
for each task

DSM/RSM/SAM RSM/SAM RSM/SAM
< p =max (MEc]1, NEm,1)
g - Total slots for DAG
07 MAPPING AT
_DSM/RSM/sAM

77 Mapping of threads to slots
kgl 1pk=
B rrshint=q,
Kol |r K=
0 rteshinfl=a, |
s 2p
K sl [rK|= A
Y orieshint=q, i}

ol Ir k=
G rtslintl=q,

Figure 2: Illustration of Modeling, Allocation and Mapping phases performed
when scheduling a sample DAG

to multiple threads on that slot, as long as the resource capacity of the slot is
not exhausted. It under-performs, as we show later.

This resource allocation can subsequently be used by different resource map-
ping algorithms that exist, such as the round-robin algorithm used by default in
Apache Storm [62], which we refer to as the Default Storm Mapping (DSM), or
a resource-aware mapping proposed in R-Storm [48] and included in the latest
Apache Storm distribution, which we call R-Storm Mapping (RSM). However,
these mapping algorithms do not provide adequate co-location of threads onto
the same slot to exploit the intuition of the model based allocation. We propose
a novel Slot Aware Mapping (SAM) algorithm that attempts to map threads
from the same task as a group to individual slots, as a form of gang schedul-
ing [47]. Here, our goal is to maximize the peak event rate that can be exploited
from that slot, minimize the interference between threads from different tasks,
and ensure predictable performance. These allocation strategies are explored in

§[0

4.1 Illustration

We provide a high-level visual overview of the schedule planning in Fig. |2 for a
given DAG G with four tasks, Blue, Orange, Yellow and Green, with a required
input rate of 2. The procedure has three phases. In the Modeling phase, we
build a performance model P; for tasks in the DAG that do not already have a
model available. This gives a profile of the peak input tuple rates supported by a
task with different numbers of threads, and their corresponding CPU and mem-
ory utilization, using a single resource slot. For e.g., the performance models
for the four tasks in the DAG are given by Pg, Po, Py and Pg in Fig.

In the Allocation phase, we use the above performance model to decide the
number of threads ¢; for each task required to sustain the tuple rate that is
incident on it. The input rate to the task is itself calculated based on the

10

DAG’s input rate and the selectivity of upstream tasks. We use the Linear
Scaling Allocation (LSA) and our Model Based Allocation (MBA) approaches
for this. While LSA only uses the performance model for a single task thread,
our MBA uses the full profile that is available. These algorithms also return the
CPU% and memory% for the threads of each task that are summed up to get
the total number of resource slots for the DAG. Fig. |2 shows the table for each
of the four tasks after allocation, with the number of threads ¢, qo, ¢y and ggq,
and their estimated resource usages ¢ and m that are summed up to calculate
the total resource slot needs for the DAG p.

Lastly, the Mapping phase decides the number and types of VMs required
to meet the resource needs for the DAG. It then maps the set of r¥ threads
allocated for the DAG to the slots sé in the VMs, and the total number of these
slots can be greater than the estimated p, depending on the algorithm. Here,
we use the Default Storm Mapping (DSM), R-Storm Mapping (RSM) and our
proposed Slot Aware Mapping (SAM) algorithms as alternatives. As shown in
the figure, DSM is not resource aware and only uses the information on the
number of threads ¢; and the number of slots p for its round-robin mapping.
RSM and SAM use the task dependencies between the DAG and the allocation
table. RSM uses the performance of a single thread while SAM uses all values
in the performance model for its mapping.

4.2 Discussion

As with any approach that relies on prior profiling of tasks, our approach has
the short-coming of requiring effort to empirically build the performance model
for each task before it can be used. However, this is mitigated in two respects.

First, as has been seen for scientific workflows, enterprise workloads and
even HPC applications [16},44.54], many domains have common tasks that are
reused in compositional frameworks by users in that domain. Similarly, for
DSPS applications in domains like social network analytics, IoT or even Enter-
prise ETL (Extract, Transform and Load), there are common task categories
and tasks such as parsing, aggregation, analytics, file I/O and Cloud service
operations [24443}/56]. Identifying and developing performance models for such
common tasks for a given user-base — even if all tasks are not exhaustively pro-
filed — can help leverage the benefits of more efficient and predictable schedules
for streaming applications.

Second, the effort in profiling a task is small and can be fully automated, as
we describe in the next section. It also does not require access to the eventual
DAG that will be executed. This ensures that as long as we can get access to the
individual task, some minimal characteristics of the input tuple streams, and
VMs with single resource slots comparable to slots in the eventual deployment,
the time, costs and management overheads for building the performance model
are mitigated.

11

5 Performance Modeling of Tasks

5.1 Approach

Performance modeling for a task builds a profile of the peak input tuple rate
supported by the task, and its corresponding CPU and memory usage, using a
single resource slot. It does this by performing a constrained parameter sweep of
the number of threads and different inputs rates as a series of micro-benchmark
trials. Algorithm [I] gives the pseudo-code for build such a performance model.
For a given task ¢, we initialize the number of threads 7 and the input rate w
to 1, and iteratively increase the number of threads (lines , and for each
thread count, the input rate (lines [8H{15]). The steps at which the thread count
and rates are increased, A, and A, can either be fixed, or be a function of
the iteration or the prior performance. This determines the granularity of the
model — while a finer granularity of thread and rate increments offers better
modeling accuracy, it requires more experiments, and costs time and money for

VMs.

Algorithm 1 Performance Modeling of a Task

1: procedure PERFMODEL(TASK t)

2: P + new Map() Holds the mapping from threads to input rate, resource
usage

3: w=0 Slope of the last window of peak stable rates

4: T=1 Number of threads being tested

5: Increase the number of threads until Tmaaz, or slope of peak supported rate re-
mains stable or drops

6: while 7 < Tmaz and Ay, < A do

7 For each value of T, increase input rate in steps of A, until trial is unstable, or
mazx rate Wmasx reached

8: for w<+ 1 to wmaz step A, do

9: Run DSPS with task. Check if rate is supported. Get CPU and memory%.

10: (c,m,isStable) < RUNTASKTRIAL(t, T, w)

11: if isStable = false then If rate not supported, break

12: break

13: end if

14: P.put(t — (w,c,m)) Add or update mapping from T to peak rate,
resource usage

15: end for

16: Aw <SLOPE(P,w) Get slope of the last window of peak stable rates before
w

17: T T+AF Increment thread count

18: end while
19: return P
20: end procedure

For each combination of 7 and w, we run a trial of the task (line that
creates a sequential 3-task DAG, with one source task that generates input
tuples at the rate w, the task ¢ in the middle with task threads set to 7, and a sink
task to collect statistics. The threads for task ¢ are assigned one independent
resource slot on one VM while on a second VM, the source and sink tasks run on
one or more separate resource slots so that they are not resource-constrained.

12

This trial is run for a certain interval of time that goes past the “warm-up”
period where initial scheduling and caching effects are overcome, and the DAG
executes in a uniform manner. For e.g., in our experiments, the warm up period
was seen to be < 5 mins. During the trial, a profiler collects statistics on the
CPU and memory usage for that resource slot, and the source and sink collect
the latency times for the tuples. Running the source and sink tasks on the same
VM avoids clock skews. At the end of the trial, these statistics are summarized
and returned to the algorithm.

In running these experiments, two key termination conditions need to be
determined for automated execution and generation of the model. For a given
number of threads, we need to decide when we should stop increasing the input
rate given to the task. This is done by checking the latency times for the tuples
processed in the trial. Under stable conditions, the latency time for tuples are
tightly bound and fall within a narrow margin beyond the warm-up period.
However, if the task is resource constrained, then it will be unable to keep up
its processing rate with the input rate causing queuing of input tuples. As the
queue size keeps increasing, there will be an exponential growth in the end-to-
end latency for successive tuples.

To decide if the task execution is stable, we calculate the slope Ay, of the
tuple latency values for the trial period past the warm-up and check if it is
constant or less than a small positive value, A7*%*. If A, < A7***, this execution
configuration is stable, and if not, it is unstable. Once we reach an input rate
that is not stable, we stop the trials for these number of threads for the task,
and move to a higher number of threads (line . In our experiments, using
a tight slope value of A7'** ~ 0.001 was possible, and none of the experiments
ran for over 12 mins.

The second termination condition decides when to stop increasing the num-
ber of threads. Here, the expectation is that as the thread count increases there
is an improvement, if any, in the peak rate supported until a point at which it
either stabilizes or starts dropping. We maintain the peak rate supported for
previous thread counts in the P hashmap object. As before, we take the slope
Aw of the rates for the trailing window of thread counts to determine if the slope
remains flat at 0 or turns negative. Once the rate drops or remains flat for the
window, we do not expect to see an improvement in performance by increasing
the thread count, and terminate the experiments. In our experiments, we set
AT~ —0.001.

5.2 Performance Modeling Setup

We identify 5 representative tasks, shown in Table |1} to profile and build per-
formance models for. They also empirically motivate the need for fine-grained
control over thread and resource allocation. These tasks have been chosen to
be diverse, and representative of the categories of tasks often used in DSPS
domains such as social media analytics, IoT and ETL pipelines [28}|64].

e Parse XML. It parses an array of in-memory XML strings for every in-

13

coming tuple. Parsing is often required for initial tasks in the DAG that
receive text or binary encoded messages from external sources, and need
to translate them to a form used by downstream tasks in the DAG. XML
was used here due its popular usage though other formats like JSON or
Google Protocol Buffers are possible as well. Our XML parsing imple-
mentation uses the Java SAX parser that allows serial single-pass parsing
even over large messages at a fast rate. Parsing XML is CPU intensive
and requires high memory due to numerous string operations (Table [1)).

Pi Computation. This task numerically evaluates the approximate value
of 7 using an infinite series proposed by Viete [36]. Rather than running
it non-deterministically till convergence, we evaluate the series for a fixed
number of iterations, which we set to 15. This is a CPU intensive floating-
point task, and is analogous to tasks that may perform statistical and
predictive analytics, or computational modeling.

Batch File Write. It is an accumulator task that resembles both win-
dow operations like aggregation or join, and disk I/O intensive tasks like
archiving data. The implementation buffers a 100 byte string in-memory
for every incoming tuple for a window size of 10,000 tuples, and then
writes the batched strings to a local file on a HDD attached to VM. The
number of disk operations per second is proportional to the input message
rate.

Azure Blob Download. Streaming applications may download metadata
annotations, accumulated time-series data, or trained models from Cloud
storage services to use in their execution. Microsoft Azure Blob service
stores unstructured data as files in the Cloud. This task downloads a
file with a given name from the Azure Blob storage service using the
native Azure Java SDK. In our implementation, a 2 M B file is downloaded
and stored in-memory for each input tuple, making it both memory and
network intensive.

Azure Table Query. Some streaming applications require to access historic
data stored in databases, say, for aggregation and comparison. Microsoft
Azure Table service is a NoSQL columnar database in the Cloud. Our task
implementation queries a table containing 2,000,000 records, each with
20 columns and =~ 200 byte record size [1§], using the native Azure Java
SDK. The query looks up a single record by passing a randomly generated
record ID corresponding to a unique row key in the table.

As can be seen, these tasks cover a wide range of operations. These span

from text parsing and floating-point operations to both local and Cloud-based
file and table operations. There is also diversity in these tasks with respect to
the resources they consume as shown in Table [I} be they memory, CPU, Disk
or Network, and some rely on external services with their own Service Level
Agreement (SLA).

14

Table 1: Characteristics of representative tasks for which performance modeling
is performed

Task CPU Memory N/W Disk I/O External
bound? bound? bound? bound? Service?

Parse XML v v

Pi Computation v

Batched File Write v

Azure Blob Down- v v v

load

Azure Table Query v v

We wrap each of these tasks as a bolt in the Apache Storm DSPS. We
compose a topology DAG consisting of 1 spout that generates synthetic tuples
with 1 field (message-id) at a given constant rate determined by that trial,
1 bolt with the task that is being modeled, and 1 sink bolt that accepts the
response from the predecessor. For each input tuple, The task bolt emits one
output tuple after executing its application logic, keeping the selectivity o =1 :
1.

Apache StormEIis deployed on a set of standard D type VMs running Ubuntu
14.04 in Microsoft Azure’s Infrastructure as a Service (IaaS) Cloud, in the South-
east Asia data-center. Each VM has 2°~! resource slots, where i corresponds to
the VM size, D; € {D1, Do, D3, D4}. Each slot has a one Intel Xeon E5-2673 v3
core @2.40 GHz processor with hyper-threading disabled EL 3.5G' B memory and
50GB SSD, for e.g., the D3 VM has 4 cores, 14 GiB RAM and 200 GiB SSD.
A separate 50GB HDD is present for I/O tasks like Batch File Write.

For the performance modeling, we deploy the spout and the sink on separate
slots of a single D2 size VM, and the task bolt being evaluated on one D1
size VM. The spout and sink have 2 threads each to ensure they are not the
bottleneck, while the number of threads for the task bolt and the input rate to
this topology is determined by Algorithm [I} Each trial is run for 12 mins, to
be conservative. We measure the CPU% and memory% using the Linux top
command, and record the peak stable rate supported for each of these task bolts
for specific numbers of threads. The experiments are run multiple times, and
the representative measurements are reported.

5.3 Performance Modeling Results

The goal of these experiments is to collect the performance model data used by
the scheduling algorithms. However, we also supplement it with some observa-
tions on the task behavior. Fig.[3|shows the performance model plots for the 5
tasks we evaluate on a single resource slot. On the primary Y Axis (left), the

L Apache Storm v1.0.1, released on 6 May 2016
2 Azure A-SERIES, D-SERIES and G-SERIES: Consistent Performances and Size Change
Considerations, https://goo.gl/0X6yT2

15

https://goo.gl/0X6yT2

—=—Rate Extrapolated Rate —=—Rate Extrapolated Rate
—+—CPU% Mem?% —+—CPU% Mem®%

‘\\1\,\- *

E g

Incremental CPUIMemory%
Incremental CPUMemory%

Peak Input Rate (tuples/sec)

0
0 2 4 8 8 10 12 14 16

o 1 2 3 4 5 6 7 8
Number of Task threads
Number of Task threads

(a) Parse XML (b) Pi Computation
—8—Rate --eeeen Extrapolated Rate
——CPU% Mem%

—=—Rate Extrapolated Rate —=—Rate Extrapolated Rate
—e—CPU% Mem% —e—CPU% Mem?% 50 . 100

Incremental CPU/Memory%

Incremental CPUIMemory %
Incremental CPUMemory%
Peak Input Rate (tuples/sec)

0 0 0
0 5 10 15 20 25 30 35 0 10 20 30 40 50 60 70 80 90 100

Number of Task threads Number of Task threads Number of Task threads

(c) Batched File Write (d) Azure Blob Download (e) Azure Table Query

Figure 3: Peak input rate supported (primary Y Axis) on one resource slot for
the specified task bolt, with an increase in the number of threads (X Axis). The
% incremental CPU and Memory usage for these numbers of threads at the
peak rate is shown in the secondary Y Axis.

plots show the peak stable rate supported (tuples/sec), and the corresponding
CPU and memory utilization on the secondary Y Axis (right), as the number of
threads for the task increases along the X Axis. The CPU% and memory% are
given as a fraction of the utilization above the base load on the machine when
no application topology is running, but when the OS and the stream processing
platform are running. So a 0% CPU or memory usage in the plots indicate
that only the base load is present, and a 100% indicates that the full available
resource of the slot is used.

We see from Fig. [3a]that the Parse XML task is able to support a peak input
rate of about 310 tuples/sec with just 1 thread, and increasing the number
of threads actually reduces the input throughput supported, down to about
255 tuples/sec with 7 threads. The CPU usage even for 1 thread is high at
about 85%. Here, we surmise that since a single thread is able to utilize the
CPU efficiently, increasing the threads causes additional overhead for context-
switching and the performance deteriorates linearly. We also see that the Parse
XML task uses about 35% of memory due to Java’s memory allocation for string
manipulation, which is higher than for other tasks.

Pi Computation is a floating-point heavy task and uses nearly 90% CPU at
the peak rate of about 105 tuples/sec using a single thread. However, unlike
XML Parse where the peak rate linearly reduces with an increase in threads, we

16

see Pi manage to modestly increase the peak rate with 2 threads, to about
110 tuples/sec, with a similar increase in CPU usage. However, beyond 2
threads, the performance drops and remains flat with the CPU usage being
flat as well. This behavior was consistent across multiple trials, and is likely
due to the Intel Haswell architecture’s execution pipeline characteristics El The
memory usage is minimal at between 2 — 10%.

Batch File Write is an aggregation task that is disk I/O bound. It supports
a high peak rate of about 60,000 tuples/sec with 1 thread, which translates
to writing 6 files/sec, each 1 M B in size. This peak rate decreases with an
increase in the number of threads, but is non-linear. There is a sharp drop in the
peak rate to 45,000 tuples/sec with 3 threads, but this increases and stabilizes
at 50,000 tuples/sec with more threads. The initial drop can be attributed to
the disk I/O contention, hence the drop in CPU usage as well, but beyond that
the thread contention may dominate, causing an increase in CPU usage even as
the supported rate is stable

The Azure Blob and Azure Table tasks rely on an external Cloud service to
support their execution. As such, the throughput of these tasks are dependent
on the SLA offered for these services by the Cloud provider, in addition to the
local resource constraints of the slot. We see the benefit of having multiple
threads clearly in these cases. The peak rate supported by both increases grad-
ually until a threshold, beyond which the peak rate flattens and drops. Their
CPU and memory utilization follow a similar trend as well. Blob’s rate grows
from about 2 tuples/sec with 1 thread to 30 tuple/sec with 50 threads, while
Table’s increases from 3 tuples/sec to 60 tuples/sec when scaling from 1 to
60 threads. This closely correlates with the SLA of the Blob service which is
60 M B/sec, and matches with the 30 files/sec of ~ 2 M B each that are cu-
mulatively downloaded El Both these tasks are also network intensive as they
download data from the Cloud services.

Summary. The first three tasks show a flat or decreasing peak rate per-
formance with some deviations, but with differing CPU and memory resource
behavior. The last two exhibit a bell-curve in their peak rates as the threads
increase. These highlight the distinct characteristics of specific tasks (and even
specific CPU architectures and Cloud services they wrap) that necessitate such
performance models to support scheduling. Simple rules of thumbs assuming
static of linear scaling are inadequate, and we see later, can cause performance
degradation and resource wastage.

6 Resource Allocation

Resource allocation determines the number of resource slots p to be allocated
for a DAG G : (V,E) for a given input rate), along with the number of threads
g;j required for each task t; € V. In doing so, the allocation algorithm needs to

3Intel’s Haswell Architecture Analyzed: Building a New PC and a New Intel, Anand Lal
Shimpi, Oct 2012, http://www.anandtech.com/show/6355/intels-haswell-architecture/8
4https://docs.microsoft.com/en-us/azure/storage/storage-scalability-targets

17

http://www.anandtech.com/show/6355/intels-haswell-architecture/8
https://docs.microsoft.com/en-us/azure/storage/storage-scalability-targets

be aware of the input rate to each task that will inform it of the resource needs
and data parallelism for that task. We can define this input rate w; for a task
t; based on the input rate to the DAG, the connectivity of the DAG, and the
selectivity of each input stream to a task, using a recurrence relation as follows:

Q if /Heij cE
Yi=y X (wi X O‘ij) otherwise
e;; €E

In other words, if task t; is a source task without any incoming edges, its
input rate is implicitly the rate to the DAG, Q. Otherwise, the input rate to
a downstream task is the sum of the tuple rates on the out edges of the tasks
t; immediately preceding it. This output rate is itself given by the product
of those predecessor tasks’ input rates w; and their selectivities o;; on the out
edge connecting them to task ;. This recurrence relationship can be calculated
in the topological order of the DAG starting from the source task(s). Let the
procedure GETRATE(G, t;,(2) evaluate this for a given task ¢;.

Next, the allocation algorithm will need to determine the threads and re-
sources needed by each task ¢; to meet its input rate w;. Algorithms can use
prior knowledge on resource usage estimates for the task, which may be limited
to the CPU% and memory% for a single thread of the task, irrespective of the
input rate, or approaches like ours that use a more detailed performance model.

Say the following functions are available as a result of the performance mod-
eling algorithm, Alg. I} or some other means. C;(¢) and M;(q) respectively
return the incremental CPU% and memory% used by task ¢; when running on
a single resource slot with ¢ threads. Further, let Z;(g) provide the peak input
rate that is supported by the task t; on a single slot for ¢ number of threads.
Lastly, let 7;(w) be the inverse function of Z;(¢) such that it gives the smallest
number of threads ¢ adequate to satisfy the given input rate w on a single re-
source slot. Since the w values returned by Z;(q) for integer values of ¢ would be
at coarse increments, 7; may offer an over-estimate depending on the granularity
of A, and A, used in Alg.

Next, we describe two allocation algorithms — a baseline which uses simple
estimates of resource usage for tasks, and another we propose that leverages the
more detailed performance model available for the tasks in the DAG.

6.1 Linear Scaling Allocation (LSA)

The Linear Scaling Allocation (LSA) approach uses a simplifying assumption
that the behavior of a single thread of a task will linearly scale to additional
threads of the task. This scaling assumption is made both for the input rate
supported by the thread, and the CPU% and memory% for the thread. For e.g.,
the R-Storm [48] scheduler assumes this additive behavior of resource needs for
a single task thread as more threads are added, though it leaves the selection of
the number of threads to the user. Other DSPS schedulers make this assumption
as well [55] [9)].

18

Algorithm 2 Linear Scaling Allocation (LSA)
1: procedure ALLOCATELSA(G : (T,E), Q)

2: for t; € T do For each task in DAG...
3: w; = GETRATE(G, t;, Q) Returns input rate on task t; if DAG input rate
is Q
4: w; = Z; (1) Peak rate supported by task t; with 1 thread
5 7 <0 Allocated thread count for task t;
6: ¢+ 0 Estimated CPU% for T; threads of task t;
7 m; < 0 Estimated Memory% for T; threads of task t;
8: while w; > w; do
9 One additional thread added for t;, with increase in cumulative rate supported
and resources used
10: o |
11: Wi — Wi — W;
12: Cij < C; +Cl(1)
13: mg <— m; + ./\/ll(l)
14: end while
15: if w; > 0 then Trailing input rate below w;. Add thread but scale down
the resources needed.
16: oy |
[
17: Ci<—Ci+Ci(1) X —
Wi
ws
18: ml<—ml+./\/l1(1) X E
19: wi 0 '
20: end if
21: end for
22: return (7;,c;,m;) Vt; € T Return number of threads, CPU% and Memory%

allocated to each task
23: end procedure

Algorithm 2 shows the behavior of such a linear allocation strategy. It first
estimates the input rate w; incident at each task ¢; using the GETRATE proce-
dure discussed before. It then uses information on the peak rate w; sustained
by a single thread of a task ¢; running in one resource slot, and its CPU% and
memory% at that rate, C;(1) and M;(1), as a baseline. Using this, it tries to
incrementally add more threads until the input rate required, in multiples of the
peak rate, is satisfied (line [8). When the remaining input rate to be satisfied
is below the peak rate (line [15), we linearly scale down the CPU and memory
utilization, proportional to the required rate relative to the peak rate.

The result of this LSA algorithm is the thread counts 7; per task ¢; € T. In
addition, the sum of the CPU and memory allocation for all tasks, rounded up
to the nearest integer, gives the nominal lower bound on the resource slots p
required to support this DAG at the given rate.

6.2 Model-based Allocation (MBA)

While the LSA approach is simple and appears intuitive, it suffers from two
key problems that make it unsuitable for may tasks. First, the assumption that
the input rate supported will linearly increase with the number of threads is not

19

valid. Based on our observations of the performance models from Fig. 3] we can
see that for some tasks like Azure Blob and Table, there is a loose correlation
between the number of threads and the input rate supported. But even this
evens out at a certain number of threads. Others like Parse XML, Pi Com-
putation and Batch File Write see their peak input rate supported remain flat
or decrease as the threads increase on a single resource slot due to contention.
One could expect a linear behavior if the threads run on different slots or VMs,
but that would increase the slots required (and the corresponding cost).

Second, the assumption that the resource usage linearly scales with the num-
ber of threads, relative to the resources for 1 thread, is incorrect. This again
follows from the performance models, and in fact, the behavior of CPU and
memory usage themselves vary for a task. For e.g., in Fig. for Pi, the CPU
usage remains flat while the memory usage increases even as the rate supported
decreases with the number of threads. For Azure Table query in Fig. [3¢] the
CPU and memory increase with the threads but with very different slopes.

Our Model-based Allocation algorithm, shown in Algorithm [3], avoids such
inaccurate assumptions and instead uses the performance models measured for
the tasks to drive its thread and resource allocation. Here, the intuition is
to select the sweet spot of the number of threads such that the peak rate w;
among all number of threads (for which the model is available) is the highest
for task ¢; (lines . This ensures that we maximize the input rate that we
can support from a single resource slot for that task. At the same time, when
we allocate these many threads to saturate a slot, we also disregard the actual
CPU% and memory% and instead treat the whole slot as being allocated (100%
usage). This is because that particular task cannot make use of additional CPU
or memory resources available in that slot due to a resource contention, and we
do not wish additional threads on this slot to exacerbate this problem.

When the residual input rate to be supported for a task falls below this
maximum peak rate (line [I6), we instead select smallest number of threads
that are adequate to support this rate, and use the corresponding CPU and
memory%. If a single thread is adequate (line , just as for LSA, we scale
down the resources needed proportion to the residual input rate relative to the
peak rate using 1 thread.

The result of running MBA is also a list of thread counts 7; per task in the
DAG, which will be used by the mapping algorithm. It also gives the CPU%
and memory% per task which, as before, helps estimate the slots for the DAG:

p=mas (| X e)].[Sm])

t; €T t, €T

7 Resource Mapping

As we saw, the allocation algorithm returns two pieces of information 7;, the
number of threads per task, and p, the number of resource slots allocated. The
goal of resource mapping is to assign these task threads, ¥ € R where |r¥| = 7;,
to specific resource slots to meet the input rate requirements for the DAG.

20

Algorithm 3 Model Based Allocation (MBA)
1: procedure ALLOCATEMBA(G : (T,E)), Q)

2: for t; € T do For each task in DAG...

3: w; = GETRATE(G, t;, Q) Returns input rate on task t; if DAG input rate
is Q

4: W; = max; {IZ- (])} Maximum of peak rates supported by task t; with any
number of threads

5 7= T (&) Number of threads needed to support rate w; for task t;

6: 7 <0 Allocated thread count for task t;

7 ¢+ 0 Estimated CPU% for T; threads of task t;

8: m; < 0 Estimated Memory% for T; threads of task t;

9: while w; > &; do

10: Add threads for t; corresponding to maximum peak rate. Increase cumulative
rate and resources.

11: T Ti + 75

12: Wi < W; — U:J\l

13: ci < ¢; +1.00 Assign 100% of resource slot to these threads

14: m; < m; + 1.00

15: end while

16: if w; > 0 then Trailing input rate below W; to be processed for t;

17: 7] = T (wi)

18: Ty < Ti + Ti/

19: if 7/ > 1 then

20: C; < C; +Cz(7'zl)

21: m,<—m1+/\/ll(7'z')

22: else One thread adequate. Scale down resources needed

Wi
23: ¢ ¢ +Ci(1) x Q)
24: m; < m; + M;(1) X Y
1 k2 1 IZ(]_)

25: end if

26: w; <0

27: end if

28: end for

29: return (7, c¢;,m;) Vt; € T Return number of threads, CPU% and Memory%

allocated to each task
30: end procedure

7.1 Resource Acquisition

The first step is to identify and acquire adequate number and sizes of VMs that
have the estimated number of slots. This is straight-forward. Most IaaS Cloud
providers offer on-demand VM sizes with slots that are in powers of 2, and
with pricing that is a multiple of the number of slots. For e.g., the Microsoft
Azure D-series VMs in the Southeast Asia data center have 1,2,3 and 4 cores
for sizes D1-D4, with 3.5 GB RAM per core, and costing $0.098, $0.196, $0.392
and $0.784/hour, respectively ﬂ Amazon AWS and Google Compute Engine
TaaS Cloud services have similar VM sizes and pricing as well. So the total price
for a given slot-count p does not change based on the mix of VM sizes used, and
one can use a simple packing algorithm to select VMs v; € V with sizes such

5Microsoft Azure Linux Virtual Machines Pricing, https://azure.microsoft.com/en-in/
pricing/details/virtual-machines/linux/

21

https://azure.microsoft.com/en-in/pricing/details/virtual-machines/linux/
https://azure.microsoft.com/en-in/pricing/details/virtual-machines/linux/

DAG with Thread Allocation for Tasks using Model Default Storm Mapping (DSM)

olA .o! § S 5 §
Blue: 5 B', 0% G B’, 0% G* BS, Y2, Y°
S
B .B® G..G°
Yellow: 3

B?, 0%, G B, Y', G* 0L y?

YLy p =6slots

V‘ \'.: VI;

R-Storm Mapping (RSM) Slot Aware Mapping (SAM)

B!, 0%, Y \& B'..B* YLy?

, ¥
G',B? 0* 0°Y%,6%0* B® 0'..0% G|__G§
v

G, B BY,
553
2

3 1 3

Virtual Machines & Slots

Figure 4: Mapping of a sample DAG to VMs and resource slots using DSM,
RSM and SAM

that Zvjevpj = p, where p; is the number of slots per VM v;. At the same
time, having more VMs means higher network transfer latency, and end-to-end
latency for the DAG will increase. Hence, minimizing the number of distinct
VMs is useful as well rather than having many small VMs.

One approach that we take to balance pricing with communication latency
is to acquire as many VMs ‘n’ with the largest number of slots as possible, say,
D, which cumulatively have (n x p) < p. Then, for the remaining slots, we assign
to the smallest possible VM whose number of slots is > (p — n x p). This may
include some additional slots than required, but is bound by (2P~ — 1) if slots
per VM are in powers of 2, as is common. Other approaches are possible as
well, based on the trade-off between network latency costs and slot pricing. For
the v; € V set of VMs thus acquired, let sé— € S be the set of slots in these VMs,

where |s§| =pj; and p; < p, such that (Zujevpj) > p.

The second step, that we emphasize in this article, is to map the threads
for each task to one of the slots we have acquired, and determine the mapping
function M : R — S. Next, we discuss two mapping approaches available in
literature, that we term DSM and RSM, as comparison and propose our novel
mapping SAM as the third. While DSM is not “resource aware”, i.e., it does
not consider the resources required by each thread in performing the mapping,
RSM and our SAM are resource aware, and use the output from the performance
models developed earlier.

7.2 Default Storm Mapping (DSM)

DSM is the default mapping algorithm used in Apache Storm, and uses a simple
round-robin algorithm to assign the threads to slots. All threads are assumed
to have a similar resource requirement, and all slots are assumed to have homo-
geneous capacity. Under such an assumption, this naive algorithm will balance
the load of the number of threads across all slots. Algorithm [describes its

22

Algorithm 4 Default Storm Mapping (DSM)

1: procedure MAPDSM(R, S) Map each task thread in set R to a slot in set S

2: M < new Map()

3: S’[] < SETTOLIST(S) Returns the slots in the set as a list, in some arbitrary
order

4: n<1

5: for each r € R do Round Robin mapping of threads to slots

6: m < n mod |S]|

7: s = S'|m]

8: M.put(r — s) Assign n*? task thread to m*" resource slot

9: n<n+1

10: end for
11: return M
12: end procedure

behavior. The task threads and resource slots available are provided as a set to
the algorithm. The slots are considered as a list in some random order. The al-
gorithm iterates through the set of threads in arbitrary order. For each thread,
it picks the next slot in the list and repeats this in a round-robin fashion for
each pending thread (line [5)), wrapping around the slot list if its end is reached.

Fig. [4] illustrates the different mapping algorithms for a sample DAG with
four tasks, Blue, Orange, Yellow and Green, and say 5,4,3 and 5 threads
allocated to them, respectively, by some allocation algorithm. Let the resources
estimated for them be 6 slots that are acquired across three VMs with 2 slots
each.

Given this, the DSM algorithm first gets the list of threads and slots in some
random order. For this example, let them be ordered as, B', ..., B>, O', ... Y1, ..,
G',...,G, and s},s?,s3,...,s3. Firstly, the five blue threads are distributed
across the first 5 slots, s} — s3 sequentially. Then, the distribution of the orange
threads resumes with the sixth slot s3, and wraps around to the first slot to end
at si. The three yellow threads map to slots s3 — s, and lastly, the five green
threads wrap around and go to the first 5 slots. As we see, DSM distributes the
threads evenly across all the acquired slots irrespective of the resources available
on them or required by the threads, with only the trailing slots having fewer
threads. This can also help distribute threads of the same task to different slots
to avoid them contending for the same type of resources. However, this is opti-
mistic and, as we have seen from the performance models, the resource usages
sharply vary not just across tasks but also based on the number of threads of a
task present in a slot.

7.3 R-Storm Mapping (RSM)

The R-Storm Mapping (RSM) algorithm [48] was proposed earlier as a resource-
aware scheduling approach to address the deficiencies of the default Storm sched-
uler. It has subsequently been included as an alternative scheduler for Apache
Storm, as of v1.0.1. RSM offers three features that improve upon DSM. First, in
contrast to DSM that balances the thread count across all available slots, RSM

23

instead maximizes the resource usage in a slot and thus minimizes the number of
slots required for the threads of the DAG. For this, it makes use of the resource
usage for single threads that we collect from the performance model (¢;, m;),
and the resource capacities of slots and VMs. A second side-effect of this is
that it prevents slots from being over-allocated, which can cause an unstable
DAG mapping at runtime. For e.g., DSM could place threads in a slot such that
their total CPU% or memory% is greater than 100%. This is avoided by RSM.
Lastly, RSM is aware of the network topology of the VMs, and it places the
threads on slots such that the communication latency between adjacent tasks
in the dataflow graph is reduced.

At the heart of the RSM algorithm is a distance function based on the
available and required resources, and a network latency measure. This Euclidean
distance between a given task thread r¥ € R and a VM v; € V is defined as:

d=wy x (Mj —m;)* +we x (C; — &)? +wy x NWDIST(9, v;)

where ¢; = C;(1) and m; = M;(1) are the incremental CPU% and memory%
required by a single thread of the task ¢; on one slot, and C; and M are the
CPU% and memory% not yet mapped across all slots of VM v;. A network
latency multiplier, from a reference VM, v, to the candidate VM wv;, is also
defined using the NWDIST function. This reference VM is the last VM on
which a task thread was mapped, and the network latency multiplier is set to
0.0 if the candidate VM is the reference VM, 0.5 if the VM is in the same rack
as the reference, and 1.0 if on a different rack. Lastly, the weights we, wys and
wpy are coefficients to tune this distance function as appropriated.

Given this, the RSM Algorithm, given in Alg. [5] works as follows. It ini-
tializes the CPU% and memory% resources available for the candidate VMs to
100% of their number of slots, the memory available per slot to 100%, and the
number of threads to be mapped per task (lines . The initial reference VM
is set to some VM, say v; € V. Then, it performs one sweep where one thread
of each task, in topological order rooted at the source task(s), is mapped to
a slot (lines [§}f24). This mapping in the order of BFS traversal increases the
chance that threads of adjacent tasks in the DAG are placed on the same VM
to reduce network latency.

During the sweep, we first check if the task has any pending threads to map,
and if so, we test the VMs in the ascending order of their distance function,
returned by function GETSORTEDVMS, to see if they have adequate resources
for that task thread (lines . There are two checks that are performed:
one to see if the VM has adequate CPU% available for the thread, and second
if any slot in that VM has enough memory% to accommodate that thread.
This differentiated check is because in Storm, the memory allocation per slot is
tightly bound, while the CPU% available across slots is assumed to be usable
by any thread placed in that VM.

If no available slot meets the resource needs of a thread, then RSM fails. As
we show later, this is not uncommon depending on the allocation algorithm. If
a valid slot, s;, is found, the task thread is mapped to this slot, and the thread

24

Algorithm 5 R-Storm Mapping (RSM)
1: procedure MAPRSM(G : (T,E), R, V, 5)

2: C; = pj x 1.00, M; = p; x 1.00, Yv; € V Initialize available CPU%,
Memory% for all VMs
3: MJZ = 1.00, Vsé- es Initialize available Memory% for all slots of VMs
4: T = |rf| ‘v’ri-c €ER Initialize number of task threads to map for task t;
5: M <+ new Map() Initialize mapping function
6: V4 v Initialise the reference VM to the first VM in set
7 while Ztieﬂ‘ 7; > 0 do Repeat while tasks have unmapped threads
8: for each t; € TASKSTOPOORDER(G) do
9: if 7; # 0 then
10: Get list of VMs sorted by distance, based on their available resources for
task t;
11: V'[] - GETSORTEDVMS(V, t;, D)
12: s; “— o
13: for v§ eV'[] &s; == @ do
14: s;- “— sé— €esS|C; > & Mjl > m; Does VM have CPU%,
some slot in it have mem% for 1 thread?
15: end for
16: if s;. == @ then return “Error: Insufficient resources for task t;”
17: end if
18: i1k eR| AM(rF) Pick one unmapped thread for task t;
19: M.put(r] — s;) Assign the thread to the selected slot with available
resources
20: Cj — (Cj — Ei), Mj — (Mj — ’rﬁi), MJ, — (M]/ — ’ﬁ’Ll) Reduce
available resources by 1 thread
21: Ti — 1 — 1
22: D+ v} Update reference node to be the current mapped VM
23: end if
24: end for
25: end while
26: return M

27: end procedure

count and resource availability updated (lines . The reference VM is also
set to the current VM having that slot. Then the next threads in the sweep are
mapped, and this process repeated till all task threads are mapped.

Fig. [shows the RSM algorithm applied to the sample DAG. Mapping of
the threads to slots is done in BFS ordering of tasks, B,0,Y and G. For each
thread of the task in this order, a slot on the VM with the minimum distance
and available resources is chosen. Say in the first sweep, the threads B, O' and
Y! are mapped to the same slot si, and then next thread G! be mapped to
new slot s7 due to resource constraint on si for this thread. The new slot s7 is
picked on same VM as it has the least distance among all VMs. In the second
sweep, thread B2?,0%,Y? and G? are mapped to slots s? and si, and likewise
for the third sweep. In the fourth sweep, there are no threads for the Yellow
task pending. Also, we see that thread B* is not mapped to slot s2 due to lack
of resources, instead going to si. However, a slot s3 does have resources for a
subsequent thread O*, and the distance to s3 is lesser than s3. Thus RSM tries
to perform a network-aware best fit packing to minimize the number of slots.

25

7.4 Slot Aware Mapping (SAM)

While the RSM algorithm is resource aware, it linearly extrapolates the resource
usage for multiple threads of a task in a VM or slot based on the behavior of
a single thread. As we saw earlier in the § [5] this assumption does not hold,
and as we show later in § [8] it causes inefficient mapping, non-deterministic
performance and needs over-allocation of resources. Our Slot Aware Mapping
(SAM) addresses these deficiencies by fully utilizing the performance model
and the strategy used by our model based allocation. They key idea is to
map a bundle of threads of the same task exclusively to a single slot such that
the stream throughput is maximized for that task on that slot based on its
performance model, and the interference from threads of other tasks on that
slot is reduced.

In Algorithm [6] as for RSM, we initialize the resources for the VMs and
slots. Further, in addition to the total slots p required by the DAG, we also
have the quantity of CPU% and memory% required by all the threads of each
task available as ¢; and m;. Recollect that the MBA algorithm returns this
information based on the performance model. As for RSM, we iterate through
the tasks in topological order (line . However, rather than map one thread of
each task, we first check if the number of pending threads forms a full bundle,
which we define to be as &;, the number of threads at the peak rate supported
by the task on a single slot (line . If so, we select an empty slot in the last
mapped VM, or if none exist, in its neighboring one (line E[) We @; unmapped
threads for this task and assign this whole bundle of threads to this exclusive
slot, i.e., 100% of its CPU and memory (line . The resource needs of the
task are reduced concomitantly, and this slot is fully mapped.

It is possible that the task has a partial bundle of unmapped threads, having
fewer than &; ones (line [I7). In this case, we find the best-fit slot as the one
whose sum of available CPU% and memory% is the smallest, while being ade-
quate for the CPU% and memory% required for this partial bundle (line [L§).
We assign this partial bundle of threads to this slot and reduce the resources
available for this slot by ¢; and m;. At this point, all threads of this task will
be assigned (line 24)).

Notice that slots co-locate threads from different tasks only for the last par-
tial bundle of each task. So we have an upper bound on the number of slots with
mixed thread types as [V|. Since the performance models offers information on
the behavior of the same thread type on a slot, this limits the interference be-
tween threads of different types, that is not captured by the model. In practice,
as we show in the experiments, most slots have threads of a single task type.
As a result, SAM has a more predictable resource usage and behavior for the
mapped DAG.

It is possible that even in SAM, the resources allocated may not be adequate
for the mapping (lines , though the chances of this happening is smaller
than for RSM since SAM uses a strategy similar to the allocation algorithm,
MBA. This is a side-effect of the binning, when resource available in partly
used slots are not adequate to fully fit a partial bundle. Also, while we do not

26

explicitly consider network distance unlike in RSM, the mapping of tasks in
topological order combined with picking a bundle at a time achieves a degree of
network proximity between threads of adjacent tasks in the DAG.

Algorithm 6 Slot Aware Mapping (SAM)

1: procedure MAPSAM(G : (T,E), R, V, S) c; and m; are CPU% and memory%
required by task t; from MBA
2: T = |rf| ‘v’ri-c €ER Initialize number of task threads to map for task t;
3: 7= T (&) Number of threads needed to support peak rate &; for task t; on
1 slot
4: CJZ- = 1.00, MJl = 1.00, Vsé- es Initialize available CPU%, Memory% for
all slots of VMs
5: M <+ new Map() Initialize mapping function
6: while Ztie”ﬂ‘ 7; > 0 do Repeat while tasks have unmapped threads
T for each t; € TASKSTOPOORDER(G) do
8: if 7, > 7; then At least 1 full bundle of threads remains for task t;
9: s < GETNEXTFULLSLOT(V) Returns next full slot in current or
next VM
10: if 59 == @ then return “Error: Insufficient resources for task t;”
11: end if
12:]« {r¥} e R| AM(FE), |rl|l=5 Pick unmapped full bundle
of 7; threads for task t;
13: M.putAll(ri[] — s}) Assign threads in bundle to the selected slot
14: T < Ti —Ti, ¢ < c;—1.00, m; < m; — 1.00 Reduce resource
needs for bundle
15: C; <+ 0.00, MJ’ <+~ 0.00 Used all resources in slot
16: else
17: if 7, > 0 then Partial bundle of threads remains for task t;
18: s;. + GETBESTFITSLOT(V, ¢i, m;) Find smallest slot with suf-
ficient resources for partial bundle
19: if s; == @ then return “Error: Insufficient resources for task t;”
20: end if
21: ri[] <« {r¥} e R| AM(E) Pick all remaining threads for
task t;
22: M.putAll(ri[] — s)
23: C; — CJ’. - ¢, MJ’ — M]’ —my; Reduce resources in slot by
partial bundle
24: 7 < 0, ¢; < 0.00, m; < 0.00 All done for this task
25: end if
26: end if
27: end for

28: end while
29: return M
30: end procedure

Fig. [4] shows the SAM algorithm applied to the sample DAG. Say a full
bundle of the four tasks, B, O,Y and G, have 2, 3, 3 and 4 threads, respectively.
We iteratively consider each task in the BFS order of the DAG, similar to RSM,
and attempt to assign a full bundle from their remaining threads to an exclusive
slot. For e.g., in the first sweep, the full bundles B'..B?, O'..03,Y!'..Y3 G'.G*
are mapped to the four slots, si, 5%, s3, s2, respectively, occupying 2 VMs. In the

next sweep, we still have a full bundle for the Blue task, B3..B%, that takes an

27

independent slot s}, but the Orange and Green tasks have only partial bundle
consisting of one thread each. O* is mapped to a new slot s as there are no
partial slots, and G® is mapped to the same slot as it is the best-fit partial slot.
All threads of the Yellow task are already mapped. In the last sweep, the only
remaining partial bundle for the Blue task, B® is mapped to the partial slot s3
as the best fit.

8 Results and Analysis

8.1 Implementation

We validate our proposed allocation and mapping techniques, MBA and SAM,
on the popular Apache Storm DSPS, open-sourced by Twitter. Streaming ap-
plications in Storm, also called topologies, are composed in Java as a DAG, and
the resource allocation — number of threads per task (parallelism hint) and the
resource slots for the topology (workers) — is provided by the user as part of
the application. Here, we implement our MBA algorithm within a script that
takes the DAG and the performance model for the tasks as input, and returns
the number of threads and slots required. We manually embed this information
in the application, though this can be automated in future. We take a similar
approach and implement the LSA algorithm as well, which is used as a baseline.

A Storm cluster has multiple hosts or VMs, one of which is the master
and the rest are compute VMs having one or more resource slots. When the
application is submitted to the Storm cluster, the master VM runs the Nimbus
scheduling service responsible for mapping the threads of the application’s tasks
to worker slots. A supervisor service on each compute VM receives the mapping
from Nimbus and assigns threads of the DAG for execution. While it is possible
to run multiple topologies concurrently in a cluster, our goal is to run each
application on an exclusive on-demand Storm cluster with the exact number of
required VMs and slots, determined based on the allocation algorithm. For e.g.,
one scenario is to acquire a Storm cluster on-demand from Azure’s HDInsight
Platform as a Service (PaaS) El

Nimbus natively implements the default round-robin scheduler (DSM) and
recently, the scheduling algorithm of R-Storm (RSM) using the DefaultScheduler
and ResourceAwareScheduler classes, respectively. We implement our SAM al-
gorithm as a custom scheduler in Nimbus, SlotAwareScheduler. It implements
the schedule method of the IScheduler interface which is periodically invoked
by the Nimbus service with the pending list of threads to be scheduled. When
a thread for the DAG first arrives for mapping, the SAM scheduler generates
and caches a mapping for all the threads in the given DAG to slots available in
the cluster. The host IDs and slot IDs available in the cluster is retrieved using
methods in Storm’s Cluster class. Then, the algorithm groups the threads by
their slot ID as Storm requires all thread for a slot to be mapped at once. The

6Apache Storm for HDInsight, |https://azure.microsoft.com/en-in/services/
hdinsight/apache-storm/

28

https://azure.microsoft.com/en-in/services/hdinsight/apache-storm/
https://azure.microsoft.com/en-in/services/hdinsight/apache-storm/

actual mapping is enacted by calling the assign method of the Cluster class
that takes the slot ID and the list of threads mapped to it.

8.2 Experiment Setup

The setup for validating and comparing the allocation and mapping algorithms
are similar to the one used for performance modeling, §[5.2} In summary, Apache
Storm v1.0.1 is deployed on Microsoft Azure D-series VMs in the Southeast Asia
data center. The type and number of VMs depend on the experiment, but each
slot of this VM series has one core of Intel Xeon E5-2673 v3 CPU @2.4 GHz,
3.5 GB RAM and a 50 GB SSD. We use three VM sizes in our experiments to
keep the costs manageable — D3 having 231 = 4 slots, D2 with 2 slots, and D1
with 1 slot.

We perform two sets of experiments. In the first, we evaluate the resource
benefits of our Model Based Allocation (MBA) combined with our Slot Aware
Mapping (SAM), in comparison with the baseline Linear Storm Allocation
(LSA) with the resource-aware R-Storm Mapping (RSM), for a given input
rate (§ . For the allocated number of resource slots, we acquire the largest
size VMs (D3) first to meet the needs, and finally pick a D2 or a D1 VM for the
remaining slot(s), as discussed in §

In the second set of experiments (§ , we verify the predictability of the
performance of our MBA and SAM approaches, relative to the existing tech-
niques. Here, we perform five experiments, using a combination of 2 allocation
and 3 mapping algorithms. We measure the highest stable input rate supported
by the DAGs using these algorithms on a fixed number of five D3 VMs, and
compare the observed rate and resource usage against the planned rate, and
with the rate and usage estimated by our model.

In all experiments, a separate D3 VM is used as the master node on which the
Nimbus scheduler and other shared services run. For the RSM implementation,
we need to explicitly specify the memory available to a slot and to the VM,
which we set to 3.5 GB and the number of slots times 3.5 GB, respectively. For
RSM and SAM, we set the available CPU% per slot to 100% and for the VM
to be the number of VM slots times 100%.

8.3 Streaming Applications

In our experiments, we use two types of streaming dataflows — micro-DAGs
and application DAGs. The micro-DAGs capture common dataflow patterns
that are found as sub-graphs in larger applications, and are commonly used in
literature, including by R-Storm [2}/48]/72]. These include Linear, Diamond and
Star micro-DAGs that respectively capture a sequential flow, a fan-out and fan-
in, and a hub-and-spoke model (Fig. [5)). While the linear DAG has a uniform
input and output tuple rate for all tasks, the diamond exploits task parallelism,
and the star doubles the input and output rates for the hub task. All three
micro-DAGs have 5 tasks, in addition to the source and sink tasks, and we
randomly assign the five different tasks that were modeled in § [f] to these five

29

Linear Diamond

- -EN -

100 tuples/sec

100 tuples/sec 400 tuples/sec 400 tuples/sec

Source
Star 100 tuples/sec 200 tuples/sec

200 tuples/sec 400 tuples/sec

Sink

200 tuples/sec 100 tuples/sec

Figure 5: Micro DAG used in experiments. Tasks are referred to by their initials:
B-Azure Blob Download, F-Batched File Write , P-Pi Computation, T-Azure
Table Query, X-XMLparse. Since selectivity is 1:1, the input and output rates
are the same, and indicated above the task

100 upies
Lo0uplessec 100wplessec 100 tuplsfsec sovunesec T
—4’-" = —
Al 200 wples/sec 200tuples/sec 100 tuples/sec 100 tuples/sec 100 tuples/sec 100 tuples/sec 100 tuples/sec fsec
- _>n [Soure M5 K7 | —4-___.n—J
X
100 tuples/sec

200 tuples/sec. 200 tuples/sec _
L OO——E=

(a) Finance DAG (b) Traffic DAG

100 tuples/sec 100 tuples/sec 100 tuples/sec 100 tuples/sec

100 tuples/sec

100 tuples/sec pl 300 tuples/sec 400 tuples/sec

B KN EE

100 tuples/sec 100 tuples/sec 100 tuples/sec 100 tuples/se

s

100 tuples/sec mmuiles/s

(¢) Smart grid DAG

Figure 6: Application DAGs [Notation: B-Azure Blob Download, F-Batched
FileWrite , P-Pi Computation, T-Azure Table Query, X-XMLparse]

DAG vertices, as labeled in Fig. |5l The figure also shows the input rates to each
task based on a sample input rate of 100 tuples/sec to the DAG. All tasks have
a selectivity of o =1 : 1.

The application DAGs have a structure based on three real-world stream-
ing applications that analyze traffic patterns from GPS sensor streams (Traf-
fic) [7], compute the bargain index value from real-time stock trading prices
(Finance) |27], and perform data pre-processing and predictive analytics over
electricity meter and weather data streams from Smart Power Grids (Grid) [57].
In the absence of access to the actual application logic, we reuse and iteratively
assign the five tasks we have modeled earlier to random vertices in these appli-
cation DAGs and use a task selectivity of o =1 : 1.

These three applications DAGs have between 7 — 15 logic tasks, and exhibit
different composition patterns. Their overall DAG selectivity ranges from 1 : 2
to 1: 4. We also see that the five diverse tasks we have chosen as proxies for these

30

domain tasks are representative of the native tasks, as described in literature.
For e.g., a task of the Traffic application does parsing of input streams, similar to
our XML Parse task, and another archives data for historical analysis, similar to
the Batch File Write task. The moving average price and bargain index value
tasks in the Finance DAG are floating-point intensive like the Pi task. The
Grid DAG performs parsing and database operations, similar to XML Parse
and Azure Table, as well as time-series analytics that tend to be floating-point
oriented. As a result, these are reasonable equivalents of real-world applications
for evaluating resource scheduling algorithms.

Along with the application logic tasks, we have separate source and sink
tasks for passing the input stream and logging the output stream for all DAGs.
The source task generates synthetic tuples with a single opaque field of 10 bytes
at a given constant rate. The sink task logs the output tuples and helps calculate
the latency and other empirical statistics. Both these tasks are mapped by the
scheduler just like the application tasks. Given the light-weight nature of these
tasks, we empirically observe that a single thread for each of these tasks is
adequate, with a static allocation of 10% CPU and 15% memory for the source
and 10% CPU and 20% memory for the sink.

Each experiment is run for 15 minutes and over multiple runs, and we report
the representative values seen for the entire experiment.

8.4 Resource Benefits of Allocation and Mapping

We compare our combination of MBA allocation and SAM mapping, henceforth
called MBA+SAM, against LSA allocation with RSM mapping, referred to as
LSA+RSM. The metric of success here is the ability to minimize the overall
resources allocated for a stable execution of the DAG at a given fixed input rate.
We consider both micro-DAGs and applications DAGs. First the allocation
algorithm determines the minimum number of resource slots required and then
the mapping algorithm is used to schedule the threads on slots for the DAG.
There may be cases where the resource-aware mapping algorithm is unable to
find a valid schedule for the resource allocation, in which case, we incrementally
increase the number of slots by 1 until the mapping is successful. We report
and discuss this as well. We then execute the DAG and check if it is able to
support the expected input rate or not.

8.4.1 Micro DAG

The experiments are run for the micro-DAGs with input rates of 50,100 and
200 tuples/sec. This allows us to study the changes in resource allocation and
usage as the input rate changes. These specific rates are chosen to offer diversity
while keeping within reasonable VM costs. For e.g., each run costs ~ US$1.00,
and many such runs are required during the course of these experiments.

Fig. [7] shows the number of resource slots allocated by the LSA and MBA
algorithms (yellow bars, left Y axis) for the three different input rates to the
three micro-DAGs. Further, it shows the additional slots beyond this allocation

31

" Allocation Mapping ® Actual Throughput Allocation 7 Mapping ® Actual Throughput Allocation 1 Mapping ® Actual Throughput

35 175 35 : 175 35
0 150 30 150 5 30
g2 Z E AP 2 TR -
0 — w? |E w £
S = £ |§s =—— s

o — s 0§ 10 . » 50§
1 < +
S 3 x5 < 5 2 0 2 s
) ; ,

0 0 o
LSASRSM MBAVSAM] (SASRSM MBASSAM] LSAGRSM MBAISAM [isavmsm snosam | sasmm wassaw] sassna massam| SAVRSM MBALSA ISR sorm MBAISAM SRR stom MBAISAM

| w

0 50 | a0
Expected Throughput

50

100 100
Expected Throughput Expected Throughput

(a) Linear DAG (b) Diamond DAG (c) Star DAG

Figure 7: Micro DAGs: Required Slots on primary, Actual throughput on sec-
ondary Y-axis

(green bars, left Y axis) that is required by the resource-aware RSM and SAM
mapping algorithms to ensure that threads in a slot are not under-provisioned.
The DAGs are run with the input rate they the schedule was planned for (i.e.,
50, 100 or 200 tuples/sec), and if they were not stable, we incrementally reduced
the rate by 5 tuples/sec until the execution is stable. The stable input rate,
less than or equal to the planned schedule, is shown on the right Y axis (blue
circle).

We can observe that LSA allocates more slots than MBA in all cases. In fact,
the resources allocated by LSA is nearly twice as that by MBA requiring, say,
7, 13 and 28 slots respectively for the Linear DAG for the rates of 50,100 and
200 tuples/sec compared to MBA that correspondingly allocates only 4, 7 and
15 slots. This is observed for the other two micro-DAGs as well. The primary
reason for this resource over-allocation in LSA is due to a linear extrapolation of
resources with the number of threads. In fact, while MBA allocates ~ 3x more
threads than LSA for the DAGs, the resource allocation for these threads by LSA
is much higher. For e.g., LSA allocates 337% CPU and 1196% memory for its 50
threads of the Blob Download task for the Linear DAG at 100 tuples/sec while
MBA allocates only 315% of CPU and 326% of memory for its corresponding
170 Blob Download threads. This alone translates to a difference between ~ 12
slots allocated by LSA (based on memory%) and = 3 slots by MBA.

Despite the higher allocation by LSA, we see that RSM is often unable to
complete the mapping without requiring additional slots. This happens for 6
of the 9 combination of DAG and rates, for e.g., requiring 1 more slot for the
Diamond DAG with 50 tuples/sec (Fig. green bar) and 3 more for the
Linear DAG at 200 tuples/sec (Fig. . In contrast, our SAM mapping uses 1
additional slot, only in the case of Linear DAG at 50 tuples/sec (Fig. and
none other, despite being allocated fewer resources by MBA compared to LSA.

Both RSM and SAM are resource aware, which means they will fail if they
are unable to pack threads on to allocated slots such that their expected resource
usage by all threads on a slot is within the slot’s capacity. RSM more often fails
to find a valid bin-packing than SAM. This is because of its distribution of a
task’s threads across many slots, based on the distance function, which causes
resource fragmentation. We see memory fragmentation to be more common,

32

usg

causing vacant holes in slots that are each inadequate to map a thread but are
cumulatively are sufficient.

For e.g., the Linear DAG at 200 tuples/sec is assigned 25 slots by LSA.
During mapping by RSM, the 100 Blob Download threads dominate the memory
and occupy 4 X 23.9% of memory in each of the 25 slots, leaving only 8%
memory on each slot. This is inadequate to fit threads for other tasks like
XML Parse which requires 22.98% of memory for one of its thread, though over
25 x 8% = 200% of fragmented memory is available across slots.

This happens much less frequently in SAM due to its preference for packing
a slot at a time with a full bundle of threads in a single slot without any frag-
mentation. Fragmenting can only happen for the last partial thread bundle for
each task. A full bundle also takes less resources according to the performance
models than linear extrapolation from a single thread. For e.g., MBA packs 50
threads of the same Blob Download task from above in a single slot.

We see that in several cases, the DAGs are unable to support the rate that
the schedule was planned for. This reduction in rate is up to 30% for LSA+RSM
and up to 10% for MBA+SAM. For e.g., in the Diamond DAG in Fig. the
observed/expected rates in tuples/sec for LSA+RSM is 35/50 and 90/100 while
it is 90/100 and 190/200 for MBA+SAM. The reasons vary between the two
approaches.

In LSA+RSM, LSA allocates threads assuming a linear scaling of the rate
with the threads but this holds only if each thread is running on an exclu-
sive slot. As RSM packs multiple threads to a slot, the rate supported by
these threads is often lower than estimated. For e.g., for the Diamond DAG in
Fig. [7b] LSA allocates 18 threads for the Azure Table task for an input rate of
50 tuples/sec based on a single thread supporting 3 tuples/sec. However, RSM
distributes 2 threads each on 4 slots and the remaining 9 threads on 1 slot.
As per our performance model for the Azure Table task, 2 threads on a slot
support 5 tuples/sec and 9 threads support 10 tuples/sec, to give a total of
4 x541x 10 = 30 tuples/sec. This is close to the observed 35 tuples/sec
supported by this DAG for LSA+RSM.

While SAM’s model-based mapping of thread bundles mitigates this issue,
it does suffer from an imbalance in message routing by Storm to slots. Storm’s
shuffle grouping from an upstream task sends an equal number of tuples to each
downstream thread. However, the individual threads may not have the same
per-capita capacity to process that many tuples on its assigned slot, as seen
from the performance models. This can cause a mismatch between tuples that
arrive and those that can be processed on slots.

For e.g., the Diamond DAG at 100 tuples/sec (Fig. [Tbf), MBA allocates
160 threads for the Azure Table task and SAM maps two full bundles of 60 threads
each to 2 slots, and the remaining 40 threads on 1 partial slot. As per the model,
SAM expects the threads in a full slot to support 40 tuples/sec and the par-
tial slot to support 20 tuples/sec. However, due to Storm’s shuffle grouping,
the full slots receive 37 tuples/sec while the partial slot receives 26 tuples/sec.
This problem does not affect RSM since it distributes threads across many slots
achieving a degree of balance across slots. As future work, it is worth considering

33

Allocation ' Mapping_# Actual Throughput

LsAvSM

Expected Throughput

Moasu | isauRs WA

(a) Finance DAG

50

Expected Throughput

tion - Mapping # Actual Throughput

100

(b) Traffic DAG

ughput

Allocation > Mapping _# Actual Throughput

(¢) Smart Grid DAG

Figure 8: Application DAGs: Required Slots on primary, Actual throughput on
secondary Y-axis

a slot-aware routing in Storm as well ﬂ

Also Figs. [7] show that as expected, the resource requirements increase pro-
portionally with the input rate for both LSA+RSM and MBA+SAM. Some minor
variations exist due to rounding up of partial slots to whole, or marginal dif-
ferences in fragmentation. For e.g., LSA+RSM assigns the Star DAG [6.23] =
7 slots and [12.47] = 13 slots for 50 and 100 tuples/sec rates, respectively.

Lastly, we also observe that all three micro-DAGs acquire about the same
number of slots, for a given rate, using LSA+RSM, e.g., using about 7 slots
for 50 tuples/sec for all three micro-DAGs. These three DAGs have the same
5 tasks though their composition pattern is different. However, for LSA, the
memory% of the Blob Download task threads dominates the resource require-
ments for each DAG, and the input rate to this task is the same as the DAG
input rate in all cases. As a result, for a given rate, the threads and resource
needs for this task is the same for all three DAGs at 25 threads taking 598%
memory for 50 tuples/sec, while the memory% for the entire Linear DAG
is marginally higher at 623% for this rate and its total CPU% need is only
242%. Hence, the resource needs for all other tasks, which are more CPU
heavy, falls within the available 7 slots that is dominated by this Blob task, i.e.,
ZAII task threads CPU% < ZBlob task threads Memory%.

In case of MBA+4SAM, there is diversity both in CPU and memory uti-
lization, and the number of threads for each task for the different DAGs. So
the resource requirements are not overwhelmed by a single task. For e.g., the
same Blob task at 50 tuples/sec requires only 128% memory according to MBA
while the CPU% required for the entire Linear DAG is 323%, which becomes
the deciding factor for slot allocation.

8.4.2 Application DAG

We perform similar experiments to analyze the resource benefits for more com-
plex applications DAGs, limited to input rates of 50 and 100 tuples/sec that
require as much as 65 slots for LSA+RSM costing ~ US$2 per run. Figs.
plot the results. Several of our observations here mimic the behavior of the
scheduling approaches for the micro-DAGs, but at a larger scale. We also see

"https://issues.apache.org/jira/browse/STORM-162

34

https://issues.apache.org/jira/browse/STORM-162

more diversity across the DAGs, with Finance taking 3 — 5x fewer resources
than Grid for the same data rates.

As before for micro-DAGs, we see that MBA+SAM consistently uses 33 —
50% fewer slots than LSA+RSM for all the application DAGs and rates. This is
seen both for the allocation and in the incremental slots acquired by the mapping
during packing. In fact, RSM acquires additional slots for all application DAGs
allocated by LSA while MBA needs this only for Grid DAG at 50 tuples/sec.
The resource benefit for MBA+SAM relative to LSA4+RSM is the least for the
Finance DAG in Fig. using 3 fewer slots for 50 tuples/sec rate and 5 fewer
for 100 tuples/sec rate. This is because total CPU% tends to dominate for
MBA+SAM, and this is higher for Finance compared to the other two due to
a higher input rate that arrives at the compute-intensive Pi task. On the other
hand, LSA4+RSM consumes over twice the slots for Traffic and Grid DAGs due
having one less Pi task and one more Blob task, which is memory intensive.
This is due to random mapping of our candidate tasks to application tasks.
As we saw earlier for the micro-DAG, this memory intensive task tends to be
sub-optimal when bin-packing by RSM, and that causes a the resource needs to
grow for the Traffic and Grid DAGs.

That said, while the DAGs are complex for these application workloads,
the fraction of additional slots required by mapping relative to allocation does
not grow much higher. In fact, the additional slots required by RSM is small in
absolute numbers, at 1—3 slots, as the bin-packing efficiency improves with more
slots and threads. This shows that the punitive impact of RSM’s additional slot
requirements is mitigated for larger application DAGs.

As for the micro-DAGs, several of the application DAGs are also unable
to support the planned input rate. The impact worsens for LSA+RSM with
its stable observed rate up to 40% below expected, while this impact is much
smaller for MBA+SAM with only up to 5% lower rate observed despite the
complex DAG structure.

The reasoning for SAM is the same as for the micro-DAGs, where the shuffle
grouping unformly distributes the output tuple rate across all threads. For RSM,
an additional factor comes into play for these larger DAGs. In practice, this
algorithm allows threads in a slot to access all cores in a VM while restraining
their memory use to only that slot’s limit. This means threads in a single
slot of a D3 VM can consume up to 400% CPU, as long as their memory% is
< 100%. This causes more CPU bound threads like Pi and XMLParse to be
mapped to a single slot, consuming ~ 300% of a VM’s CPU in the Grid DAG for
50 tuples/sec. However, each slot has just a single worker thread responsible
for tuple buffering and routing between threads and across workers. Having
many CPU intensive task threads on the same slot stresses this worker thread
and cause a slowdown, as seen for the Grid DAG which has an observe/expected
tuple rates of 30/50 E”ﬂ This consistently happens across all VMs where threads
with high CPU% are over-allocated to a single slot. In MBA, the mapping of

8http://stackoverflow.com/questions/20371073/how-to-tune-the-parallelism-hint-in-storm
9http://mail-archives.apache.org/mod_mbox/storm-user/201606 .mbox/browser

35

http://stackoverflow.com/questions/20371073/how-to-tune-the-parallelism-hint-in-storm
http://mail-archives.apache.org/mod_mbox/storm-user/201606.mbox/browser

full bundles to a slot rather than over-allocating CPU% means that we have a
better estimate of the collective behaviour of threads on each worker slot and
these side-effects are avoided.

As before, we see that the resource requirements increase proportionally as
the rate doubles from 50 tuples/sec to 100 tuples/sec in most cases. However,
unlike the micro-DAGs where all the dataflows for a given input rate consumed
about the same number of slots using LSA+RSM, this is not the case for the
application DAGs. Here, the number of tasks of each type vary and their com-
plex compositions cause much higher diversity in input rates to these tasks. For
e.g., the same Table task in Traffic, Finance and Smart Grid DAGs in Figs [0]
have input rates of 100,200 and 300 tuples/sec. In fact, this complexity means
that the resource usage does not just proportionally increase with the number
of tasks either. This argues the need for non-trivial resource- and DAG-aware
scheduling strategies for streaming applications, such as RSM, MBA and SAM.

8.5 Accuracy of Models

In the previous experiments, we showed that our MBA+SAM scheduling ap-
proach offered lower resource costs than the LSA+RSM scheduler while meet-
ing the planned input rate more often. In these experiments, we show that
our model based scheduling approach offers predictable resource utilization, and
consequently reliable performance that can be generalized to other DAGs and
data rates. Further, we also show that it is possible to independently use our
performance-model technique to accurately predict the resource usage and sup-
ported rates for other scheduling algorithms as well.

Rather than determine the allocation for a given application and rate, we
instead design these experiments with a fixed number of VMs and slots — five
D3 VMs with 20 total slots, for the three micro-DAGs. We then examine the
highest input rate that our performance model estimates will be supported by
the given schedule, and what is actually supported on enacting the schedules.

The planned input rate is the peak rate for which the DAG’s resource re-
quirements can be fulfilled with the fixed number of five D3 VMs, according
to the allocation+mapping algorithm pair that we consider. For this, we in-
dependently run the allocation and mapping algorithm plans outside Storm,
adding incremental input rates of 10 tuples/sec until the resources required is
just within or equal to 20 slots according to the respective algorithm pairs. Sub-
sequently, for the threads and their slot mappings determined by the scheduling
algorithm, we use our performance models to find the predicted rate supported
by that DAG. We also use our model to predict the CPU% and memory% for
the slots as well, and report the cumulative value for each of the 5 VMs. The
actual input rate for the DAG is obtained empirically by increasing the rate in
steps of 10 tuples/sec as long as the execution remains stable. The actual CPU
and memory utilization corresponding to the peak rate supported is reported
for each VM as well. Besides comparing the predicted and actual input rates,
we also compare the predicted and actual VM resource usage in the analysis
since there is a causal effect of the latter on the former.

36

+ MBA+SAM

® LSA+DSM ® MBA+DSM + MBA+SAM ® LSA+DSM ® MBA+DSM + MBA+SAM ® LSA+DSM ® MBA+DSM
» LSA+RSM » MBA+RSM » LSA+RSM » MBA+RSM » LSA+RSM » MBA+RSM
35 351 350,
300 [R® =057 300l[R = 0.69 300l B> = 0.55
Kl . K} Kl
8 g g
2 250) 5 250 2250 . -
g g g
2 2 - 2
§200 5200 » E200
o . s s .
3 150| »® % 150} ® % 150| .
& . g s 2 v
3 K 3 :
£ 100 £ 100 £ 100
£ £ £
2 2 2
= 50 = 50 = 50
0 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350 00 50 100 150 200 250 300 350

Actual Rate (msg per sec)

(a) Linear DAG

Actual Rate (msg per sec)

(b) Diamond DAG

Actual Rate (msg per sec)

(c) Star DAG

Figure 9: Scatter plot of Planned and Actual input rates supported for the
Micro-DAGs on 5 VMs using the scheduling strategy pairs

® MBA+DSM
» MBA+RSM

® LSA+DSM
» LSA+RSM

+ MBA+SAM

® LSA+DSM
» LSA+RSM

® MBA+DSM
» MBA+RSM

+ MBA+SAM

® MBA+DSM
» MBA+RSM

® LSA+DSM + MBA+SAM

> LSA+RSM

w
a
S

w
G

R* =0.95

w
o
S

a
=)

2 oR NN
o o
S o

.

o
S
v

Predicted Rate (msg per sec)

o
=)

>

w
o
S

BoR NN
o o o u
S o o o

Predicted Rate (msg per sec)

u
=1

w
o
S

BooR NN
o o u
S S o

o
S

Predicted Rate (msg per sec)

o
=)

R’ =08

ok

0 50 100 150 200 250 300 350

0

50 100 150 200 250 300 350

SF,

Actual Rate (msg per sec)

(a) Linear DAG

50 100 150 200 250 300 350

Actual Rate (msg per sec)

(b) Diamond DAG

Actual Rate (msg per sec)

(c) Star DAG

Figure 10: Scatter plot of Predicted and Actual input rates supported for the
Micro-DAGs on 5 VMs using the scheduling strategy pairs

We further show that our model based allocation algorithm can be used
independently with other mapping algorithms, besides SAM. To this end, we
evaluate and compare the baseline combination of LSA allocation with DSM and
RSM mappings available in Storm (LSA+DSM and LSA+RSM), against our
MBA allocation with DSM, RSM and SAM mapping algorithms (MBA+DSM,
MBA+RSM and MBA+SAM).

8.5.1 Prediction and Comparison of Input Rates

Fig. [9] shows a scatter plot comparing the Actual rate (X axis) and the Planned
rate by the scheduling algorithm (Y axis) for the Linear, Diamond and Star
micro-DAGs, while Fig. |10| does the same for the Actual rate (X axis) and our
Model Predicted rate (Y axis). We see that our performance model is able to
accurately predict the input rate for these DAGs with a high correlation coeffi-
cient of R% ranging from 0.71 — 0.95. This is actually significantly better than
the Planned rate by the schedulers for the three DAGs whose R? values fall
between 0.55 — 0.69. Thus, our performance model is able to accurately predict

37

the input rates for the schedules from all 5 algorithm pairs, better than even
the scheduling algorithms themselves.

There are also algorithm-specific behavior of the prediction models, which we
analyze. The input rate predictions are more accurate for MBA+SAM (Fig.
blue ‘4’), falling close to the 1:1 line in all cases, since it uses the model both for
allocation and for mapping. However, it is not 100% accurate due to Storm’s
shuffle grouping that routes a different rate to downstream threads than ex-
pected.

We also see our model underestimate the supported rate for LSA in Fig. [I0]
by a small fraction. This happens due to the granularity of the model. With
LSA, several slots have 3 table threads mapped to them. As we do not have
exact performance models with 3 threads, we interpolate between the available
thread values which estimates the rate supported at 6 tuples/sec while the
observed rate is closer to 9 tuples/sec. In such cases, the predictions can be
made more accurate if the performance modeling is done at a finer granularity
of thread counts (A;) in Algo.

The algorithms also show distinctions in the actual rates that they support
the same quanta of resources for a DAG. When using MBA with DSM, the actual
rate is often much smaller than the planned rate and, to a lesser extent, than the
predicted rate as well. For e.g., the Linear DAG’s planned rate is 280 tuples/sec,
predicted is 200 tuples/sec and actual is 180 tuple/sec. Since DSM does a
round-robin mapping of threads without regard to the model, it is unable to
leverage the full potential of the allocation. In the case of the Linear DAG, the
allocation estimates the planned performance for, say, the Blob Download task
with 470 threads based on it being distributed in bundles of 50 threads each
on 9 slots but DSM assigns them uniformly with ~ 23 threads per slot. Hence,
using MBA with DSM is not advisable, compared to RSM or SAM mapping
approaches.

However, compared to LSA, MBA offers a higher predicted and actual input
rate irrespective of the mapping, offering improvements of 20 — 175%. We
observe from the plots that the cluster of points for MBA (in blue) is consistently
at a higher rate than the LSA cluster (in red) despite both being allocated the
same fixed number of resources. As discussed before, LSA allocates fewer data-
parallel threads than MBA due to its linear-scaling assumption, and they are
unable to fully exploit the available resources. This is consistent with the lower
CPU% and memory% for LSA observed in Figs. |11] and For e.g., the Azure
Table task in the Linear DAG is assigned only 54 threads by LSA, with a planned
rate of 160 tuples/sec whereas MBA assigns it 420 threads with a planned rate
of 280 tuples/sec.

Interestingly, when using MBA, RSM is able to offer a higher actual input
rate compared to SAM in two of the three DAGs, Linear and Star (Fig. [10)),
even as its planned rate is lower than SAM. For e.g., we see that RSM’s dis-
tance measure is able find the sweet spot for distributing the 470 threads of Blob
Download for the Linear DAG across 15 slots with 25 — 30 threads each and 3
slots with under 10 threads each, to offer a predicted rate of 315 tuples/sec and
actual rate of 330 tuples/sec. SAM on the other hand favors predictable perfor-

38

® LSA+DSM @ MBA+DSM + MBA+SAM ® LSA+DSM ® MBA+DSM + MBA+SAM|
» LSA+RSM B MBA+RSM > LSA+RSM » MBA+RSM

» LSA+RSM B MBA+RSM

® LSA+DSM ® MBA+DSM + MBA+SAM

v 400

40 — 40 >

R =095 R =081 e R =09 e
520 , nr s =081 i agE =) S
B 2 S B cae
) > 2 o e 2
G 240 a. S 240 e 5 240 e
el)‘> kel »,l el ,P
8 > g 8 >
S 160 S 160 < 160 .
@ . g o v @ « ¥
e S 8o B e
o s A
0 80 160 240 320 400 0 80 160 240 320 400 0 80 160 240 320
Actual CPU % Actual CPU % Actual CPU %
(a) Linear DAG (b) Diamond DAG (c) Star DAG

Figure 11: Scatter plot of Predicted and Actual CPU% per VM for the Micro-
DAGs on 5 VMs using the 5 scheduling strategy pairs

mance within exclusive slots and bundles 50 threads each on 9 slots and the rest
in a partial slot to give a predicted and actual rate close to 280 tuples/sec. This
highlights the trade-off that SAM makes in favor of a predictable model-driven
performance, while sacrificing some of performance benefits relative to RSM.

8.5.2 Prediction and Comparison of CPU and Memory Utilization

Figs. [11] and show the Actual (X axis) and Predicted (Y axis) CPU% and
memory% values for the three DAGs. Each scatter plot has a data point for each
of the 5 VMs and for every scheduling algorithm pair. It is immediately clear
from Figs. that our performance model is able to accurately predict the CPU%
for each VM for these DAGs with a high correlation coefficient R? > 0.81.
This consistently holds for all three DAGs, scheduling algorithms, and for CPU
utilization that ranges from 10 — 90%.

While for the Linear DAG, the CPU utilization accuracy is high, there are a
few cases in the Diamond and Star DAGs where our predictions deviate from the
observed for higher values of CPU%. The under-prediction of CPU for Diamond
DAG with MBA+SAM is because the VMs with Pi thread bundles receive a
slightly higher input rate than expected due to Storm’s shuffle grouping that
impacts 4 of the 5 slots, and Pi’s CPU model is sensitive to even small changes
in the rate. For e.g., in Fig. a VM with a predicted CPU use of 80% for
a predicted input rate of 110 tuples/sec ends up having an actual CPU usage
of 88% as it actually gets 116 tuples/sec. This happens for the Star DAG with
Pi and Blob threads we well. As mentioned before, enhancing Storm’s shuffle
grouping to be sensitive to resource allocation for downstream slots will address
this skew while improving the performance as well. At the same time, just from
a modeling perspective, it is also possible to capture the round-robin routing of
Storm’s shuffle grouping in the model to improve the predictability.

For Star DAG in Fig. there is one VM whose predicted CPU% is more
than the actual for both MBA+RSM and MBA+SAM. We find that both these
VMs have 2 threads of the Parse task, each on a separate slot, that are meant

39

® LSA+DSM
> LSA+RSM

® MBA+DSM
> MBA+RSM

+ MBA+SAM

® LSA+DSM
> LSA+RSM

® MBA+DSM
» MBA+RSM

+ MBA+SAM|

® LSA+DSM
> LSA+RSM

® MBA+DSM
> MBA+RSM

—
e

—
o

+ MBA+SAM

140 [R* = 0.55 140 [R? = 0.62 140 R* = 0.72
X120 - 2120 X120 B
£ , & & 109 .
=100 - L R =100 o H =) €y
3 8 S 3 8 . 3 8 e
S 60 e S 60 oL S 60 X
° R} - > © o »
2 40 . £ a0 el £ 40 A2 £
a R a L a L

200 200 200

0 20 40 60 80 100 120 140 160 0 20 40 60 80 100 120 140 160 0 20 40 60 80 100 120 140 160

Actual MEM %
(a) Linear DAG

Actual MEM %
(b) Diamond DAG

Actual MEM %
(c) Star DAG

Figure 12: Scatter plot of Predicted and Actual Memory% per VM for the
Micro-DAGs on 5 VMs using the 5 scheduling strategy pairs

to support a required input rate of 480 tuples/sec. However, a single thread
of Parse supports 310 tuples/sec. Since these two threads receive less than the
peak rate of input, our model proportionally scales down the expected resource
usage and estimates it at 47% CPU usage. However, the actual turns out to be
32%, causing an overestimate. As we mentioned, there is a balance between the
costs for building fine-grained models and the accuracy of the models, and this
prediction error is an outcome of this trade-off that causes us to interpolate.

For the Diamond DAG in Fig. we see two VMs with expected CPU%
of = 100% for MBA+RSM but the observed values that are much lesser. These
correspond to two Pi threads that the MBA algorithm expects the pair to be
placed on the same slot with 95% combined usage while RSM actually maps
them onto different VMs with 10% fewer usage by each for 1 thread.

The prediction of memory utilization shown in Figs. while not as good as
the CPU% is still valuable at R > 0.55. Unlike the CPU usage that spans the
entire spectrum from 0 — 400% for each VM, the memory usage has a compact
range with a median value of =~ 60%. This indicates that the DAGs are more
compute-bound than memory-bound. Due to this low memory%, even small
variations in predictions has a large penalty on the correlation coefficient.

We do see a few outlying clusters in these memory scatter plots. In the Linear
and Star DAGs, we see that MBA+DSM over-predicts the memory usage. This
is because the round-robin mapping of DSM assigns single threads of XML Parse
to different slots, each of which receive fewer than their peak supported input
rate. As a result, our model proportionally scales down the resources but ends
up with an over-estimate.

On the other hand, we also see cases where we marginally under-predict the
memory usage for these same DAGs for MBA+SAM. Here, the shuffle grouping
that sends a higher rate than expected to some slots with full thread bundles,
and consequently a lower to other downstream threads, causing the resource
usage to be lower than expected.

We also see broader resource usage trends for specific scheduling approaches
that can impact their input rate performance. We see that plans that use LSA

40

9000

8000

7000

6000

5000

4000,

Latency (in millisec.)

3000}

2000

1000 -1 -1 b

xo xo X XQ xo ¥ x(o ¥
¥ ¥ O 3 ¥ ¥ ¥ O ¥ ¥ ¥ O \
K F & & & & & & & @ K F 8 & 9
Linear DAG Diamon d DAG Star DAG

Figure 13: Violin Plot of observed latency per tuple for the Micro-DAGs on 5
VMs using the 5 scheduling strategy pairs

consistently under-utilize resources. The CPU% used is particularly bad for
LSA, with the 5 VMs for LSA-based plans using an average of just 15—35% CPU
each while the MBA-based schedules use an average of 70 — 90% per VM. This
reaffirms our earlier insight that the allocation of the number of data-parallel
threads by LSA is inadequate to utilize the resources available in the given VMs.
Among DSM and RSM, we do see that RSM clearly has a better CPU% when
using LSA though the memory% between DSM and RSM is relatively similar.
The latter is because RSM ends up distributing memory intensive threads across
multiple slots due to constraints on a slot, which has a pattern similar to DSM’s
round-robin approach. This shows the benefits of RSM over DSM, as is also
seen in the input rates supported.

However, RSM has a more variable CPU% and memory% utilization across
VMs irrespective of the allocation. For e.g. in Fig. the Linear DAG has
CPU% that ranges from 10—40 for LSA+RSM and from 55—90 for MBA+RSM.
This is because RSM tries to pack all slots in a VM as long as the cumulative
CPU% for the VM and the memory% per slot is not exhausted. This causes
the CPU% of initially mapped VMs to grow quickly due to the best-fit distance
measure, while the remaining VMs are packed with more memory-heavy tasks.
This causes the skew. The DSM mapping uses a round-robin distribution of
threads to slots and hence has is more tightly grouped. While SAM uses a
best-fit packing similar to RSM, this is limited to the partial thread bundles,
and hence its resource skew across VMs is mitigated.

8.6 Comparison of Latency

Reducing the latency is not an explicit goal for our scheduling algorithms,
though ensuring a stable latency is. However, some applications may require
a low absolute latency value that is a factor in the schedule generator. So we
also report the average latency distribution observed for the different scheduling
algorithm pairs for the three micro-DAGs executed on a static set of 5 VMs.

41

The average latency of the DAG is the average of time difference between
each message consumed at the source tasks and all its causally dependent mes-
sages that are generated at the sink tasks. The latency of a message depends
on the input rate and resources allocated to the task. It includes the network,
queuing and processing time of tuple. The average latency is relevant only for
a DAG with a stable latency and resource configuration.

We have used separate spout and sink tasks for logging each input and
output tuple with a timestamp, and use this to plot the distribution of the
average latency for a DAG. Fig. [I3]shows a Violin Plot for the average latency
for the three micro-DAGs executed on 5 VMs using both LSA and MBA based
allocation with DSM, RSM, MBA mappings, at stable rate. These results are
for the same experiment setup as § [8.5]

We can make a few observations based on these plots. We see that the
Diamond micro-DAG has a consistently lower latency, followed by the Star
DAG and then the Linear DAG. As is evident from the dataflow structure, this
is proportional to the number of tasks on the critical path of the DAG, from
the source to the sink. This is 4 for Diamond, 5 for Star and 7 for Linear.

The median observed latency values typically increase in the order: MBA+DSM
< {LSA+DSM, MBA+RSM} < LSA+RSM < MBA+SAM. However, this has
to be tempered by the input rates that these schedules support for the same
DAG and resource slots. While MBA+DSM has a low latency, it supports the
lowest rate among the three scheduling pairs that use MBA, though all support
a higher rate than the LSA-based algorithm pairs. So this is suitable for low
latency and average throughput. MBA+RSM has the next best latency given
that RSM is network-aware and hence, able to lower the network transfer la-
tency. This is positive given that it is also able to support a high input rate.
The LSA+RSM schedule have the second worst latency and also the worst input
rate, seen earlier. So this algorithm pair is not a good selection. Separately, we
also report that the MBA schedules have a long tail distribution of latency val-
ues, indicating that the threads are running at peak utilization that is sensitive
to small changes.

9 Related Work

9.1 Scheduling for Storm

The popularity of Storm as a DSPS has led to several publications on streaming
DAG scheduling that is customized for Storm. As discussed before, Storm
natively supports the default round-robin scheduler and the R-Storm resource-
aware scheduler. Both of these only participate in the mapping phase and not
in thread or resource allocation. The round-robin scheduler [51]does not take
into account the actual VM resources required for a thread instead distributes
them uniformly on all available VMs.

In R-storm [48], the user is expected to provide the CPU%, memory% and
network bandwidth for each task thread under a stable input message rate, along

42

with the number of threads for each task. It uses its resource-aware distance
function to pack threads to VMs with the goal of achieving a high resource
utilization and minimum network latency costs. As we have shown earlier, this
linear extrapolation is not effective in many cases. Further, R-Storm does not
consider the input rates to the DAG in its model. This means the resource
utilization provided by the user is not scaled based on the actual rate that is
received at a task thread. Our techniques use both a performance model and
interpolation over it to support non-linear behavior and diverse input rates that
make it amenable to efficient scheduling even under dynamic conditions.
However, R-Storm is well suited for collections of dataflows that execute
on large, shared Strom clusters with hundred’s VMs that can be distributed
across many racks in the data center. Here, the network latency between VMs
vary greatly depending on their placement, and this can impact applications
that have a high inter-task communication. Our algorithms do not actively
consider the network latency other than scheduling the threads in BFS order,
like R-Storm, to increase the possibility of collocating neighboring task threads
in the DAG on the same slot. Consequently, our latency values suffer even as
we offer predictable performance. Our target is streaming applications launched
on a PaaS Storm cluster with tens of VMs that have network proximity, and
for this scenario, the absence of network consideration is acceptable. That said,
including network distance is a relatively simple extension to our model.
Others have considered dynamic scheduling for Apache Storm as well, where
the scheduler adapts to changes in input rates at runtime. Latency is often
the objective function they try to minimize while also limiting the resource
usage. [4] proposes an offline and an online scheduler which aim at minimizing
the inter-node traffic by packing threads in decreasing order of communication
cost into the same VM, while taking CPU capacity as constraint based on the
resource usage at runtime. The goal here is on the mapping phase as well with
the number of threads and slots for the tasks assumed to be known a priori.
The offline algorithm just examines the topological structure and does not take
message input rate or resource usage into consideration for scheduling. It just
place the threads of adjacent tasks on same slot and then slots are assigned
to worker nodes in round robin fashion. The online algorithm monitors the
communication patterns and resource usage at run time to decide the mapping.
It tries to reduce the inter-node and inter-slot traffic among the threads. The
online algorithm have two phases, In the first phase threads are partitioned
among the workers assigned to DAG, minimizing the traffic among threads of
distinct workers and balancing the CPU on each worker. In the second phase
these workers are assigned to available slots in the cluster, minimizing the inter-
node traffic. Both these algorithms uses tuning parameters that controls the
balancing of threads assigned per worker. These algorithms also have the effect
of reducing intra-VM communication traffic besides inter-VM messaging.
T-Storm [71] also takes a similar mapping approach, but uses the summa-
tion of incoming and outgoing traffic rates for the tasks in descending order to
decide the packing of threads to a VM. It further seeks to limit the messaging
within a VM by just running one worker on each VM that is responsible for all

43

threads on the VM. The algorithm monitors the load at run time and assigns
the thread to available slot with minimum increamental traffic load. The num-
ber of threads for each task is user defined and their distribution among worker
nodes is controlled by some parameter (consolidation factor), which is obtained
emperically. Also, algorithm does not gurantee that communicating threads will
be mapped to the same node as ordering is done based on total traffic and not
on traffic between threads.

Both these schedulers [4]71] use only CPU% as the packing criteria at run-
time, and this can cause memory overflow for memory intensive tasks or when
the message queue size grows. Their online algorithms also require active moni-
toring of the various tasks and slots at runtime, which can be invasive and entail
management overheads. At the same time, despite their claim of adapting to
runtime conditions, neither scheduler actually acquires new VM resources or
relinquishes them, and instead just redistributes the existing threads on the
captive set of VMs for load balancing and reducing the active slots. Thus, the
input-rate capacity of the dataflow is bounded or the acquired captive resources
can be under-utilized. Further, the use of a single worker per VM in T-Storm
can be a bottleneck for queuing and routing when the total input and output
rate of threads on that VM are high. While we do not directly address dynamic
scheduling, our algorithms can potentially be rerun when the input rate changes
to rebalance the schedule, without the need for fine-grained monitoring. This
can include acquiring and releasing VMs as well since we offer both allocation
and mapping algorithms. We consider both memory and CPU usage in our
model-based approach. A predictable schedule behavior is a stated goal for us
rather than reducing absolute latency through reduced communication.

The P-Scheduler [21] uses the ratio of total CPU usage from all threads to
the VM’s CPU threshold to find the number of VMs required for the DAG at
runtime. The goal here is to dynamically determine the number of VMs required
at runtime based on CPU usage and then map the threads to these VMs such
that the traffic among VMs is minimized. The mapping hierarchically parti-
tions the DAG, with edge-weights representing tuple transfer rate. It first maps
threads to VMs and then re-partitions threads within the VM to slots. This re-
duces the communication costs but the partitioning can cause unbalanced CPU
usage, and the memory usage is not considered at all. While the algorithm does
VM allocation, it does not consider thread allocation that can cause VMs to be
under-utilized. It also requires a centralized global monitoring of the data rates
between threads and CPU% to perform the partitioning and allocation.As men-
tioned before, our scheduling offers both VM and thread allocation in addition
to mapping, consider input rate, CPU% and memory% for the decisions, and
our model does not rely on active runtime monitoring.

There have been few works on resource and thread allocation for Storm.
The DRS [25] is one such scheduler that models the DAG as open queuing
network to find the expected latency of a task for a given number of threads.
Its goal is to limit the expected task latency to within a user-defined threshold
at runtime, while minimizing the total number of threads required and hence
the resources. It monitors the tuple arrival and service rate at every task to find

44

the expected latency using FErlang formula [61]. The approach first finds the
expected number of threads required for the task so that latency bound is met.
This is done by increasing a thread for the task which gives maximum latency
improvement obtained by Erlang formula discussed in paper, but it requires
that an upper bound on total number of threads to be set by user. Also paper
assumes that only a fixed number of threads can run on a VM, independent of
thread type. The number of VMs are identified using total number of threads
and number of threads that can run on a VM, already fixed by user. Mapping
is done by default scheduler only. DRS uses an analytical approach like us,
but based on queuing theory rather than empirical models. They apply it
for runtime application but do not consider mapping of the threads to VM
slots. We consider both allocation and mapping, but do not apply them to a
dynamic scenario yet. Neither approaches require intensive runtime monitoring
of resources and rates. Like us, they consider CPU resources and threads for
allocation and not network, but unlike us, they do not consider memory%. Their
experiments show a mismatch between expected and observed performance from
failing to include network delays in their model while our experiments do not
highlight network communication to be a key contributor, partly because of
the modest rates supported on the DAGs and resources we consider. They also
bound the total number of CPU slots and the number of threads per VM, which
we relax.

9.2 Scheduling for DSPS

While our scheduling algorithms were designed and evaluated in the context of
Storm, it is generalizable to other DSPS as well. There has been a body of work
on scheduling for DSPS, both static and adaptive scheduling on Cloud VMs,
besides those related to Storm.

Borealis [1] an extnesion to Aurora |10] provides parallel processing of streams.
It uses local and neighbor load information for balancing load across the cluster
by moving operators. They also differ from cloud based DSPS as they assume
that only fixed amount resources are available beforehand. Some extensions to
Borealis like [49,/70], does not use intra operator level parallelism and consid-
ers only dynamic mapping of tasks for load balancing. TelegraphCQ [12] uses
adaptive routing using special operators like Eddy and Juggle to optimize query
plans. These special operators decides how to route data to different operators,
reorders input tuples based on their content. It also dynamically decides the op-
timal stream partitioning for parallel processing. These systems allocate queries
to seperate nodes for scaling with the number of queries and are not designed
to run on cloud.

COLA [37] for System S, scalable distributed stream processing system aims
at finding best operator fusion (multiple operators within same process) possible
for reducing inter process stream traffic. The approach first uses list scheduling
(longest processing time) to get operators schedule then it checks for VM ca-
pacity(only CPU) if schedule is unfeasible, uses graph partitioning to split pro-
cessing element to other VMs.Thus COLA also does not take memory intensive

45

operators in to account. Infosphere streams [7] uses component-based program-
ming model. It helps in composing and reconfiguring individual components
to create different applications. The scheduler component [67] finds the best
partitioning of data-flow graph and distributes it across a set of physical nodes.
It uses the computational profiles of the operators, the loads on the nodes for
making its scheduling decisions. Apache S4 [46] follows the actor model and
allocation is decided manually based on distinct keys in the input stream. The
messages are distributed across the VMs based on hash function on all keyed
attribute in input messages. S4 schedules parallel instances of operators but
does not manage their parallelism and state. Since it does not support dynamic
resource management thus unable to handle varying load. IBM System S (3]
run jobs in the form of data-flow graphs. It supports intra-query parallelism
but management is manual. It also supports dynamic application composition
and stream discovery, where multiple applications can directly interact. This
support for sharing of streams across applications is done by annotating the mes-
sages with already declared types in global type system. This enables sharing
of applications written by different developers through streams.

Esc [53] which process streaming data as key-value pairs. Hash functions
are used to balance load by dynamically mapping the keys to the machines
and function itself can be updated at run time. Hash function can also use the
cpu,memory load based on the VM statistics for message distribution. Dynamic
updation of the DAG based on the custom rules from user is also supported for
load balance. A processing element in a DAG can have multiple operators and
can be created at run time as per need. There can be many workers for a
processing element. Since it dynamically adjusts the required computational
resources based on the current load of the system it is good fit for use cases
with varying load, with deployment on cloud.

[39] have used variant called dynamic dataflows that adapts to changing
performance of cloud resources by using alternate processing elements.The logic
uses variable sized bin packing for allocating processing element over the VMs
on cloud. Dynamic rates are managed by allocating resources for alternate
processing elements thus making tradeoff between cost and QoS on cloud.

In [28] have proposed elastic auto-parallelization for balancing the dynamic
load in case of SPL applications. The scaling is based on a control algorithm
that monitors the congestion and throughput at runtime to adjust data paral-
lelism. Each ope rator maintains a local state for every stream partition. An
incremental migration protocol is proposed for maintaining states while scaling,
minimizing the amount of state transfer between hosts.

StreamCloud [30] modifies the parallelism level by splitting queries into
sub queries minimizing the distribution overhead of parallel processing, each of
which have utmost one stateful operator that stores its state in a tuple-bucket,
where the key for a state is a hash on a tuple. At the boundary between sub-
queries, tuples are hashed and routed to specific stateful task instances that
hold tuple-bucket with their hash key. This ensures consistent stateful oper-
ations with data-parallelism. It uses special operators called Load Balancers
placed over outgoing edge of each instance of subcluster, LB does Bucket In-

46

stance Mapping to map buckets with instances of downstream clusters.

ChronosStream [69] hash-partitions computation states into collection of
fine-grained slices and then distributes them to muliple nodes for scaling. Each
slice is a computationally independent unit associated with a subset of input
streams and and can be transparently relocated without affecting the consis-
tency. The elasticity is achieved by migrating the workload to new nodes using
a lightweight transactional migration protocol based on states.

ElasticStream [34] considers a hybrid model for processing streams as it
is impossible to process them on local stream computing environment due to
finite resources. The goal is to minimize the charges for using the cloud while
satisfying the SLA, as a trade-off between the applications latency and charges
uisng linear programming. The approach dynamically adjusts the resources
required with dynamic rates in place of over-provisioning with fixed amount of
resources. The implementation done on System S is able to assign or remove
computational resources dynamically.

Twitter Heron [38] does user defined thread allocation and mapping by Au-
rora scheduler. In the paper [42] proposed an analytical model for resource
allocation and dynamic mapping to meet latency requirement while maximiz-
ing throughput, for processing real time streams on hadoop. Stela [72] uses
effective throughput percentage (ETP) as the metric to decide the task to be
scaled when user requests scaling in/out with given number of machines. The
number of threads required for the tasks and their mapping to slots is not being
discussed in the paper.

9.3 Parallel Scheduling

Our model-based approach is similar to scheduling strategies employed in par-
allel job and thread scheduling for HPC applications.

The Performance Modeling frameworks [5,/59,60] for large HPC systems pre-
dicts application performance from a function of system profiles (e.g., memory
performance, communication performance). These profiles can be analysed to
improve the application performance by understanding the tuning parameters.
Also [5] proposes methods to reduce the time required for performance mod-
elling, like combining the results of several compilation, execution, performance
data analysis cycles into a application signature, so that these steps need not
to be repeated each time a new performance question is asked.

Warwick Performance Prediction (WARPP) [31] simulator is used to con-
struct application performance models for complex parallel scientific codes ex-
ecuting on thousands of processing cores. It utilises coarse-grained compute
and network models to enable the accurate assessment of parallel application
behaviour at large scale. The simulator exposes six types of discrete events
ranging from compute to I/O read,write to generate events representing the
behaviour of a parallel application. [26] models the aplication performance
for future architectures with several millions or billions of cores. It considers
algebraic multigrid (AMG), a popular and highly efficient iterative solver to
discuss the model-based predictions. It uses local computation and communi-

47

cation models as baseline for predicting the performance and its scalability on
future machines. The paper [32] proposes simple analytical model to predict
the execution time of massively parallel programs on GPU architecture. This
is done by estimating the number of parallel memory requests by considering
the number of running threads and memory bandwidth. The aplication execu-
tion time in GPU is dominated by the latency of memory instructions. Thus
by finding the number of memory requests that can be executed concurrently
(memory warp parallelism) the effective costs of memory requests is estimated.

[33] proposes Planning systems and compares them to Queuing systems
for resource managament in HPC. Features like advance resource reservation,
request diffusing can not be achieved using queuing because it considers only
present resource usgae. Planning systems like CCS, Maui Scheduler does re-
source planning for present and future by assigning start time to all requests
and using run time estimates for each job.

Recent works like [20] uses statistical approach to predict application ex-
ecution time using emperical analysis of execution time for small input sizes.
The paper uses a collection of well known kernel benchmarks for modelling the
execution time of each phase of an application. The approach collects profiles
obtained by few short application runs to match phases to kernels and uses it
for predicting the execution times accurately.

Our model-based mapping of a bundle of threads also has some similarities
with co-scheduling [47] or gang scheduling |23] of threads in concurrent and
parallel systems. In the former, a set of co-dependent processes that are part
of a working set are scheduled simultaneously by the Operating System (OS)
on multi-processors to avoid process thrashing. In gang scheduling, a set of
interacting threads are scheduled to concurrently execute on different processors
and coordinate through busy-waits. The intution is to assign the threads to
dedicated processors so that all dependent threads progress together without
blocking. Our allocation and mapping based on performance models tries to
identify and leverage the benefits of co-scheduling coarse-grained thread bundles
from the same task onto one CPU, with deterministic performance given by the
models, and by separating out thread bundles from different tasks onto different
slots to execute concurrently without resource contention.

We also encounter issues seen in gang scheduling that may cause processor
over or under-allocation if sizes of the gangs do not match the number processors,
which is similar to the partial thread bundles mapped to the same slot in our
case, causing interference but reusing partial slots [22]. At the same time, we
perform the thread to slot mapping once in the streaming dataflow environment,
and do not have to remap unless the input rate changes. Hence, we do not deal
with recurrent or fine-grained scheduling issues such as constantly having to
schedule threads since the number of threads are much more than the CPU
cores, paired gang scheduling for threads with interleaved blocking I/O and
compute [66], or admission control due to inadequate resources [6].

48

10 Conclusion

Based on these results, we see that LSA4+RSM consistently allocates more re-
sources than MBA+SAM, often twice as many slots due to its linear extrapola-
tion of rate and resources. However, it still misses the planned input rate sup-
ported by 30 —40% in several cases due to unbalanced mapping by RSM where
the rate does not scale as it expects. We see a 5—10% drop for MBA+SAM due
to the shuffle grouping that uniformly routes tuples to threads. Also, RSM often
requires additional resources than ones allocated by LSA due to fragmentation
during bin-packing, though this tends to be marginal. SAM has less fragmen-
tation due to packing full bundles to exclusive slots. These hold for all DAGs,
both micro and application, small and large.

The model-based prediction of input rates is much more accurate than the
planned prediction, correlating with the actual rate with and R% > 0.71. The
few outliers we see are due to the model expecting a different routing compared
to Storm’s shuffle grouping, and due to the interpolation of rates based on the
granularity of the performance models. MBA is consistently is better than
LSA in the input rate supported for the same quanta of resources, through
MBA+DSM shows the least improvement. MBA-+RSM is often better than
MBA+SAM in actual rate though MBA+SAM gives a predictable observed
rate.

Our performance model is able to predict the resource utilization for individ-
ual VMs with high accuracy, having R? value > 0.81 for CPU% and > 0.55 for
MEM%, independent of the allocation and mapping technique used. The few
prediction errors we see are due to threads receiving fewer than the peak rate for
processing, where our model proportionally scales down the estimated resource
usage relative to a single-thread usage at the peak rate. The low memory% also
causes the error to be sensitive to even small skews in the prediction, giving a
lower correlation coefficient value.

MBA consistently has a higher resource utilization than LSA, that is also
reflected in the better input rate performance. While the resource usage across
VMs for schedules based on MBA are close together, RSM shows a greater
variation of its CPU% and memory% across VMs.

11 Future Work

The current slot aware mapping does not consider load aware shuffle groping,
we can leverage it to have more accuracy for predicting supported input rate
and resource requirement. Also Dynamic resource allocation and mapping for
the given distribution of input rate or monitored input rate at run time is part
of our future work.

49

References

(1]

(2]

(3]

(4]

(5]

(6]

[7]

(8]

(9]

(10]

(11]

(12]

(13]

(14]

(15]

Daniel J Abadi, Yanif Ahmad, Magdalena Balazinska, Ugur Cetintemel, Mitch Cherniack,
Jeong-Hyon Hwang, Wolfgang Lindner, Anurag Maskey, Alex Rasin, Esther Ryvkina,
et al. The design of the borealis stream processing engine. In Cidr, volume 5, pages
277-289, 2005.

Tyler Akidau, Alex Balikov, Kaya Bekiroglu, Slava Chernyak, Josh Haberman, Reuven
Lax, Sam McVeety, Daniel Mills, Paul Nordstrom, and Sam Whittle. Millwheel: fault-
tolerant stream processing at internet scale. Proceedings of the VLDB Endowment,
6(11):1033-1044, 2013.

Lisa Amini, Henrique Andrade, Ranjita Bhagwan, Frank Eskesen, Richard King, Philippe
Selo, Yoonho Park, and Chitra Venkatramani. Spc: A distributed, scalable platform
for data mining. In Proceedings of the 4th International Workshop on Data Mining
Standards, Services and Platforms, DMSSP, pages 27-37. ACM, 2006.

Leonardo Aniello, Roberto Baldoni, and Leonardo Querzoni. Adaptive online scheduling
in storm. In Proceedings of the 7th ACM International Conference on Distributed Event-
based Systems, DEBS ’13, pages 207-218. ACM, 2013.

David H Bailey and Allan Snavely. Performance modeling: Understanding the past and
predicting the future. In Furopean Conference on Parallel Processing, pages 185-195,
2005.

Anat Batat and Dror G Feitelson. Gang scheduling with memory considerations. In
IPDPS, pages 109-114. Citeseer, 2000.

Alain Biem, Eric Bouillet, Hanhua Feng, Anand Ranganathan, Anton Riabov, Olivier
Verscheure, Haris Koutsopoulos, and Carlos Moran. Ibm infosphere streams for scalable,
real-time, intelligent transportation services. In ACM SIGMOD, 2010.

Paris Carbone, Stephan Ewen, Seif Haridi, Asterios Katsifodimos, Volker Markl, and
Kostas Tzoumas. Apache flink: Stream and batch processing in a single engine. Data
Engineering, page 28, 2015.

Valeria Cardellini, Matteo Nardelli, and Dario Luzi. Elastic stateful stream processing in
storm. In High Performance Computing & Simulation (HPCS), pages 583-590. IEEE,
2016.

Don Carney, Ugur Cetintemel, Alex Rasin, Stan Zdonik, Mitch Cherniack, and Mike
Stonebraker. Operator scheduling in a data stream manager. In Very large data bases-
Volume 29, pages 838-849. VLDB Endowment, 2003.

Sirish Chandrasekaran, Owen Cooper, Amol Deshpande, Michael J. Franklin, Joseph M.
Hellerstein, Wei Hong, Sailesh Krishnamurthy, Samuel R. Madden, Fred Reiss, and
Mehul A. Shah. Telegraphcq: Continuous dataflow processing. In Proceedings of the
2003 ACM SIGMOD International Conference on Management of Data, SIGMOD ’03,
pages 668—668. ACM, 2003.

Sirish Chandrasekaran, Owen Cooper, Amol Deshpande, Michael J. Franklin, Joseph M.
Hellerstein, Wei Hong, Sailesh Krishnamurthy, Samuel R. Madden, Fred Reiss, and
Mehul A. Shah. Telegraphcq: Continuous dataflow processing. In International Confer-
ence on Management of Data, SIGMOD, pages 668-668. ACM, 2003.

Guogiang Jerry Chen, Janet L. Wiener, Shridhar Iyer, Anshul Jaiswal, Ran Lei, Nikhil
Simha, Wei Wang, Kevin Wilfong, Tim Williamson, and Serhat Yilmaz. Realtime data
processing at facebook. In ICMD, SIGMOD ’16, pages 1087-1098. ACM, 2016.

Mitch Cherniack, Hari Balakrishnan, Magdalena Balazinska, Donald Carney, Ugur
Cetintemel, Ying Xing, and Stanley B Zdonik. Scalable distributed stream processing.
In CIDR, volume 3, pages 257-268, 2003.

David De Roure, Carole Goble, and Robert Stevens. The design and realisation of the
virtual research environment for social sharing of workflows. Future Generation Computer
Systems, 25(5):561-567, 2009.

50

(16]

(17]

(18]

(19]

20]

(21]

(22]

(23]

(24]

(25]

[26]

(27]

28]

[29]

(30]

(31]

32]

(33]

David De Roure, Carole Goble, and Robert Stevens. The design and realisation of the
virtual research environment for social sharing of workflows. Future Generation Computer
Systems, 25(5):561-567, 2009.

Christina Delimitrou and Christos Kozyrakis. Quasar: Resource-efficient and qos-aware
cluster management. SIGPLAN Not., 49(4):127-144, February 2014.

Brian Donovan and Daniel B. Work. Using coarse gps data to quantify city-scale trans-
portation system resilience to extreme events. In Transportation Research Board 94th
Annual Meeting, 2014.

Raphael Eidenbenz and Thomas Locher. Task allocation for distributed stream process-
ing. 2016.

Rodrigo Escobar and Rajendra V. Boppana. Performance prediction of parallel applica-
tions based on small-scale executions. In High Performance Computing (HIPC), pages
208-216. IEEE, 2016.

Leila Eskandari, Zhiyi Huang, and David Eyers. P-scheduler: Adaptive hierarchical
scheduling in apache storm. In Proceedings of the Australasian Computer Science Week
Multiconference, ACSW ’16, pages 26:1-26:10. ACM, 2016.

Dror G Feitelson and Larry Rudolph. Wasted resources in gang scheduling. In Informa-
tion Technology, 1990.’Next Decade in Information Technology’, Proceedings of the 5th
Jerusalem Conference on (Cat. No. 90TH0326-9), pages 127-136. IEEE, 1990.

Dror G Feitelson and Larry Rudolph. Gang scheduling performance benefits for fine-grain
synchronization. Journal of Parallel and Distributed Computing, 16(4):306—-318, 1992.

Rosa Filgueira, Amrey Krause, Malcolm Atkinson, Iraklis Klampanos, Alessandro Spi-
nuso, and Susana Sanchez-Exposito. dispeldpy: An agile framework for data-intensive
escience. In e-Science (e-Science), pages 454-464. IEEE, 2015.

Tom ZJ Fu, Jianbing Ding, Richard TB Ma, Marianne Winslett, Yin Yang, and Zhenjie
Zhang. Drs: dynamic resource scheduling for real-time analytics over fast streams. In
Distributed Computing Systems (ICDCS), 2015, pages 411-420. IEEE, 2015.

Hormozd Gahvari, Allison H. Baker, Martin Schulz, Ulrike Meier Yang, Kirk E. Jordan,
and William Gropp. Modeling the performance of an algebraic multigrid cycle on hpc
platforms. In International Conference on Supercomputing, ICS, pages 172-181, 2011.

Bugra Gedik, Henrique Andrade, Kun-Lung Wu, Philip S. Yu, and Myungcheol Doo.
Spade: The system s declarative stream processing engine. In ICMD, SIGMOD ’08,
pages 1123-1134, New York, NY, USA, 2008. ACM.

Bugra Gedik, Scott Schneider, Martin Hirzel, and Kun-Lung Wu. Elastic scaling for data
stream processing. TPDS, 25(6):1447-1463, 2014.

Jayavardhana Gubbi, Rajkumar Buyya, Slaven Marusic, and Marimuthu Palaniswami.
Internet of things (iot): A vision, architectural elements, and future directions. Future
Generation Computer Systems, 29(7):1645-1660, 2013.

Vincenzo Gulisano, Ricardo Jimenez-Peris, Marta Patino-Martinez, Claudio Soriente,
and Patrick Valduriez. Streamcloud: An elastic and scalable data streaming system.
IEEE TPDS, 2012.

Simon D Hammond, Gihan R Mudalige, JA Smith, Stephen A Jarvis, JA Herdman, and
A Vadgama. Warpp: a toolkit for simulating high-performance parallel scientific codes. In
International Conference on Simulation Tools and Techniques, page 19. ICST (Institute
for Computer Sciences, Social-Informatics and Telecommunications Engineering), 2009.

Sunpyo Hong and Hyesoon Kim. An analytical model for a gpu architecture with memory-
level and thread-level parallelism awareness. In ACM SIGARCH Computer Architecture
News, volume 37, pages 152-163. ACM, 2009.

Matthias Hovestadt, Odej Kao, Axel Keller, and Achim Streit. Scheduling in hpc resource
management systems: Queuing vs. planning. In Workshop on Job Scheduling Strategies
for Parallel Processing, pages 1-20, 2003.

o1

(34]

(35]

(36]

(37]

(38]

(39]

[40]

[41]
[42]
[43]

[44]

[45]

[46]

[47]

(48]

[49]

(50]

Atsushi Ishii and Toyotaro Suzumura. Elastic stream computing with clouds. In In-
ternational Conference on Cloud Computing, CLOUD, pages 195-202. IEEE Computer
Society, 2011.

Shantenu Jha, Daniel S. Katz Andre Luckow, Omer Rana, Yogesh Simmhan, and
Neil Chue Hong. Introducing distributed dynamic data-intensive (d3) science: Under-
standing applications and infrastructure. Concurrency and Computation: Practice and
Experience, 2016.

Thomas P. Dence Joseph B. Dence. A rapidly converging recursive approach to pi. The
Mathematics Teacher, 86(2):121-124, 1993.

Rohit Khandekar, Kirsten Hildrum, Sujay Parekh, Deepak Rajan, Joel Wolf, Kun-Lung
Wu, Henrique Andrade, and Bugra Gedik. Cola: Optimizing stream processing appli-
cations via graph partitioning. In Proceedings of the 10th ACM/IFIP/USENIX Inter-
national Conference on Middleware, Middleware '09, pages 16:1-16:20, New York, NY,
USA, 2009. Springer-Verlag New York, Inc.

Sanjeev Kulkarni, Nikunj Bhagat, Maosong Fu, Vikas Kedigehalli, Christopher Kellogg,
Sailesh Mittal, Jignesh M Patel, Karthik Ramasamy, and Siddarth Taneja. Twitter heron:
Stream processing at scale. In Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data, pages 239-250. ACM, 2015.

Alok Kumbhare, Yogesh Simmhan, and Viktor K Prasanna. Exploiting application dy-
namism and cloud elasticity for continuous dataflows. In Proceedings of the Interna-
tional Conference on High Performance Computing, Networking, Storage and Analysis,
page 57. ACM, 2013.

Alok Gautam Kumbhare, Yogesh Simmhan, and Viktor K Prasanna. Plasticc: Predictive
look-ahead scheduling for continuous dataflows on clouds. In Cluster, Cloud and Grid
Computing (CCGrid), 2014, pages 344-353. IEEE, 2014.

Doug Laney. 3d data management: Controlling data volume, velocity and variety. META
Group Research Note, 6:70, 2001.

Boduo Li, Yanlei Diao, and Prashant Shenoy. Supporting scalable analytics with latency
constraints. Proceedings of the VLDB Endowment, 8(11):1166-1177, 2015.

Ruirui Lu, Gang Wu, Bin Xie, and Jingtong Hu. Stream Bench: Towards Benchmarking
Modern Distributed Stream Computing Frameworks. In IEEE/ACM UCC, 2014, 2014.

C. B. Medeiros, J. Perez-Alcazar, L. Digiampietri, G. Z. Pastorello, Jr., A. Santanche,
R. S. Torres, E. Madeira, and E. Bacarin. Woodss and the web: Annotating and reusing
scientific workflows. SIGMOD Rec., 34(3):18-23, 2005.

Leonardo Neumeyer, Bruce Robbins, Anish Nair, and Anand Kesari. S4: Distributed
stream computing platform. In IEEE ICDMW, 2010.

Leonardo Neumeyer, Bruce Robbins, Anish Nair, and Anand Kesari. S4: Distributed
stream computing platform. In International Conference on Data Mining Workshops,
pages 170-177. IEEE, 2010.

John K Ousterhout. Scheduling techniques for concurrent systems. In /CDCS, volume 82,
pages 22-30, 1982.

Boyang Peng, Mohammad Hosseini, Zhihao Hong, Reza Farivar, and Roy Campbell.
R-storm: Resource-aware scheduling in storm. In Proceedings of the 16th Annual Mid-
dleware Conference, pages 149-161. ACM, 2015.

Peter Pietzuch, Jonathan Ledlie, Jeffrey Shneidman, Mema Roussopoulos, Matt Welsh,
and Margo Seltzer. Network-aware operator placement for stream-processing systems.
In International Conference on Data Engineering, ICDE, pages 49-53, 2006.

Marek Rychly et al. Scheduling decisions in stream processing on heterogeneous clusters.
In Complex, Intelligent and Software Intensive Systems (CISIS), 2014 Eighth Interna-
tional Conference on, pages 614—619. IEEE, 2014.

92

[51]

[52]

(53]

(54]

[55]

[56]

[57]

(58]

[59]

[60]

(61]

(62]

(63]

[64]

(65]
[66]

(67]

Marek Rychly et al. Scheduling decisions in stream processing on heterogeneous clusters.
In Complez, Intelligent and Software Intensive Systems (CISIS), pages 614-619. IEEE,
2014.

Benjamin Satzger, Waldemar Hummer, Philipp Leitner, and Schahram Dustdar. Esc:
Towards an elastic stream computing platform for the cloud. In Cloud Computing
(CLOUD), pages 348-355. IEEE, 2011.

Benjamin Satzger, Waldemar Hummer, Philipp Leitner, and Schahram Dustdar. Esc:
Towards an elastic stream computing platform for the cloud. In Cloud Computing
(CLOUD), 2011 IEEFE International Conference on, pages 348-355. IEEE, 2011.

Carlos E. Scheidegger, Huy T. Vo, David Koop, Juliana Freire, and Claudio T. Silva.
Querying and re-using workflows with vstrails. In SIGMOD, pages 1251-1254. ACM,
2008.

Scott Schneider, Henrique Andrade, Bugra Gedik, Alain Biem, and Kun-Lung Wu. Elas-
tic scaling of data parallel operators in stream processing. In IPDPS-2009, pages 1-12.
IEEE, 2009.

Anshu Shukla and Yogesh Simmhan. Benchmarking distributed stream processing plat-
forms for iot applications. Technology Conference on Performance Fvaluation and
Benchmarking (TPCTC), VLDB-2016, 2016.

Yogesh Simmhan, Saima Aman, Alok Kumbhare, Rongyang Liu, Sam Stevens, Qunzhi
Zhou, and Viktor Prasanna. Cloud-based software platform for data-driven smart grid
management. IEEE/AIP Computing in Science and Engineering, July/August, 2013.

Yogesh Simmhan, Anshu Shukla, and Arun Verma. Benchmarking fast-data platforms for
the aadhaar biometric database. In Big Data Benchmarking:7th International Workshop,
WBDB, pages 21-39, 2015.

Allan Snavely, Laura Carrington, Nicole Wolter, Jesus Labarta, Rosa Badia, and Avi
Purkayastha. A framework for performance modeling and prediction. In Supercomputing,
pages 21-21. IEEE, 2002.

Allan Snavely, Xiaofeng Gao, Cynthia Lee, Laura Carrington, Nicole Wolter, Jesus
Labarta, Judit Gimenez, and Philip Jones. Performance modeling of hpc applications.
Advances in Parallel Computing, 13:777-784, 2004.

H.C. Tijms. Stochastic Modeling and Analysis: A Computational Approach. Wiley series
in probability and mathematical statistics: Applied probability and statistics. John Wiley
& Sons, 1986.

Ankit Toshniwal, Siddarth Taneja, Amit Shukla, Karthik Ramasamy, Jignesh M Pa-
tel, Sanjeev Kulkarni, Jason Jackson, Krishna Gade, Maosong Fu, Jake Donham, et al.
Storm@ twitter. In ACM SIGMOD, pages 147-156. ACM, 2014.

Vinod Kumar Vavilapalli, Arun C Murthy, Chris Douglas, Sharad Agarwal, Mahadev
Konar, Robert Evans, Thomas Graves, Jason Lowe, Hitesh Shah, Siddharth Seth, et al.
Apache hadoop yarn: Yet another resource negotiator. In Proceedings of the 4th annual
Symposium on Cloud Computing, page 5. ACM, 2013.

Lei Wang, Jianfeng Zhan, Chunjie Luo, Yuqing Zhu, Qiang Yang, Yongqiang He, Wanling
Gao, Zhen Jia, Yingjie Shi, Shujie Zhang, et al. Bigdatabench: A big data benchmark
suite from internet services. In High Performance Computer Architecture (HPCA), pages
488-499. IEEE, 2014.

Josef Weidendorfer and Jens Breitbart. Detailed characterization of hpc applications for
co-scheduling. In COSH@ HiPEAC, pages 19-24, 2016.

Yair Wiseman and Dror G. Feitelson. Paired gang scheduling. IEEFE Transactions on
Parallel and Distributed Systems, 14(6):581-592, 2003.

Joel Wolf, Nikhil Bansal, Kirsten Hildrum, Sujay Parekh, Deepak Rajan, Rohit Wagle,
Kun-Lung Wu, and Lisa Fleischer. Soda: An optimizing scheduler for large-scale stream-
based distributed computer systems. In USENIX, Middleware, pages 306-325. Springer-
Verlag New York, Inc., 2008.

]

(68]

[69]

[70]

(71]

(72]

(73]

Sai Wu, Vibhore Kumar, Kun-Lung Wu, and Beng Chin Ooi. Parallelizing stateful
operators in a distributed stream processing system: How, should you and how much?
In ACM ICDES, DEBS, 2012.

Yingjun Wu and Kian-Lee Tan. Chronostream: Elastic stateful stream computation in
the cloud. In Data Engineering (ICDE), 2015.

Ying Xing, Stan Zdonik, and J-H Hwang. Dynamic load distribution in the borealis
stream processor. In International Conference on Data Engineering (ICDE), pages 791—
802. IEEE, 2005.

Jielong Xu, Zhenhua Chen, Jian Tang, and Sen Su. T-storm: Traffic-aware online
scheduling in storm. In Proceedings of the 2014 IEEE 34th International Conference
on Distributed Computing Systems, ICDCS ’14, pages 535-544, 2014.

Le Xu, Boyang Peng, and Indranil Gupta. Stela: Enabling stream processing systems
to scale-in and scale-out on-demand. In IEEE International Conference on Cloud Engi-
neering (IC2E), 2016.

Matei Zaharia, Tathagata Das, Haoyuan Li, Scott Shenker, and Ion Stoica. Discretized
streams: an efficient and fault-tolerant model for stream processing on large clusters. In
Presented as part of the, 2012.

o4

	1 Introduction
	2 Background and Motivation
	3 Problem Definition
	4 Solution Approach
	4.1 Illustration
	4.2 Discussion

	5 Performance Modeling of Tasks
	5.1 Approach
	5.2 Performance Modeling Setup
	5.3 Performance Modeling Results

	6 Resource Allocation
	6.1 Linear Scaling Allocation (LSA)
	6.2 Model-based Allocation (MBA)

	7 Resource Mapping
	7.1 Resource Acquisition
	7.2 Default Storm Mapping (DSM)
	7.3 R-Storm Mapping (RSM)
	7.4 Slot Aware Mapping (SAM)

	8 Results and Analysis
	8.1 Implementation
	8.2 Experiment Setup
	8.3 Streaming Applications
	8.4 Resource Benefits of Allocation and Mapping
	8.4.1 Micro DAG
	8.4.2 Application DAG

	8.5 Accuracy of Models
	8.5.1 Prediction and Comparison of Input Rates
	8.5.2 Prediction and Comparison of CPU and Memory Utilization

	8.6 Comparison of Latency

	9 Related Work
	9.1 Scheduling for Storm
	9.2 Scheduling for DSPS
	9.3 Parallel Scheduling

	10 Conclusion
	11 Future Work

