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Abstract

We develop a fully parallel numerical method which quickly performs 2D and 3D

segmentation on GPU to extract anatomical structures from medical images. The al-

gorithm solves the level set equations completely within a Lattice Boltzmann model

(LBM). Compared with existing LBM-based segmentation approaches, a parallel dis-

tance field regularization is added to the LBM computing scheme to keep computation

stable with large time step iteration. This approach also avoids external regularization

which has been a major impediment to direct parallelization of level set evolution with

LBM. It allows the whole computing process to be efficiently executed on GPU. More-

over, the method can be incorporated with different image features to adopt in various

image segmentation tasks. Therefore, our method enables fully GPU accelerated geo-

metric extraction from medical images, leading to high computing performance which

is demanded in many practical applications. This method is used to exact accurate

2D and 3D anatomical structures from many real world CT and MRI images. The

achieved results can also directly feed required boundary information to LBM-based

hemodynamics simulation.
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1. Introduction

Segmenting 3D geometry from large biomedical images is an important task for 

extracting anatomical structures, identifying their features, and facilitating biomedical 

engineering tasks. In clinical research and applications, efficiently extracting anatom-

ical structures from medical images is a key step to offer patient-specific diagnosis in 

a timely manner and make large population studies possible. For example, Patient-

Specific Computational Hemodynamics (PSCH) simulates blood flows in  the arteries 

extracted from patients’ angiography data [1]. Punctual and accurate segmentation is 

demanded in such applications to promote clinical analysis and assessment. In this pa-

per, we propose a completely parallel computing scheme of active contour models for 

biomedical geometry extraction. The method is built up on solving level set equations 

(LSE) with a fully parallelized lattice Boltzmann model (LBM), enabling direct GPU 

acceleration to achieve very fast geometry extraction.

Level set methods have been successfully employed in image segmentation by 

tracking active contours to match geometric boundaries. They create accurate geome-

tries from noisy raw data and easily handle complex topology. However, solving level 

set equations cannot achieve time efficiency e asily. Many numerical algorithms based 

on explicit finite difference discretization have to use very small time steps for stable 

computation. Consequently, a large number of numerical iterations make the entire seg-

mentation procedure rather time-consuming. Therefore, implicit numerical approaches 

are used to overcome the problem [2]. However, implicit methods are difficult to paral-

lelize since they need to solve a global linear system. Other strategies including narrow 

band [3] and multigrid method [4] can improve the efficiency by limiting the compu-

tation in part of the whole domain. Some researchers have deliberately designed GPU 

implementations to accelerate these approaches [5]. They built heterogeneous data 

structures, such as virtual memory system [6] or dynamic list [7], to maintain irregular 

and dynamic computing domain. For biomedical geometry extraction tasks, the bound-

ary structures of target objects (e.g., arteries) are often very complex, and sometimes 

they span over the whole domain. In such cases, the large un-coalesced GPU memory 

access would decrease data transfer bandwidth and limit the achieved performance.
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Recently, LBM has been developed as an new numerical method for solving LSEs

[8, 9, 10, 11, 12, 13, 14]. The explicit scheme of LBM is second order accurate and can

utilize larger time step than direct LSE discretization. Moreover, its computing scheme

is very simple to program and inherently parallel with local data access, making it

greatly amenable for parallel acceleration. However, there still exist gaps between

existing LBM works and a fully parallel instrument to solving LSE in 3D biomedical

geometry extraction. In this paper, our LBM scheme provides a complete GPU-based

solution of fast medical image segmentation. The main contributions of our method,

compared with existing LBM approaches, are as follows:

First, we develop both 2D and 3D LBMs to perform fast segmentation over images

and volumetric data. The proposed algorithms can iterate with large time steps. Mean-

while, they are suitable for parallel computing. In contrast, most of the existing LBM

methods are aimed only at 2D image segmentation and do not need to consider parallel

computing efficiency. Alternatively, extracted contours over 2D slices are connected to

create a 3D shape [14], which however, is not accurate and smooth. A simple 3D LBM

is implemented for segmentation [9], but the method is not effective for noisy images,

since it only uses a linear diffusion and a simple pixel difference comparison for edge

detection.

Second, our method is the first to integrate distance field regularization into the

LBM computing scheme. It does not need to stop the LBM simulation and explic-

itly locate the zero level set by recomputing Euclidean distance as existing works do.

Therefore, our approach only adds minimal computation load with no extra memory

consumption. Moreover, the computation is embarrassingly parallel and robust in noisy

image.

The distance field regularization is an essential part of tracking active contours,

which is required to maintain the correct distance function when numerically solving

the LSE. Many existing LBM segmentation methods do not perform this step (e.g.,

[9, 10] and [12]). Consequently, the gradients of distance field are unbounded dur-

ing iterations leading to inaccurate and rough results. Some approaches address this

problem out of the LBM framework. In particular, Yang et al. [13] successfully seg-

mented 2D auroral oval images by combining LBM with narrow band methods. They
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updated zero level set by a sparse field method inside a narrow band. This approach

is hard to parallelize since it needs to explicitly find the zero level set and compute

the distances from those pixels to the contour. In 2D image segmentation, Sun et al.

[11] repeatedly recomputed the Euclidean distance of each pixel to zero level set con-

tours after several iterations. In these methods, the regularization of distances involves

global contour information, which is implemented out of the LBM framework. As a

result, these methods are not easily extended to 3D image segmentation accelerated

on GPU. On the other hand, Chen et al. [14] added a penalty term to LSE to force

the distance field smooth based on [15, 16]. This term may adversely move the zero

level set, and eventually the active contour cannot converge to achieve correct results.

Thus, this method has to add an extra edge detection step by Canny operator to handle

noisy images. In these methods, the whole computing process is no longer fully par-

allel, so that the advantage of LBM-based segmentation is not completely exploited.

Extra CPU computation and GPU-CPU data exchange is needed which can greatly im-

pede acceleration performance. In contrast, our approach implements the distant field

regularization inside LBM computing processes.

Third, our method offers a generalized LBM scheme to solve Geometric Active

Contour (GAC) models. Different LSE approaches that use various image features

(e.g., edge and region information) can be directly implemented within the scheme.

The scheme can thus be adopted in different image segmentation tasks.

We apply our method to CT and MRT image datasets to show its quality and perfor-

mance. The remainder of the paper is organized as follows. In Section 2, we introduce

the level set segmentation method. Then our fully parallelized LBM is presented in

Section 3. Its acceleration on GPU is discussed in Section 4. Section 5 provides a set

of examples using our method in 2D and 3D geometric extraction. Finally, we conclude

the paper in Section 6.

2. Level Set Segmentation

2.1. Level Set Equation

Level set methods track an active contour (or a 3D evolving surface) which evolves

to match structural boundaries in image or volume datasets, where a distance field
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implicitly represents the contour or surface C. A signed distance field, ϕ : R3 → R for

p ∈ R3, is defined as the closest distance to C with the function:

ϕ(p) = sign(p)·min{|p−q| : q∈C}, (1)

where a positive distance refers to outside of C and a negative distance means inside of

C. Then, C can be seen as the zero level set including all points with zero distance.

In image segmentation, the Geometric Active Contour (GAC) starts from an arbi-

trary starting shape and evolves itself by a particular LSE [17]:

∂ϕ
∂ t

= div(α
∇ϕ
|∇ϕ | )|∇ϕ |+β |∇ϕ |. (2)

The first term in the right side is a smoothing term that represents curvature flow, where

α determines the level of smoothness in the results. In the second term, β is a speed

function that attracts the evolving level set to target regions as a driving force. Vari-

ous image features can be integrated into the parameters α and β for different image

segmentation tasks [18].

2.2. Distance Field Regularization

The level set function ϕ is initialized as a distance field (Equation 1). It satisfies

|∇ϕ |= 1 [19, 20]. Therefore, Equation 2 can be further simplified as:

∂ϕ
∂ t

= div(α∇ϕ)+β . (3)

This LSE describes the evolution of geometric active contour. However, solving this 

partial differential equation (PDE) on a discrete grid often introduces numeric errors 

and distorts the distance function around C. Therefore, ϕ needs to be updated (i.e.,

regulated) in order to keep |∇ϕ | = 1, usually after a small number of time steps. Dis-

tance filed regularization usually needs to locate the zero level set explicitly and then

recompute the distance field to it [21, 22, 23]. This process cannot be easily imple-

mented on parallel platforms such as GPUs, since it often involves global data access 

in the whole domain. The reason is that these methods need to relocate zero level set 

when the distance regulation is applied. This relocation process involves an additional 

step and data structure to acquire global contour, which is not easy to parallelize. In
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contrast, our approach avoids the relocation of zero level set for distance regulation, 

so that all the computation is local and becomes very suitable for GPU acceleration. 

Therefore, it can seamlessly intergrated with the LBM parallel computation framework 

for level set based image segmentation.
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Figure 1: D2Q5 (left) and D3Q7 (right) lattice models.

3. Fully Parallelized LBM for Segmentation

3.1. LBM Solution to LSE

With its programming simplicity and embarrassingly parallel computation, LBM 

has been used to solve the LSE Equation 3 which is a nonlinear diffusion equation. 

Given a discrete computation grid over 2D/3D images, each grid cell located at x⃗ has a 

set of associated variables fi, i = 0 . . .N. N is the number of links starting from the cell 

to its immediate neighbors and itself, which is determined by different LBM lattice 

models. These variables fi are summed up to define the distance function:

ϕ (⃗x, t) = ∑
i

fi(⃗x, t), i = 0 . . .N. (4)

Each fi interacts with one of its neighbours following a corresponding direction vector

e⃗i. Figure 2 shows a D2Q5 (N = 5) and a D3Q7 (N = 7) lattice model of a grid

cell. D3Q7 model refers to 3D computation using seven fi, i = 0 . . .6 (six to its axial

neighbors and one to itself).

Moreover, a set of equilibrium variables corresponding to fi are defined as

f eq
i = Aiϕ , i = 0 . . .N, (5)
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where Ai is a scalar coefficient determined by the lattice model. For D3Q7, Ai =

1/7, i = 0 . . .6 and for D2Q5, Ai = 1/5, i = 0 . . .4.

When t = 0, fi is initialized as fi = f eq
i . At a simulation time step t +△t, the

variables of fi are updated from the variables in the previous step t as:

fi(⃗x+ e⃗i, t +△t)− fi(⃗x, t) =
1
τ
( fi(⃗x, t)− f eq

i (⃗x, t))+△tF⃗i, (6)

where τ is a constant relaxation parameter and F⃗i is the external force driving the evolv-

ing level set. Once fis are updated, the distance ϕ at t +△t is calculated by Equation

4, and f eq
i s are updated by Equation 5 for next iteration. This iterative computation

repeats in multiple simulation steps with the given time step △t. It stops when the zero

level set ϕ = 0 converges to the aimed boundary C with respect to a giving stopping

condition.

It can be proved (see details in [24]) that the LBM scheme (Equation 6) recovers

the nonlinear diffusion equation through Chapman-Enskog expansion:

∂ϕ
∂ t

= div(
1
3
(τ − 1

2
)∇ϕ)+

F⃗i

Ai
. (7)

Comparing Equation 3 with Equation 7, LBM parameters τ and F⃗i are defined by the

LSE-based image segmentation parameters as:

τ = 3α +
1
2
. (8)

F⃗i = Aiβ . (9)

From Equation 8, it can be seen that τ is larger than 0.5, whenever α is positive.

Since α is the diffusion coefficient, it is always larger than zero. Therefore τ is always

larger than 0.5 which has been known leading to stable LBM computation for any time

step size △t [25].

In image segmentation, D2Q5 and D3Q7 lattice models provide minimal comput-

ing time and memory use while still maintain good segmentation results. There exists

other lattice models, such as D3Q15, D3Q19 or D2Q9 [11, 12, 13], which will increase

the computational load. Though these models are more popular in flow simulation,

D2Q5 and D3Q7 are good enough for 2D and 3D segmentation tasks. Next, we show

how to implement the distance field regularization inside the LBM scheme.
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3.2. Distance Field Regularization by LBM

When the distance field ϕ is numerically computed, it needs to be regularized as ϕ R

to satisfy |∇ϕ R| = 1. However, some of the existing LBM-based segmentation meth-

ods do not perform regularization [9, 10, 12] and therefore cannot effectively segment

noised images. A few methods apply external data structure and computation (e.g., fast

marching [13], distance re-computation [11], and using an extra forcing term [14]) to

regulate distance field, but they cannot be easily parallelized to get good computing

performance.

The regularization can be achieved by solving a time dependent PDE which is

introduced in multi-phase flow problem [19]:

∂ϕ R

∂ t
+ sign(ϕ R)(|∇ϕ R|−1) = 0, (10)

ϕ R(⃗x,0) = ϕ (⃗x).

The signum term in Equation 10 is of great importance to maintain the zero level

set as a satisfied distance field. Meanwhile, the distance field is kept smooth during

iterations, so that eventually the extracted contour or surface will have sub-voxel accu-

racy. Next, we design a new scheme to solve this equation in the LBM scheme so that

the whole algorithm is very suitable for parallel computing.

3.2.1. Efficient Implementation in LBM

From Equation 5, the distance function can be represented by the equilibrium vari-

ables as ϕ = f eq
i /Ai. We realized that specifically in D2Q5 and D3Q7 models, Ai has

the same value (i.e., 1/5 for D2Q5 and 1/7 for D3Q7, respectively) for all directions

i. Therefore, only one variable f eq is needed at each grid cell. Meanwhile, the dis-

tance function ϕ can be achieved by f eq/Ai. Therefore, Equation 10 which solves the

regulated distance function ϕ R can be rewritten as

∂ f eq

∂ t
+ sign( f eq)(|∇ f eq|−Ai) = 0. (11)

In this way, the regularization process becomes part of the LBM computation with f eq.

Solving this equation (see below) can be triggered after a few normal LBM steps, after

which we set fi = f eq to continue the LBM iterations.
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3.2.2. Parallel Regularization Solver

The solution of Equation 11 has been studied by using different macroscopic spatial

and temporal discretizations [26]. To solve it in a parallel program, we use an explicit

scheme with a first order ENO (Essentially Non-Oscillatory) finite difference in spatial

discretization [19]. Please see the details in Section 4 for GPU implementation. This

approach is very fast regarding convergence which can be achieved in only a few iter-

ations. More importantly, the computation is performed in parallel for each grid cell,

fitting seamlessly within the LBM parallel scheme.

3.3. Handling Edge Stopping Models

Our LBM-based level set solver can be utilized for active contour models using

different image features to define the LSE parameters, α and β . We show two models

below.

3.3.1. Edge Stopping Function with Gradient

Let I0 be an image to be segmented, an edge stopping function g can be used to

control the evolution of the contour in LSE [27]. A robust form of g is defined as [28]:

g = e−((|∇Gσ ∗I0|)2/k2
1), (12)

where |∇Gσ ∗ I0| denotes the gradient of the Gaussian smoothed image. σ is a smooth-

ing parameter and k1 is an estimated threshold of the edge gradient of I0. In LBM

implementation, we simply set α = g and β = λ1g in Equation 8 and Equation 9. Then

the LBM Equation 6 solves the GAC evolution of

∂ϕ
∂ t

= div(g∇ϕ)+λ1g. (13)

Here λ1 > 0 is a constant to control the moving speed of the evolving contours. Using

this approach, the LBM segmentation will stop when the zero level sets reach the large

gradient edges defined by k1 where g 7→ 0.

3.3.2. Edge Stopping Function with Local Average

Using the gradient-based stopping function in LSE may not work well when the

edges are not easily discovered by image gradients such as in a noisy image. In such
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cases, regional information of I0 can be applied to overcome the noises. In our imple-

mentation, we combine g with an estimated local average k2. Then, we set α = g and

β = λ2((Gσ ∗ I0)−k2) in Equation 8 and Equation 9. Consequently, the LBM Equation

6 solves the evolution of GAC as

∂ϕ
∂ t

= div(g∇ϕ)+λ2((Gσ ∗ I0)− k2). (14)

Similarly, λ2 > 0 is a constant to control the contour/surface moving speed. Gσ is the

Gaussian convolution kernel with the variance σ . Then, the LBM segmentation will

stop when the zero level sets reach the image edges whose local average is close to k2.

The two models are well suited to parallel computation because the calculation of

g and other values at each grid cell only involves local data access in its neighborhood.

Therefore the LBM segmentation can be fully parallelized for fast performance. In

level set image segmentation tools, the constants like λ and k are usually defined by

users empirically.

3.4. Computational Procedure

In recapitulation, the LBM based image segmentation (using D2Q5 or D3Q7) is

implemented in the following steps:

1. Define and compute the level set edge stopping variables (e.g., g) from an input

image;

2. Generate an initial distance field ϕ from a starting shape (zero level set), such as

a 2D circle/rectangle or a 3D sphere/cubic;

3. Initialize LBM: fi, feq from ϕ by Equation 5;

4. At each grid cell, compute α , β for the corresponding GAC models, and then

use them to define LBM computing parameters τ and Fi by Equations 8-9;

5. Perform LBM evolution following Equation 6;

6. Accumulate the fi values at each grid cell by Equation 4, which generates an

updated ϕ that is directly used to update feq;

7. If the number of iterations is bigger than M, perform distance field regularization

by solving Equation 11 and then reset fi = feq.
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8. If the zero level set converges with no significant changes, stop the LBM itera-

tions and output the segmentation results.

9. Otherwise, go back to Step 4.

To fully leverage the parallel nature of the algorithm, the iterative computation steps 

(Step 3-9) are put into the GPU computation pipeline. We first implement the tradi-

tional LBM numerical iterator on GPU for Step 5. Then, we focus on migrating the 

new regularization computation (Step 6-7) to GPU. In the next section, we discuss the 

GPU implementation in details.

4. GPU Acceleration

In this section, we describe the GPU implementation and optimization for the 

proposed LBM image segmentation. The whole algorithm is implemented using 

the CUDA toolkit v5.5 created by nVidia. CUDA provides developers the 

CUDA-accelerated libraries to access its runtime API on CUDA-enabled GPUs. In 

imple-menting our LBM algorithm, we divide the whole computation procedure 

into two CUDA kernel functions. Each kernel is executed in parallel by a given 

number of threads on GPU. The first one implements the traditional LBM 

iterations (Equation 6). The second one is newly developed for the distance field 

regularization (Equation 11). For each kernel, one computing thread is responsible 

for the operation of one LBM grid cell, which refers to one 2D pixel or one 3D 

voxel. Thus, multiple threads corresponding to all the pixels or voxels facilitate 

parallel execution of the local neigh-borhood operations. Inside each kernel function, 

the read-write conflicts are avoided as the source and destination memories are 

separated.

The thread synchronization inside each kernel is implicitly implemented by CUDA. 

In addition, the second kernel starts when all the threads of the first kernel are com-

pleted, so that the computations of the LBM evolution and distance field regulation are 

not overlapped. Therefore, explicit synchronization points are not needed inside one 

kernel. Such synchronization scheme leads to correct and fast iterative computation. 

Next we show the details of GPU implementation.

In the LBM iteration kernel of solving Equation 6, a temporary array fi
temp is used
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f0 f0 f0 ... f1 f1 f1 f2

Thread 1 Thread 2 Thread 3

f2 f2

Figure 2: Memory access pattern. (Top) Array of Structures; (Bottom) Structure of Arrays.

to swap the streaming results with fi to avoid the memory race problem [8, 29]:

f temp
i (⃗x+ e⃗i, t +△t) = (1− 1

τ
) fi(⃗x, t)+

1
τ

f eq
i (⃗x, t)+△tF⃗i(⃗x, t) (15)

Moreover, the storage of arrays fi
temp and fi is arranged to employ a Structures of

Array (SoA) format as shown in Fig. 2,. Compared to the classic format of Array of
Structures (AoS), f [(z ∗ Ny ∗ Nx + y ∗ Nx + x) ∗ 7 + i], the SoA arrangement stores fi 

in the order of i and then by spatial coordinates. For example, assuming the 
computation
domain of a D3Q7 is Nx × Ny × Nz, fi in SoA is addressed as f [i ∗ Nx ∗ Ny ∗ Nz + z ∗ 

Ny ∗ Nx + y ∗ Nx + x], i = 1 · · ·7. SoA makes the threads within one CUDA warp (e.g., 

32 threads) to read consecutive memory. The coalesced memory access can largely

improve the throughput of globe memory access on GPU [30].

There are some existing work using shared memory and intra-warp shuffle opera-

tion to improve the throughput of memory [31, 32]. However, it has been shown that 

this approach is ineffective in improving the performance on modern GPU architec-

ture [30]. Therefore, our implementation utilizes direct access to globe memory, which 

leads to lower register usage and does not need any additional control flow.

The regularization kernel is implemented by solving Equation 11 through the first 

order ENO scheme. The 3D version of the GPU implementation is shown as follows 

(2D version has the similar implementation):
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First, six monotone spatial differences are calculated for each grid cell (i, j,k) as

a = D−
x f eq = f eq

i, j,k − f eq
i−1, j,k,

b = D+
x f eq = f eq

i+1, j,k − f eq
i, j,k,

c = D−
y f eq,d = D+

y f eq,

e = D−
z f eq, f = D+

z f eq. (16)

Second, we extract

a+ = max(a,0),a− = min(a,0),

· · · ,

f+ = max( f ,0), f− = min( f ,0). (17)

Third, the steeper gradient in each direction is computed as

a = max(a+2,b−2),b = max(a−2,b+2),

· · · ,

e = max(e+2, f−2), f = max(e−2, f+2). (18)

Fourth, we compute the gradient |∇ f eq| based on the sign of f eq

|∇ f eq|=
√

a+ c+ e,( f eq > 0),

|∇ f eq|=
√

b+d + f ,( f eq < 0). (19)

Finally, with a smoothed sign function sign( f eq) =
f eq
t√

( f eq
t )2+1

, f eq is updated as

f eq
t+1 = f eq

t −△t
f eq
t√

( f eq
t )2 +1

(|∇ f eq
t |−Ai). (20)

These steps are executed in the distance regularization kernel repeatedly until conver-

gence. In practice, this is usually achieved in a few iterations. In GPU implementation, 

the regularization step is also optimized using the similar strategies as in the first kernal 

to efficiently update f eq.

In summary, due to the inherent parallel nature, the computing procedure of both 

kernels is explicit and only involves the nearest neighbor grid cells, which lead to high 

GPU computation performance reported in the next section.
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5. Case Studies

In this section, we present several case studies of geometry extraction from 2D and

3D medical images.

5.1. Experiment Evaluation and Parameter Setting

Our method provides a fast and parallel numerical method for LSE-based segmen-

tation. To evaluate its segmentation quality, we use the segmentation results of a stan-

dard level set solver, the upwind difference method [17], as the ground truth. The

upwind difference method is the reliable and accurate numerical solver of LSE equa-

tions [17], which takes into account the gradient direction of the evolving interfaces.

This method is widely used in solving level set segmentation problems [33, 18]. For

quantitative measurement, we consider the segmentation result of the upwind differ-

ence method as the ground truth. The parameters of the level set stopping criteria play

an important role in both segmentation accuracy and efficiency. The parameter set-

ting rules have been discussed by many researchers [27, 28, 18]. While our approach

focuses on improving the computational efficiency, different segmentation parameters

can be used per the rules. In implementation, we choose the segmentation parameters

including k1, k2, λ1, λ2, which can yield good segmentation results in the standard

upwind difference method.

The upwind difference method uses small time steps and thus leads to long com-

puting time. In contrast, LBM method can keep stable numerical iterations using larger

time steps. It accelerates the computational speed and reduces the number of iterations

to converge. In our experiments, we found that setting the time step size of LBM iter-

ations between 1 and 2 is a good compromise between the efficiency and the accuracy.

We further compute the mismatched pixels/voxels in the segmented results between

the ground truth and our LBM method. Then an error rate is computed by dividing the

number of these mismatched ones by the total number of the correctly segmented pix-

els/voxels in the ground truth. For evaluating the computing performance, we show the

computational time of our method in both CPU and GPU versions. We then compare

them with the upwind difference method and several related existing methods. In our

implementation, the CPU based serial algorithms are executed on a PC with an Intel
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i7-3770 CPU at 3.4GHZ and 8G RAM. The GPU based parallel algorithms are run on

a consumer GPU, NVIDIA Geforce GTX 780 at 900MHZ and 3GB memory.

5.2. 2D Medical Image Segmentation

We first investigate 2D applications of our method to show its benefits. In the first

case, we evaluate the robustness of our approach to noisy images and with different

initial conditions. In the second and third cases, we compare our approach with other

LBM based segmentation methods.

5.2.1. 2D Segmentation of Carotid Artery from MRI Images

The LBM scheme extracts carotid arteries from phase contrast MRI images. Figure

3 shows an image with the size of 128× 196 including both left internal and external

carotid arteries. The image is very noisy with blurred edges of the arteries. We apply

the edge stopping function with local average as described in Section 3.3.2, where

k1 = 2, k2 = 75, λ2 = 0.02, and σ = 1.

In the first experiment, we set a large rectangle as the initial contour as Figure

3(a), and compute the distance field ϕ based on this initial contour. In LBM iterations,

the time step is set to 1 and M = 2. That is, we apply regularization of the distance

field every 2 LBM steps. Figure 3(b) shows the evolving contour after 48 iterations.

Figure 3(c) shows the converged contour after 152 iterations, i.e., when the movement

of the level set is less than one pixel in all positions. The result successfully finds

the boundaries of the left and right carotid arteries. The distance field is very smooth

during the evolution as visualized in the figures. In comparison, we implement the

LBM algorithm of [9] to segment this image with the same parameters. Since there is

no distance field regularization, the achieved contours fail to converge at the boundary

of the carotid arteries (Figure 3(d)).

In the second experiment, we set the initial contour as a set of circles in the domain

(Figure 4(a)). The other parameters are not changed. Moreover, instead of computing

the distance at each grid cell to these circles to define initial contours, we simply ap-

ply a binary function to define if a grid cell is inside/outside a circle. This approach

largely reduces the computing burden of the regularization. Even with this simplified

initial condition, our LBM algorithm still keeps stable during the iterations as shown in
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(a) Initial rectangular contour (b) After 48 LBM iterations

(c) Converged after 152 LBM iterations (d) LBM method of [9]

Figure 3: 2D carotid artery segmentation from a phase contrast MRI image.

Figures 4(b)(c). Furthermore, since the distance between the initial circles and the ar-

teries is much closer than the first experiment, the active contours can quickly converge

and stop at the boundaries of the carotid arteries with fewer iterations (48 iterations).

Figure 4(d) shows the same segmentation result as Figure 3(c).

5.2.2. 2D Segmentation of Aortic Artery from CT Images

We extract a 2D aorta artery from a CT image with a size of 338×196. The edge of

the aorta artery in the CT image is clearer than in the previous MRI image. We apply

the edge stopping function with gradient (Section 3.3.1). The parameters are set as:

σ = 1, k1 = 2 to catch artery edges.

Figure 5 shows the ground truth result computed from the classic upwind differ-

ence method [17], compared with the results of our method and two existing LBM

algorithms from [11] and [14], respectively. In order to keep the algorithm stable, we

set the time step to 0.1 for the upwind differential method. For all LBM algorithms,

the time step is set to 1. Here, we allow the distance field regularization to be executed

every M = 5 step in the proposed algorithm. Our result achieves smoother contour than

Sun’s result. On the other hand, Chen’s model fails to find the correct boundary. Since

there is a very narrow gap between the aorta and heart, the algorithm moves the evolv-
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Figure 4: 2D carotid artery segmentation from a phase contrast MRI image with binary initial condition.

Table 1: Computing performance for 2D segmentation of an aorta image (338×196).
step number of error time speed

Methods size iterations rate (sec) up
Upwind (ground truth) [17] 0.1 8852 0 121.1 1
[11] 1 1255 3.7% 19.8 6.1
[14] 1 1200 fail 16.5 7.3
Our method (CPU) 1 1176 2.1% 12.5 9.7
Our method (GPU) 1 1176 2.1% 0.13 930

ing level set out of the aorta since it adds a penalty term to LSE to force the distance

field smooth.

The computing performance and quality for all methods is demonstrated in Table

1. Our method has a 2.1% error rate, while Sun’s error rate is 3.7%. For computing

efficiency, our CPU implementation uses 12.5 seconds which is about 40% faster than

Sun’s method at 19.8 seconds. Our method is almost ten times faster than the upwind

scheme at 121.1 seconds. By GPU acceleration, our algorithm achieves near 100 times

speedup at 0.13 seconds compared to its CPU version and Sun’s method, which is more

than 900 times faster than the classic upwind differential scheme.
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(a) (b) (c) (d) (e)

Figure 5: 2D aorta segmentation result comparison. (a) Initial contour; (b) Ground truth; (c) Result of [11];
(d) Result of [14]; (e) Result of our algorithm.

Table 2: Computing performance for 2D segmentation of a brain image (388×251).
step number of error time speed

Methods size iterations rate (sec) up
Upwind (ground truth) [17] 0.1 4235 0 88.7 1
[9] 1 500 fail 10.2 8.69
[11] 1 438 4.2% 14.5 6.1
Our method (CPU) 1 470 1.8% 9.6 9.2
Our method (GPU) 1 470 1.8% 0.09 940

5.2.3. 2D Segmentation of Brain from MRI images

We further perform a 2D segmentation of complex brain structure from an MRI

image whose size is 388×251. The edge stopping function with local average is used,

where k1 = 2, k2 = 70, λ2 = 0.02, and σ = 1. In this case, we compare our segmentation

result and efficiency with the ground truth and two other LBM methods of [11] and [9].

The time step is 0.1 for the upwind method and 1 for all LBM methods, and M = 4 for

distance field regularization.

As shown in Figure 6, our result is smooth and close to the ground truth. Since there

is no distance field regularization, the LBM approach of [9] fails to find the structure

(Figure 6(d)). The performance and quality is reported in Table 2. In particular, our

GPU implementation can achieve the result in 0.09 second which is around 940 speed-

up to the upwind difference method. It also achieves 1.8% error rate compared to 4.2%

of Sun’s method.
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(a) (b) (c) (d) (e)

Figure 6: 2D segmentation result of brain from an MRI image. (a) Initial contour; (b) Ground truth; (c)
Result of [11]; (d) Result of [9]; (e) Result of our algorithm.

5.3. 3D Geometry Extraction of Medical Images

In this section, we investigate 3D geometry extraction from CT and MRI medical

images. For 3D cases, the computational load increases greatly by adding an extra di-

mension. Thus, our LBM based parallel approach of 3D extraction is time-efficient so

it can be very helpful for real applications. There exist very little work using the par-

allel LBM scheme in 3D cases. [9] presented a 3D algorithm, which however, usually

fails in our experiments of 3D segmentation, because it does not apply distance field

re-initialization and only uses a simple pixel comparison method in stopping func-

tion. So we do not compare our method with it. In particular, we mainly compare

our approach with three 3D geometric extraction methods of solving LSE functions

including: (Ground truth) Upwind difference method [17]; (M2) The approach of

[14] who used a simple method which connects segmented 2D slices together to form

a 3D shape; (M3) An alternative approach which replaces our unified re-initialization

approach in the LBM scheme with the distance field regulation method proposed by

[11]. It should be noted that [11] did not implement 3D geometric extraction in their

work. We extend their approach to 3D cases in order to compare its distance regulation

method with ours. These methods are not suited to GPU acceleration, since they are

not fully integrated into the LBM’s parallel scheme, which is the unique feature of our

approach.

5.3.1. 3D Segmentation of Aorta Artery from CT Images

First, we investigate 3D geometry extraction of aorta artery from CT images. The

volume size of images is 128× 128× 372. The edge stopping function with gradient
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(a) (b) (c) (d) (e)

Figure 7: 3D aorta artery segmentation from CT images. (a) Initial contour; (b) Ground truth; (c) Result of
M3; (d) Result of M2; (e) Result of our method.

information is used (Section 3.3.1), where k1 = 2, λ1 = 1, and σ = 1.

Figure 7 shows the results of our algorithm and other approaches. We also show a

zoomed-in region for details. It can be seen that our approach yields the results fairly

similar to the ground truth from the upwind difference method. M2 method forms a 3D

shape from 2D segmented slices leading to obvious artifacts. In practice, this method

needs to perform initialization for every slice and cannot handle topological change

automatically in the vertical direction. Compared with M3, our re-initialization method

has smoother results than using Sun’s method. Moreover, Sun’s distance regulation

cannot be easily parallelized as it uses globe information of the zero level set. This also

makes it hard to implement M3 on GPUs.

Table 3 shows the report for this case study. The time step of the upwind difference

algorithm is set to 0.1, while the time step of other methods are set to 1 for fast run.

Our method has about 2.7% error rate while M3 has 4.8% error rate. With GPU accel-

eration, our fully parallel approach can complete in 22.2 seconds which is around 100

times faster than the CPU version, and much faster than the upwind approach and M3.

5.3.2. 3D Segmentation of Carotid Artery from CT Images

Clinical assessment of stroke risk has been heavily reliant on the degree of luminal

stenosis of carotid artery. When a carotid stenosis narrows the artery by a diameter

of more than 60%, a carotid endarterectomy or carotid artery stent is performed to

decrease the risk of patients having a future stroke. The diameter of carotid artery is
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Table 3: Computing performance for 3D segmentation of aorta artery from CT images (128×128×372).
step number of error time speed

Methods size iterations rate (sec) up
Upwind (ground truth) 0.1 7034 0 23058 1
M3 1 1955 4.8% 3568 6.4
Our method (CPU) 1 947 2.7% 2258 10.2
Our method (GPU) 1 947 2.7% 22.2 1038

(a) (b)

Figure 8: 3D segmentation of carotid artery from CT images. (a) Result of M3; (b) Result of our method.

only about 4-6 millimeter (mm) [34], and the common resolution of a CT image is 0.4

mm per pixel which stands for nearly 10% of the artery diameter. In such cases, getting

accurate segmentation result is critical for a clinic application.

Figure 8 shows the geometry extraction results of a stenosed carotid artery from CT

images. The volume size is 128× 128× 177. Our method gets accurate and smooth

geometry of the carotid artery compared with M3. Our regularization method is in-

cluded in the LBM scheme which can reach sub-grid accuracy. In comparison, M3

performs distance field regularization at the accuracy of grid cells. Table 4 shows that

our method achieves better quality with a smaller error rate than M3. Moreover, our

fully parallel method reconstructs the complete 3D geometry totally on GPU in 4.6

seconds, faster than other approaches.
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Table 4: Computing performance for 3D segmentation of carotid artery from CT images (128×128×177).
step number of error time speed

Methods size iterations rate (sec) up
Upwind (ground truth) 0.1 3135 0 4646 1
M3 1 332 4.9% 785 6.7
Our method (CPU) 1 448 2.8% 435 10.9
Our method (GPU) 1 448 2.8% 4.6 1010

(a) (b)

Figure 9: 3D segmentation of carotid artery from MRI images. (a) Result of M2; (b) Result of our method.

5.3.3. 3D Segmentation of Carotid Artery from MRI Images

We also work on MRI images for the carotid artery extraction. The image size

is 64× 64× 167. Since the MRI images we achieved from clinical practice are of

relatively low-quality, we apply the edge stopping function with local average with

σ = 1, λ2 = 0.02, k2 = 85 and M = 2. Figure 9(a) shows the result of M2 which

creates 3D structure from 2D segmentations. It shows some salient horizontal ring

effects. In contrast, Figure 9(b) shows that our method achieves smoother result with

2.4% error rate from the ground truth (the result image is omitted here). Table 5 also

shows that our GPU approach completes the task in less than 0.5 seconds which can

contribute to time critical applications such as clinical bio-flow simulation.
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Table 5: Computing performance for 3D segmentation of carotid artery from MRI images (64×64×167).
step number of error time speed

Methods size iterations rate (sec) up
Upwind (ground truth) 0.1 626 0 455 1
M2 1 245 16% 151 3.1
Our method (CPU) 1 152 2.4% 45.7 9.9
Our method (GPU) 1 152 2.4% 0.48 947

(a) (b) (c)

Figure 10: 3D brain segmentation result. (a) Result of M2; (b) Result of M3; (c) Result of our method.

5.3.4. 3D Segmentation of Brain Structure from MRI Images

Finally, Figure 10 illustrates a 3D brain segmentation from MRI images. We apply

the edge stopping function with local average with σ = 1, λ2 = 0.02, k2 = 98 and

M = 2. The image size is 181×217×181.

Figure 10(a) shows the result of M2 approach, which cannot construct the brain’s

shape correctly. Figure 10(b) is the result of M3, its surface is rather rough. In com-

parison, our method (Figure 10(c)) creates the smooth and accurate result with a 1.9%

error rate. Furthermore, Table 6 shows the fast computing speed of our method which

can finish the segmentation in 5 seconds on GPU.

5.3.5. Experiments on More Datasets

To further evaluate the proposed algorithm, we test our method on more 3D

biomedical datasets. First, we extract the carotid artery of 20 different patients from

their 3D MRI images. The image size is 64×64×196 for each 3D data set. Compar-

ing to the upwind difference method, our method generally achieves good performance.

Table 7 reports the average values among these twenty datasets of the number of itera-

tions, error rates, computing times, and speedups compared to the upwind method. In

particular, the GPU acceleration has an average speedup of 947 with an average 2.5%
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Table 6: Computing performance for 3D segmentation of brain structure from MRI images (181× 217×
181).

step number of error time speed
Methods size iterations rate (sec) up
Upwind (ground truth) 0.1 1026 0 5124 1
M3 1 143 4.1% 824 6.2
Our method (CPU) 1 152 1.9% 511 10.0
Our method (GPU) 1 152 1.9% 5.0 1024

Table 7: Average computing performance for the segmentation of carotid arteries of 20 patients from their
3D MRI images.

Step Number of Error Total time Speed
Methods size iterations rate (s) up
Upwind (ground truth) 0.1 732 0 644 1
Our method (CPU) 1 184 2.5% 68 9.5
Our method (GPU) 1 184 2.5% 0.7 947

error from the ground truth in the extracted results.

Moreover, we further test our method on several 3D image datasets from a public

volume data library 1. These datasets include different biomedical geometries with

different volume sizes, including human head, foot, tooth, knee, and a frog. Table 8 is

the experiment results of segmenting geometrical structures from these datasets. The

table shows that the parallel implementation on GPU can achieve about 100 speedups

comparing to its serial version on CPU, which is about 900 time faster than the upwind

difference method with less than 3% difference in the segmentation results.

6. Conclusion and Future Work

In this paper, we propose a new parallel geometric extraction method from medical 

images. This model is fully parallel by incorporating the necessary distance field reg-

ularization of LSE into the LBM-based level set solver. Our method can completely 

run on GPUs which achieves great performance for biomedical geometry extraction 

from CT and MRI images. Recently, LBM computations have been implemented on 

multi-core CPU platforms [35], GPU clusters [36] and heterogeneous CPU/GPU clus-

ters [37]. Our LBM algorithm has similar computational structure and procedure to

1http://lgdv.cs.fau.de/External/vollib/
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Table 8: Computing performance for 5 biomedical datasets from a public library 1.
Step Number of Error Total time Speed

Datasets Methods size iterations rate (s) up

Head
Upwind (ground truth) 0.1 525 0 195 1
Our method (CPU) 1 142 1.8% 21 9.2

256×256×53 Our method (GPU) 1 142 1.8% 0.2 975

Foot
Upwind (ground truth) 0.1 765 0 648 1
Our method (CPU) 1 201 1.9% 67 9.3

256×256×128 Our method (GPU) 1 201 1.9% 0.7 925

Tooth
Upwind (ground truth) 0.1 923 0 995 1
Our method (CPU) 1 272 1.6% 106 9.4

256×256×161 Our method (GPU) 1 272 1.6% 1.1 905

Frog
Upwind (ground truth) 0.1 478 0 138 1
Our method (CPU) 1 122 2.2% 14 9.9

256×256×44 Our method (GPU) 1 122 2.2% 0.16 862

Knee
Upwind (ground truth) 0.1 532 0 152 1
Our method (CPU) 1 162 2.3% 16 9.5

256×256×44 Our method (GPU) 1 162 2.3% 0.18 894

these methods, while the extra regularization step keeps the parallelism and locality. 

Therefore, we expect the proposed method to be applied in these platforms in addition 

to GPU, which will be our immediate future work.

In geometric active contour models, the stopping functions largely affect the seg-

mentation results. We use image gradient and local average to define edge stopping 

functions, while other image features can be applied in a similar manner. If these fea-

tures can be computed from only neighboring cells (pixels/voxels), the LBM scheme 

can be directly used and easily parallelized. However, some models use global image 

attributes, such as the high order statistical descriptors [18] or clustering [12], where 

the computation needs special parallel algorithms, which can be combined with our 

parallel solution for fast performance.

In general, our method can quickly extract 3D geometry with accurate and smooth 

implicit representation from medical images. One direction of the future work is to 

combine this solver and the computation domain reduction methods (e.g., multi-grid 

or narrow band) together to further enhance the computational efficiency. Another 

direction is in bio-flow m odeling a s L BM i s a lso a  g ood p arallel fl ow so lver. The 

segmentation results can seamlessly feed to LBM based bio-flow simulation (e.g., [38, 

39]) without explicitly generating the meshes. We will further combine this approach
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with the LBM flow simulation towards a unified hemodynamics simulation system.
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