
Cost-Effective Deployment of Certified Cloud
Composite Services

Marco Anisetti, Claudio A. Ardagna, Filippo Gaudenzi

DI – Università degli Studi di Milano, Italy

Ernesto Damiani

EBTIC – Khalifa University, UAE

Gwanggil Jeon

Incheon National University, Department of Embedded Systems Engineering, Incheon,
Republic of Korea

Abstract

The advent of cloud computing has radically changed the concept of distributed

environments, where services can now be composed and reused at high rates.

Today, service composition in the cloud is driven by the need of providing stable

QoS, where non-functional properties of composite services are proven over time

and composite services continuously adapt to both functional and non-functional

changes of the component services. This scenario introduces substantial costs

on the cloud providers that go beyond the cost of deploying component ser-

vices, and require to consider the costs of continuously verifying non-functional

properties of composite and component services. In this paper, we propose a

cost-effective approach to certification-based cloud service composition. This

approach is based, on one side, on a portable certification process for the cloud

evaluating non-functional properties of composite services and, on the other

side, on a cost-evaluation methodology aimed to produce the service compo-

sition that minimizes the total cost paid by the cloud providers, taking into

1Email: firstname.lastname@unimi.it
2Email: ernesto.damiani@kustar.ac.ae
3Email: gjeon@inu.ac.kr

Preprint submitted to Elsevier October 10, 2019

account both deployment and certification/verification costs. Our service com-

position approach is driven by certificates awarded to single services and by a

fuzzy-based cost evaluation methodology, and assumes certified properties as

must-have requirements for service selection and composition.

Keywords: Cloud, Certification, Cost Optimization, Service composition,

Security

1. Introduction1

The maturity reached by cloud computing has fostered the implementation2

of a number of distributed infrastructure, platform, and application services3

available worldwide. Current trends in software distribution and provisioning4

envision services made available as commodities over distributed systems in-5

cluding the Internet or the cloud marketplace. At the same time, the trend6

towards coarse-granularity business services, which cannot be managed by a7

single entity, resulted in several approaches to service composition that maxi-8

mize software re-use by dinamically composing single services on the basis of9

their functionalities [1].10

A major challenge faced by distributed service-based systems deployed on11

the cloud goes beyond the ability to guarantee the functionality of compos-12

ite services, and must consider the importance of guaranteeing stable Quality13

of Service (QoS) in the form of non-functional properties requirements such14

as security, performance, and trust [2]. Service compositions need to guar-15

antee optimal and verifiable properties, managing different events that might16

change their structure such as component relocation, substitution, malfunc-17

tioning, versioning, adaptation [3]. Continuous monitoring and verification of18

service non-functional properties is needed and usually achieved by means of19

assurance techniques [4, 5]. Recently, certification-based assurance techniques20

have been introduced to guarantee stable QoS in the cloud [6, 7, 8, 9, 10, 11].21

They are based on continuous collection of evidence on the behavior of the22

system, which is used to verify whether the considered system holds a specific23

2

(set of) non-functional property and award a certificate proving it. To this24

aim, distributed agents are instrumented to connect to different endpoints in25

the cloud and retrieve evidence used to evaluate the non-functional status of26

the target cloud-based system. Current certification techniques mostly focus on27

the certification of single-service systems and often do not consider the cost of28

maintaining stable QoS. Even worse, a trend in service composition is to pro-29

vide an ad hoc composite service for each request, with high costs on the cloud30

providers (CPs).31

In this scenario, two colliding requirements emerge. On one side, there is the32

need to guarantee non-functional properties of a service composition. This is a33

challenging task that requires continuous evaluation of compositions at cloud-34

provider side, to accomplish the dynamic and evolving nature of the cloud. On35

the other side, there is the need to take the costs observed by cloud providers for36

certified composition management under control. These costs, in fact, rapidly37

increase because the costs of continuous certification and verification become38

substantial. Current research on cloud computing has privileged solutions min-39

imizing costs on the final users [12, 13, 14], neglecting the costs on the cloud40

providers that often represent a major source of fee increase.41

In this paper, we propose the first cost-effective approach to certification-42

based cloud service composition that addresses the above problems. It is inspired43

by our previous work in [4] and extends it according to the cloud challenges dis-44

cussed in [11] and [15]. Differently from existing work [12, 13], our service45

composition approach is driven by certificates awarded to single services and46

by a fuzzy-based cost evaluation methodology, and assumes certified properties47

as must-have requirements for service selection [16] and composition [17]. This48

methodology aims to decrease the costs of cloud providers, also analyzing those49

costs introduced by the need of keeping the composition continuously moni-50

tored and certified. More specifically, the cost of deploying a certified service51

composition includes i) direct costs, traditional costs of service deployment on52

the cloud, or costs of third-party services building the composition (i.e., multi-53

cloud composition), ii) indirect costs, the costs introduced by the certification54

3

infrastructure to continuously monitor certificate validity, iii) mismatch costs,55

the costs modeling the discrepancy between what was agreed in terms of certi-56

fied properties and what was actually provided. The mismatch costs are often57

neglected by existing approaches. They evaluate the additional costs observed58

by a CP when sharing a service whose properties in the certificate are stronger59

than the properties requested by a composite service. For instance, providing a60

storage service ensuring end-to-end confidentiality, while just confidentiality of61

data at rest is requested, means that resources for confidentiality in transit are62

overspent without a real revenue.463

The contribution of this paper is twofold. First, we present a certification64

process for composite services that fits the dynamics of the cloud (Sections 365

and 4). Our process guarantees continuous monitoring of certified properties,66

evaluating certificate validity over time and portability across different deploy-67

ments. Second, after introducing the cost factors and profiles affecting the68

costs of cloud providers (Section 5), we provide a fuzzy-based cost evaluation69

methodology at the basis of a cost-effective, certification-based cloud service70

composition approach (Section 6). Our approach selects component services71

on the basis of their certified properties and is implemented by means of two72

run-time heuristics for composition cost minimization, which are experimentally73

evaluated in terms of quality and performance (Section 7). It contributes to the74

resolution of the long-standing problem of managing non-functional properties75

of distributed applications and composite services in a cost-effective way. It76

provides an approach that effectively relocates and refines service compositions77

in the cloud at run time guaranteeing stable QoS.78

2. Problem Statement79

Our reference model is a cloud infrastructure where single services are com-80

posed to form complex services and certification-based assurance techniques81

4We note that mismatch cost is a crucial metric for internal cost optimization, permitting

a more effective monitoring of requests vs offers.

4

are deployed for continuous QoS evaluation. The participating entities are:82

i) cloud provider, providing functionalities for service delivery and composition;83

ii) composite service owner, managing a service composition; iii) certification84

authority, providing functionalities for continuous non-functional property certi-85

fication. Current approaches to service composition in the cloud are affected by86

a few limitations, which show a clear disalignment with the maturity reached87

by the cloud. These limitations, which are described in the following, must88

be addressed to provide a cost-effective service composition for the cloud with89

continuous QoS assessment.90

• Functional composition. Service composition in the cloud puts great em-91

phasis on functionalities. Component services are selected on the basis of92

the implemented functionalities, while overall non-functional aspects are,93

in most of the cases, pushed aside. For example, a composite e-Health94

service composes services for planning for a visit, access clinical reports,95

and get medicine prescription, a payment service, and a database/storage96

service. This practice however increases the likelihood of composite ser-97

vices that, on one side, satisfy the expectations of the users, while on the98

other side increase risks of failures and misbehaviors (e.g., privacy risks in99

the e-Health service). A proper approach to service composition must not100

only focus on functional requirements, but also consider non-functional101

requirements from the outset. For example, non-functional requirements102

may refer to security, privacy, reliability requirements, and can be ad-103

dressed by proving specific properties such as confidentiality, integrity,104

availability, or showing compliance to specific standards/regulations, such105

as Payment Card Industry Data Security Standard (PCI-DSS), EU Gen-106

eral Data Protection Regulation (GDPR).107

• Ad hoc composite services. Service composition in the cloud often consists108

of ad hoc workflows, where component services are designed and devel-109

oped for a specific composite service. For example, similarly to what hap-110

pens with reserved instances and dedicated hosts in the cloud, component111

5

services are developed for and assigned to a specific, static service com-112

position and never shared with other composite services. This approach113

substantially decreases the utility of service composition, from both a flex-114

ibility and a cost point of view. Having no possibility of sharing a single115

service among multiple service compositions bound current approaches116

to hold fashion monolithic service deployments. This approach is often117

adopted at infrastructure layer, where the huge amount of available re-118

sources often point to single tenant scenarios, where a user is usually119

provided with isolated resources not shared with other tenants. If, on120

one side, ad hoc composite services lower complexity of QoS evaluation121

and management, on the other side, it substantially increases costs and122

reduces the benefits of service compositions.123

• QoS evaluation. It mostly focuses on deployment-time evaluation and on124

composition adaptation in case of component service malfunctioning/fail-125

ure. QoS evaluation is however a more powerful concept that should rep-126

resents a first-class requirement driving composition operations. First, it127

should be based on assurance (e.g., certification) techniques guaranteeing128

stable and verifiable QoS; then, it should consider how the QoS of a single129

service contributes to the QoS of the whole composition; finally, it should130

implement a continuous process that evaluates non-functional properties131

over time and drives adaptation of service compositions to provide stable132

QoS.133

• Direct costs. The evaluation of service composition costs, which mainly134

focuses on direct costs due to component service integration, does not fit a135

multi-tenant cloud environment where i) services can be shared, relocated136

and migrated among different compositions and ii) non-functional proper-137

ties are modeled as QoS requirements and integrated with the composite138

service life cycle. A proper cost evaluation at the basis of a cost-effective139

service composition must also consider the costs introduced by the infras-140

tructure responsible for continuous QoS evaluation, and the costs intro-141

6

duced when QoS requested by the users are lower than the ones provided142

by the cloud infrastructure.143

In the following of this paper, we provide a cost-effective, certification-based144

service composition approach for the cloud that fills in the above limitations.145

It is based on i) the concept of portable certification, supporting continuous146

QoS evaluation also in case of service migration and relocation and ii) a new147

cost evaluation methodology, considering direct, indirect, and mismatch costs148

on the cloud providers. We recall that our approach considers non-functional149

properties of composite services as must-have requirements; in other words, the150

QoS requirements of composite services are satisfied by design following our151

certification-based service composition. The design of an approach where QoS152

requirements in the form of non-functional properties in certificates are relaxed153

is out of the scope of this paper and will be the target of our future work.154

3. Basic Concepts155

A certification scheme for the cloud implements a continuous process whose

goal is to verify whether a cloud service holds a given (set of) property [18]. The

cloud service under evaluation is referred to as Target of Certification (ToC).

Properties p=(p̂,l), as defined by the Cloud Security Alliance (CSA) [19], are

composed of a controlled name p̂ (e.g., confidentiality of data in transit) and

a level l modeling the strength of the supported property. Properties can be

organized in a hierarchy based on their strength such that pi≤pj (meaning pi

is weaker than pj) iff pi.p̂=pj .p̂ and pi.l<pj .l. Based on levels l, a distance

Dist(pi, pj) between two properties with the same p̂ is defined as:

Dist(pi, pj) = |pi.l − pj .l| (1)

In this paper, without loss of generality, we consider security properties includ-156

ing, among the others, confidentiality, authentication, and data replication. For157

instance, property confidentiality can be further specified in properties confi-158

dentiality at rest and confidentiality in transit, each with three levels {AES128,159

AES192, AES256} and {TLS1.0, TLS1.1, TLS1.2}, respectively.160

7

Our certification process is driven by a Certification Authority that manages161

all certification activities leading to certification. It is composed of two sub-162

processes: i) evidence collection sub-process and ii) life cycle sub-process. The163

evidence collection sub-process collects the evidence at the basis of a trustworthy164

certification and is carried out by the certification infrastructure. The life cycle165

sub-process implements a continuous certification process that accomplishes the166

evolution of the ToC , managing ToC migrations and versioning.167

The certification process is based on two models, namely Certification Model168

(CM) Template and Instance, driving certification activities [20]. The certifica-169

tion authority defines CM Template T specifying evidence collection activities170

for a class of ToC and a (set of) property; the certification infrastructure im-171

plements and executes the corresponding CM Instance I specifying evidence172

collection activities for a given ToC instance and a (set of) property. Collected173

evidence is based on testing or monitoring, and permits to evaluate whether174

the observed ToC behavior conforms to the expected one. Upon a positive175

evaluation is retrieved following activities in I, a certificate certI is released.176

Certificate certI is signed by the certification authority and contains: i) a de-177

scription of the property certified for a given service, ii) a link to the ToC , and178

iii) a reference to the collected evidence and the relevant I.179

Certification Model Template (T). It is a declarative model that describes180

the activities to be done to verify a set of properties according to the expected181

behavior of a class of ToC . Formally, a CM Template T i is a triple (fi ,Ri ,d-182

evali), where i) fi is a functionality in the set F of functionalities offered by a183

cloud provider, ii) rk is a user requirement in the set Ri of requirements used184

to annotate fi , with rk∈Ri a property (p̂,l), and iii) d-evali is a declarative185

description of the evaluation activities to be carried out on the ToC to verify186

requirements Ri . T is built around d-eval, which is defined as a set of annotated187

workflows.188

Definition 3.1 (d-eval). d-eval is a pair 〈φ, ω〉, where:189

• φ is a set of sequential workflows {n1 ,. . .,nn} for evidence collection, where190

8

each node ni defines an abstract action (e.g., test authentication interface)191

and each edge (ni ,nj) the flow between two actions.192

• ω is an annotation function on nodes n. ω({ni}) defines constraints (e.g.,193

two factor authentication required) for a subset {ni} of abstract actions.194

We recall that d-eval refers to a generic class of ToC (e.g., an authentication sys-195

tem), while it precisely pinpoints security and deployment requirements (e.g., a196

given password strength policy). This means that, although there are a number197

of different ToC for the selected class, their evaluation w.r.t. security/deploy-198

ment requirements should follow the same declarative description.199

Certification Model Instance (I). It is a procedural, executable model200

generated by instantiating T on a real ToC . It drives the certification process,201

including the evidence collection process. Formally, a CM Instance Ii is a triple202

(csi ,Pi ,p-evali), where i) csi is the ToC , ii) Pi is the set of properties supported203

by Ii, and iii) p-evali defines certification activities as a concrete instantiation of204

d-eval for a specific ToC . I is built around p-eval, which covers the peculiarities205

of the specific ToC w.r.t. the given properties. p-eval is an annotated workflow206

defined as follows.207

Definition 3.2 (p-eval). p-eval is a triple 〈φ′
, λ〉, where:208

• φ′
is a set of sequential workflows {n1 ,. . .,nn} for evidence collection,209

where each node ni defines an action implemented on the ToC instance210

and each edge (ni ,nj) the flow between two implemented actions.211

• λ is an annotation function. λ({ni}) defines the configuration settings of212

each action, describes how to deploy p-eval, and describes possible depen-213

dencies on its execution.214

We note that CM Instance I can be not unique for CM Template T .215

Example 3.1. Let us consider a Certification Model Template T =(Storage,216

Confidentiality via encryption at rest, d-eval), with d-eval=〈φ, ω〉. For simplic-217

ity, we assume φ composed of a single sequential workflow {n1 ,n2 ,n3}, where218

9

n1=“ToC login”, n2=“Test encryption”, n3=“ToC logout”, and annotations219

ω({n1})=[Administration credentials required], ω({n2})=[Resource URI].220

The same Certification Model Template T is instantiated in two different221

Certification Model Instances I for a Linux file system and Amazon Simple222

Storage Service (S3). Both instances drive a certification process and evidence223

collection activity targeting the same property “Confidentiality at rest via en-224

cryption”.225

Let us first consider a Linux file system using LUKS. p-evall=〈φ
′

l, λl〉 im-226

plementing the above d-eval is defined as follows: φ
′

l={SSH login, Script testing227

encrypted volumes, SSH logout}, λl({n1})=[root,cert], λ({n2})=Volume path.228

Let us then consider Amazon S3. p-evals3=〈φ′

s3, λs3〉 implementing the above229

d-eval is defined as follows: φ
′

s3={Amazon login, API call for S3 configuration,230

Amazon logout}, λl({n1})=[credentials, APIkey], λ({n2})=[Config item].231

4. Portable Certification of Composite Services232

We present a certification approach specifically tailored for cloud composite233

services, which is grounded on and extends the one in Section 3 to i) support234

service versioning, migration, and deployment changes (portability) and ii) ac-235

complish the dynamics of service orchestrations where component services can236

be replaced and migrated at run time according to contextual events. In the237

following, we first describe the portability of our certification process and then238

describe how we use it in the framework of composite service certification.239

4.1. Portability240

A portable certification process is a certification process that is not bound241

to a specific ToC and can be easily applied to different service instances. It242

permits to apply the same certification process to different ToC with sufficient243

commonalities. Using our formalism, a certification process that derives from244

requirements in a template T can be re-used (with or without minor modifi-245

cations) to certify all the services having an instance I consistent with T . To246

10

verify this consistency we define a consistency check function, inspired by the247

work in [20], as follows.248

Definition 4.1 (
I→). CM Instance Ii=(csi ,Pi ,p-evali) is consistent with CM249

Template T i=(fi ,Ri ,d-evali), denoted as T i
I→Ii, iff i) csi implements fi , ii)250

Pi is such that Ri≤Pi, that is, ∀rj∈Ri ,pj∈Pi, rj≤pj, meaning that the prop-251

erties are stronger than the requirements according to property levels, and iii)252

d-evali
i→p-evali (see Definition 4.2), meaning that p-evali is an instantiation of253

d-evali.254

Consistency check
I→ is the cornerstone of process portability. A certification255

process can be implemented and executed using different instances I, thanks256

to the decoupling between abstract definition (T) and concrete actuation (I)257

of the certification process. This decoupling also permits multiple consistent258

instantiations (I) of the same process (T). We note that, having T and I the259

same logical structure,
I→ can be used to verify the consistency between two260

templates (T i
I→T j) or two instances (Ii

I→Ij).261

As a complement to Definition 4.1, we detail how p-eval in I is checked for262

consistency against d-eval in T .263

Definition 4.2 (
i→). p-evali=〈φ

′
, λ〉 is an instantiation of d-evali=〈φ, ω〉,264

denoted as d-evali
i→p-evali, iff i) φ

′
implements φ, ii) configurations λ({ni})265

in p-eval instantiate constraints ω({ni}) in d-eval, iii) λ permits the binding266

between each action in φ
′

and the corresponding end-point in the ToC .267

Definition 4.1 (
I→) and Definition 4.2 (

i→) are at the basis of a portable268

certification process that addresses two main scenarios: service versioning and269

service replacement.270

Service versioning. It considers a single service that either is migrated as is271

to another location or evolves to a new version. It is defined as follows.272

Definition 4.3 (Process Portability (Versioning)). Let us consider a cer-273

tification process driven by Ii=(csi ,Pi ,p-evali) for service csi , and a service csk274

11

such that either i) csi=csk but they are deployed in different locations or ii) csk275

is the new version of csi . The certification process driven by Ii can be ported to276

csk iff λi is modified to connect p-evali to csk .277

Process portability (versioning) properly configures the certification model in-278

stance in a way that permits the certification activities in p-evali to connect to279

a different ToC (i.e., service csk). To this aim, λi of p-evali must provide the280

new configurations required to connect each action to csk .281

Service replacement. It considers a migration of a service to another service282

of the same class. For instance, a service implementing a MySQL database is283

migrated to a service implementing an SQLServer database. Process portability284

for service replacement is defined as described in the following definition.285

Definition 4.4 (Process Portability (Replacement)). Let us consider Ii286

=(csi ,Pi , p-evali) and Ik=(csk ,Pk ,p-evalk) such that csi 6=csk . The certifica-287

tion process driven by Ii can be ported to Ik according to the following condi-288

tions:289

• Ii
I→Ik290

• csi and csk provide the same functionality fi .291

Process portability (replacement) instantiates certification activities on dif-292

ferent services csi and csk . To this aim, Condition 1 states that Ii is consistent293

with Ik, and in turn their T are consistent as well. We note that the con-294

sistency at CM Instance level implies that p-evalk is equivalent to p-evali (see295

Definition 4.2). In other words the workflows for evidence collection in p-evali296

must be available also in p-evalk possibly with different annotation functions297

[17]. Details about this implications, and how to relax it are out of the scope of298

this paper, and will be detailed in future work.299

Condition 2 states that csi and csk provide the same functionality fi , which300

is specified in the corresponding templates T i and T k. In other words, a cer-301

tification process can be ported to a service or in an environment where the302

12

ToC p .name p .level p-eval.φ p-eval.λ

Iv=

I1=

Ir=

S3.bucket.us-east-1 e2econfidentiality 1 φ
′

s3 λ2

S3.bucket.eu-west-1 e2econfidentiality 1 φ
′

s3 λ1

AzureStorage.eu-1 e2econfidentiality 2 φ
′

a λ3

Replacement

Versioning

Figure 1: An example of Versioning and Replacement of a storage service

certification is driven by a different T without the need to re-build the certifi-303

cation process from scratch.304

Example 4.1. Let us consider a CM template for a storage service defined as305

follows T 1={Storage, {(e2econfidentiality,1) },d-evalstorage}, where end-to-end306

confidentiality (e2econfidentiality) is requested (i.e., both confidentiality in tran-307

sit and confidentiality at rest). Let us consider a storage service based on Ama-308

zon Simple Storage Service (S3) and specifically a bucket hosted on S3 eu-west-1309

AWS region. Let us consider that this service has been certified according to310

the CM Instance I1=(S3.bucket.ue-west,{(e2econfidentiality,1)},p-evals3) with311

T 1
I→I1.312

Figure 1 also shows the case where this service is moved to a different region313

(versioning). In this scenario CM Instance I1 is ported to Iv=(S3.bucket.us-314

east-1,{(e2econfidentiality,1)},p-evals3), where p-evalS3 is re-configured to ac-315

cess the new bucket in the different region. We note that only parameters λ2316

are modified since the service is exactly the same but in different location.317

Figure 1 shows the case where this service is migrated to a different service318

(replacement). More specifically the service is replaced with an Azure Storage319

service which offers the same functionality and is certified for a given T 2 for320

the same property but with higher level ({(e2econfidentiality,2)}) with (T 1
I→T 2).321

The corresponding CM Instance Ir=(AzureStorage.ue-1, {(e2econfidentiality,322

2)}, p-evala) is compatible with I1 and can replace it. We note that, in a real323

13

environment, storage service replacement also implies functional compatibility324

at orchestration level and application data migrations.325

4.2. Composition326

A certification process for composite services builds on our portable certifica-327

tion process and is driven by a compositional CM Template T c, where functional328

and certification requirements are specified for each component service. T c is329

expressed as a set {T 1, . . . , T n} of ordered templates, each to be linked to a330

component service. A certified service csi , having certIi , can be selected as a331

component service iff its Ii is consistent with the corresponding T i in T c. We332

note that templates, including compositional templates, are specified by a CA333

and are the cornerstone of the certification chain of trust [21]. We extend Defi-334

nition 4.1 to compositional instances (Ic) and compositional templates (T c) as335

follows.336

Definition 4.5 (
Ic→). A Compositional Instance Ici is consistent with a Com-337

positional Template T ci , denoted as T ci
Ic→Ici , iff ∀T k∈T ci , ∃Ij∈Ici such that338

T k
I→Ij.339

The consistency check in Definition 4.5 supporting multiple consistent in-340

stantiations (Ic) of the same certification process (T c) is at the basis of com-341

position portability. It provides higher flexibility and lower costs, supporting342

automatic component substitution and reuse. Shared/reused components do343

not need to be evaluated multiple times, saving certification effort, and their344

management does not involve the certification authority.345

Example 4.2. Let us consider an e-Health service that allows patients to plan346

and pay for a visit, access clinical reports, and get medicine prescription. The347

e-Health service is a composite service that integrates i) a Web App providing ac-348

cess to e-Health functionalities, ii) a Database that gives access to patients’ doc-349

uments, iii) a Payment service allowing patients to pay for visits, iv) a Storage350

that stores all patients’ documents. An e-Health composite service comes with351

14

strong security requirements: it must guarantee confidentiality of data and com-352

munications, and robustness against known vulnerabilities. A compositional CM353

Template T c={T 1,T 2,T 3,T 4} can then be defined as follow: i) T 1={WebApp,354

{(confidentiality-in-transit,3), (vulnerability-free,10) },d− evalwebapp} meaning355

that the Web App must provide the service over an encrypted channel and be356

vulnerability free, ii) T 2={DB, {(e2econfidentiality,3) },d− evaldb} and357

T 4={Storage, {(e2econfidentiality,3) },d−evalstorage} meaning that the database358

and storage must be encrypted and exchange data over an encrypted channel359

(e2econfidentiality) with highest level (i.e., l=3), iii) T 3 = {Payment, {(con-360

fidentiality-in-transit, 2) }, d− evalpayment} meaning that the payment service361

must provide the service over an encrypted channel (confidentiality-in-transit)362

with medium level (i.e., l=2).363

A consistent Compositional Instance Ici of the above CM Template T c can364

be defined as made by the following set of I, {{psql.h-6, confidentiality.0, p −365

evalpsql}, {nginx.h-2, vulnerability-free.10, p − evalnginx}, {S3.h-2, e2e-confi-366

dentiality.4, p− evals3}, {pay.remote, confidentiality, p− evalpay}}.367

We note that, thanks to our portability (see Example 4.1), Amazon S3 (i.e.,368

S3.h−2) can be replaced with Azure Storage having instance Im=(AzureStorage.ue-369

1,e2econfidentiality.1,p− evalazurestorage) leading to another consistent compo-370

sitional instance Icj .371

5. Deployment of Certified Composite Services372

The enrichment of traditional composition solutions with certification tech-373

niques evaluating non-functional properties of composite services introduces the374

need of rethinking the algorithms driving selection of component services. If,375

on one side, service selection has been already renewed to accomplish selection376

of services that prove a set of non-functional properties [4], on the other side,377

solutions to cost-based service selection need to depart from the assumption378

that costs are only due to service deployment and resource consumption [12].379

The latter must consider costs introduced by certification processes, and by the380

15

need of keeping the composition continuously monitored and certified.381

5.1. Deployment Composition Matrix382

The status of a given CP at time t can be represented as a matrix D of size383

C×F of deployed compositions Ici , where C is the cardinality of deployed com-384

positions at time t and F the cardinality of all possible functionalities provided385

by service providers. Matrix D has the following structure386

D =



f1 f2 f3 f4 · · · fF

Ic1 I1,1 I1,2 I1,3 I1,4 · · · I1,F
Ic2 I2,1 I2,2 I2,3 I2,4 · · · I2,F
Ic3 I3,1 I3,2 I3,3 I3,4 · · · I3,F
...

...
...

...
...

. . .
...

IcC IC,1 IC,2 IC,3 IC,4 · · · IC,F


(2)

where each row represents a composite service Ici , each column a function-387

ality fj , and each cell a component service of Ici referred in the matrix with388

the corresponding CM Instance Ii,j=(csi,j ,Pi,j ,p-evali,j). Each service Ii,j is389

annotated with a sharing level k≥1, specifying the number of compositions Ici390

insisting on it. In the following, we denote the component service Ii,j selected391

as part of the composition Ici as Ici .Ij .392

Example 5.1. Figure 2(a) shows an example of deployment composition matrix393

D with 4 functionalities (f) and 8 cloud services (I), as follows:394

• Functionality database (DB): mysql (I1) and posgresql (I6) are both cer-395

tified for property confidentiality at different levels l.396

• Functionality web application (WebApp): nginx (I2, I4, and I7) are cer-397

tified for property vulnerability-free at different levels l. A level can refer398

to the severity of the Common Vulnerability Scoring System (CVSS) score399

related to the Common Vulnerabilities and Exposures (CVE) discovered400

on the target; the highest the level the lower the severity discovered.401

16

• Functionality storage (Storage): Amazon S3 (I8) is certified for property402

end-to-end confidentiality.403

• Functionality payment (Payment): a remote payment service (I3) is cer-404

tified for property PCI-DSS compliance level 1 and the ENGPay remote405

payment service (I5) for PCI-DSS compliance level 3. Details about PCI-406

DSS compliance certification is available in [17] and in Section 7.1.407

These services are composed in 3 composite services Ici (Figure 2(a)): i) an408

e-commerce service Ic1 based on Database I1, WebApp I2, payment service I3;409

ii) a shared-economy app Ic2 based on Database I1, WebApp I4, and payment410

service I5; iii) the e-health service Ic3 of Example 4.2 based on Database I6,411

WebApp I7, storage I8, and payment service I3. Figure 2(b) shows a graphical412

overview of the composite services highlighting shared component services, that413

is, Ic1 and Ic3.414

5.2. Cost Factors415

The management of a certified service introduces a cost on the cloud provider416

that can be evaluated using the Deployment Compositional Matrix and depends417

on three main factors: direct (deployment) costs, indirect (certification) costs,418

and mismatch costs. Each of these cost factors can be characterized using one419

of the four different cost behaviors identified by Horngren [22], and later used420

for cloud services by de Medeiros et al. [12]: i) fixed costs, a resource cost421

function that is completely independent from volume and time, indeed constant;422

ii) variable costs, a resource cost function that varies depending on volume or423

time, and is equal to zero for volume equal to zero; iii) mixed costs, a resource424

cost function that is the sum of a variable and a fixed cost function; and iv) step425

costs, a resource cost function that varies following different patterns.426

Direct (deployment) costs (α(I.cs, I.P, I.k)). They are defined by the427

cloud provider as the amount of resources to be allocated to a cloud service cs428

w.r.t. the certified properties I.P. They are usually estimated as a mixture of429

fixed deployment and variable usage costs [12]. Direct costs comprise servers,430

17


DB WebApp Storage Payment

Ic1 I1 I2 − I3
Ic2 I1 I4 − I5
Ic3 I6 I7 I8 I3


I1 = {mysql.h-1, confidentiality, 1, ...}

I2 = {nginx.h-2, vulnerability-free, 4, ...}
I3 = {pay.remote, PCI-DSS compliance, 1, ...}

I4 = {nginx.h-4, vulnerability-free, 7, ...}
I5 = {ENGPay.remote, PCI-DSS compliance, 3, ...}

I6 = {psql.h-6, confidentiality, 0, ...}
I7 = {nginx.h-2, vulnerability-free, 10, ...}
I8 = {S3.h-2, e2e-confidentiality, 4, ...}

(a)

Ic1
Ic2
Ic3

DB

I1

I6

Web App

I2

I4

I7

Storage

I8

Payment

I3

I5

(b)

Figure 2: An example of CP Status Matrix D with 8 services and 3 compositions

infrastructure, power, networks, and personnel costs [23]. They also consider431

the cost of orchestrating the composition, and managing service versioning and432

migration. An appropriate cost behavior can be a step function that depends433

on properties I.P and the sharing level k, that is, the number of compositions434

insisting on a given service. Figure 3(a) shows an example of a function of435

direct costs; we observe a small cost increase between k=2 and k=4 due to436

power consumption, and a more substantial increase from k=5 when a vertical437

scaling of resources is required to satisfy all requests.438

Indirect (certification) costs (β(I.p-eval, I.k)). They are defined by the439

cloud provider with the support of the certification authority as the amount440

18

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 1 2 3 4 5 6 7 8 9 10

c
o

s
t

k

Direct Cost α

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8 9 10

c
o

s
t

k

Sample Test

Recurrent Test

Monintoring

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2

c
o

s
t

k

Indirect Cost γ

Figure 3: Cost functions

of resources to be allocated to the certification infrastructure (Section 7) for441

continuous evaluation of service compositions. We note that, to execute evi-442

dence collection in p-eval, our certification infrastructure considers three types443

of collection activities (Figure 3(b)) having different costs.444

• Sample test: one time evaluation of a specific part of the ToC . No need445

to keep evaluation resources allocated after the evaluation.446

• Recurrent test: a scheduled, repeatable evaluation of a specific target;447

it is often part of a complex evaluation. The evaluation resources are448

permanently allocated to re-execute the evaluation multiple times.449

• Monitoring: continuous and permanent evaluation of the target.450

Mismatch costs (γ(T .R, I.P)). They are defined by the certification author-451

ity, as inefficiency due to the distance between provided properties I.P and re-452

quired properties T .R, with T I→I. Providing higher security properties means453

in general allocating more resources than needed (e.g., more computational ef-454

fort for encryption with 128-bit key when 32-bit key was required). This loss455

of resources depends on the distance Dist(I.p , T .r) for each p∈P and corre-456

sponding r∈R, according to property levels in Section 3. Figure 3(c) shows an457

example of mismatch cost function for a property/requirement distributed over458

three levels. We note that the function is not necessarily homogeneous over459

the number of property levels. An important boost for higher levels might be460

observed, because high security levels may require more hardware facilities.461

19

5.3. Cost Profiles462

The CP behavior balances the contribution of direct, indirect, and mismatch463

costs to the computation of the total cost, while the total cost is the combination464

of each cost factor. We express the CP behavior as three cost profiles mapping465

to different CP strategies inspired by the deployment patterns in [24, 25].466

• Sharing profile is typical of cloud providers that prefer to share re-467

sources, increasing the distance between requested and provided security468

properties (higher mismatch costs).469

• Fitting profile is typical of cloud providers that prefer to achieve higher470

precision between requested and provided security properties, at the price471

of increasing the need of horizontal scaling. As a result, more compo-472

nent services are deployed precisely addressing users’ needs, decreasing473

the average sharing level (higher direct and indirect costs).474

• Average profile where direct, indirect, and mismatch costs equally con-475

tribute to the total cost.476

We note that a degeneration of the fitting profile where an ad hoc composi-477

tion is deployed for each request is a good approximation of the actual strategy478

adopted by cloud providers.479

6. Fuzzy-Based Cost-Effective Deployment of Service Compositions480

We propose a fuzzy-based cost evaluation approach, which evaluates the cost481

of composite services in Matrix D on the basis of cost factors and profiles in482

Section 5. Our solution extends the one in [15] to provide a more accurate in-483

frastructure and easy to tune approach for cost evaluation and profile setting.484

In fact, the solution in [15] assumed uniform cost factors to balance their con-485

tribution to the final cost, and required a difficult and inaccurate tuning of the486

cost profiles on the needs of the cloud providers.487

Fuzzy logic has been applied successfully in many fields including software

cost estimation [26]. Let Y be the universe of discourse containing cost values

20

y (i.e., cost factors in this paper). As customary, the membership degree of

element y to a fuzzy set S is characterized by a membership function µS(y). A

fuzzy set S in Y is denoted as follow.

S = {(y, µS(y))|y ∈ Y)} (3)

where µS(y) is the membership function of the fuzzy set S. Let us then consider488

each cost function α, β, γ as a separate universe of discourse Yα, Yβ , Yγ . We489

define a standardized partition of each of them into different fuzzy sets. In the490

following, we discuss Yα; the same discussion holds for Yβ and Yγ .491

We define a standard fuzzy partition {Sαl , Sαm , Sαh} of Yα such that492

∀yα∈Yα,
∑
j∈{l,m,h} µSαj (yα)=1. Each fuzzy set corresponds to a linguistic493

concept, that is, LOW for Sαl , MEDIUM for Sαm , and HIGH for Sαh . There494

are a number of different shapes for the membership functions related to each495

linguistic concept. In this paper, we use R-function and L-function for LOW and496

HIGH membership functions and trapezoidal function for MEDIUM member-497

ship function. Given these linguistic variables mapping the concepts of LOW,498

MEDIUM, and HIGH costs for each cost factor, we define different sets of fuzzy499

rules. The rules, one for each profile, are used by the fuzzy inference system to500

infer the cost (Fc) introduced by each single component service Ict .Ij at time501

t.502

Example 6.1. Let us consider a component service Ici .Ij (I for brevity) to be503

deployed at time t, following a sharing profile. Examples of fuzzy rules can be504

defined as follows:505

If α(I .cs, I.p , I .k) is HIGH and β(I .p-eval, I .k) is not LOW and γ(T .R, I.P)506

is LOW then Fct(I) is HIGH.507

If α(I .cs, I.p , I .k) not HIGH and β(I .p-eval, I .k) is not LOW and γ(T .R, I.P)508

is LOW then Fct(I) is MEDIUM.509

If α(I .cs, I.p , I .k) is LOW and β(I .p-eval, I .k) is LOW and γ(T .R, I.P) is510

LOW then Fct(I) is LOW.511

512

21

α Fuzzification
(Yα, Yβ, Yγ)

Rules for profiles
Sharing
Fitting

Average

Cost Factors

I
Defuzzification and

Instance cost
Inference

Fc
If alpha is HIGH and beta is LOW

then Fc is MEDIUM
If …
…

 α

β

γ

 γ

Figure 4: Fuzzy cost inference for a given I and considering rules set for sharing profile (in

bold).

Figure 4 shows the overview of our approach for fuzzy-based cost computa-513

tion where, given a specific Ict .Ij at time t, cost factors α, β, and γ are mapped514

to fuzzy domains (Θ). This mapping is based on standard partitioning into dif-515

ferent membership functions, which are specific for each cost function.5 Then,516

for each cost profile, a set of rules are defined and executed (Ξ) to infer the517

cost of each single Ici .Ij (I in Equation 4 for brevity), using a defuzzification518

function (Ψ), as follows.519

Fct(I) =Ψ(Ξ(Θ(α(I.cs, I.p , I.k), β(I.p-eval, I.k), γ(T .R, I.P)))) (4)

Considering the CP status Matrix in Equation 2, total fuzzy cost TFct is

the sum of the cost of each deployed composite service Ici∈{Ic1, . . . , Ict }, with

t≤C. TFct can be formally expressed as

TFct =
∑
Ici

1≤i≤C

∑
Ici .Ij

1≤j≤|Ici |

Fct(Ici .Ij)
(5)

5Each CP tunes the membership functions of α and contributes to the tuning of the ones

of β, while the membership functions of γ are defined by the CA.

22

where
∑
Ici .Ij

1≤j≤|Ici |

Fct(Ici .Ij) is the cost of a composite service Ici and calculated520

as the sum of the costs of the corresponding component services Ici .Ij .521

We note that total fuzzy cost is not the real cost incurred for a given de-522

ployment. It represents the cost perceived by a cloud provider according to the523

selected profile (i.e., sharing, fitting average) and the mixture of the different524

cost sources (i.e., direct, indirect, mismatch).525

6.1. Composition Cost Minimization526

The aim of our solution is to find the best deployment {Ic1, . . . , Icn} of com-527

posite services that i) satisfies a set {T c1 , . . . , T cn } of composition requests, that528

is, guarantees T ci
Ic→Ici , with i=1,. . .,n, ii) minimize the cost TFcn (Equation 5)529

for the CP. We assume that a new composition request T ci is received every time530

instant t, introducing a uniform time of arrival for composition requests. Find-531

ing the optimum deployment has however an exponential asymptotic behavior532

O
(

(|l| ∗F ∗ t + t)t
)

, in the worst case, with |l| the number of property levels, F533

the number of functionalities, and t the number of composition request. Being t534

the dominating factor that varies over time, the exponential asymptotic behav-535

ior becomes O(tt), which clearly does not fit the pseudo real-time requirement536

in our paper. It is therefore necessary to design heuristic approaches for solving537

the problem in polynomial time, even for relatively large composite services.538

Many heuristic approaches balancing efficiency and quality in terms of pre-539

cision and recall can be used for minimizing TFct at time t, though not all of540

them are applicable in a cloud environment, where i) composition requests are541

consecutive, ii) the requests may need to be served quickly. In our previous542

paper [15], we considered a simpler approach that analyzes each request T ct543

independently and aims to find Ict providing the lowest cost increment with re-544

spect to the total cost at time t−1. This approach however has some drawbacks,545

which could affect the quality of the retrieved results. First, it provides a static546

approach where each Ici remains for its entire life-cycle deployed in the origi-547

nal deployment slot; then, it supports real-time deployment of each incoming548

23

request opening the door to wrong choices that could materialize only in the549

subsequent requests.550

We propose two heuristic algorithms: i) heuristic sliding window that selects551

a cloud service deployment within a time-forwarding window w of composition552

requests T ci and ii) heuristic sliding window with migration that extends the553

heuristic sliding window with the possibility of migrating component services554

Ici .Ij .555

Heuristic 1: Sliding Window. It is based on the idea of finding the best556

solution at time t using a time-forwarding window w. The heuristic selects the557

best deployment Ict at time t by evaluating a set of |w| consecutive requests T ci ,558

with t≤i≤t+|w|, received within a window w of size |w|. In other words, the559

selected Ict represents the composite service contributing to the global optimum560

within window w.561

At time t, the heuristic receives as input the CP status matrix D, which562

contains all deployed Ici with 1≤i≤t−1, all costs with related de-fuzzyfication563

functions, window size |w|, and the total fuzzy cost TFct−1.564

Upon collecting the last |w| requests T ct ,. . .,T ct+|w|, the heuristic calculates565

all possible candidate sets Ict ,. . .,Ict+|w|. For each candidate Ict ,. . .,Ict+|w|, our566

heuristic calculates the total fuzzy cost TFct+|w| and chooses the one that entails567

the minimum increase of cost. The minimum increase of cost is calculated as568

the difference between the total fuzzy cost TFct+|w| within window w and the569

current total fuzzy cost TFct−1. Both TFct+|w| and TFct−1 are calculated using570

Equation 4. Once the deployment Ict ,. . .,Ict+|w| with minimum cost increase is571

selected, Ict is instantiated to satisfy request T ct ; the window is then shifted of572

one time interval and the process restarts to satisfy request T ct+1 when a new573

request is received at time T ct+1+|w|.574

We note that |w| must be chosen carefully to balance the quality of the575

retrieved solution and the performance/complexity of the overall heuristic. This576

decision is left to the CP based on its requirements or preferences. We also note577

that a degeneration of this approach with a sliding window of dimension |w|=1578

24

yields to the greedy approach presented in [15].579

Heuristic 2: Sliding Window with Migration. It extends heuristic 1580

with a better management of component deployment. Heuristic 2 supports581

service versioning and replacement (see Definition 4.3 and Definition 4.4), and582

in turn resource consolidation, for cost optimization. Migration in fact allows583

CP to modify its status matrix, moving to a new deployment scenario with584

lower costs. The global effect on the total cost, called Migration Impact (mi), is585

the difference between the total fuzzy cost TFcmi
t after migration and the total586

fuzzy cost TFct before migration:587

mi = TFcmi
t − TFct (6)

Migration impact mi<0 introduces a cost saving; migration impact mi≥0588

introduces a cost increase.589

A migration is triggered when a new composition request T ct is processed590

and results in the deployment of a new cloud service Ii first instantiated in Ict591

(Ict .Ii). For clarity, we describe our heuristic using compositions with a single592

component service, since every functionality f is independent and therefore can593

be processed in parallel with the others. The migration process is composed of594

two sequential phases and 4 steps as follows.595

1. Service migration: this phase aims to optimize the cost of composite ser-596

vices Ici in D at time t−1. In particular, it migrates component service597

Ici .Ii, such that Ici .Ii
I→ Ict .It, to the new cloud service Ict .It deployed at598

time t (step 0) according to mi. Phase service migration starts with an or-599

dering process, which introduces a migration priority among deployed ser-600

vices. Services Ici .Ii are sorted in descending order according to function601

property distance Dist(T ci .T i.r, Ici .Ii.p) (see Equation 1), where T ci .T i.r602

is the property originally requested for composition request T ci and Ici .Ii.p603

is the property of the corresponding deployed composition Ici (step 1).604

Once all services are sorted, for each Ici .Ii, the migration impact mi is605

calculated and, if mi<0, Ici .Ii is migrated to Ict .It (step 2).606

25

2. Resource consolidation: this phase considers all component services Ici .Ii607

in the CP status matrix D migrated during the previous phase. Since608

each service instance Ii is shared among different composite services, a609

migration changes the level of sharing of Ii and introduces the need of610

a consolidation process to optimize the total fuzzy cost TFc (step 3).611

Resource consolidation is a binary join operation between two services Ii612

and Ij , with Ii.p<Ij .p , which migrates all service composition Ici that613

are deployed on Ii to Ij , that is, Ici .Ii is migrated to Ici .Ij . Among614

all possible pairs (Ii,Ij), heuristic 2 chooses the one that offers the best615

mi. Resource consolidation is recursively executed until no (Ii,Ij) offers616

a negative mi.617

Example 6.2. Let us consider a CSP offering compositions with a single func-618

tionality f and a property p with 3 levels. In the following, we describe the619

working of heuristic 2 as an extended version of heuristic 1.620

Step 0 – New request T ct (Figure 5(a)). A new request T ct at time t triggers621

the execution of heuristic 2. The status of the CSP is depicted in the status622

Matrix D in Figures 5(a), where each row represents the deployed composition623

Ici , each column the deployed instance Ij offering functionality f and property p624

with level l, and each cell the request T ci .T j.r to be satisfied by the correspond-625

ing property p of Ij. For instance, in Figure 5(a), cloud service I1 offers a626

property p at level 1 (p = (p̂, 1)) and is shared by composite services Ic1 and627

Ic3, whose templates T c1 and T c3 require property T c1 .T 1.r=(p̂, 1) and property628

T c3 .T 1.r=(p̂, 1), respectively. In the following, for simplicity, we consider the629

same p̂ for both r and p, and then refer to levels r.l and p .l only. At time t,630

composition request T c8 with r.2 is received. A composition instance Ic8 of T c8631

is deployed on a new cloud service I4 (denoted with a gray background in Fig-632

ure 5(a)) offering p .2. We note that the result of step 0 is both the final result633

of heuristic 1 and the initialization step of heuristic 2.634

Step 1 – Service ordering (Figure 5(b)). All component services Ici .Ij, with635

1≤j≤3 and with 1≤i≤7 in our example, are then sorted in descending order by636

26

I1 (p .1) I2 (p .3) I3 (p .3) I4 (p .2)

Ic1 r.1

Ic2 r.3

Ic3 r.1

Ic4 r.1

Ic5 r.3

Ic6 r.2

Ic7 r.2

Ic8 r.2

(a) Step 0

composition.cloud service Ic2.I2 Ic5.I3 Ic7.I2 Ic6.I3 Ic1.I1 Ic3.I1 Ic4.I2
property distance (+1) (+1) (0) (0) (-1) (-1) (-1)

(b) Step 1

order migration migration impact action I4(p.2)

1 Ic7.I2
Ic→ Ic7.I4 mi=-2 migrate Ict ,Ic7

2 Ic6.I3
Ic→ Ic6.I4 mi=-1 migrate Ict ,Ic7,Ic6

3 Ic1.I1
Ic→ Ic1.I4 mi=+2 - Ict ,Ic7,Ic6

4 Ic3.I1
Ic→ Ic3.I4 mi=+3 - Ict ,Ic7,Ic6

5 Ic4.I2
Ic→ Ic4.I4 mi=-2 migrate Ict ,Ic7,Ic6,Ic4

(c) Step 2

I1 (p .1) I2 (p .3) I3 (p .3) I4 (p .2)

Ic1 r.1

Ic2 r.3

Ic3 r.1

Ic4 r.1

Ic5 r.3

Ic6 r.2

Ic7 r.2

Ic8 r.2

I1 (p .1) I2
⋃
I3 (p .3) I4 (p .2)

Ic1 r.1

Ic2 r.3

Ic3 r.1

Ic4 r.1

Ic5 r.3

Ic6 r.2

Ic7 r.2

Ic8 r.2

(d) Step 3 (e) Step 3

Figure 5: An example of heuristic 2 execution

measuring distance Dist(T ci .T j .r, I4.p).637

Step 2 – Service migration (Figure 5(c)). The migration impact mi in Equation 6638

is calculated for each of the Ici (denoted with a gray background in Figure 5(b))639

showing a distance that is less or equal to zero (step 2). Figure 5(c) shows640

the results of our migration, that is, Ic6 is migrated from I3 to I4, and Ic4 and641

Ic7 are migrated from I2 to I4. We note that all these migrations are of type642

27

replacement as presented in Definition 4.4.643

Step 3 – Resource consolidation (Figures 5(d) and 5(e)). Upon phase service644

migration ends, phase resource consolidation is executed and considers all Ij645

such that at least one composite service Ici insisting on it has been migrated to I4.646

In our example, service instances I2 and I3 are candidates for the binary join647

(denoted with a light grey background in Figure 5(d)). Since the join between I2648

and I3 has a negative mi=-2, resource consolidation is convenient and applied.649

Figure 5(e) finally shows the new CP status after the execution of heuristic 2,650

where the result of the join operation is denoted with a gray background. We651

note that all migrations due to consolidation are of type versioning as presented652

in Definition 4.3.653

7. Experimental Evaluation654

We experimentally evaluated the performance and quality of our approach655

for cost-effective deployment of service compositions, and the utility of our656

portable certification process.657

7.1. Experimental Setup658

We considered a scenario where a cloud provider hosts the three composi-659

tions depicted in Figure 2. For simplicity but with no lack of generality, we660

focused on the payment functionality only, which is used in all compositions.661

This choice was due to the fact that, as already discussed, considering the entire662

composition as a whole does not give any additional insights on the soundness663

of the proposed approach and its performance/cost. Our methodology in fact664

treats each functionality independently and the total cost is calculated as the665

sum of the cost of each functionality. CP offers two payment services, a standard666

payment service and ENGPay payment service offered by Engineering S.p.A.,667

one of the biggest system integrators in Italy, all certified for property PCI-668

DSS compliance. We considered three different certification levels for property669

28

PCI-DSS compliance Pc from basic confidentiality (Pc.level=1) to full PCI-670

DSS (Pc.level=3), via generic CIA – Confidentiality, Integrity, Authentication671

(Pc.level=2). Standard payment service is certified for property PCI-DSS com-672

pliance at level 1; ENGPay is offered with two levels of certification, level 2 and673

level 3.674

We developed a request simulator that randomly generates requests for a675

payment service with a specific property level. We then built 10 data sets of676

300 consecutive random requests T c submitted to the cloud provider. For all677

data sets, we evaluated the deployment obtained using the sliding window and678

migration heuristics in Section 6.1 with sharing and fitting profiles in Section 5.3.679

We evaluated retrieved results according to i) a set of evaluation metrics, ii)680

the fuzzy membership functions, and iii) the cost functions.681

Evaluation metrics. We used three metrics to evaluate our approach.682

Metric 1 measures the execution time needed to deploy composite services683

addressing composition requests.684

Metric 2, called Γt(TFc, TFc
′
), is the relative cost increment. It is calculated685

as the difference between the two areas identified by Total Fuzzy cost functions686

TFc and TFc
′

in the interval [1, t]. It is formally defined as follows:687

Γt(TFc, TFc
′
) =

∑t
i=1(TFci − TFc

′

i)∑t
i=1 TFci

(7)

where TFci and TFc
′

i are the two Total Fuzzy cost functions evaluated at688

time i. We used Total Fuzzy cost to calculate Γ, since our goal here is to evaluate689

the overall cost increase and not the contribution of each cost factor (α, β, and690

γ).691

Metric 3, called ∆t, evaluates the cumulative number of portability events692

(versioning or replacement) occurred until a given time t. It provides a measure693

of how often a portability event and a consistency check are needed to support694

our dynamic composition certification, and in turns a measure of its utility.695

Fuzzy membership functions. Our fuzzy system is based on membership

functions and fuzzy rules that depend on the cost factors to be evaluated. We

29

adopted the generalized bell-based memberships f for all cost factors

f(x; a, b, c) =
1

1 + |x−ca |2b
(8)

where c is the center of the curve, a controls the width of the curve, and b696

controls the slope of the curve. To optimize the membership function definition,697

we evaluated the distribution of costs to adjust parameters a, b, c to the meaning698

of the corresponding linguistic variable. More precisely, we used a fuzzy c-mean699

approach to have an initial idea on the membership shapes using 100 requests700

from each of the 10 data sets. Given this shape we tuned the membership701

parameters to fit the fuzzy clusters with a gbell shape. We note that this702

process, as well as the cost function definition, is a tuning process that may703

depend on the cloud provider peculiarities. In general, the selected cost and704

membership functions are suitable for a generic cloud provider working with705

cloud service compositions, while the rule sets address the peculiarities of the706

profiles.707

Cost functions. We used cost functions α, β, and γ in Figure 3 for the three708

property levels used in our experiments. We recall that cost function γ is defined709

using property levels and ranges from 0 to 2. α, β, and γ have been used to710

compare the cost retrieved by our heuristics (metric 2 and metric 3). Their711

definition is CP specific and should reflect the costs of the CP infrastructure.712

To fully evaluate our approach, we defined cost functions such that service713

migrations are triggered also with low numbers of composition requests.714

We run our experiments on a Blade server PowerEdge M630 (VRTX) 2 x715

Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz 192GB of RAM 120GB SSD.716

7.2. Performance evaluation717

We evaluated the performance of our heuristics using metric 1, and cost718

factors α, β, and γ in Figure 3. Similar to the exhaustive algorithm, our heuris-719

tics have an exponential asymptotic behavior O
(

(|l| ∗ F ∗ |w | + t)|w |
)

, with |l|720

the number of property levels, F the number of functionalities, |w| the size of721

30

window w, and t the number of received requests. We note that, since |w| is722

fixed a priori by our heuristics, the asymptotic behavior becomes polynomial723

as O(t|w|). Window w however makes our heuristics rapidly unusable given724

our assumption to serve requests in pseudo real time (in the order of minutes),725

though their complexity is far lower than the one of the exhaustive algorithm,726

which is O(tt).727

Figure 6 compares the average execution time of the heuristics and exhaus-728

tive algorithm on the 10 data sets, varying window size|w| from 1 to 7. We729

note that the execution time of all algorithms is reported only for configura-730

tions requiring less than 3-minutes. Sharing and fitting profiles show a similar731

performance trend just partially affected by optimizations based on branch cut.732

Heuristic 2 shows an additive execution time increment with respect to heuris-733

tic 1 due to the migration and consolidation algorithms, which require sorting of734

compatible requests (O((t−1)2) at time t, in the worst case). This additive fac-735

tor is not anyways substantial, since it depends on the presence and amount of736

possible migrations (e.g., between t = 70 and t = 80). Our results show that, as737

expected, the heuristics approximates polynomial execution time in the window738

size |w|, which can be taken under control by selecting proper |w|. For instance,739

when |w|=7, execution time exceeds the 3 minute limit with a number |T c| of740

composition requests equal to 22 for heuristic 1 and 20 for heuristic 2; when741

|w|=6, execution time exceeds the 3-minute limit with |T c|=155 for heuristic 1742

and |T c|=143 for heuristic 2. The exhaustive algorithm shows the worst exe-743

cution time, exceeding the 3-minute limit with |T c|=12. We note that the two744

heuristics have comparable performance dominated by w. We also note that the745

exhaustive algorithm has better performance than our heuristics for a number746

|T c| ≤ |w| of requests, because the heuristics use a window size |w|, while ex-747

haustive algorithm uses the entire set of requests. Therefore, when the number748

of requests is less than |w|, it provides better or comparable performance.749

31

 0

 15

 30

 45

 60

 75

 90

 105

 120

 135

 150

 165

 180

 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140

T
im

e
 (

s
)

Number of Request (t)

exhaustive
heuristic 1 |w|=1
heuristic 1 |w|=5

heuristic 1 |w|=6
heuristic 1 |w|=7
heuristic 2 |w|=5

heuristic 2 |w|=6
heuristic 2 |w|=7
180s

Figure 6: Performance evaluation: heuristic 1 and heuristic 2 varying window size |w|.

7.3. Cost and Utility Evaluation750

Performance evaluation in Section 7.2 showed the unmanageable complexity751

of the exhaustive algorithm, which required 21 minutes for deploying 12 requests.752

We therefore compared the costs of our two heuristics on the 10 data sets and753

the utility of the portability underpinning them using metric 2 and metric 3,754

and cost factors α, β, and γ. We first discuss the impact of windows size and755

then compare heuristic 1 and heuristic 2.756

7.3.1. Window size757

We measured the impact of window w on heuristic 1 and heuristic 2 using758

the relative cost increment (metric 2 – Γt) with sharing and fitting profiles759

and the entire data sets of 300 requests. Table 1 shows the average relative760

cost increment (Γt), expressed in percentage, over our 10 data sets, varying761

|w|. Fitting profile shows a negligible variation of Γt both for heuristic 1 and762

heuristic 2. Fitting profile in fact does not take significant advantages by looking763

forward in the incoming requests. In particular, Table 1 shows that the total764

32

Γt TFcw2−TFcw1 TFcw3−TFcw2 TFcw4−TFcw3 TFcw5−TFcw4 TFcw5−TFcw1

heuristic 1
sharing −0.6% −1.5% −1.31% −2.08% −5.48%

fitting 0.6% 0.09% −0.23% −0.19% 0.29%

heuristic 2
sharing −1.2% −1.3% −1.7% −0.86% −5.39%

fitting 0.46% 0.06% 0.11% 0.007% 0.6%

Table 1: Average relative cost difference (Γt in %) at t=300 for heuristic 1 and heuristic 2,

using sharing and fitting profiles, and varying window size |w|. We denote with TFcwi the

total fuzzy costs TFc with |w|=i.

fuzzy costs TFcw5 with |w|=5 increases on average of 0.29% with respect to the765

total fuzzy costs TFcw1 with |w|=1 (denoted as TFcw5−TFcw1 in Table 1) for766

heuristic 1 and of 0.6% for heuristic 2. When the sharing profile is adopted,767

the average cost decreases as the window size increases. Table 1 shows that the768

total fuzzy costs TFcw5 with |w|=5 decrease on average of −5.48% with respect769

to the total fuzzy costs TFcw1 with window |w|=1 for heuristic 1 and of −5.39%770

for heuristic 2.771

Figure 7 shows an excerpt of the total fuzzy cost TFc of heuristic 1 for 4772

representative data sets for sharing profile, varying the window size from |w|=1773

to |w|=5. We note that an increase in the window size |w| does not always774

result in a cost decrease. Figure 7(d) shows a data set where heuristic 1 with775

|w|=4 has lower total fuzzy cost than the one with |w|=5. This mainly depends776

on the bias introduced by the random generation of the data sets and by the777

random selection of the best deployment when different candidate deployments778

have the same total fuzzy cost. This latter scenario may lead to a sub-optimal779

deployment drifting from the optimal total cost and is more probable at the780

beginning of the deployment process where there are more deployments with781

the same cost.782

Figure 8 shows an excerpt of the total fuzzy cost TFc of heuristic 2 for 4783

representative data sets for sharing profile, varying the window size from |w|=1784

to |w|=5. We note that the behavior of heuristic 2 (Figure 8) is similar to the785

one of heuristic 1 (Figure 7), which is reasonable considering the refinement786

nature of heuristic 2. We also note that i) the drifting effects causing sub-787

33

 100

 150

 200

 250

 300

 350

 400

 450

 500

 100 150 200 250 300

T
o

ta
l

F
u

z
z
y
 C

o
s

t

t

|w|=1
|w|=2
|w|=3
|w|=4
|w|=5

 100

 150

 200

 250

 300

 350

 400

 450

 500

 100 150 200 250 300

T
o

ta
l

F
u

z
z
y
 C

o
s

t

t

|w|=1
|w|=2
|w|=3
|w|=4
|w|=5

(a) data set 3 (b) data set 5

 100

 150

 200

 250

 300

 350

 400

 450

 500

 100 150 200 250 300

T
o

ta
l
F

u
z
z
y
 C

o
s
t

t

|w|=1
|w|=2
|w|=3
|w|=4
|w|=5

 100

 150

 200

 250

 300

 350

 400

 450

 500

 100 150 200 250 300

T
o

ta
l
F

u
z
z
y
 C

o
s
t

t

|w|=1
|w|=2
|w|=3
|w|=4
|w|=5

(c) data set 8 (d) data set 10

Figure 7: Heuristic 1 cost evaluation (TFc) for sharing profile varying window size |w|. Time

frames 100–300 have been plotted to improve figure readability.

optimal deployments are reduced especially for bigger windows (greater than788

|w|=3) and ii) the variance of the total fuzzy cost observed with |w|=3, |w|=4,789

and |w|=5 using heuristic 2 is lower than the one observed using heuristic 1,790

meaning that heuristic 2 reduces the gap between different window sizes. This791

effect is also visible in Table 1 where the average improvement between |w|=4792

and |w|=5 is lower compared to the others.793

7.3.2. Heuristic 1 vs. Heuristic 2794

We compared heuristic 1 and heuristic 2 using the relative cost increment795

(metric 2 – Γt), the total fuzzy cost TFc with sharing and fitting profiles, and796

the entire data sets of 300 requests. Table 2 shows the average relative cost797

difference (Γt) between heuristic 2 and heuristic 1, expressed in percentage,798

over our 10 data sets, varying |w|. Negative values indicate a cost decrease799

in heuristic 2 with respect to heuristic 1. We note that, even with a minimal800

34

 100

 150

 200

 250

 300

 350

 400

 450

 500

 100 150 200 250 300

T
o

ta
l

F
u

z
z
y
 C

o
s

t

t

|w|=1
|w|=2
|w|=3
|w|=4
|w|=5

 100

 150

 200

 250

 300

 350

 400

 450

 500

 100 150 200 250 300

T
o

ta
l

F
u

z
z
y
 C

o
s

t

t

|w|=1
|w|=2
|w|=3
|w|=4
|w|=5

(a) data set 3 (b) data set 5

 100

 150

 200

 250

 300

 350

 400

 450

 500

 100 150 200 250 300

T
o

ta
l
F

u
z
z
y
 C

o
s
t

t

|w|=1
|w|=2
|w|=3
|w|=4
|w|=5

 100

 150

 200

 250

 300

 350

 400

 450

 500

 100 150 200 250 300

T
o

ta
l
F

u
z
z
y
 C

o
s
t

t

|w|=1
|w|=2
|w|=3
|w|=4
|w|=5

(c) data set 8 (d) data set 10

Figure 8: Heuristic 2 cost (TFc) evaluation for sharing profile varying window size |w|. Time

frames 100–300 have been plotted to improve figure readability.

Γt |w|=1 |w|=2 |w|=3 |w|=4 |w|=5

sharing −0.54% −1.20% −1.16% −1.89% −0.46%

fitting −3.96% −3.81% −3.88% −3.08% −2.78%

Table 2: Average relative cost difference (Γt in %) at t=300 between heuristic 2 and heuristic 1,

using sharing and fitting profiles, and varying window size |w|. Negative values indicate a cost

decrease in heuristic 2 with respect to heuristic 1.

bias effect introduced by different windows sizes, heuristic 2 outperforms, on801

average, heuristic 1 regardless the used profile. More specifically, considering802

the sharing profile, our results show that the average relative cost difference be-803

tween the two heuristics is around −1%. Considering fitting profile, the average804

relative cost difference is more than three times higher for all window sizes and805

is around −3.5%. For this reason, in the following, we further discuss the effect806

of heuristic 2 on fitting profile only.807

35

 4

 6

 8

 10

 12

 14

 16

 18

 20

 100 150 200 250 300

T
o

ta
l

F
u

z
z
y
 C

o
s

t

t

heuristic 1 |w|=1
heuristic 2 |w|=1
heuristic 1 |w|=5
heuristic 2 |w|=5
migration points

 4

 6

 8

 10

 12

 14

 16

 18

 20

 100 150 200 250 300

T
o

ta
l

F
u

z
z
y
 C

o
s

t

t

heuristic 1 |w|=1
heuristic 2 |w|=1
heuristic 1 |w|=5
heuristic 2 |w|=5
migration points

(a) data set 3 (b) data set 5

 4

 6

 8

 10

 12

 14

 16

 18

 20

 100 150 200 250 300

T
o

ta
l
F

u
z
z
y
 C

o
s
t

t

heuristic 1 |w|=1
heuristic 2 |w|=1
heuristic 1 |w|=5
heuristic 2 |w|=5
migration points

 4

 6

 8

 10

 12

 14

 16

 18

 20

 100 150 200 250 300

T
o

ta
l
F

u
z
z
y
 C

o
s
t

t

heuristic 1 |w|=1
heuristic 2 |w|=1
heuristic 1 |w|=5
heuristic 2 |w|=5
migration points

(c) data set 8 (d) data set 10

Figure 9: Comparison between heuristics 1 and 2 with fitting profile (TFc), using |w|=1 and

|w|=5. Time frames 100–300 have been plotted to improve figure readability. Migration events

are marked with “+”.

Figure 9 shows the comparison of the total fuzzy costs TFc of heuristic 1808

and heuristic 2, using 4 representative data sets and window size |w|=1 and809

|w|=5. We note that, when a migration is triggered in heuristic 2 (denoted with810

“+” in the figure), a substantial decrease in TFc is observed (e.g., at t=161811

and t=244 for data set 5 in Figure 9(b)). We also note that, when |w|=1, the812

migrations are synchronous with the cost increment, while, when |w|=5 and in813

general with |w|>1, the migrations are triggered before the cost increment due814

to the look-forward effect of window w. We finally note that the total fuzzy815

costs TFc in Figure 9 presents a “step behavior” that mimics the one of cost816

factors α and β and confirms the findings in Table 1 about the negligible impact817

of window size on both heuristic 1 and heuristic 2 for fitting profile.818

To further evaluate the contribution of migrations in heuristic 2, Figure 10819

presents the distribution of the difference between Γt of heuristic 2 and Γt of820

36

heuristic 1, where a negative value indicates a cost saving when heuristic 2 is821

used, with |w|=5 for 4 representative data sets and fitting profile. Here, a recur-822

rent pattern “a negative peak followed by uphill steps” can be easily identified823

in all data sets and reflects the negative peak (cost decrease) introduced by a824

migration followed by a step-like cost degradation showing a convergence be-825

tween the two heuristics after migration. For instance, in case of data set 5,826

after migration at t=162, the cost shows a negative peak followed by a cost827

degradation (cost increase), until the following migration at t=189. We note828

that degradation can lead to a cost increase (e.g., positive difference for data829

set 8 and data set 10), where heuristic 1 is less costly than heuristic 2. This830

effect is however limited to a very short period of time and the cost difference831

is very small. Considering all 10 data sets and |w|=5, heuristic 1 outperforms832

heuristic 2 only 7 times for data set 8 and 6 times for data sets 1, 9, 10, showing833

a maximum cost difference of 0.23%. Quantitatively (metric 3 – ∆t), heuristic 2834

produced 8 migrations on average on the 10 data sets for sharing profile and835

window |w|=5, 5 migrations for fitting profile and window |w|=5.836

We note that, the comparison in this section, being based on total fuzzy837

costs, is affected by the “normalization” introduced by defuzzification, and re-838

flects a perceived cost more than a concrete cost. To provide a more tangible839

quantitative analysis of the cost decrease introduced by heuristic 2, Figure 11840

presents a comparison in terms of α and β for sharing and fitting profiles over the841

10 data sets. In particular, i) Figure 11(a) compares heuristic 1 (fitting profile,842

|w|=1) with heuristic 2 (fitting profile, |w|=5), ii) Figure 11(b) compares heuris-843

tic 1 (sharing profile, |w|=1) with heuristic 2 (sharing profile, w=5). Heuristic 2844

provides an average cost reduction over heuristic 1 on the real cost α + β of845

−18.5% for sharing profile and −8.2% for fitting profile.846

To conclude, while proving the effectiveness of both heuristics, our exper-847

iments show the utility of certification portability supporting migrations (re-848

placement), as well as new instantiations of the same services (versioning). We849

remark that, while migrations generate intrinsic costs [27], they are in most of850

the cases “operational costs” due to computation or bandwidth degradation [28].851

37

-2

-1

 0

 1

 100 150 200 250

m
e

tr
ic

 2
 (

Γ τ
)

t

-2

-1

 0

 1

 100 150 200 250

m
e

tr
ic

 2
 (

Γ τ
)

t

(1) data set 3 (2) data set 5

-2

-1

 0

 1

 100 150 200 250

m
e

tr
ic

 2
 (

Γ τ
)

t

-2

-1

 0

 1

 100 150 200 250

m
e

tr
ic

 2
 (

Γ τ
)

t

(3) data set 8 (4) data set 10

Figure 10: Filled curve plot of the distribution of the difference between Γt of heuristic 2 and

Γt of heuristic 1. Time frames 100–300 have been plotted to improve figure readability.

These costs can be normally mitigated by a number of well-established tech-852

niques (e.g., cold start servers, microservice architectures), as well as elasticity-853

based solutions [29]. In case of no mitigations, our approach can deal with854

migration events as additional CP costs to be added within the general cost855

functions. However, this scenario is not in the scope of this experimental eval-856

uation and will be considered in our future work.857

8. Related Work858

Research on cloud service composition has recently focused on the prob-859

lem of selecting component services on the basis of non-functional (including860

security) requirements [4, 7, 8, 9, 30, 31, 32]. Wang et al. [9] propose a network-861

aware service composition, which builds on candidate services geolocation to862

keep stable network performance. Qi et al. [7] propose a QoS-aware composi-863

38

(a)

(b)

Figure 11: Comparing α, β total cost for the 10 data sets for sharing (a) and fitting (b) profiles

using heuristic 1 window |w|=1 and heuristic 2 |w|=5, respectively.

tion method supporting cross-platform service invocation in cloud environment,864

using the execution time of single components. Manshan et al. [31] propose a865

fuzzy way solution to represent and solve QoS-based web services composition.866

Wu et al. [30] discuss a composition method providing a trustworthy selection867

of component services and guaranteeing trust in the composition. Kurdi et868

al. [8] focus on multiple cloud composition providing a combinatorial optimiza-869

tion algorithm for cloud service composition, aimed to maximize the fulfilment870

of clients’ requests with minimal overhead. Arman et al. [32] propose a solu-871

tion for moving application to the cloud, aiming to select the cloud service that872

matches at best application requirements and plan characteristics. Another line873

of research relevant for the work in this paper evaluated the costs of service874

composition algorithms [12, 13, 14, 33, 34]. Greenberg et al. [23] analyzed the875

most relevant direct and indirect costs in cloud service data centers, identi-876

39

fying the following: i) server costs (45% of the total costs) depend on server877

utilization and optimization, ii) infrastructure costs (25% of the total costs)878

comprise all facilities for power delivery, air conditioning, ups, and the like, iii)879

power draw (15% of the total costs) consists of all power consumption, and880

iv) network costs (15% of the total costs) comprises costs for switches, routers,881

agreements and traffic with ISP. Patel et al. [35] extend the above costs with882

the cost of personnel per rack and license costs, and identify model and func-883

tions representing the whole data center costs. We added on top of these works884

the costs of managing service certification and continuous service verification,885

as well as the costs due to service versioning and service replacement. These886

costs are due to the need of guaranteeing business continuity or, in other words,887

the cost of keeping the replica of components up and running while migrating888

a service. Jiang at al. [36], identified CPs physical resources utilization as an889

emerging problem and proposed a cloud capacity planning based on an ensem-890

ble time-series prediction method. He et al. [13] propose three novel QoS-aware891

service selection approaches for composing multi-tenant service-based systems.892

Li et al. [34] compare costs and service behaviours from different CPs, while893

Medeiros et al. [12] provide different cost patterns which may fit different types894

of services and service composition. Singh et al. [37] propose an agent-based895

and autonomous framework able to optimize the resource provisioning cost; the896

approach only focuses on virtual machine composition.897

The solution in this paper extends the the cost-based certification approach898

in [15]. It provides a certification-based service composition for the cloud, which899

continuously evaluates non-functional properties using declarative and procedu-900

ral modeling. It also investigates the composition costs from a cloud provider901

point of view [11, 14, 33], providing a cost-effective approach, using a fuzzy-based902

approach, for composite service deployment. The cost evaluation considers the903

costs introduced by the certification infrastructure and mismatch costs of main-904

taining services providing more than what is strictly needed for ensuring clients905

non-functional requirements.906

40

9. Conclusions907

We proposed an approach to cost-effective deployment of certified cloud com-908

posite services. The proposed solution provides a composition approach that909

comparatively evaluates service certificates to build a composite service address-910

ing clients’ requirements. It also provides a fuzzy-based cost evaluation method-911

ology aimed to minimize the CP total costs of composition, identifying the best912

composition among possible alternative deployments. Our cost minimization913

approach has been implemented using two heuristics algorithms and assuming914

certified properties as must-have requirements. It has then been extensively ex-915

perimentally evaluated simulating composition requests and comparing average916

composition costs of the two heuristics varying specific settings like window size917

and profile. This paper leaves some space for future work. First, our approach to918

cost optimization will consider scenarios distinguishing between non-functional919

requirements annotated by the users as soft (should-have) or hard (must-have),920

where cost improvements can be achieved by relaxing soft properties. Second,921

possible applications of the migration concept will be investigated to the aim of922

improving sub-optimal deployments in the cloud.923

Acknowledgments924

This work was partly supported by the program “piano sostegno alla ricerca925

2015-17” funded by Università degli Studi di Milano, and the program FFABR926

“Fondo per il Finanziamento delle Attività Base di Ricerca”, funded by the927

Italian MIUR.928

References929

[1] S.-Y. Hwang, E.-P. Lim, C.-H. Lee, C.-H. Chen, Dynamic web service selec-930

tion for reliable web service composition, IEEE TSC 1 (2) (2008) 104–116.931

[2] H. Wang, P. Ma, Q. Yu, D. Yang, J. Li, H. Fei, Combining quantitative con-932

straints with qualitative preferences for effective non-functional properties-933

aware service composition, JPDC 100 (2017) 71 – 84.934

41

[3] D. Ye, Q. He, Y. Wang, Y. Yang, An agent-based service adaptation ap-935

proach in distributed multi-tenant service-based systems, JPDC 122 (2018)936

11 – 25.937

[4] M. Anisetti, C. Ardagna, E. Damiani, Security certification of composite938

services: A test-based approach, in: Proc. of ICWS 2013, San Francisco,939

CA, USA, 2013.940

[5] F. Tao, D. Zhao, Y. Hu, Z. Zhou, Resource service composition and its941

optimal-selection based on particle swarm optimization in manufacturing942

grid system, IEEE TII 4 (4) (2008) 315–327.943

[6] T. Xiang, X. Li, F. Chen, Y. Yang, S. Zhang, Achieving verifiable, dynamic944

and efficient auditing for outsourced database in cloud, JPDC 112 (2018)945

97 – 107.946

[7] L. Qi, W. Dou, X. Zhang, J. Chen, A qos-aware composition method sup-947

porting cross-platform service invocation in cloud environment, J. Comput.948

Syst. Sci. 78 (5) (2012) 1316–1329.949

[8] H. Kurdi, A. Al-Anazi, C. Campbell, A. Al Faries, A combinatorial opti-950

mization algorithm for multiple cloud service composition, Comput. Electr.951

Eng. 42 (C) (2015) 107–113.952

[9] X. Wang, J. Zhu, Y. Shen, Network-aware qos prediction for service com-953

position using geolocation, IEEE TSC 8 (4) (2015) 630–643.954

[10] K. Kofler, I. ul Haq, E. Schikuta, User-centric, heuristic optimization of955

service composition in clouds, in: Proc. of Euro-Par 2010, Ischia, Italy,956

2010.957

[11] A. Jula, E. Sundararajan, Z. Othman, Cloud computing service compo-958

sition: A systematic literature review, Expert Systems with Applications959

41 (8) (2014) 3809–3824.960

42

[12] R. Medeiros, N. S. Rosa, L. F. Pires, Predicting service composition costs961

with complex cost behavior, in: Proc. of IEEE SCC, New York, NY, USA,962

2015.963

[13] Q. He, J. Han, F. Chen, Y. Wang, R. Vasa, Y. Yang, H. Jin, Qos-aware964

service selection for customisable multi-tenant service-based systems: Ma-965

turity and approaches, in: Proc. of IEEE CLOUD, New York, NY, USA,966

2015.967

[14] P. Leitner, W. Hummer, S. Dustdar, Cost-based optimization of service968

compositions, IEEE TSC 6 (2) (2013) 239–251.969

[15] M. Anisetti, C. Ardagna, E. Damiani, F. Gaudenzi, A cost-effective970

certification-based service composition for the cloud, in: Proc of IEEE971

SCC 2016, San Francisco, CA, USA, 2016.972

[16] M. Anisetti, C. A. Ardagna, E. Damiani, J. Maggesi, Security certification-973

aware service discovery and selection, in: Proc. of IEEE SOCA, 2012, pp.974

1–8.975

[17] M. Anisetti, C. Ardagna, E. Damiani, G. Polegri, Test-based security cer-976

tification of composite services, ACM TWEB 13 (1) (2018) 3.977

[18] M. Anisetti, C. Ardagna, E. Damiani, F. Gaudenzi, A certification frame-978

work for cloud-based services, in: Proc. of ACM SAC 2016, Pisa, Italy,979

2016.980

[19] C. Consortium, D2.1: Security-aware SLA specification lan-981

guage and cloud security dependency model, https://cordis.982

europa.eu/docs/projects/cnect/0/318580/080/deliverables/983

001-D21SecurityawareSLAspecificationlanguageandcloudsecuritydependencymodelv101.984

pdf, Accessed in Date June 2019.985

[20] M. Anisetti, C. Ardagna, E. Damiani, F. Gaudenzi, A semi-automatic and986

trustworthy scheme for continuous cloud service certification, IEEE TSC987

(2017).988

43

https://cordis.europa.eu/docs/projects/cnect/0/318580/080/deliverables/001-D21SecurityawareSLAspecificationlanguageandcloudsecuritydependencymodelv101.pdf
https://cordis.europa.eu/docs/projects/cnect/0/318580/080/deliverables/001-D21SecurityawareSLAspecificationlanguageandcloudsecuritydependencymodelv101.pdf
https://cordis.europa.eu/docs/projects/cnect/0/318580/080/deliverables/001-D21SecurityawareSLAspecificationlanguageandcloudsecuritydependencymodelv101.pdf
https://cordis.europa.eu/docs/projects/cnect/0/318580/080/deliverables/001-D21SecurityawareSLAspecificationlanguageandcloudsecuritydependencymodelv101.pdf
https://cordis.europa.eu/docs/projects/cnect/0/318580/080/deliverables/001-D21SecurityawareSLAspecificationlanguageandcloudsecuritydependencymodelv101.pdf
https://cordis.europa.eu/docs/projects/cnect/0/318580/080/deliverables/001-D21SecurityawareSLAspecificationlanguageandcloudsecuritydependencymodelv101.pdf
https://cordis.europa.eu/docs/projects/cnect/0/318580/080/deliverables/001-D21SecurityawareSLAspecificationlanguageandcloudsecuritydependencymodelv101.pdf

[21] M. Anisetti, C. Ardagna, E. Damiani, A certification-based trust model for989

autonomic cloud computing systems, in: Proc. of IEEE ICCAC, 2014, pp.990

212–219.991

[22] C. T. Horngren, G. Foster, S. M. Datar, M. Rajan, C. Ittner, A. A. Baldwin,992

Cost accounting: A managerial emphasis, Issues in Accounting Education993

25 (4) (2010) 789–790.994

[23] A. Greenberg, J. Hamilton, D. A. Maltz, P. Patel, The cost of a cloud:995

Research problems in data center networks, SIGCOMM Comput. Commun.996

Rev. 39 (1) (2008) 68–73.997

[24] S. Newman, Building Microservices, O’Reilly Media, Inc., 2015.998

[25] C. Sadtler, Z. X. Chen, S. Imazeki, M. Kelm, S. Kofkin-Hansen, Z. Q. Kou,999

B. McChesney, et al., IBM Workload Deployer: Pattern-based Application1000

and Middleware Deployments in a Private Cloud, IBM Redbooks, 2012.1001

[26] I. Maleki, L. Ebrahimi, S. Jodati, I. Ramesh, Analysis of software cost1002

estimation using fuzzy logic, IJFCST 4 (3) (2014) 27–41.1003

[27] S. Kikuchi, Y. Matsumoto, Performance modeling of concurrent live mi-1004

gration operations in cloud computing systems using prism probabilistic1005

model checker, in: Proc of IEEE CLOUD, 2011, pp. 49–56.1006

[28] D. Breitgand, G. Kutiel, D. Raz, Cost-aware live migration of services in1007

the cloud., in: SYSTOR, 2010.1008

[29] U. Sharma, P. Shenoy, S. Sahu, A. Shaikh, A cost-aware elasticity provi-1009

sioning system for the cloud, in: Proc. of ICDCS, IEEE, 2011, pp. 559–570.1010

[30] X. Wu, B. Li, R. Song, C. Liu, S. Qi, Trust-based service composition and1011

optimization, in: Proc of APSEC 2012, Hong Kong, 2012.1012

[31] M. Lin, J. Xie, H. Guo, H. Wang, Solving qos-driven web service dynamic1013

composition as fuzzy constraint satisfaction, in: Proc. of IEEE EEE, 2005,1014

pp. 9–14.1015

44

[32] A. Arman, S. Foresti, G. Livraga, P. Samarati, A consensus-based approach1016

for selecting cloud plans, in: Proc. of IEEE RTSI, 2016, pp. 1–6.1017

[33] D. Worm, M. Zivkovic, H. van den Berg, R. van der Mei, Revenue max-1018

imization with quality assurance for composite web services, in: Proc. of1019

IEEE SOCA, Taipei, Taiwan, 2012.1020

[34] A. Li, X. Yang, S. Kandula, M. Zhang, Cloudcmp: Comparing public cloud1021

providers, in: Proc. of IMC 2010, Melbourne, Australia, 2010.1022

[35] C. D. Patel, J. S. Amip, Cost model for planning, development and1023

operation of a data center,http://hpl.hpl.hp.com/techreports/2005/1024

HPL-2005-107R1.pd.1025

[36] Y. Jiang, C.-s. Perng, T. Li, R. Chang, Self-adaptive cloud capacity plan-1026

ning, in: Proc. of IEEE SOCA, 2012, pp. 73–80.1027

[37] A. Singh, D. Juneja, M. Malhotra, A novel agent based autonomous and1028

service composition framework for cost optimization of resource provision-1029

ing in cloud computing, Journal of King Saud University - Computer and1030

Information Sciences 29 (1) (2017) 19 – 28.1031

45

http://hpl.hpl.hp.com/techreports/2005/HPL-2005-107R1.pd
http://hpl.hpl.hp.com/techreports/2005/HPL-2005-107R1.pd
http://hpl.hpl.hp.com/techreports/2005/HPL-2005-107R1.pd

	Introduction
	Problem Statement
	Basic Concepts
	Portable Certification of Composite Services
	Portability
	Composition

	Deployment of Certified Composite Services
	Deployment Composition Matrix
	Cost Factors
	Cost Profiles

	Fuzzy-Based Cost-Effective Deployment of Service Compositions
	Composition Cost Minimization

	Experimental Evaluation
	Experimental Setup
	Performance evaluation
	Cost and Utility Evaluation
	Window size
	Heuristic 1 vs. Heuristic 2

	Related Work
	Conclusions

