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a b s t r a c t

An important concept in finite state machine based testing is synchronization which is used to initialize
an implementation to a particular state. Usually, synchronizing sequences are used for this purpose
and the length of the sequence used is important since it determines the cost of the initialization
process. Unfortunately, the shortest synchronization sequence problem is NP-Hard. Instead, heuristics
are used to generate short sequences. However, the cubic complexity of even the fastest heuristic
algorithms can be a problem in practice. In order to scale the performance of the heuristics for
generating short synchronizing sequences, we propose algorithmic improvements together with a
parallel implementation of the cheapest heuristics existing in the literature. To identify the bottlenecks
of these heuristics, we experimented on random and slowly synchronizing automata. The identified
bottlenecks in the algorithms are improved by using algorithmic modifications. We also implement
the techniques on multicore CPUs and Graphics Processing Units (GPUs) to take benefit of the modern
parallel computation architectures. The sequential implementation of the heuristic algorithms are
compared to our parallel implementations by using a test suite consisting of 1200 automata. The
speedup values obtained depend on the size and the nature of the automaton. In our experiments, we
observe speedup values as high as 340x by using a 16-core CPU parallelization, and 496x by using a
GPU. Furthermore, the proposed methods scale well and the speedup values increase as the size of
the automata increases.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction1

Due to the complex nature of current systems, developing a2

correct one is not an easy task. Several validation techniques are3

used to build some confidence during development, but testing4

stands out as one of the most practical validation method [21].5

Testing in practice is quite a labor intensive activity if performed6

manually, and it is reported to consume more than half of the de-7

velopment cost [21]. Therefore, automated test techniques have8

to be used in order to bring down the cost of testing.9

The automation of testing is performed over a wide spectrum10

of activities; e.g., test generation, test execution, management of11

the test suite, etc. Among these activities, automatic test genera-12

tion is defensibly the most scientifically challenging one. It is also13

✩ A preliminary version of this article appeared in S. Karahoda, O.T. Erenay, K.
Kaya, U. C. Türker, H. Yenigün: ‘‘Parallelizing Heuristics for Generating Synchronizing
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possibly one of the most important factors that can improve the 14

effectiveness of practical testing. 15

Model Based Testing (MBT) is one of the techniques used to 16

generate effective and practical test cases. In MBT, formal models 17

of system requirements are used. For describing the behavior of 18

a system formally, state based formalisms are used and there has 19

been much interest in testing with finite state machines (FSMs) 20

(e.g., see [5,10,11,14,15,23,28,32]). While test tools might allow 21

the user to use richer formalisms and languages, these models 22

can usually be mapped to FSMs. To employ FSMs for testing, 23

one needs to recognize the state of the system under test (SUT) 24

and bring the SUT to a particular state. The state recognition can 25

be accomplished by using special sequences like distinguishing 26

sequences [30] or Unique Input Output sequences [16], when 27

such sequences exist. To bring the SUT to a particular state, some 28

works assume the existence of a trusted reset input in the SUT, 29

however, such a reset input is not always available. Even if a reset 30

input is available, performing the reset operation can be time 31

consuming. Hence, there are cases where the use of a reset input 32

is not preferred [13,17,27]. 33
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Fig. 1. A synchronizable automaton A (left), and the data structures we used to store and process the transition function δ−1 in memory (see Section 4.3 for the
details). A synchronizing sequence for A is abbbabbba.

A synchronizing sequence for an FSM (also known as a reset1

sequence, or a reset word), is a sequence of inputs such that when2

it is applied to the FSM, the machine ends up in a particular3

state no matter at which state it initially is [18]. Therefore a4

synchronizing sequence can be considered as a compound reset5

input. The motivation to study reset sequences comes from dif-6

ferent fields including automata theory, robotics, bio-computing,7

set theory, propositional calculus, model based testing and many8

more [1,3,6,10,12,18,22,24,31,33].9

For a given FSM, a synchronizing sequence may or may not10

exist. Yet, we know that a large-scale FSM is almost always11

synchronizable [4]. The complexity of checking the existence of a12

synchronizing sequence is O(pn2) for an automata with p inputs13

and n states [12]. Although the shortest such sequence is usually14

better in terms of synchronization cost and energy used, unfortu-15

nately, the problem of finding the shortest sequence is NP-hard.16

Hence, various synchronizing heuristics have been proposed to17

find short sequences, e.g., [12,19,25,29]. It has been conjectured18

that the length of the shortest synchronizing sequence is at most19

(n − 1)2 [7]. However, the upper bound on the sequence length20

is O(n3) for the above-mentioned synchronizing heuristics.21

To the best of our knowledge, the parallelization and scalabil-22

ity of these heuristics have not been thoroughly addressed. Even23

the fastest algorithms, Greedy [12] and Cycle [26], has O(n3
+pn2)24

complexity. In this work, we focus on the runtime performance25

of these heuristics, design parallel algorithms, and experiment26

on multicore CPUs and manycore GPUs to prove their scalability.27

Since Greedy is one of the two fastest heuristics in the literature28

and yields shorter sequences compared to Cycle, in this study,29

we mainly focus on its parallelization. However, the proposed30

techniques can be effectively used to parallelize other heuristics31

in the literature. As far as we know, this is the first study towards32

efficient parallelization of synchronizing heuristics.33

All the synchronizing heuristics mentioned consist of a pre-34

processing phase, followed by synchronizing sequence generation35

phase. As presented in this paper, our initial experiments revealed36

that the relative cost of the preprocessing depends on the struc-37

ture of the automaton. For a random automaton, preprocessing is38

the most expensive part. However, for special types of automata39

classes, the preprocessing cost can be negligible compared to the40

cost of sequence construction. Therefore in this work, we focus on41

both phases. However, depending on the automata structure, the42

improvement, i.e., the speedup w.r.t. to the number of threads43

differ. For instance, for a random automaton with n = 800044

and p = 128, the proposed algorithmic approach improves45

the naive, sequential implementation of Greedy by 33× and46

with 16 threads, the speedup increases to 340×. Furthermore,47

with a single GPU, we obtain 496× speedup over the sequential48

implementation.49

The paper is organized as follows: Section 2 presents the50

background and notation and formally define synchronizing se-51

quences. The Greedy algorithm is described in Section 3 whereas52

the proposed parallelization approach together with implementa- 53

tion details are described in Section 4. The experimental results 54

are presented in Sections 5 and 6 concludes the paper. 55

2. Preliminaries 56

Although FSMs produce outputs when fed with an input, the 57

response is not important in the context of synchronization. In 58

this work, we consider an FSM as a complete automaton where 59

only the state transitions are performed in case of an input. 60

Formally, an automaton is a triple A = (S, Σ, δ) where S and 61

Σ are finite sets of n states and p input symbols, respectively. 62

δ : S ×Σ → S is the transition function of the automata. If A is 63

at state s and x is applied as an input, then δ(s, x) will be the new 64

state of A. Fig. 1 shows a toy, 4-state, 2-input automaton. 65

In this paper, |w| denotes the length of an input sequence 66

w ∈ Σ⋆ where the zero-length input sequence is denoted as 67

ε ∈ Σ⋆. For the empty sequence, δ(s, ε) = s. For an input 68

sequence w ∈ Σ⋆ and an input symbol x ∈ Σ , let xw be the 69

concatenated sequence. Let us extend the transition function δ in 70

a naive way for input sequences as 71

δ(s, xw) = δ(δ(s, x), w) for x ∈ Σ and w ∈ Σ⋆
72

and for sets of states as 73

δ(S ′, w) = {δ(s, w)|s ∈ S ′} for S ′ ⊆ S. 74

We also use 75

δ−1(s, x) = {s′ ∈ S|δ(s′, x) = s} 76

to denote the set of those states with a transition to state s with 77

input x. 78

For an automaton A = (S, Σ, δ), an input sequence w ∈ Σ⋆
79

is a merging sequence for S ′ ⊆ S if |δ(S ′, w)| = 1. We call the 80

sets of states with at least one merging sequence mergable. An 81

input sequence w ∈ Σ⋆ is a synchronizing sequence for A if 82

|δ(S, w)| = 1. We call automata with at least one synchronizing 83

sequence synchronizable. Another way to define such automata is 84

below: 85

Proposition 1 ([12,22]). An automaton A = (S, Σ, δ) is synchro- 86

nizable iff for all si, sj ∈ S, there exists a merging sequence for 87

{si, sj}. 88

For a set of states C ⊆ S, let C ⟨2⟩ = {{si, sj}|si, sj ∈ C} be the 89

set of all multisets of C with cardinality two. If si = sj an element 90

{si, sj} ∈ C ⟨2⟩ is called a singleton. Otherwise, it is called a pair. 91

Due to Proposition 1, we can understand if an automaton is 92

synchronizable by checking the existence of merging sequences 93

for all pairs. To efficiently perform this check, let us first define 94

the notion of a pair automaton. 95
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Fig. 2. The pair automaton A⟨2⟩ of the automaton in Fig. 1.

Definition 1. For an automaton A = (S, Σ, δ), the pair automaton1

A⟨2⟩ of A is defined as A⟨2⟩ = (S⟨2⟩, Σ, ∆), where for a state2

{si, sj} ∈ S⟨2⟩ and an input symbol x ∈ Σ , ∆({si, sj}, x) =3

{δ(si, x), δ(sj, x)}.4

Fig. 2 shows an example of a pair automaton.5

As stated above in the introduction, Černý has conjectured that6

the length of the shortest synchronizing word of an automaton7

with n states is at most (n − 1)2 [7]. Černý has also provided a8

class of automata Ac , called Černý automata, which hits to this9

conjectured upper bound. An example of a Černý automaton is10

given in Fig. 1. Given a number of states n, the Černý automaton11

with n states has a well-defined structure. There are two inputs12

in the alphabet. The transitions of the first input (a in the figure)13

are all loops except one. That is δ(si, a) = si for 1 ≤ i ≤ n14

and δ(s0, a) = s1. The transitions of the second input (b in the15

figure) form a cycle, i.e., δ(si, b) = si+1 for 0 ≤ i ≤ n − 1 and16

δ(sn−1, b) = s0.17

2.1. Graphics Processing Units and CUDA18

At the hardware level, a CUDA capable GPU is a collection of19

multiprocessors (SMX), each having hundreds of cores. In total,20

there are thousands of cores on a modern GPU. Each multipro-21

cessor has its own shared memory which is common to all its22

cores. It also has a set of registers, texture memory (a read only23

memory for the GPU), and constant (a read only memory for the24

GPU that has the lowest access latency) memory caches.25

At the software level, the CUDA model is a collection of26

threads running in parallel. The programmer decides the number27

of threads to be launched. A group of threads, called a warp, run28

simultaneously. GPU’s single instruction, multiple thread (SIMT)29

execution manages all threads in the same warp via a single con-30

troller and hence, they execute the same instruction in parallel31

usually with different data items. At any given time, blocks of32

warps run on a multiprocessor. Due to the zero-overhead warp33

scheduling technique implemented by modern GPUs, the shared34

memory data used by the threads in a block stay there as long35

as the block is alive. Although this technique makes the shared36

memory a scarce, critical resource, it also makes a GPU excelled37

in latency-hiding and managing millions of concurrent threads.38

In the CUDA model, each thread executes a piece of code called39

a kernel. The kernel is the core code to be executed by all the40

threads. During its execution, a thread ti accesses data residing41

on the GPU global memory by using its thread ID. Since the GPU42

memory is available to all the threads, a thread can access any43

memory location. When the kernel has ‘if’s and ‘else’s, i.e., when44

the computation is branched (also called divergent in GPU com-45

puting), the threads in the same warp may be serialized since46

they are controlled by a single controller. When this happens, 47

concurrency decreases and performance degrades. 48

3. Understanding the mechanics of Eppstein’s Greedy algo- 49

rithm 50

As mentioned before, almost all the synchronizing heuristics 51

in the literature run in two phases; in the first phase of the Epp- 52

stein’s Greedy algorithm, a shortest merging sequence for each 53

mergeable pair of states is found and stored in an auxiliary data 54

structure. Later, in the second phase, a synchronizing sequence is 55

constructed by concatenating the words found at each iteration. 56

Computing a shortest merging sequence for a mergeable state 57

pair {si, sj} ⊂ S of an automaton A = (S, Σ, δ), can be done 58

in time O(pn2). This is equal to the number of transitions inside 59

the pair automaton; indeed, one can use a backwards Breadth 60

First Search (BFS) with the same complexity seeded from the 61

singleton states, i.e., {si, si}s, of the pair automaton, as we will 62

explain below. 63

The function τ : S⟨2⟩ → Σ⋆ is called a pairwise merging func- 64

tion (PMF) for A = (S, Σ, δ), where τ ({si, sj}) is a shortest merging 65

sequence for all mergeable {si, sj} pairs. It is undefined for all 66

non-mergeable pairs; note that non-mergeable pairs do not exist 67

if A is a synchronizable automaton. For a given A, Algorithm 1 68

computes a PMF. Initially, τ ({s, s}) is set to ε for all {s, s} ∈ S⟨2⟩ 69

(line 1). Furthermore, τ ({si, sj}) is set to undefined for all {si, sj} ∈ 70

S⟨2⟩ where si ̸= sj (line 2). The algorithm iteratively updates these 71

values throughout its search for merging sequences for all the 72

pairs in S⟨2⟩. 73

Algorithm 1: Computing a PMF τ : S⟨2⟩ → Σ⋆

input : An automaton A = (S, Σ, δ)
output: A PMF τ : S⟨2⟩ → Σ⋆

1 foreach singleton {s, s} ∈ S⟨2⟩ do τ ({s, s})←− ε;
2 foreach pair {si, sj} ∈ S⟨2⟩ do τ ({si, sj})←− undefined;
3 F ←− {{s, s}|s ∈ S}; // all singleton states of A⟨2⟩

4 R←− {{si, sj}|si, sj ∈ S ∧ si ̸= sj}; // all pair states of
A⟨2⟩

5 while F is not empty do
6 F , R, τ ←− BFS_step(A, F , R, τ );

Throughout the BFS, Algorithm 1 maintains a frontier set F 74

which at the beginning, is set to the all singleton states (line 3). In 75

the algorithm, R represents the set of pairs {si, sj} with τ ({si, sj}) 76

is currently undefined. At each iteration (lines 5–6), a single BFS 77

step is performed where a possible implementation, ‘‘Frontier to 78

Remaining (F2R)’’, is given in Algorithm 2. As the name suggests, 79

the BFS_step_F2R function constructs the next frontier F ′ from the 80

current frontier F and the edges/transitions are processed from 81

the frontier vertices to the remaining, unvisited vertices. Starting 82

from the pairs {si, sj} ∈ F (line 2), the algorithm identifies a pair 83

{s′i, s
′

j} ∈ R such that s′i = δ(si, x) and s′j = δ(sj, x) for some 84

x ∈ Σ (lines 4 and 5). The value of the PMF, τ , at this pair is 85

set (line 6), and then the next frontier is updated (line 7). 86

Based on the PMF computed as described above, one can 87

implement the Greedy algorithm as described in Algorithm 3. 88

The algorithm keeps track of the set of active states C yet to be 89

merged, where C is initially equal to S (line 5). An active state 90

pair {si, sj} ∈ C ⟨2⟩ with the shortest merging sequence is first 91

computed by the algorithm (line 8). The overall synchronizing 92

sequence Γ is then extended with τ ({si, sj}) (line 9). Finally, the 93

same merging sequence τ ({si, sj}) is applied to C to find the next 94

set of active states. When only a single active state remains, the 95

automata is synchronized and Γ is a synchronizing sequence. 96

For an automaton with n states and p inputs, the first phase 97

(lines 1–3 of Algorithm 3) can be implemented to run in time 98
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Algorithm 2: BFS_step_F2R
input : An automaton A = (S, Σ, δ), the frontier F , the

remaining set R, and a partial PMF τ

output: The new frontier F ′, the new remaining set R′, and
updated function τ

1 F ′ ←− ∅;
2 foreach {si, sj} ∈ F do
3 foreach x ∈ Σ do
4 foreach {s′i, s

′

j} such that s′i ∈ δ−1(si, x) and
s′j ∈ δ−1(sj, x) do

5 if τ ({s′i, s
′

j}) is undefined then // {s′i, s
′

j} ∈ R
6 τ ({s′i, s

′

j})←− xτ ({si, sj});
7 F ′ ←− F ′ ∪ {{s′i, s

′

j}};

8 R′ ←− R \ F ′;

Algorithm 3: Eppstein’s Greedy Algorithm
input : An automaton A = (S, Σ, δ)
output: A synchronizing sequence Γ for A (or fail if A is

not synchronizable)
1 compute a PMF τ using Algorithm 1;
2 if there exists a pair {si, sj} such that τ ({si, sj}) is undefined
then

3 report that A is not synchronizable and exit;
4 foreach si, sj, sk ∈ S do compute δ(sk, τ ({si, sj}));
5 C ←− S; // C will keep track of the current set of

states
6 Γ ←− ε; // Γ is the synchronizing sequence to be

constructed
7 while |C |> 1 do // we have two or more states yet to
be merged

8 {si, sj} ←− FindMin(C, τ ) in C ⟨2⟩;
9 Γ ←− Γ τ ({si, sj});

10 C ←− δ(C, τ ({si, sj}));

Algorithm 4: FindMin
input : Current set of state C and the PMF function τ

output: A pair of state {si, sj} with minimum |τ ({si, sj})|
among all pairs in C ⟨2⟩

1 {si, sj} ←− undefined;
2 foreach {sk, sℓ} ∈ C ⟨2⟩ do
3 if {si, sj} is undefined or |τ ({sk, sℓ})|< |τ ({si, sj})| then
4 {si, sj} ←− {sk, sℓ};
5 if |τ ({sk, sℓ})|= 1 then
6 break;

O(pn2) and Phase 2 of Greedy (lines 4–10 of Algorithm 3) can1

be implemented to run in time O(n3). Hence, the overall time for2

Greedy is O(n3
+ pn2) [12, Theorem 5].3

The practical performance of Greedy and its two phases de-4

pend on the structure of the automaton. If the automaton syn-5

chronizes quickly, that is if the cardinality of C decreases quickly6

at each iteration of the while loop in Algorithm 3, then the PMF7

construction phase given in Algorithm 1 will be the main bottle-8

neck. For many randomly chosen automata, this is what we have9

observed. To further test this, we performed an experimental10

analysis and measured how much Phase 1 (the PMF construction)11

and Phase 2 (the synchronizing sequence construction) contribute12

Table 1
The PMF construction time (tPMF ), and overall execution time (tALL) for n ∈
{2000, 4000, 8000}-state and p ∈ {2, 8, 32, 128}-input automata. For each entry
in the first four rows, we generated 100 random automata and report the
average value. For the last row, the algorithm is run on the same automata
5 times and the average of these runs is reported.

n = 2000 n = 4000 n = 8000

p tPMF tALL
tPMF
tALL

tPMF tALL
tPMF
tALL

tPMF tALL
tPMF
tALL

2 0.172 0.185 0.929 1.184 1.240 0.954 5.899 6.325 0.933
8 0.504 0.517 0.975 2.709 2.768 0.978 14.289 14.721 0.971

32 2.113 2.126 0.994 9.925 9.986 0.994 51.783 52.233 0.991
128 9.126 9.140 0.999 40.356 40.418 0.998 193.548 193.982 0.998

Černý 0.096 4.836 0.020 1.026 42.771 0.024 5.584 797.692 0.007

to the running time in practice for a sequential implementation. 13

To perform this experiment, we randomly generated automata 14

by choosing the target of each transition in a uniformly random 15

manner from the state space. For each automata class, i.e., with 16

given number of states and number of inputs, we generated 100 17

random automata and reported the average value. The first four 18

rows of Table 1 show that for a randomly chosen automaton, the 19

first phase actually dominates the running time of the algorithm; 20

it took more than 90% of the runtime for all the automata classes 21

with n ∈ {2000, 4000, 8000} states and p ∈ {2, 8, 32, 128} inputs. 22

Based on these results, in order to improve the performance of 23

Greedy, one can argue that the PMF is the bottleneck in practice 24

with high probability. 25

Within the synchronization context, there are special classes 26

of automaton which are harder to synchronize, i.e., slowly syn- 27

chronizing. As mentioned in Section 2, it is conjectured that for a 28

synchronizing automaton with n states, the length of the shortest 29

synchronizing sequence is at most (n − 1)2, which is known as 30

the Černý Conjecture in the literature. Posed half a century ago, 31

the conjecture is still open and claimed to be one of the longest 32

standing open problem in automata theory. Arguably, the most 33

famous slowly synchronizing automata in the literature are Černý 34

automata [8,9], for which the length of the shortest synchronizing 35

word is (n − 1)2, the bound stated by the Černý conjecture. For 36

instance, the automaton presented on the left side of Fig. 1 is a 37

Černý automaton with 4 states. Hence, the length of the shortest 38

synchronizing sequence for this automaton is 9. The BFS tree 39

for a Černý automaton has depth n × (n − 1)/2, where each 40

level has only one node as shown in Fig. 3. In a sense, Černý 41

automata is possibly the toughest class of automata for Phase 2 42

of Greedy. Fig. 3 presents the shortest path tree for the 4-state 43

Černý automaton given in Fig. 1. 44

To identify the bottleneck of Greedy on slowly synchronizing 45

automata, we generated Černý automata with n ∈ {2000, 4000, 46

8000} states and run the algorithm 5 times on these automata. 47

The averages of these runs are reported in the last row of Table 1. 48

This time almost all the execution time is spent by Phase 2. 49

4. Parallel generation of synchronizing sequences on multi- 50

core and manycore architectures 51

As the results in the previous section show, the relative costs 52

of Phase 1 and Phase 2 completely differ for random and slowly 53

synchronizing automata classes. This is why optimization and 54

parallelization for both phases are important in practice. Here 55

we present our parallel implementation of Greedy, together with 56

some algorithmic modifications. 57

4.1. Computing a PMF in parallel 58

Breadth First Search is the main kernel used to construct a 59

PMF τ for a given automaton A. The BFS is performed on the pair 60
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Fig. 3. The shortest path tree for the pairs of the 4-state Černý automaton given in Fig. 1.

automaton A⟨2⟩ graph where the state pairs correspond to the1

vertices and inversely oriented transitions among the state pairs2

are the edges of the graph. In traditional BFS, the graph traversal3

starts from a single vertex; however, for synchronization, the4

kernel is seeded from multiple vertices corresponding to all the5

singleton state pairs of A⟨2⟩. One can consider this as performing a6

BFS from a virtual vertex with no incoming edge set and outgoing7

edges to all the vertices corresponding to the singleton pairs in8

the pair automaton. This vertex set is the first frontier, i.e., level 09

vertices of the BFS kernel. At each iteration, the frontier is up-10

dated by using the BFS_step_F2R given in Algorithm 2. The pro-11

cess will continue until all the pairs are visited and their shortest12

merging sequences are computed.13

On a multicore/manycore architecture, a single execution of14

BFS_step_F2R is parallelized by assigning a single vertex (i.e., a15

single state pair) of F to a single thread. The threads process the16

frontier edges (which correspond to the incoming transitions of17

the pairs based on δ−1) of the assigned vertices to find the next18

frontier F ′. After each step, the threads are synchronized before19

starting to the next step from the next frontier. On the CPU, this20

is achieved by a barrier. On a GPU, each step is a different kernel21

execution. Such a global synchronization is necessary since one22

cannot be sure about the correctness of the next frontier without23

traversing all the edges of the previous frontier. Thanks to the24

inverse automata data structure presented in Fig. 1, each edge25

can be processed in constant time. Hence the work-load of each26

phase is proportional to the number of incoming transitions to27

the frontier pairs, and the total work is O(pn2).28

To efficiently access the transitions from the endpoints, i.e., to
quickly find δ−1(s, x) for all x ∈ Σ and s ∈ S, we utilize the ptrsx
and jsx arrays for each input x ∈ Σ as shown in Fig. 1 (right).
The length of ptrsx is n+1 and the length of jsx is n. The entries

jsx[ptrsx[s]], jsx[ptrsx[s] + 1], jsx[ptrsx[s] + 2], . . . ,
jsx[ptrsx[s+ 1] − 1]

store the ids of the states in δ−1(s, x). Since we store only a29

single entry for each edge the memory footprint of these array-30

based inverse automata representation is optimal. Furthermore,31

in both sequential and parallel F2R, the states from jsx[ptrsx[s]]32

to jsx[ptrsx[s+ 1]− 1] are accessed one after the other. Hence,33

the proposed data structure is good for spatial locality and better34

cache utilization.35

In the sequential version of BFS_step_F2R, the next frontier36

never have duplicates; line 5 of Algorithm 2 guarantees that only37

the unvisited pairs, i.e., the ones with an undefined PMF value38

is inserted to the next frontier. This check also guarantees that a39

pair is not inserted to the next frontier more than once. However,40

such a check is not sufficient for the parallel execution since41

two threads can perform the same check for the same vertex42

at the same time and they both can try to insert it to the next43

frontier. One can eliminate such duplicates by using a mutex-44

like global structure for the checks and updates. Although mutex45

is an expensive tool, a single, global list for the next frontier46

F ′ is sufficient for this approach. One can also keep a separate47

local list F ′t for each thread t , insert the visited pairs to these48

local lists, and then perform a duplicate pair elimination after49

each BFS_step_F2R. However, this approach also suffers from the50

extra overhead, and keeping a local queue may not be feasible for51

manycore architectures.52

Algorithm 5: BFS_step_F2R (parallel)
input : An automaton A = (S, Σ, δ), the frontier F , the

remaining set R, and a partial PMF τ

output: The new frontier F ′, the new remaining set R′, and
updated function τ

1 foreach thread t do F ′t ←− ∅ ;
2 foreach {si, sj} ∈ F in parallel do
3 foreach x ∈ Σ do
4 foreach {s′i, s

′

j} where s′i ∈ δ−1(si, x) and s′j ∈ δ−1(sj, x)
do

5 if τ ({s′i, s
′

j}) is undefined then // {s′i, s
′

j} ∈ R
6 τ ({s′i, s

′

j})←− xτ ({si, sj});
7 F ′t ←− F ′t ∪ {{s

′

i, s
′

j}};

8 F ′ ←− ∅;
9 foreach thread t do F ′ ←− F ′ ∪ F ′t ;

10 R′ ←− R \ F ′;

In our parallel algorithm (Algorithm 5) for multicore CPUs, 53

each thread t uses a local frontier array F ′t and when a new pair 54

from the next frontier is found by thread t , it is immediately 55

added to F ′t . When two threads find the same pair {s′i, s
′

j} at 56

the same time, both of them insert it to their local frontiers 57

(lines 5–7). However, we ignore the duplicate pairs since they will 58

not have an impact on the correctness of Algorithm 5. Although 59

the duplicates will yield extra and unnecessary work performed 60

in the next step, they will probably not generate more duplicates 61

after the next step due to the if check at line 5 of the algorithm. 62

Furthermore, in our preliminary experiments on a multicore CPU, 63

we observed that at most one out of thousand extra pairs are 64

inserted to F ′ when they are allowed. Hence, we let the threads 65

create duplicates since the total cost due to these extra pairs 66

is negligible compared to the cost of checking and resolving 67

duplicates. 68

The cost of maintaining a local queue for each thread is not 69

feasible when a manycore architecture has more than hundreds 70

or thousands of threads which is the case for GPU. Hence, for 71

manycore architectures, we follow another approach that helps 72

us to avoid queue management overhead. This approach will be 73

described in Section 4.1.2. 74

4.1.1. An alternative approach for a BFS step and hybrid PMF con- 75

struction 76

In addition to ‘‘Frontier to Remaining’’, one can perform a 77

single BFS step (hence all the BFS) by using the original tran- 78

sition function δ instead of the inverse transition function δ−1. 79

This approach is called ‘‘Remaining to Frontier (R2F)’’ since the 80

edges/transitions are processed w.r.t. their original orientation; 81

i.e., from remaining vertices to the ones in the frontier. At each 82

iteration, the next frontier is formed by all the {si, sj} ∈ R state 83

pairs with undefined PMF values that can reach to at least one 84

pair inside the frontier with a single input. Algorithm 6 follows 85

this approach. In the parallel implementation, the threads process 86

the transitions of the remaining state pairs instead of the ones in 87

the frontier. Similar to the F2R approach, a pair (this time from R) 88

is assigned to a single thread, and a local remaining pair array 89

R′t is used for each thread t for a lock-free parallelization of R2F. 90
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Fig. 4. The number of frontier and remaining vertices at each BFS level and the corresponding execution times of F2R and R2F while constructing the PMF τ for
n = 2000 and p = 8 (top) and p = 128 (bottom).

As the algorithm shows, for each pair in {si, sj} ∈ R and each1

input x ∈ Σ , first {s′i, s
′

j} = {δ(si, x), δ(sj, x)} is computed. Then2

{s′i, s
′

j} is checked to be in the frontier (lines 5–6). Note that it3

is sufficient to check if τ ({s′i, s
′

j}) is defined or not, since all the4

edges from the remaining vertices to already visited/processed5

vertices have their latter endpoint in the frontier. If τ ({s′i, s
′

j})6

is defined then a shortest merging sequence for {si, sj} can be7

obtained by concatenating x and τ ({s′i, s
′

j}) (line 7). A boolean8

variable, connected, is used to check if a remaining vertex will stay9

as a remaining node in R (lines 10 and 11) or not.10

Algorithm 6: BFS_step_R2F (parallel)
input : An automaton A = (S, Σ, δ), the frontier F , the

remaining set R, and a partial PMF τ

output: The new frontier F ′, the new remaining set R′, and
updated function τ

1 foreach thread t do R′t ←− ∅;
2 foreach {si, sj} ∈ R in parallel do
3 connected←− false;
4 foreach x ∈ Σ do
5 {s′i, s

′

j} ←− {δ(si, x), δ(sj, x)};
6 if τ ({s′i, s

′

j}) is defined then // {s′i, s
′

j} ∈ F
7 τ ({si, sj})←− xτ ({s′i, s

′

j});
8 connected←− true;
9 break;

10 if not connected then
11 R′t ←− R′t ∪ {{si, sj}};

12 R′ ←− ∅;
13 foreach thread t do R′ ←− R′ ∪ R′t ;
14 F ′ ←− R \ R′;

Fig. 4 shows the execution times of both F2R and R2F steps11

during PMF construction for automata having n = 2000 states12

and p = {8, 128} inputs. There two important observations;13

first the execution times of F2R and R2F are correlated with14

the number of vertices in the frontier and remaining sets, re- 15

spectively. Second, as expected, the frontier size increases and 16

decreases fast. Furthermore, when the number of remaining ver- 17

tices is much smaller than the number of frontier vertices the 18

F2R-based steps become more expensive than R2F-based steps. 19

Such observations have also been made by Beamer et al. who pro- 20

pose a direction-optimized BFS algorithm for generic graphs [2]. 21

Using two different parallel GPU kernels which perform similar 22

tasks on different phases of the execution have shown to be 23

beneficial in the literature also for other problems, e.g., see [20]. 24

Due to the first observation, it indeed makes sense to start with 25

F2R and switch to R2F once the number of the edges of the 26

frontier vertices becomes less than the number of the edges of the 27

remaining vertices. In this study, to get rid of the overhead due to 28

edge counting, we used vertex counts instead of edge counts; we 29

perform the switch when the number of frontier vertices becomes 30

less than the number of remaining, unprocessed vertices. Since 31

each pair is counted only once, the total counting overhead will 32

be O(n2). The parallel PMF construction algorithm is presented in 33

Algorithm 7. 34

4.1.2. Searching in entire set for manycore architectures 35

In Algorithms 5 and 6, each thread constructs their local fron- 36

tier and remaining sets in parallel. A drawback of this approach 37

is the increased memory footprint; since we cannot predict the 38

local frontier sizes at each step, to fully avoid locks and other par- 39

allelization constructs, we need to allocate a space large enough 40

to store all possible pairs. This approach is feasible for multicore 41

processors since we only have tens of cores. 42

As explained in Section 2.1, a GPU is a high-performance 43

accelerator that can concurrently execute thousands of threads 44

at the same time. However, the global memory size on a GPU is 45

not as large as the memory we have on the host server. Hence, 46

the previous approach taken is not feasible on GPUs. Furthermore, 47

it can be costly to merge thousands of local frontier sets. In 48

addition, the GPU implementation of Algorithm 5 can create a 49

large number of duplicate pairs, since the probability of a pair 50
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Algorithm 7: Computing a function τ : S⟨2⟩ → Σ⋆ (Hybrid)
input : An automaton A = (S, Σ, δ)
output: A function τ : S⟨2⟩ → Σ⋆

1 foreach singleton {s, s} ∈ S⟨2⟩ do τ ({s, s})←− ε;
2 foreach pair {si, sj} ∈ S⟨2⟩ do τ ({si, sj})←− undefined;
3 F ←− {{s, s}|s ∈ S}; // all singleton states of A⟨2⟩

4 R←− {{si, sj}|si, sj ∈ S ∧ si ̸= sj}; // all pair states of
A⟨2⟩

5 while F is not empty do
6 if |F |< |R| then
7 F , R, τ ←− BFS_step_F2R(A, F , R, τ );
8 else
9 F , R, τ ←− BFS_step_R2F(A, F , R, τ );

visited by more than a single thread increases with the number1

of threads. Therefore, we need another approach instead of local2

frontiers.3

For GPU parallelization, the algorithm processes the entire4

pair set S⟨2⟩, instead of R or F . We call this approach S2R and5

S2F, respectively. At each iteration of S2R, S⟨2⟩ is used and the6

algorithm checks if the current pair is in F or not. If the pair is in7

F , then the algorithm continues as in F2R. S2F has the same idea8

of S2R. However, S2F checks if the pair is in R or not. If it is in R9

it executes the same logic in R2F. Algorithms 8 and 9 present the10

pseudocodes for the proposed, parallel, GPU-based algorithms.11

Algorithm 8: BFS_step_S2R (parallel)
input : An automaton A = (S, Σ, δ), the frontier level f ,

and a partial PMF τ

output: updated function τ

1 foreach {si, sj} ∈ S2 in parallel do
2 if |τ ({si, sj})|= f then
3 foreach x ∈ Σ do
4 foreach {s′i, s

′

j} where s′i ∈ δ−1(si, x) and
s′j ∈ δ−1(sj, x) do

5 if τ ({s′i, s
′

j}) is undefined then // {s′i, s
′

j} ∈ R
6 τ ({s′i, s

′

j})←− xτ ({si, sj});

Algorithm 9: BFS_step_S2F (parallel)
input : An automaton A = (S, Σ, δ), and a partial PMF τ

output: updated function τ

1 foreach {si, sj} ∈ S2 in parallel do
2 if τ ({si, sj}) is undefined then
3 foreach x ∈ Σ do
4 {s′i, s

′

j} ←− {δ(si, x), δ(sj, x)};
5 if τ ({s′i, s

′

j}) is defined then // {s′i, s
′

j} ∈ F
6 τ ({si, sj})←− xτ ({s′i, s

′

j});
7 break;

4.2. Parallel synchronizing sequence construction12

The second phase of the algorithm has two major sub-phases13

which are repetitively applied: (i) finding a pair having the min-14

imum length merging sequence and (ii) applying this merging15

sequence to the current active state set. The algorithm applies16

these two sub-phases until the automata is synchronized. To17

observe the behavior of the second phase, we extended our18

preliminary experiments and measure the execution times for 19

these sub-phases. Since the second phase takes less than only 20

one second for random automata, only Černý automata with n ∈ 21

{2000, 4000, 8000} states are used for this set of experiments. 22

To reduce the variance on the measured individual execution 23

times, each experiment is repeated 5 times. Table 2 presents the 24

averages of these executions. 25

The table shows that Algorithm 4 dominates the execution 26

time of the second phase. To parallelize this sub-phase, we make 27

each thread to find a local pair in parallel. Later, these pairs are 28

sequentially merged to obtain a global state pair with a shortest 29

merging sequence. Algorithm 10 presents the pseudocode of this 30

approach. 31

Algorithm 10: FindMin (parallel)
input : Current set of state C and the PMF function τ

output: A pair of state {si, sj} with minimum |τ ({si, sj})|
among all pairs in C ⟨2⟩

1 foreach thread t do {sit , sjt } ←− undefined ;
2 foreach {sk, sℓ} ∈ C ⟨2⟩ in parallel do
3 if {sit , sjt } is undefined or |τ ({sk, sℓ})|< |τ ({sit , sjt })| then
4 {sit , sjt } ←− {sk, sℓ};
5 if |τ ({sk, sℓ})|= 1 then
6 break;

7 {si, sj} ←− undefined;
8 foreach thread t do
9 if {si, sj} is undefined or |τ ({sit , sjt })|< |τ ({si, sj})| then

10 {si, sj} ←− {sit , sjt };
11 if |τ ({si, sj})|= 1 then
12 break;

To parallelize Algorithm 10, we took a simple approach. The 32

index set {i : 1 ≤ i ≤ |C |} is divided into a number of chunks 33

where each chunk is assigned to a single thread. For each index i, 34

the state pairs at locations {C[i], C[j]} such that i < j ≤ |C | 35

are processed by the same thread and a minimum |τ (.)| value 36

is computed for these pairs. After all the chunks are processed, 37

with CUDA, each GPU thread performs an atomicMin operation 38

to update the global minimum. Instead, on the CPU, we perform 39

a sequential synchronization (as in Lines 8–12). 40

In our preliminary experiments, we observed that it is not 41

only the balanced distribution that matters; cache utilization is 42

proven to be more important. Let {si, sj} be the pair returned by 43

the FindMin function in Algorithm 3 (Line 8). The set C is updated 44

by applying τ ({si, sj}) to every state in C (Line 10). Later, the 45

duplicates are removed. As the algorithm shows, the new C is 46

fed to the FindMin function in the next iteration. Since a path 47

can transform a state to an arbitrary one, the state IDs in this 48

new C are unsorted. This makes a thread access to the distance 49

array in an irregular fashion. Hence, although this incurs an extra 50

overhead, we choose to sort C after each time it is updated. We 51

measured the impact of this preprocessing step in Section 5. 52

4.3. A better pair automata indexing for manycore architectures 53

As explained before, the algorithms S2R and S2F visit all the 54

pairs and the threads process a pair if it is in the current fron- 55

tier (for S2R) or it is a remaining pair (for S2F). In our imple- 56

mentation, the pairs are ordered by using an indexing scheme. 57

With a simple indexing, one can use pair IDs {0, 1, . . . , n2
− 1} 58

as in Fig. 5 (top) and store the PMF values (i.e., letters) within an 59

array in this order. In this scheme, the ID of a pair {si, sj} where 60
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Fig. 5. Indexing and placement of the state pair arrays. A simple placement of the pairs (at the top) uses redundant places for state pairs {si, sj}, i̸=j, e.g., {s0, s1}
and {s1, s0} in the figure. At the bottom, the indexing mechanism we used is shown.

Table 2
Comparison of the run time of Algorithm 4 (tFindMin), i.e., the first sub-phase, and
the second phase (tPhase_2).
n tFindMin tPhase_2 tFindMin/tPhase_2
2000 4.73 4.74 0.997
4000 41.03 41.10 0.998
8000 1035.09 1035.48 1.000

1 ≤ i ≤ j ≤ n is computed as ℓ = (i− 1)× n+ j. Vice versa, given1

ℓ, one can obtain the IDs of the states by2

i =
⌈

ℓ

n

⌉
and j = ℓ− ((i− 1)× n).3

On a GPU, this scheme yields an inefficient work distribution4

since when the consecutive threads are assigned consecutive pair5

IDs, some of the threads in a warp will not work and only wait for6

the kernel to be finished. This happens since {sj, si}s with i < j are7

not actually considered a state pair hence, the IDs for such pairs8

will incur no work. Even one can preprocess the IDs and eliminate9

such pairs’ IDs, this indexing effectively uses only the half of the10

array(s); for a state pair {si, sj}, a redundant entry for {sj, si} is also11

stored. Hence, the threads in some warps will access more than a12

single block and memory accesses will be slower for these warps.13

In this work, we propose to use a better indexing scheme that14

does not use redundant locations as shown in Fig. 5 (bottom).15

Given a pair ID16

ℓ =
i× (i+ 1)

2
+ j17

the state IDs are computed in this scheme as18

i = ⌊
√
1+ 2ℓ− 0.5⌋ and j = ℓ−

i× (i+ 1)
2

.19

Note that this indexing scheme not only distributes the load work20

better but also reduces the memory used which is indeed crucial21

for memory restricted devices such as GPUs.22

5. Experimental results23

We performed experiments on a server running on 64 bit24

CentOS 6.5 equipped with 64GB RAM and a dual-socket Intel25

Xeon E7-4870 v2 clocked at 2.30 GHz where each socket has26

15 cores (30 in total). We used OpenMP for multicore parallelism27

and all the codes are compiled with gcc 4.9.2 with the -O3 op-28

timization flag enabled. With OpenMP, we employed the dynamic29

scheduling policy for PMF construction phase (with batches of30

512-pairs) since the task costs are not uniform.31

The machine we use has a NVIDIA K40 GPU with 12GB of32

global memory and 15 SMs each having 192 cores. The manycore33

GPU parallelization is achieved with CUDA. All the codes are34

compiled with CUDA 7.5 and nvcc with -O3 optimization flag.35

Although there exist studies showing the importance of overlap-36

ping the data transfer to GPU with computation, e.g., see [34],37

for the synchronization problem, the data, i.e., the automata, is38

small and the data transfers take insignificant time compared to39

the processing time. Hence, in this study, we did not tune and 40

optimize the overhead of data transfers to the device. 41

To measure the efficiency of the proposed algorithms, we used 42

randomly generated automata1 with n ∈ {2000, 4000, 8000, 43

16000, 32000} states and p ∈ {2, 8, 32, 128} inputs. For each 44

(n, p) pair, we randomly generated 100 different automata and 45

executed each algorithm on them. The values in the figures and 46

the tables are the averages of these 100 executions for each 47

configuration, i.e., algorithm, n and p. 48

5.1. Parallelization of PMF construction 49

Fig. 6 shows the speedups of our parallel F2R implementation 50

over the sequential baseline with no parallelism. Both F2R and 51

sequential baseline use the same frontier update mechanism, 52

whereas R2F, S2R and S2F employ a different one. Hence, here we 53

only present the speedup values of F2R to understand the scala- 54

bility of the proposed algorithm and implementation. As the fig- 55

ure shows, when p is large, parallel F2R presents good speedups, 56

e.g., for p = 128, the average speedup is 13.4 with 16 threads. 57

We observed around 10% performance difference between se- 58

quential baseline and single-thread F2R due to the extra overhead 59

performed for local queue management. When compared to the 60

single-thread F2R, the average speedup of parallel F2R with p = 61

128 and 16 threads is 14.9. With the same number of threads, 62

for automata with less than 128 inputs, i.e., p ∈ {2, 8, 32}, 63

the average speedups are 7.9, 10.4, and 12.7, respectively. The 64

increase on the speedup with p is expected since increasing p only 65

increases the work but not the queue-management overhead on 66

multicore architectures. 67

Table 3 compares the execution times of F2R, R2F and Hybrid 68

algorithm for n ∈ 2000, 4000, 8000, p ∈ {2, 8, 32, 128} and 69

{1, 2, 4, 8, 16} threads. All in all the Hybrid approach is superior 70

to both standalone F2R and standalone R2F. For example, when 71

n = 8000 and p = 128, the Hybrid algorithm is 38× and 14× 72

faster than F2R and R2F, respectively. For the same automaton 73

set, the speedups due to hybridization of the process become 29× 74

and 16× on average with 16 threads. 75

Based on the results, F2R is consistently faster than R2F for 76

p = 2. However, it is slower otherwise due to the differences 77

in the number of required iterations to construct PMF. The dif- 78

ference on the behavior with different p values can be explained 79

as follows; as Fig. 4 shows, when p is large, the frontier expands 80

quickly and the PMF is constructed in less iterations. Hence, there 81

exist less number of pairs remaining in R and less number of 82

edges to process. Furthermore, the probability of an edge from 83

a fixed remaining pair hitting to a frontier pair increases with 84

the size of the frontier. The impact of these is visible at extreme, 85

i.e., even by a reduction on R2F execution time 3 (observe the 86

change from p = 2 to p = 8). That being said, once the 87

performance benefits of early termination are fully exploited, an 88

increase on the R2F runtime with increasing p is more probable 89

since the overall BFS work, i.e., the total number of edges, also 90

increases with p (observe the change from p = 8 to p = 32). 91

1 For each state s and input x, δ(s, x) is randomly assigned to a state s′ ∈ S.
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Fig. 6. The speedup of parallel F2R PMF construction over the sequential baseline.

Table 3
Comparison of the parallel execution times of the PMF construction algorithms.

n = 2000 n = 4000 n = 8000

p 2 8 32 128 2 8 32 128 2 8 32 128

Sequential 0.17 0.50 2.11 9.13 1.18 2.71 9.92 40.36 5.90 14.29 51.78 193.55

1
F2R 0.19 0.56 2.31 9.89 1.35 3.21 11.24 44.57 6.43 16.01 56.71 219.46
R2F 0.59 0.46 0.85 1.91 3.17 2.61 4.72 11.39 19.41 18.17 34.35 86.60
Hybrid 0.14 0.18 0.96 0.65 1.06 0.89 2.99 1.92 5.16 8.42 8.93 5.80

2
F2R 0.15 0.34 1.21 5.00 0.73 1.68 5.74 22.41 3.82 9.14 31.40 120.23
R2F 0.37 0.27 0.46 0.98 2.00 1.55 2.62 6.04 13.73 11.96 21.54 52.67
Hybrid 0.12 0.14 0.53 0.37 0.58 0.50 1.57 1.01 3.09 4.86 5.10 3.34

4
F2R 0.08 0.17 0.61 2.50 0.38 0.86 2.88 11.11 1.99 4.67 15.79 60.42
R2F 0.20 0.15 0.24 0.50 1.09 0.82 1.36 3.05 7.43 6.43 11.34 27.21
Hybrid 0.06 0.07 0.27 0.19 0.31 0.26 0.80 0.52 1.62 2.49 2.61 1.73

8
F2R 0.04 0.09 0.31 1.26 0.21 0.46 1.47 5.60 1.09 2.49 8.31 31.55
R2F 0.11 0.08 0.12 0.25 0.64 0.45 0.71 1.55 4.36 3.68 6.36 14.91
Hybrid 0.03 0.04 0.14 0.10 0.17 0.15 0.42 0.28 0.89 1.34 1.39 0.93

16
F2R 0.02 0.05 0.16 0.64 0.14 0.26 0.76 2.85 0.71 1.42 4.41 16.50
R2F 0.06 0.04 0.06 0.13 0.41 0.26 0.38 0.81 2.78 2.38 4.06 9.10
Hybrid 0.02 0.02 0.07 0.05 0.12 0.09 0.23 0.16 0.59 0.80 0.80 0.57

To understand the performance improvements due to GPU,1

we run S2R, S2F and Hybrid algorithms on the same set of2

automata used before. Table 4 presents the results of these ex-3

periments. Overall for n = 8000 and varying p values, 1.2×–2.1×4

improvement is obtained on the GPU with traditional indexing5

compared to 16-thread CPU execution. With the smart indexing6

scheme proposed in Section 4.3, the improvements increase to7

1.5 × −2.9×. Similar to the multicore experiments, for most of8

the (n, p) tuples, the Hybrid variant combining S2R and S2F is 9

superior to either of the standalone variants on the GPU (see 10

Table 5). 11

To see the impact of the GPU usage better, we increased the 12

automata sizes to n = 16 000 and n = 32 000 and generated 13

additional random automata. On this automata, we run the mul- 14

ticore implementations with only 16 threads, since the sequential 15

implementation would take too much time. In fact, even the 16
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Table 4
Comparison of the 16 thread CPU and GPU execution times for PMF construction.

n = 2000 n = 4000 n = 8000

p 2 8 32 128 2 8 32 128 2 8 32 128

Sequential 0.17 0.50 2.11 9.13 1.18 2.71 9.92 40.36 5.90 14.29 51.78 193.55

16 Hybrid 0.02 0.02 0.07 0.05 0.12 0.09 0.23 0.16 0.59 0.80 0.80 0.57

GPU
S2R 0.02 0.02 0.05 0.17 0.07 0.09 0.20 0.77 0.31 0.39 0.92 3.36
S2F 0.03 0.04 0.11 0.46 0.14 0.19 0.61 2.54 0.65 0.91 4.04 13.29
Hybrid 0.02 0.02 0.03 0.05 0.09 0.07 0.12 0.14 0.41 0.39 0.46 0.48

GPU S2R 0.01 0.02 0.04 0.16 0.05 0.07 0.19 0.76 0.21 0.31 0.85 3.33
Mem. S2F 0.02 0.02 0.06 0.19 0.08 0.10 0.29 1.16 0.34 0.49 1.74 6.36
Opt. Hybrid 0.01 0.01 0.03 0.04 0.06 0.05 0.10 0.13 0.24 0.28 0.36 0.39

Table 5
Comparison of the 16 thread CPU and GPU execution times for PMF construction
on larger automata.

n = 16 000 n = 32 000

p 2 8 32 128 2 8 32 128

16
F2R 3.06 6.23 18.85 73.84 13.14 26.06 78.17 386.41
R2F 13.85 11.71 20.08 49.00 62.52 52.95 94.29 233.33
Hybrid 2.53 2.56 2.39 2.02 10.86 8.58 8.23 156.19

GPU
S2R 1.45 1.95 4.76 14.72 12.76 23.29 68.26 261.61
S2F 4.75 6.48 20.59 63.97 71.23 124.56 355.29 1016.56
Hybrid 2.05 1.65 1.92 1.93 20.26 13.49 13.32 117.40

GPU S2R 0.99 1.51 4.17 13.45 7.38 10.61 21.42 73.19
Mem. S2F 2.12 2.90 9.78 31.37 11.31 15.49 47.19 142.76
Opt. Hybrid 1.06 1.10 1.42 1.36 7.14 6.37 6.28 36.42

16-thread F2R implementation takes more than 6 min for1

n = 32 000 and p = 128 whereas multicore Hybrid takes2

2.5 min. Based on our observations, we predict that the sequential3

algorithm would take more than an hour. However, for this set of4

automata, our hybrid GPU implementation takes only 36 seconds.5

To understand the overall impact based on the sequential execu-6

tion, Fig. 7 presents the speedup values with the Hybrid variant7

both on CPU and GPU. As the figure shows, thanks to scaling8

behavior of Hybrid, the speedups increase when the number of9

threads increases, especially for large p values. With the CUDA10

implementation, the PMF generation process becomes even much11

faster: on average, the one with smart indexing obtains 25×,12

51×, 143× and 494× speedups for p = 2, 8, 32, and 12813

letter automata, respectively, with n = 8000 states compared to14

sequential CPU execution.15

5.2. Parallelization of sequence generation16

As mentioned in Section 4.2, the execution time of second17

phase is worthy to take into account for slowly synchronizing18

automata. In fact, even for a random automaton, after paralleliz-19

ing Phase 1 with the Hybrid algorithm, the cost of a sequential20

Phase 2 can become significant. To analyze this statement fur-21

ther, we simply conducted an experiment where the Hybrid GPU22

approach is used to construct the PMF and no parallelization is23

applied during the second phase. Table 6 shows the speedups for24

this experiment. As the results show, when Phase 1 is parallelized,25

a sequential Phase 2 takes more than half of the time. Hence, even26

for a random automaton, using parallelism for the second phase27

will also be beneficial in terms of performance.28

We used Černý automata with n ∈ {2000, 4000, 8000} for this29

set of experiments. For CPU parallelization of the second phase,30

we implemented Algorithm 10 and tested with 1, 2, 4, 8 and31

16 threads. For GPU parallelization, we implemented the same32

algorithm with 256 threads per block and 256 blocks. We also33

implemented the approach that sorts the set of current active34

states before the process as mentioned in Section 4.2.35

Table 6
The speedups obtained on Eppstein’s Greedy algorithm when the memory
optimized CUDA implementation of Hybrid PMF construction algorithm is used.

Speedup tPMF
tALL

n\p 2 8 32 128 2 8 32 128

2000 6.69 18.55 50.60 159.54 0.52 0.53 0.69 0.77
4000 10.94 25.29 61.33 213.27 0.50 0.46 0.62 0.68
8000 9.55 20.66 64.28 234.91 0.36 0.39 0.45 0.47

Table 7
The execution times (in s) of Algorithm 4 (the first two rows) and Algo-
rithm 10 (the other rows). The first of each row pair, i.e., the rows labeled
with unsorted, uses the active state set C as is, whereas the rows labeled with
sorted order the states in C w.r.t. increasing state ids as a preprocessing step in
every iteration as explained in Section 4.2.

n 2000 4000 8000

Sequential Unsorted 4.73 41.03 1035.10
Sorted 1.60 12.70 109.76

1 thread Unsorted 5.10 47.02 896.38
Sorted 2.55 20.27 168.12

2 threads Unsorted 3.87 37.35 874.25
Sorted 1.94 15.09 132.77

4 threads Unsorted 2.31 22.71 522.93
Sorted 1.18 8.95 75.67

8 threads Unsorted 1.26 13.13 289.75
Sorted 0.72 5.04 40.84

16 threads Unsorted 0.69 6.67 154.80
Sorted 0.72 3.35 22.40

GPU Unsorted 0.68 5.51 51.28
Sorted 0.39 1.56 9.61

Table 7 shows that sorting the set of current pairs has a 36

remarkable impact on the performance. Even in the sequential 37

implementation, we observed 3× to 9.5× speedups. When both 38

the implementation improvement and GPU parallelization is ap- 39

plied, we observed between 12× and 107× speedups over the 40

sequential implementation of the second phase. 41

6. Conclusion and future work 42

We investigated the efficient implementation and the use of 43

modern multicore CPUs to scale the performance of synchro- 44

nizing sequence generation heuristics. We parallelized one of 45

the well-known heuristics Greedy. We focused on both the PMF 46

generation phase (which is employed by almost all the heuristics 47

in the literature) and the second phase where the synchronizing 48

sequence is generated. For instance, for a random automaton with 49

n = 8000 and p = 128, the proposed approach for the first 50

phase improves the naive, sequential implementation by 33× and 51

with 16 threads, the speedup increases to 340×. Furthermore, 52

with a single GPU, we obtain 496× speedup over the sequential 53

implementation. We also propose a naive parallelization with a 54
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Fig. 7. The speedups of the Hybrid PMF construction with p = {2, 8, 32, 128} and n ∈ {2000, 4000, 8000} on CPU and GPU. The x-axis shows the number of threads
used for Hybrid. The values are computed based on the average sequential PMF construction time over 100 different automata for each (n, p) pair.

good spatial locality for the second phase which is shown to be1

useful especially for slowly synchronizing automata.2

As a future work, we will apply our techniques to other heuris-3

tics in the literature that are relatively slower than Greedy but4

can produce shorter synchronizing sequences. For these heuris-5

tics, parallelizing the PMF generation phase may not be as effi-6

cient as this work since the synchronizing sequence construction7

part of these heuristics are much more expensive compared to8

Greedy.9
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