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DECOMPOSITION OF AUGMENTED CUBES INTO REGULAR

CONNECTED PANCYCLIC SUBGRAPHS

S. A. KANDEKAR, Y. M. BORSE AND B. N. WAPHARE

Abstract. In this paper, we consider the problem of decomposing the augmented cube
AQn into two spanning, regular, connected and pancyclic subgraphs. We prove that
for n ≥ 4 and 2n − 1 = n1 + n2 with n1, n2 ≥ 2, the augmented cube AQn can be
decomposed into two spanning subgraphs H1 and H2 such that each Hi is ni-regular and
ni-connected. Moreover, Hi is 4-pancyclic if ni ≥ 3.
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1. Introduction

Interconnection networks play an important role in communication systems and parallel

computing. Such a network is usually represented by a graph where vertices stand for its

processors and edges for links between the processors. Network topology is a crucial factor

for interconnection networks as it determines the performance of the networks. Many

interconnection network topologies have been proposed in literature such as mesh, torus,

hypercube and hypercube like structures. The n-dimensional hypercube Qn is a popular

interconnection network topology. It is an n-regular, n-connected, vertex-transitive graph

with 2n vertices and has diameter n.

In 2002, Chaudam and Sunitha [7] introduced a variant of the hypercube Qn called

augmented cube AQn. The graph AQn is (2n − 1)-regular, (2n − 1)-connected, pancyclic

and vertex-transitive on 2n vertices. However, the diameter of AQn is ⌈n/2⌉ which is

almost half the diameter of Qn. Hence there is less delay in data transmission in the

augmented cube network than the hypercube network. Many results have been obtained

in the literature to prove that the augmented cube is a good candidate for computer

network topology design; see [7, 12, 13, 15, 21].

One of the central issue in evaluating a network is to study the embedding problem. It

is said that a graph H can be embedded into a graph G if it is isomorphic to a subgraph

of G and if so, while modeling a network with graph, we can apply existing algorithms

for graph H to the graph G. Cycle networks are suitable for designing simple algorithms

with low communication cost. Since some parallel applications, such as those in image
1
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and signal processing, are originally designed on a cycle architecture, it is important to

have effective cycle embedding in a network. A graph G is r-pancyclic if it contains cycles

of every length from r to |V (G)|. A 3-pancyclic graph is pancyclic. A graph G on even

number of vertices is bipancyclic if G is a cycle or it contains cycles of every even length

from 4 to |V (G)|. A lot of research has been done regarding pancyclicity of augmented

cubes; see [6, 8, 9, 11, 13, 19, 21].

A decomposition of a graph G is a list of its subgraphs H1, H2, . . . , Hk such that every

edge of G belongs to Hi for exactly one i. The decompositions of hypercubes into Hamil-

tonian cycles, into smaller cycles, into paths and into trees are studied in [1, 2, 15, 17, 20].

The existence of a spanning, k-regular, k-connected and bipancyclic subgraph of Qn, for

every k with 3 ≤ k ≤ n, is proved in [16]. Bass and Sudborough [2] pointed out that the de-

composition of Qn into regular, spanning, isomorphic subgraphs has potential applications

in construction of adaptive routing algorithms and in the area of fault tolerant comput-

ing. They obtained a decomposition of Qn, for even n, into two spanning, (n/2)-regular,

2-connected, isomorphic subgraphs of diameter n+ 2. Borse and Kandekar [3] proved the

existence of the decomposition of Qn into two regular subgraphs whose degrees are based

on the given 2-partition of n and further, they are rich with respect to connectivity and

cycle embedding.

Theorem 1.1 ([3]). For n = n1+n2 with n1, n2 ≥ 2, the hypercube Qn can be decomposed

into two spanning subgraphs H1 and H2 such that Hi is ni-regular, ni-connected and

bipancyclic.

The above result has been generalized for the decomposition of Qn based on partitions

of n into k parts. It has been also extended to the class of the Cartesian product of even

cycles; see [4, 5].

In this paper, we extend Theorem 1.1 to the class of augmented cubes. The following

is the main theorem of the paper.

Main Theorem 1.2. Let n ≥ 4 and 2n−1 = n1+n2 with n1, n2 ≥ 2. Then the augmented

cube AQn can be decomposed into two spanning subgraphs H1 and H2 such that Hi is ni-

regular and ni-connected. Moreover, Hi is 4-pancyclic if ni ≥ 3.

In Section 2, we provide necessary definitions and preliminary results. The special case

n1 = 2 of the main theorem is proved in third section. In section 4 and 5, we consider the

cases n1 = 3 and n1 = 4, respectively. We complete the proof of the main theorem using

these special cases in the last section.
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2. Preliminaries

The n-dimensional augmented cube is denoted by AQn, n ≥ 1. It can be defined recur-

sively as follows.

AQ1 is a complete graph K2 with vertex set {0, 1}. For n ≥ 2, AQn is obtained from

two copies of the augmented cube AQn−1, denoted by AQ0
n−1 and AQ1

n−1, and adding 2n

edges between them as follows.

Let V (AQ0
n−1) = {0x1x2...xn−1 : xi = 0 or 1} and V (AQ1

n−1) = {1y1y2...yn−1 : yi =

0 or 1}. A vertex x = 0x1x2...xn−1 of AQ0
n−1 is joined to a vertex y = 1y1y2...yn−1 of

AQ1
n−1 if and only if either

(1) xi = yi for 1 ≤ i ≤ n− 1, in this case the edge is called hypercube edge and we set

y = xh or

(2) xi = yi for 1 ≤ i ≤ n − 1, in this case the edge is called complementary edge and

we set y = xc.

Let Eh
n and Ec

n be the set of hypercube edges and complementary edges, respectively

used to construct AQn from AQn−1. Then Eh
n and Ec

n are the perfect matchings of AQn

and further, AQn = AQ0
n−1 ∪AQ1

n−1 ∪ Eh
n ∪ Ec

n. The Augmented cubes of dimensions 1,

2 and 3 are shown in Fig. 1.

0

1

00

01

10

11

000

001

010

011

100

101

110

111

AQ1 AQ2 AQ3

Figure 1: Augmented cube of dimension 1, 2, 3.

In AQ2, E
h
2 = {< 01, 11 >,< 00, 10 >} and Ec

2 = {< 01, 10 >,< 00, 11 >}. From the

definition, it is clear that AQn is a (2n− 1)-regular graph on 2n vertices. It is also known

that AQn is (2n − 1)-connected and vertex-transitive [7].

A ladder on 2m with m ≥ 2 is a graph consisting of two vertex-disjoint paths, say

P1 =< u1, u2, . . . , um > and P2 =< v1, v2, . . . , vm >, that are joined by edges uivi for

i = 1, 2, . . . m; see Figure 2(a). The following lemma follows easily.

Lemma 2.1 ([4]). A ladder is bipancyclic.

We now define a ladder-like graph which is shown to be pancyclic and is used to prove

pancyclicity of certain subgraphs of AQn in subsequent results.
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Definition 2.2. Let m ≥ 6 be an integer. A subgraph G of AQn on 2m vertices said to

be a ladder-like graph if it contains

(i) two cycles, say Z1 =< u1, u2, . . . , um, u1 > and Z2 =< v1, v2, . . . , vm, v1 > .

(ii) edges uivi for i = 1, 2, . . . m and

(iii) two edges u1v4 and u4v1 (see Figure 2(b)).

We say that the vertices u1, u2, . . . , um are on one side of G and v1, v2, . . . , vm are on

the other side of G. Denote by B8, the subgraph of G induced by the set of vertices

{u1, u2, u3, u4, v1, v2, v3, v4}.

In addition, if G contains a 4-cycle C =< ut, ut+1, vt+1, vt, ut >, where t ≥ 5 and

ut+1 = uct , vt+1 = vct , then the subgraph G is said to be a ladder-like graph with a special

4-cycle.

um

u5

u4

u3

u2

u1

vm

v5

v4

v3

v2

v1

um

u5

u4

u3

u2

u1

Z1

vm

v5

v4

v3

v2

v1

Z2

(a). Ladder (b). Ladder-like graph

Figure 2: Ladder and Ladder-like graph

A spanning ladder-like subgraph L of the augmented cube AQ4 is shown in Figure 4(b)

by dark lines. Z1 =< 0010, 1101, 1110, 0110, 0100, 1011, 1000, 0000, 0010 > and

Z2 =< 0101, 1010, 1001, 0001, 0011, 1100, 1111, 0111, 0101 > are the cycles of L. The

subgraph B8 of L is induced by {0010, 1101, 1110, 0110, 0001, 1001, 1010, 0101} and

a special 4-cycle is C =< 0100, 1011, 1100, 0011, 0100 >

Lemma 2.3. Let L be a ladder-like graph on 2m vertices with m ≥ 6 as defined above.

Then the subgraph L− {u1v1, u4v4} of L is 3-regular, 3-connected and 4-pancyclic.

Proof. Let G = L−{u1v1 , u4v4}. Obviously, G is 3-regular. It is easy to see that deletion

of any two edges from G does not disconnect G. Hence the edge-connectivity of G is three.

Therefore, the vertex connectivity of G is also three as G is a regular graph. Therefore G

is 3-connected.

We now prove that G is pancyclic by constructing cycles of every length from 4 to

|V (G)|. By Lemma 2.1, the ladder in G formed by the paths < u5, u6, . . . , um > and
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< v5, v6, . . . , vm > and the edges uivi, for i = 5, 6, ...,m, between them, is bipancyclic.

Therefore G contains cycles of every even length from 4 to 2m − 8. The cycles in G of

lengths 2m− 6, 2m− 4, 2m− 2 and 2m are < u3, . . . , um−1, vm−1, . . . v3, u3 >,

< u3, . . . , um, vm, . . . , v3, u3 >,< u2, . . . um, vm, . . . , v2, u2 > and

< u3, . . . um, u1, u2, v2, v1, vm, . . . , v3, u3 >, respectively.

We now construct cycles of odd lengths using edges u1v4 and u4v1. A cycle of length 5

is < u2, u1, v4, v3, v2, u2 > . For 5 ≤ i ≤ m, < u4, v1, v2, v3, ..., vi, ui, ui−1, ..., u4 > is a cycle

of length 2i− 3. Thus we have constructed the cycles of all odd lengths from 5 to 2m− 3.

Finally, a cycle of length 2m − 1 is < u3, u4, . . . , um, u1, v4, v5, . . . , vm, v1, v2, v3, u3 > .

Hence G is pancyclic. �

Corollary 2.4. A ladder-like graph is 3-connected and 4-pancyclic.

We continue using the notations given in the Definition 2.2. We now give two types of

constructions to get a new ladder-like graph from the two copies of a ladder-like graph.

Lemma 2.5. Let n ≥ 5. Consider the augmented cube AQn as AQn = AQ0
n−1 ∪AQ1

n−1 ∪

Eh
n ∪ Ec

n. Let l1 be a spanning ladder-like subgraph of AQ0
n−1 and l′1 be the corresponding

subgraph of AQ1
n−1. Let l2 be a spanning ladder-like subgraph of AQ0

n−1 with special 4-cycle

and l′2 be the corresponding subgraph of AQ1
n−1. Then we can construct

(i) a spanning ladder-like subgraph L1 of AQn from l1, l
′

1 and using four edges of Eh
n;

(ii) a spanning ladder-like subgraph L2 of AQn with special 4-cycle, from l2, l
′

2 and using

four edges of Ec
n.

Proof. Let m = 2n−2. Suppose the vertices of l1 are ui and vi, 1 ≤ i ≤ m, as in Definition

2.2. Then l′1 is a spanning ladder-like subgraph of AQ1
n−1 corresponding to l1 with vertices

u′i corresponding to ui and v′i corresponding to vi for 1 ≤ i ≤ m. Choose s from the set

{5, 6, . . . ,m− 1} and fix it. Then F1 = {usu
′

s, vsv
′

s, us+1u
′

s+1, vs+1v
′

s+1} ⊂ Eh
n.

We obtain the graph L1 from l1, l
′

1 and F1 as follows.

Let L1 = (l1 −{usus+1, vsvs+1}) ∪ (l′1 −{u′su
′

s+1, v
′

sv
′

s+1, u
′

1v
′

4, u
′

4v
′

1}) ∪ F1 (see Figure

3(a)).
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um
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us

u5

u4

u3

u2

u1

vm

vs+1

vs

v5

v4

v3

v2

v1

u′m

u′s+1

u′s

u′5

u′4

u′3

u′2

u′1

v′m

v′s+1

v′s

v′5

v′4

v′3

v′2

v′1

l1 l′1

Figure 3(a): Construction of L1

We show that the graph L1 constructed above is a ladder-like graph on 4m = 2n vertices.

Observe that V (L1) = ∪m
i=1{ ui, u

′

i, vi, v
′

i }. Relabel the vertices of L1 as follows. Let

xi =



















ui if 1 ≤ i ≤ s

u′2s−i+1 if s+ 1 ≤ i ≤ 2s

u′m+2s−i+1 if 2s+ 1 ≤ i ≤ m+ s

ui−m if m+ s+ 1 ≤ i ≤ 2m

and yi =



















vi if 1 ≤ i ≤ s

v′2s−i+1 if s+ 1 ≤ i ≤ 2s

v′m+2s−i+1 if 2s+ 1 ≤ i ≤ m+ s

vi−m if m+ s+ 1 ≤ i ≤ 2m

Then Z1 =< x1, x2, . . . , x2m, x1 > and Z2 =< y1, y2, . . . , y2m, y1 > are cycles in L1.

Observe that L1 = Z1 ∪ Z2 ∪ { xiyi : i = 1, 2, . . . , 2m } ∪ { x1y4, x4y1 }. Further,

subgraph B8 of l1 which is induced by {u1, u2, u3, u4, v
′

1, v
′

2, v
′

3, v
′

4} is now induced by

vertices {x1, x2, x3, x4, y1, y2, y3, y4}. This shows that L1 is a ladder-like graph on 4m

vertices.

Now we construct a ladder-like subgraph L2 with a speial 4-cycle from l2 and l′2. Sup-

pose the vertices of l2 are ai and bi, 1 ≤ i ≤ m, as in Definition 2.2. Then l′2 is a spanning

ladder-like subgraph of AQ1
n−1 corresponding to l2 with vertices a′i corresponding to ai

and b′i corresponding to bi for 1 ≤ i ≤ m. Let C =< at, at+1, bt+1, bt, at > where t ≥ 5

and at+1 = act , bt+1 = bct , be a special 4-cycle of l2. Suppose, C
′ =< a′t, a

′

t+1, b
′

t+1, b
′

t, a
′

t >

is the corresponding special 4-cycle of l′2. In AQ0
n−1, the complement of at is at+1 and

the complement of bt is bt+1. Similarly a′t+1 is the complement of a′t and b′t+1 is the

complement of b′t, in AQ1
n−1. Thus, in AQn, a

′

t+1 is the complement of at, a
′

t is the com-

plement of at+1, b
′

t+1 is the complement of bt and b′t is the complement of bt+1. Then

F2 = {ata
′

t+1, btb
′

t+1, at+1a
′

t, bt+1b
′

t} ⊂ Ec
n. Now, we obtain the ladder-like graph L2 with a

special 4-cycle from l2, l
′

2 and using F2 as follows.
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L2 = (l2 − {atat+1, btbt+1}) ∪ (l′2 − {a′ta
′

t+1, b′tb
′

t+1, a′1b
′

4, a′4b
′

1}) ∪ F2. (see Figure

3(b)).

am

at+1

at

a5

a4

a3

a2

a1

bm

bt+1

bt

b5

b4

b3

b2

b1

a′m

a′t+1

a′t

a′5

a′4

a′3

a′2

a′1

b′m

b′t+1

b′t

b′5

b′4

b′3

b′2

b′1

l2 l′2

Figure 3(b): Construction of L2

To prove that L2 is a ladder-like graph, we relabel again the vertices of L2 as follows.

Let

pi =



















ai if 1 ≤ i ≤ t

a′i if t+ 1 ≤ i ≤ m

a′i−m if m+ 1 ≤ i ≤ m+ t

ai−m if m+ t+ 1 ≤ i ≤ 2m

and qi =



















bi if 1 ≤ i ≤ t

b′i if t+ 1 ≤ i ≤ m

b′i−m if m+ 1 ≤ i ≤ m+ t

bi−m if m+ t+ 1 ≤ i ≤ 2m

Clearly, L2 = Z3 ∪ Z4 ∪ { pi qi : i = 1, 2, . . . , 2m } ∪ { p1q4, q1p4 }, where

Z3 =< p1, p2, . . . , p2m, p1 > and Z4 =< q1, q2, . . . , q2m, q1 > are cycles in L2. Also, the

subgraph of L2 induced by the vertex set {p1, p2, p3, p4, q1, q2, q3, q4} is B8.

Due to renaming we have, pt = at, pt+1 = a′t+1, qt+1 = b′t+1 and qt = bt. Hence,

< pt, pt+1, qt+1, qt > is a special 4-cycle in L2. Thus L2 is a ladder-like graph on 4m

vertices. �

Corollary 2.6. For n ≥ 4, the augmented cube AQn contains a spanning ladder-like

subgraph and a spanning ladder-like subgraph with a special 4-cycle.

Lemma 2.7. Let H1 and H2 be vertex disjoint k-connected graphs with V (H1) = {u1, u2, . . . , un}

and V (H2) = {v1, v2, . . . , vn} and let G be the graph obtained from H1 ∪H2 by adding the

edges uivi for i = 1, 2, . . . , n. Then G is (k + 1)-connected.

Proof. Let S ⊂ V (G) with |S| = k. Suppose S ⊆ V (H1). Then each component of H1 − S

is connected to H2 by an edge of type uivi for some i. Hence, G − S is connected.
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Similarly, G−S is connected if S ⊆ V (H2). Suppose S = S1 ∪S2, where S1 ⊂ V (H1) and

S2 ⊂ V (H2). Then |S1| < k and |S2| < k. Since Hi is k-connected, Hi − Si is connected

for each i ∈ {1, 2}. Further, there is an edge between H1 − S1 and H2 − S2. Hence G− S

is connected. Therefore G is (k + 1)-connetced. �

3. Case n1 = 2

In this section, we prove Theorem 1.2 for the special case n1 = 2. First we prove it for

n = 4.

Lemma 3.1. There exists a hamiltonian cycle C in AQ4 such that AQ4 − E(C) is a

5-regular, 5-connected graph containing a spanning ladder-like subgraph of AQ4.

Proof. Consider the hamiltonian cycle C =< 0111, 1000, 1100, 0100, 0000, 1111, 1011, 0011,

0010, 1010, 1110, 0001, 0101, 1101, 1001, 0110, 0111 > of AQ4. This cycle is denoted by

dashed edges in Figure 4(a). Let H = AQ4 − E(C). Then, H is a spanning, 5-regular

subgraph of AQ4. It is easy to see that H is union of two 4-connected graphs, each on

eight vertices and one perfect matching between them (see Figure 4(c)).

0110 0111 1110 1111

0100 0101 1100 1101

0010 0011 1010 1011

0000 0001 1000 1001

0000

1000

1011

0100

0110

1110

1101

0010

0111

1111

1100

0011

0001

1001

1010

0101

1000

1011

1110

1101

0000

0100

0110

0010

1111

1100

1001

1010

0111

0011

0001

0101

(a). AQ4 = C∪H (b). H = AQ4−E(C) (c). H = AQ4−E(C)

Figure 4: Decomposition of AQ4 for n1 = 2

Hence, by Lemma 2.7, H is 5-connected. Further, H contains a spanning ladder-like

subgraph as shown in Figure 4(b) by dark lines. �
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We now prove Theorem 1.2 for the spacial case n1 = 2.

Proposition 3.2. For n ≥ 4, there exists a hamiltonian cycle C in AQn such that AQn−

E(C) is a spanning, (2n− 3)-regular, (2n− 3)-connected subgraph of AQn and it contains

a spanning ladder-like subgraph.

Proof. We proceed by induction on n. By Lemma 3.1, result is true for n = 4. Suppose

n ≥ 5. Write AQn as AQn = AQ0
n−1 ∪ AQ1

n−1 ∪ Eh
n ∪ Ec

n. By induction hypothesis, sup-

pose the result is true for AQn−1. Let C0 be a hamiltonian cycle of AQ0
n−1 such that

AQ0
n−1 −E(C0) is a spanning (2n− 5)-regular and (2n− 5)-connected containing a span-

ning ladder-like subgraph L. Let C1 be the corresponding hamiltonian cycle in AQ1
n−1.

Then, AQ1
n−1−E(C1) is a spanning, (2n−5)-regular and (2n−5)-connected. Let L′ be the

corresponding spanning ladder-like subgraph in AQ1
n−1 − E(C1). Let ab ∈ E(C0) and let

a′b′ be the corresponding edge in E(C1). Let, C = ( C0−{ab} )∪( C1−{a′b′} )∪{aa′, bb′}.

Then C is a hamiltonian cycle of AQn.

Let H = AQn −E(C). Then, H = (AQ0
n−1 −E(C0)) ∪ (AQ1

n−1 − E(C1)) ∪ {ab, a′b′} ∪

(Eh
n − {aa′, bb′}) ∪ Ec

n. Obviously, H is a spanning, (2n − 3)-regular subgraph of AQn.

We prove that H is (2n − 3)-connected. Let S ⊂ V (AQn) with |S| ≤ 2n − 4. Write

S = S0 ∪ S1 with S0 = V (AQ0
n−1) ∩ S and S1 = V (AQ1

n−1) ∩ S. It is suffices to prove

that H − S is connected. Suppose S = S0. As each component of AQ0
n−1 − E(C0)− S is

joined to AQ1
n−1 − E(C1) by an edge of Eh

n or Ec
n,H − S is connected. Suppose S0 6= ∅

and S1 6= ∅. If |S0| < 2n − 5 and |S1| < 2n − 5, then AQi
n−1 − E(Ci) − Si, for i = 0, 1

are connected and are joined to each other by an edge. Thus H − S is connected. If

|S0| = 2n−5 and |S1| = 1. Then
(

AQ1
n−1 − E(C1)

)

−S1 is connected. As each component

of
(

AQ0
n−1 −E(C0)

)

−S0 is connected to
(

AQ1
n−1 − E(C1)

)

−S1 by at least one edge from

Ec
n,H − S is connected. Hence H is (2n − 3)-connected.

Now we construct a spanning ladder-like subgraph of H. By induction, there is a ladder-

like subgraph L in AQ0
n−1−E(C0) and corresponding subgraph L′ in AQ1

n−1−E(C1). By

Lemma 2.5(i), using L and L′, we get a spanning ladder-like subgraph in H. �

The case n1 = 2 of Theorem 1.2 follows from above proposition and Lemma 2.3.
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4. Case n1 = 3

In this section, we prove Theorem 1.2 for the special case n1 = 3. First we prove the

result for n = 4.

Recall from Definition 2.2 that a ladder-like subgraph of AQn on 2m ≥ 12 vertices

u1, u2, . . . , um and v1, v2, . . . , vm contains the edges uivi for i = 1, 2, . . . ,m and the two

edges u1v4, u4v1.

Lemma 4.1. The augmented cube AQ4 contains a spanning ladder-like subgraph L1 such

that

(i) H = L1 − {u1v1, u4v4} is 3-regular and 3-connected;

(ii) AQ4 − E(H) is 4-regular, 4-connected containing a spanning ladder-like subgraph

L2 with a special 4-cycle, which avoids the edges u1v1 and u4v4.

Proof. A decomposition of AQ4 into a spanning subgraph H and its complement, where

the edges of H are denoted by dashed lines and the edges of the complement graph by solid

lines, is shown in Figure 5(a). These two graphs are redrawn separately in Figure 5(b) and

5(c). Let u1 = 1000, v1 = 1001, u4 = 1011, v4 = 1010, and let L1 = H ∪ {u1v1, u4v4}.

Then, from Figure 5(b), it is clear that L1 is a ladder-like spanning subgraph of AQ4.

Clearly, H is a 3-regular spanning subgraph of AQ4. Also, by Lemma 2.3, H is 3-connected.

This proves (i).

0110 0111 1110 1111

0100 0101 1100 1101

0010 0011 1010 1011

0000 0001 1000 1001

(a). AQ4 = H ∪ (AQ4 − E(H))
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1100

0100

0000

1111

1011

0011

0111

1000

1101

0101

0001

1110

1010

0010

0110

1001

0000

1000

1011

0100

0110

1110

1101

0010

0111

1111

1100

0011

0001

1001

1010

0101

(b). H (c). AQ4 − E(H)

Figure 5: Decomposition of AQ4 for n1 = 3

We now prove (ii). Obviously, AQ4 −E(H) is a 4-regular spanning subgraph of AQ4. We

prove that AQ4 − E(H) is 4-connected. Let W1 be a subgraph of AQ4 induced by the

eight vertices 0010, 1101, 1110, 0110, 0001, 1001, 1010, 0101 and let W2 be a subgraph

of AQ4 induced by the remaining vertices. Then W1 is 3-regular and 3-connected and

is isomorphic to W2. Observe that AQ4 − E(H) is union of W1 and W2 and a perfect

matching between them. Therefore, by Lemma 2.7, AQ4 − E(H) is 4-connected.

Let L2 be the spanning subgraph of AQ4 − E(H) consisting of edges denoted by dark

lines in Figure 5(c). Then L2 is a ladder-like subgraph of AQ4−E(H) containing a special

4-cycle < 0100, 1011, 1100, 0011, 0100 > . Further, L2 does not contain the edges u1v1

and u4v4. This completes the proof. �

We extend the above result for the general n.

Proposition 4.2. For n ≥ 4, the augmented cube AQn contains a spanning ladder-like

subgraph L1 satisfying the following properties.

(1) H = L1 − { u1v1 , u4v4 } is 3-regular and 3-connected; and

(2) AQn − E(H) is (2n − 4)-regular and (2n − 4)-connected containing a spanning

ladder-like subgraph L2 with a special 4-cycle, which avoids the edges u1v1 and

u4v4.

Proof. We proceed by induction on n. By Lemma 4.1, the result holds for n = 4. Suppose

n ≥ 5. Suppose by induction AQ0
n−1 contains a spanning ladder-like subgraph l1 such

that H0 = l1 − { u1v1 , u4v4 } is 3-regular and 3-connected and AQ0
n−1 − E(H0) is

spanning, (2n−6)-regular, (2n−6)-connected containing a spanning ladder-like subgraph
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l2 with a special 4-cycle, which avoids the edges u1v1, u4v4. Let l
′

i be the spanning ladder-

like subgraph of AQ1
n−1 corresponding to li for i = 1, 2. Then l′1 − { u′1v

′

1 , u′4v
′

4 } is

3-regular and 3-connected. Further, (AQ1
n−1 − E(l′1)) ∪ {u′1v

′

1, u
′

4v
′

4} is (2n − 6)-regular,

(2n − 6)-connected containing l′2 which has a special 4-cycle. Moreover, l′2 contains none

of the edges u′1v
′

1 and u′4v
′

4. Note that l′1 contains the two edges u′1v
′

4 and u′4v
′

1. Let

H1 = l′1 − {u′1v
′

4, u
′

4v
′

1}. Then H1 is isomorphic to C × K2 for some cycle C of length

2n−2. Hence H1 is a spanning 3-regular and 3-connected subgraph of AQ1
n−1. Therefore

AQ1
n−1−E(H1) is a spanning, (2n−6)-regular and (2n−6)-connected subgraph of AQ1

n−1

containing l′2. Define a subgraph H as follows:

H = (H0−{utut+1, vtvt+1})∪(H1−{u′tu
′

t+1, v
′

tv
′

t+1})∪{utu
′

t, vtv
′

t, ut+1u
′

t+1, vt+1v
′

t+1} (see Fig. 6.)

um

ut+1

ut

u5

u4

u3

u2

u1

vm

vt+1

vt

v5

v4

v3

v2

v1

u′m

u′t+1

u′t

u′5

u′4

u′3

u′2

u′1

v′m

v′t+1

v′t

v′5

v′4

v′3

v′2

v′1

Figure 6: Construction of H in AQn for n1 = 3

Clearly, H is a spanning ladder-like subgraph of AQn without the edges u1v1 and u4v4.

By Lemma 2.3, H is 3-regular and 3-connected.

Hence AQn − E(H) is a spanning (2n − 4)-regular subgraph of AQn. Let K = AQn −

E(H). We prove that K contains a spanning ladder-like subgraph L2 with a special 4-

cycle. By induction hypothesis and construction of K, it is easy to see that K contain a

spanning ladder-like subgraph l2 of AQ0
n−1 and l′2 that of AQ1

n−1. By Lemma 2.5(ii), we

get a spanning ladder-like subgraph L2 with a special 4-cycle in K using l2 and l′2.

We now prove that K is (2n− 4)-connected. Note that

K = K0 ∪K1 ∪ Ec
n ∪ (Eh

n − {utu
′

t, vtv
′

t, ut+1u
′

t+1, vt+1v
′

t+1}),

whereK0 = (AQ0
n−1−E(H0))∪{utut+1, vtvt+1} andK1 = (AQ1

n−1−E(H1))∪{u
′

tu
′

t+1, v
′

tv
′

t+1}.

Observe that there are 2n − 4 edges of K between K0 and K1. Since AQi
n−1 − E(Hi)

is (2n − 6)-connected for i = 0, 1, both K0 and K1 are (2n − 6)-connected. Let S be a

subset of V (K) with |S| = 2n − 5. It suffices to prove that K − S is connected. Suppose

S ⊂ V (K0). Observe that every component of (K0 − S) is joined by an edge of Eh
n or
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Ec
n to the connected graph K1. Hence K − S is connected. Similarly, KS is connected

if S ⊂ V (K1). Suppose S intersects both V (K0) and V (K1). Then S = S0 ∪ S1, where

S0 = S∩V (K0), S1 = S∩V (K1). We may assume that |S0| ≥ |S1|. Suppose |S0| < 2n−6.

Then |S1| < 2n − 6 and therefore both (K0 − S0) and (K1 − S1) are connected and are

joined to each other by an edge belonging to Ec
n. Hence (K − S) is connected. Suppose

|S0| = 2n − 6. Then |S1| = 1. Hence (K1 − S1) is connected. Let D be a component

of K0 − S0. Let v be a vertex of D. If v /∈ {ut, ut+1, vt, vt+1}, then v has at least two

neighbours in K1. Suppose v ∈ {ut, ut+1, vt, vt+1}. Then the degree of v in K0 is at least

2n − 5 and therefore it has at least one neighbour in K0 − S0, say w. Then u and w

together have at least two neighbours in K2. Thus, in any case, the component D has at

least one neighbour in K1 − S1. This implies that K − S has only one component and so

it is connected. �

The case n1 = 3 of Theorem 1.2 follows from Proposition 4.2 as the graph H and its

complement are 4-pancyclic by Lemma 2.3.

5. Case n1 = 4

In this section, we prove Theorem 1.2 for the case n1 = 4. To prove this we require the

following lemma.

Lemma 5.1 ([12]). Any two vertices in AQn have at most four common neighbours for

n ≥ 3.

Proposition 5.2. For n ≥ 5, there exists a spanning, 4-regular, 4-connected subgraph H of

AQn such that AQn−E(H) is spanning, (2n−5)-regular, (2n−5)-connected. Moreover, H

contains a spanning ladder-like subgraph and AQn−E(H) contains a spanning ladder-like

subgraph with a special 4-cycle.

Proof. Write AQn as AQn = AQ0
n−1 ∪ AQ1

n−1 ∪ Eh
n ∪ Ec

n. By Proposition 4.1, AQ0
n−1

contains a ladder-like spanning subgraph l1 such that if H0 = l1 − {u1v1, u4v4}, then

AQn − E(H0) is spanning, (2n − 6)-regular, (2n − 6)-connected and contains a spanning

ladder-like subgraph l2 with a special 4-cycle, which avoids the edges u1v1 and u4v4. Let

l′1 be the spanning ladder-like subgraph in AQ1
n−1 corresponding to l1. Let H1 = l′1 −

{u′1v
′

1, u
′

4v
′

4}. Then AQ1
n−1−E(H1) is a spanning, (2n−6)-regular and (2n−6)-connected

subgraph of AQ1
n−1. Let l′2 be the spanning ladder-like subgraph of AQ1

n−1 − E(H1)

corresponding to l2. Then l′2 does not contain u′1v
′

1 and u′4v
′

4.
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Let H be a spanning subgraph of AQn constructed from l1 and l′1 as follows. Let

F1 = {u2u
′

2, u3u
′

3}∪{uiu
′

i : 5 ≤ i ≤ 2n−1} and let F2 = {v2v
′

2, v3v
′

3}∪{viv
′

i : 5 ≤ i ≤ 2n−1}.

Define

H = l1 ∪ l′1 ∪ F1 ∪ F2 (see Figure 7).

Note that the edges u1u
′

1, u4u
′

4, v1v
′

1 and v4v
′

4 do not belong to H.

u2n−2

u6

u5

u4

u3

u2

u1

v2n−2

v6

v5

v4

v3

v2

v1

u′
2n−2

u′6

u′5

u′4

u′3

u′2

u′1

v′
2n−2

v′6

v′5

v′4

v′3

v′2

v′1

Figure 7: 4-regular, 4-connected subgraph H of AQn

From Figure 6, it is clear that H is a spanning, 4-regular subgraph of AQn. By Lemma

2.5(i), we get a spanning ladder-like subgraph L in H using l1 and l′1. By Corollary 2.1, l1

and l′1 are 3-connected. Now we prove that H is 4-connected. Let S ⊂ V (H) with |S| = 3.

Let S = S1 ∪ S2, where S1 ⊂ V (l1) and S2 ⊂ V (l′1). We may assume that |S1| ≥ |S2|.

Suppose |S1| < 3 and |S2| < 3. As l1 and l′1 are 3-connected, both l1 − S1 and l′1 − S2 are

connected. Since there are 2n− 4 edges from Eh
n in between l1 and l′1, H−S is connected.

Suppose |S1| = 3. Then S2 = ∅. Every vertex of l1 \{u1, u4, v1, v4} is connected to l′1 by an

edge from Eh
n. Observe that each of {u1, u4, v1, v4} have four neighbours in l1 and hence

each of {u1, u4, v1, v4} has at least one neighbour in l1 − S1. Through this neighbour they

are connected with l′1. Therefore H − S is connected. Thus, H is 4-connected.

Observe that AQn − E(H) is spanning and (2n − 5)-regular. Also, by Lemma 2.5(ii),

we get a spanning ladder-like subgraph with a special 4-cycle in AQn−E(H) from l2 and

l′2.

It remains to prove that AQn−E(H) is (2n−5)-connected. Let G = AQn−E(H), G1 =

AQ0
n−1− l1 and G2 = AQ1

n−1− l′1. Then, we have G = G1∪G2∪{u1u
′

1, v1v
′

1, u4u
′

4, v4v
′

4}∪

Ec
n. Since (AQ

0
n−1−E(l1))∪{u1v1, u4v4} and (AQ1

n−1−E(l′1))∪{u′1v
′

1, u
′

4v
′

4} are (2n−6)-

connected, the graphs G1 and G2 are (2n−8)-connected. Let S ⊂ V (G) with |S| = 2n−6.

It is sufficient to prove that G− S is connected.
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Let U = {u1, v1, u4, v4} and let x ∈ V (G1). If x ∈ U, then the degree of x in G1 is 2n−7

and it has two neighbours in G2. If x /∈ U, then the degree of x in G1 is 2n− 6 and it has

only one neighbour in G2. If S ⊂ V (G1) or S ⊂ V (G2), then G−S is obviously connected.

Suppose S = S1∪S2, where S1 ⊂ V (G1) and S2 ⊂ V (G2) with 2n−7 ≥ |S1| ≥ |S2| ≥ 1.

Suppose |S1| < 2n− 8. Then |S1| < 2n− 8. Therefore G1 − S1 and G2 − S2 are connected

and joined to each other by an edge of G. Thus G− S is connected.

Suppose |S1| = 2n − 8 or 2n − 7. Then |S2| ≤ 2. Then G2 − S2 is connected since

G2 contains a ladder-like subgraph l′2 which is 3-connected. Let D be a component of

G1−S1. We prove that D has a neighbour in the connected graph G2−S2. The minimum

degree of D is at least one. If D has more than two vertices, then D has at least three

neighbours in G2 and so it has a neighbour in G2 − S2. Suppose D has only two vertices,

say u and v. Clearly, D is an edge uv. Then D has at least two neihgbours in G2 and

so has a neighbour in G2 − S2 if |S2| = 1. Therefore we may assume that |S1| = 2n − 8

and |S2| = 2. This implies that both u and v belong to U and further, every vertex in

S1 is a common neighbour of both. If n = 5, then from Figure 5(b), we have existence

of H in AQ5 such that any two adjacent vertices in U, together have four neighbours in

G2 and so D has a neighbour in G2 − S2 in AQ5. Suppose n ≥ 6. Then u and v have at

least |S1| = 2n − 8 ≥ 4 common neighbours in G1. By Lemma 5.1, u and v can not have

more than four common neighbours in graph AQn. Hence the neighbours of u and v in

G2 are all distinct and therefore, D has at least one neighbour in G2 − S2. Thus G− S is

connected.

Therefore G is (2n− 5)-connected. This completes the proof. �

The case n1 = 4 of Theorem 1.2 follows from the above proposition as the graph H and

its complement are 4-pancyclic by Lemma 2.3.

6. General Case

Proposition 6.1. Let n ≥ 4 and 2n− 1 = n1 + n2 with n1, n2 ≥ 2. Then the augmented

cube AQn can be decomposed into two spanning subgraphs H and K such that H is n1-

regular and n1-connected and K is n2-regular and n2-connected. Further, H contains

a spanning ladder-like subgraph and K contains a spanning ladder-like subgraph with a

special 4-cycle if n1, n2 ≥ 4.

Proof. We prove the result by induction on n. We may assume that n1 ≤ n2. Suppose

n = 4. Then n1 = 2 or 3 the result holds. By Propositions 3.1, 4.1 and 4.2 the result
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is true for n1 = 2, 3, 4. Hence the result holds for n = 4 and n = 5. Suppose n ≥ 6 and

n1 ≥ 5.

By induction hypothesis, AQ0
n−1 can be decomposed into two spanning subgraphs H0

and K0 such that H0 is (n1 − 1)-regular, (n1 − 1)-connected and K0 is (n2 − 1)-regular,

(n2 − 1)-connected. Further, H contains a spanning ladder-like subgraph, say l1 and K

contains a spanning ladder-like subgraph with a special 4-cycle, say l2. Let H1 and K1

be the corresponding spanning subgraphs of AQ1
n−1. Let l′1 and l′2 be the corresponding

spanning ladder-like subgraphs of H1 and K1, respectively.

We can write AQn = AQ0
n−1 ∪AQ1

n−1 ∪ Eh
n ∪ Ec

n.

Define H = H0 ∪H1 ∪ Eh
n and K = K0 ∪K1 ∪Ec

n.

Clearly, H is n1-regular and K is n2-regular and further, both are spanning subgraphs

of AQn. By Lemma 2.7, H is n1-connected and K is n2-connected. Now, by Lemma 2.5(i),

we get a spanning ladder-like subgraph L1 in H from l1, l′1 and using four edges of Eh
n .

Similarly, by Lemma 2.5(ii), we get a spanning ladder-like subgraph L2 in K with a special

4-cycle, from l2, l
′

2 and using four edges of Ec
n. �

Proof of Main Theorem 1.2.

Proof. We may assume that n1 ≤ n2. The result holds for the case n1 = 2 by Proposition

3.2 and Lemma 2.3. Suppose n1 = 3. Then, by Proposition 4.2, AQn has spanning

ladder-like subgraph L such that H = L − { u1v1 , u4v4 } is 3-regular and 3-connected

and its complement AQn − E(H) is (2n − 4)-regular and (2n − 4)-connected containing

a spanning ladder-like subgraph with a special 4-cycle. Thus H and AQn − E(H) are

spanning subgraphs of AQn and, by Lemma 2.3, they are 4-pancyclic. Suppose n1 ≥ 4.

Then n2 ≥ 4. Now the result follows from Proposition 6.1 and Lemma 2.3. �

Concluding Remarks. The main theorem of the paper guarantees the existence of

a decomposition of AQn into two spanning, regular, connected and pancyclic subgraphs,

whose degrees correspond to the parts of the given 2-partition of the degree 2n−1 of AQn.

This result can be generalized to the decomposition of AQn into k subgraphs according to

the given k-partition of n. In particular, the problem of decomposingAQn into Hamiltonian

cycles and a perfect matching is still open.

We also note that the main theorem of the paper provides a partial solution to the

following question due to Mader [[10], pp.73].
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Question([10]). Given any n-connected graph and k ∈ {1, 2, ..., n} is there always a k-

connected subgraph H of G so that G− E(H) is (n − k)-connected?
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