DECOMPOSITION OF AUGMENTED CUBES INTO REGULAR CONNECTED PANCYCLIC SUBGRAPHS

S. A. KANDEKAR, Y. M. BORSE AND B. N. WAPHARE

ABSTRACT. In this paper, we consider the problem of decomposing the augmented cube AQ_n into two spanning, regular, connected and pancyclic subgraphs. We prove that for $n \geq 4$ and $2n-1=n_1+n_2$ with $n_1,n_2 \geq 2$, the augmented cube AQ_n can be decomposed into two spanning subgraphs H_1 and H_2 such that each H_i is n_i -regular and n_i -connected. Moreover, H_i is 4-pancyclic if $n_i \geq 3$.

Keywords: spanning subgraphs, r-pancyclic, n-connected, hypercube, augmented cube

Mathematics Subject Classification (2000): 05C40, 05C70, 68R10

1. Introduction

Interconnection networks play an important role in communication systems and parallel computing. Such a network is usually represented by a graph where vertices stand for its processors and edges for links between the processors. Network topology is a crucial factor for interconnection networks as it determines the performance of the networks. Many interconnection network topologies have been proposed in literature such as mesh, torus, hypercube and hypercube like structures. The n-dimensional hypercube Q_n is a popular interconnection network topology. It is an n-regular, n-connected, vertex-transitive graph with 2^n vertices and has diameter n.

In 2002, Chaudam and Sunitha [7] introduced a variant of the hypercube Q_n called augmented cube AQ_n . The graph AQ_n is (2n-1)-regular, (2n-1)-connected, pancyclic and vertex-transitive on 2^n vertices. However, the diameter of AQ_n is $\lceil n/2 \rceil$ which is almost half the diameter of Q_n . Hence there is less delay in data transmission in the augmented cube network than the hypercube network. Many results have been obtained in the literature to prove that the augmented cube is a good candidate for computer network topology design; see [7, 12, 13, 15, 21].

One of the central issue in evaluating a network is to study the embedding problem. It is said that a graph H can be embedded into a graph G if it is isomorphic to a subgraph of G and if so, while modeling a network with graph, we can apply existing algorithms for graph H to the graph G. Cycle networks are suitable for designing simple algorithms with low communication cost. Since some parallel applications, such as those in image

and signal processing, are originally designed on a cycle architecture, it is important to have effective cycle embedding in a network. A graph G is r-pancyclic if it contains cycles of every length from r to |V(G)|. A 3-pancyclic graph is pancyclic. A graph G on even number of vertices is bipancyclic if G is a cycle or it contains cycles of every even length from 4 to |V(G)|. A lot of research has been done regarding pancyclicity of augmented cubes; see [6, 8, 9, 11, 13, 19, 21].

A decomposition of a graph G is a list of its subgraphs H_1, H_2, \ldots, H_k such that every edge of G belongs to H_i for exactly one i. The decompositions of hypercubes into Hamiltonian cycles, into smaller cycles, into paths and into trees are studied in [1, 2, 15, 17, 20]. The existence of a spanning, k-regular, k-connected and bipancyclic subgraph of Q_n , for every k with $3 \le k \le n$, is proved in [16]. Bass and Sudborough [2] pointed out that the decomposition of Q_n into regular, spanning, isomorphic subgraphs has potential applications in construction of adaptive routing algorithms and in the area of fault tolerant computing. They obtained a decomposition of Q_n , for even n, into two spanning, (n/2)-regular, 2-connected, isomorphic subgraphs of diameter n + 2. Borse and Kandekar [3] proved the existence of the decomposition of Q_n into two regular subgraphs whose degrees are based on the given 2-partition of n and further, they are rich with respect to connectivity and cycle embedding.

Theorem 1.1 ([3]). For $n = n_1 + n_2$ with $n_1, n_2 \ge 2$, the hypercube Q_n can be decomposed into two spanning subgraphs H_1 and H_2 such that H_i is n_i -regular, n_i -connected and bipancyclic.

The above result has been generalized for the decomposition of Q_n based on partitions of n into k parts. It has been also extended to the class of the Cartesian product of even cycles; see [4, 5].

In this paper, we extend Theorem 1.1 to the class of augmented cubes. The following is the main theorem of the paper.

Main Theorem 1.2. Let $n \ge 4$ and $2n-1 = n_1 + n_2$ with $n_1, n_2 \ge 2$. Then the augmented cube AQ_n can be decomposed into two spanning subgraphs H_1 and H_2 such that H_i is n_i -regular and n_i -connected. Moreover, H_i is 4-pancyclic if $n_i \ge 3$.

In Section 2, we provide necessary definitions and preliminary results. The special case $n_1 = 2$ of the main theorem is proved in third section. In section 4 and 5, we consider the cases $n_1 = 3$ and $n_1 = 4$, respectively. We complete the proof of the main theorem using these special cases in the last section.

2. Preliminaries

The *n*-dimensional augmented cube is denoted by AQ_n , $n \geq 1$. It can be defined recursively as follows.

 AQ_1 is a complete graph K_2 with vertex set $\{0,1\}$. For $n \geq 2$, AQ_n is obtained from two copies of the augmented cube AQ_{n-1} , denoted by AQ_{n-1}^0 and AQ_{n-1}^1 , and adding 2^n edges between them as follows.

Let $V(AQ_{n-1}^0) = \{0x_1x_2...x_{n-1} : x_i = 0 \text{ or } 1\}$ and $V(AQ_{n-1}^1) = \{1y_1y_2...y_{n-1} : y_i = 0 \text{ or } 1\}$. A vertex $x = 0x_1x_2...x_{n-1}$ of AQ_{n-1}^0 is joined to a vertex $y = 1y_1y_2...y_{n-1}$ of AQ_{n-1}^1 if and only if either

- (1) $x_i = y_i$ for $1 \le i \le n-1$, in this case the edge is called hypercube edge and we set $y = x^h$ or
- (2) $x_i = \overline{y_i}$ for $1 \le i \le n-1$, in this case the edge is called complementary edge and we set $y = x^c$.

Let E_n^h and E_n^c be the set of hypercube edges and complementary edges, respectively used to construct AQ_n from AQ_{n-1} . Then E_n^h and E_n^c are the perfect matchings of AQ_n and further, $AQ_n = AQ_{n-1}^0 \cup AQ_{n-1}^1 \cup E_n^h \cup E_n^c$. The Augmented cubes of dimensions 1, 2 and 3 are shown in Fig. 1.

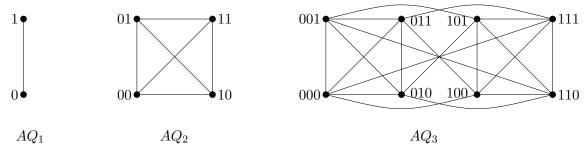


Figure 1: Augmented cube of dimension 1, 2, 3.

In AQ_2 , $E_2^h = \{<01,11>,<00,10>\}$ and $E_2^c = \{<01,10>,<00,11>\}$. From the definition, it is clear that AQ_n is a (2n-1)-regular graph on 2^n vertices. It is also known that AQ_n is (2n-1)-connected and vertex-transitive [7].

A ladder on 2m with $m \geq 2$ is a graph consisting of two vertex-disjoint paths, say $P_1 = \langle u_1, u_2, \dots, u_m \rangle$ and $P_2 = \langle v_1, v_2, \dots, v_m \rangle$, that are joined by edges $u_i v_i$ for $i = 1, 2, \dots m$; see Figure 2(a). The following lemma follows easily.

Lemma 2.1 ([4]). A ladder is bipancyclic.

We now define a ladder-like graph which is shown to be pancyclic and is used to prove pancyclicity of certain subgraphs of AQ_n in subsequent results.

Definition 2.2. Let $m \geq 6$ be an integer. A subgraph G of AQ_n on 2m vertices said to be a ladder-like graph if it contains

- (i) two cycles, say $Z_1 = \langle u_1, u_2, \dots, u_m, u_1 \rangle$ and $Z_2 = \langle v_1, v_2, \dots, v_m, v_1 \rangle$.
- (ii) edges $u_i v_i$ for $i = 1, 2, \dots m$ and
- (iii) two edges u_1v_4 and u_4v_1 (see Figure 2(b)).

We say that the vertices u_1, u_2, \ldots, u_m are on one side of G and v_1, v_2, \ldots, v_m are on the other side of G. Denote by B_8 , the subgraph of G induced by the set of vertices $\{u_1, u_2, u_3, u_4, v_1, v_2, v_3, v_4\}$.

In addition, if G contains a 4-cycle $C = \langle u_t, u_{t+1}, v_{t+1}, v_t, u_t \rangle$, where $t \geq 5$ and $u_{t+1} = u_t^c$, $v_{t+1} = v_t^c$, then the subgraph G is said to be a ladder-like graph with a special 4-cycle.

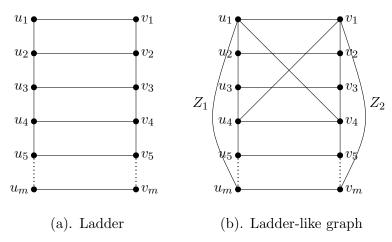


Figure 2: Ladder and Ladder-like graph

A spanning ladder-like subgraph L of the augmented cube AQ_4 is shown in Figure 4(b) by dark lines. $Z_1 = <0010, 1101, 1110, 0110, 0100, 1011, 1000, 0000, 0010 >$ and $Z_2 = <0101, 1010, 1001, 0001, 0011, 1100, 1111, 0111, 0101 >$ are the cycles of L. The subgraph B_8 of L is induced by $\{0010, 1101, 1110, 0110, 0001, 1001, 1010, 0101\}$ and a special 4-cycle is C = <0100, 1011, 1100, 0011, 0100 >

Lemma 2.3. Let L be a ladder-like graph on 2m vertices with $m \ge 6$ as defined above. Then the subgraph $L - \{u_1v_1, u_4v_4\}$ of L is 3-regular, 3-connected and 4-pancyclic.

Proof. Let $G = L - \{u_1v_1, u_4v_4\}$. Obviously, G is 3-regular. It is easy to see that deletion of any two edges from G does not disconnect G. Hence the edge-connectivity of G is three. Therefore, the vertex connectivity of G is also three as G is a regular graph. Therefore G is 3-connected.

We now prove that G is pancyclic by constructing cycles of every length from 4 to |V(G)|. By Lemma 2.1, the ladder in G formed by the paths $\langle u_5, u_6, \dots, u_m \rangle$ and

 $< v_5, v_6, \ldots, v_m >$ and the edges $u_i v_i$, for $i = 5, 6, \ldots, m$, between them, is bipancyclic. Therefore G contains cycles of every even length from 4 to 2m - 8. The cycles in G of lengths 2m - 6, 2m - 4, 2m - 2 and 2m are $< u_3, \ldots, u_{m-1}, v_{m-1}, \ldots, v_3, u_3 >$,

$$< u_3, \ldots, u_m, v_m, \ldots, v_3, u_3 >, < u_2, \ldots u_m, v_m, \ldots, v_2, u_2 >$$
and

$$< u_3, \ldots u_m, u_1, u_2, v_2, v_1, v_m, \ldots, v_3, u_3 >$$
, respectively.

We now construct cycles of odd lengths using edges u_1v_4 and u_4v_1 . A cycle of length 5 is $< u_2, u_1, v_4, v_3, v_2, u_2 >$. For $5 \le i \le m, < u_4, v_1, v_2, v_3, ..., v_i, u_i, u_{i-1}, ..., u_4 >$ is a cycle of length 2i-3. Thus we have constructed the cycles of all odd lengths from 5 to 2m-3. Finally, a cycle of length 2m-1 is $< u_3, u_4, ..., u_m, u_1, v_4, v_5, ..., v_m, v_1, v_2, v_3, u_3 >$. Hence G is pancyclic.

Corollary 2.4. A ladder-like graph is 3-connected and 4-pancyclic.

We continue using the notations given in the Definition 2.2. We now give two types of constructions to get a new ladder-like graph from the two copies of a ladder-like graph.

Lemma 2.5. Let $n \geq 5$. Consider the augmented cube AQ_n as $AQ_n = AQ_{n-1}^0 \cup AQ_{n-1}^1 \cup E_n^h \cup E_n^c$. Let l_1 be a spanning ladder-like subgraph of AQ_{n-1}^0 and l_1' be the corresponding subgraph of AQ_{n-1}^1 . Let l_2 be a spanning ladder-like subgraph of AQ_{n-1}^0 with special 4-cycle and l_2' be the corresponding subgraph of AQ_{n-1}^1 . Then we can construct

- (i) a spanning ladder-like subgraph L_1 of AQ_n from l_1 , l_1' and using four edges of E_n^h ;
- (ii) a spanning ladder-like subgraph L_2 of AQ_n with special 4-cycle, from l_2 , l'_2 and using four edges of E_n^c .

Proof. Let $m=2^{n-2}$. Suppose the vertices of l_1 are u_i and v_i , $1 \le i \le m$, as in Definition 2.2. Then l'_1 is a spanning ladder-like subgraph of AQ^1_{n-1} corresponding to l_1 with vertices u'_i corresponding to u_i and v'_i corresponding to v_i for $1 \le i \le m$. Choose s from the set $\{5, 6, \ldots, m-1\}$ and fix it. Then $F_1 = \{u_s u'_s, v_s v'_s, u_{s+1} u'_{s+1}, v_{s+1} v'_{s+1}\} \subset E^h_n$.

We obtain the graph L_1 from l_1, l'_1 and F_1 as follows.

Let $L_1 = (l_1 - \{u_s u_{s+1}, v_s v_{s+1}\}) \cup (l'_1 - \{u'_s u'_{s+1}, v'_s v'_{s+1}, u'_1 v'_4, u'_4 v'_1\}) \cup F_1$ (see Figure 3(a)).

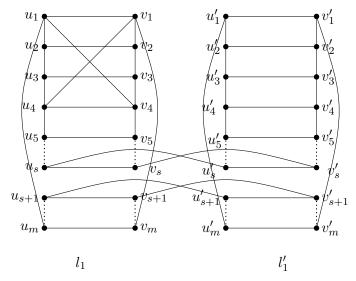


Figure 3(a): Construction of L_1

We show that the graph L_1 constructed above is a ladder-like graph on $4m = 2^n$ vertices. Observe that $V(L_1) = \bigcup_{i=1}^m \{ u_i, u_i', v_i, v_i' \}$. Relabel the vertices of L_1 as follows. Let

$$x_i = \begin{cases} u_i & \text{if } 1 \le i \le s \\ u'_{2s-i+1} & \text{if } s+1 \le i \le 2s \\ u'_{m+2s-i+1} & \text{if } 2s+1 \le i \le m+s \\ u_{i-m} & \text{if } m+s+1 \le i \le 2m \end{cases} \quad \text{and } y_i = \begin{cases} v_i & \text{if } 1 \le i \le s \\ v'_{2s-i+1} & \text{if } s+1 \le i \le 2s \\ v'_{m+2s-i+1} & \text{if } 2s+1 \le i \le m+s \\ v_{i-m} & \text{if } m+s+1 \le i \le 2m \end{cases}$$

Then $Z_1 = \langle x_1, x_2, \dots, x_{2m}, x_1 \rangle$ and $Z_2 = \langle y_1, y_2, \dots, y_{2m}, y_1 \rangle$ are cycles in L_1 . Observe that $L_1 = Z_1 \cup Z_2 \cup \{ x_i y_i \colon i = 1, 2, \dots, 2m \} \cup \{ x_1 y_4, x_4 y_1 \}$. Further, subgraph B_8 of l_1 which is induced by $\{u_1, u_2, u_3, u_4, v'_1, v'_2, v'_3, v'_4 \}$ is now induced by vertices $\{x_1, x_2, x_3, x_4, y_1, y_2, y_3, y_4 \}$. This shows that L_1 is a ladder-like graph on 4m vertices.

Now we construct a ladder-like subgraph L_2 with a speial 4-cycle from l_2 and l'_2 . Suppose the vertices of l_2 are a_i and b_i , $1 \le i \le m$, as in Definition 2.2. Then l'_2 is a spanning ladder-like subgraph of AQ^1_{n-1} corresponding to l_2 with vertices a'_i corresponding to a_i and b'_i corresponding to b_i for $1 \le i \le m$. Let $C = < a_t, a_{t+1}, b_{t+1}, b_t, a_t >$ where $t \ge 5$ and $a_{t+1} = a^c_t$, $b_{t+1} = b^c_t$, be a special 4-cycle of l_2 . Suppose, $C' = < a'_t, a'_{t+1}, b'_{t+1}, b'_t, a'_t >$ is the corresponding special 4-cycle of l'_2 . In AQ^0_{n-1} , the complement of a_t is a_{t+1} and the complement of b_t is b_{t+1} . Similarly a'_{t+1} is the complement of a'_t and b'_{t+1} is the complement of a'_t , in AQ^1_{n-1} . Thus, in AQ_n , a'_{t+1} is the complement of a_t , a'_t is the complement of a_{t+1} , b'_{t+1} is the complement of b_t and b'_t is the complement of b_t . Then a_{t+1} is the complement of a_{t+1} , a_{t+1} is the complement of a_{t+1} , a_{t+1} is the complement of a_t and a_t is the complement of a_t is the complement of a_t and a_t is the complement of a_t is the complement of a_t and a_t is the complement of a_t is the complement of a_t and a_t is the complement of a_t is the complement of a_t and a_t is the complement of a_t is the complement of a_t and a_t is the complement of a_t in a_t is the complement of a_t in a_t in

 $L_2 = (l_2 - \{a_t a_{t+1}, b_t b_{t+1}\}) \cup (l'_2 - \{a'_t a'_{t+1}, b'_t b'_{t+1}, a'_1 b'_4, a'_4 b'_1\}) \cup F_2$. (see Figure 3(b)).

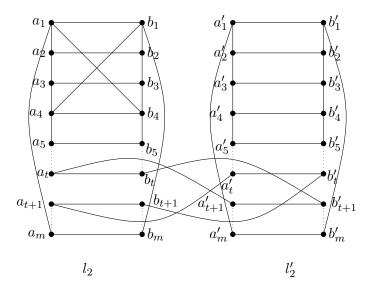


Figure 3(b): Construction of L_2

To prove that L_2 is a ladder-like graph, we relabel again the vertices of L_2 as follows. Let

$$p_{i} = \begin{cases} a_{i} & \text{if } 1 \leq i \leq t \\ a'_{i} & \text{if } t+1 \leq i \leq m \\ a'_{i-m} & \text{if } m+1 \leq i \leq m+t \\ a_{i-m} & \text{if } m+t+1 \leq i \leq 2m \end{cases} \quad \text{and } q_{i} = \begin{cases} b_{i} & \text{if } 1 \leq i \leq t \\ b'_{i} & \text{if } t+1 \leq i \leq m \\ b'_{i-m} & \text{if } m+1 \leq i \leq m+t \\ b_{i-m} & \text{if } m+t+1 \leq i \leq 2m \end{cases}$$

Clearly, $L_2 = Z_3 \cup Z_4 \cup \{ p_i \ q_i : i = 1, 2, ..., 2m \} \cup \{ p_1 q_4, \ q_1 p_4 \}$, where $Z_3 = \langle p_1, p_2, ..., p_{2m}, p_1 \rangle$ and $Z_4 = \langle q_1, q_2, ..., q_{2m}, q_1 \rangle$ are cycles in L_2 . Also, the subgraph of L_2 induced by the vertex set $\{p_1, p_2, p_3, p_4, q_1, q_2, q_3, q_4\}$ is B_8 .

Due to renaming we have, $p_t = a_t$, $p_{t+1} = a'_{t+1}$, $q_{t+1} = b'_{t+1}$ and $q_t = b_t$. Hence,

 $< p_t, p_{t+1}, q_{t+1}, q_t >$ is a special 4-cycle in L_2 . Thus L_2 is a ladder-like graph on 4m vertices.

Corollary 2.6. For $n \geq 4$, the augmented cube AQ_n contains a spanning ladder-like subgraph and a spanning ladder-like subgraph with a special 4-cycle.

Lemma 2.7. Let H_1 and H_2 be vertex disjoint k-connected graphs with $V(H_1) = \{u_1, u_2, \ldots, u_n\}$ and $V(H_2) = \{v_1, v_2, \ldots, v_n\}$ and let G be the graph obtained from $H_1 \cup H_2$ by adding the edges $u_i v_i$ for $i = 1, 2, \ldots, n$. Then G is (k + 1)-connected.

Proof. Let $S \subset V(G)$ with |S| = k. Suppose $S \subseteq V(H_1)$. Then each component of $H_1 - S$ is connected to H_2 by an edge of type $u_i v_i$ for some i. Hence, G - S is connected.

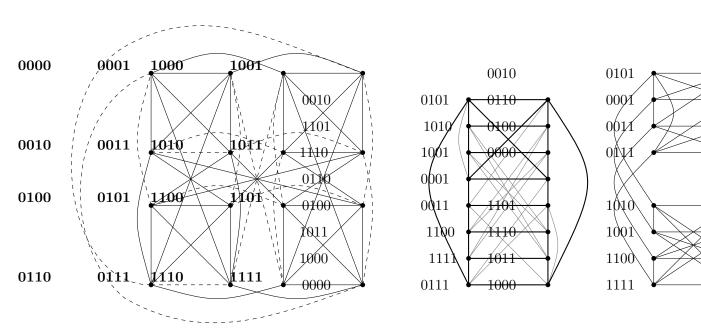
Similarly, G - S is connected if $S \subseteq V(H_2)$. Suppose $S = S_1 \cup S_2$, where $S_1 \subset V(H_1)$ and $S_2 \subset V(H_2)$. Then $|S_1| < k$ and $|S_2| < k$. Since H_i is k-connected, $H_i - S_i$ is connected for each $i \in \{1, 2\}$. Further, there is an edge between $H_1 - S_1$ and $H_2 - S_2$. Hence G - S is connected. Therefore G is (k + 1)-connected.

3. Case
$$n_1 = 2$$

In this section, we prove Theorem 1.2 for the special case $n_1 = 2$. First we prove it for n = 4.

Lemma 3.1. There exists a hamiltonian cycle C in AQ_4 such that $AQ_4 - E(C)$ is a 5-regular, 5-connected graph containing a spanning ladder-like subgraph of AQ_4 .

Proof. Consider the hamiltonian cycle $C = <0111, 1000, 1100, 0100, 0000, 1111, 1011, 0011, 0010, 1010, 1110, 0001, 0101, 1101, 1001, 0110, 0111 > of <math>AQ_4$. This cycle is denoted by dashed edges in Figure 4(a). Let $H = AQ_4 - E(C)$. Then, H is a spanning, 5-regular subgraph of AQ_4 . It is easy to see that H is union of two 4-connected graphs, each on eight vertices and one perfect matching between them (see Figure 4(c)).



(a).
$$AQ_4 = C \cup H$$
 (b). $H = AQ_4 - E(C)$ (c). $H = AQ_4 - E(C)$

Hence, by Lemma 2.7, H is 5-connected. Further, H contains a spanning ladder-like subgraph as shown in Figure 4(b) by dark lines.

Figure 4: Decomposition of AQ_4 for $n_1 = 2$

We now prove Theorem 1.2 for the spacial case $n_1 = 2$.

Proposition 3.2. For $n \geq 4$, there exists a hamiltonian cycle C in AQ_n such that $AQ_n - E(C)$ is a spanning, (2n-3)-regular, (2n-3)-connected subgraph of AQ_n and it contains a spanning ladder-like subgraph.

Proof. We proceed by induction on n. By Lemma 3.1, result is true for n=4. Suppose $n \geq 5$. Write AQ_n as $AQ_n = AQ_{n-1}^0 \cup AQ_{n-1}^1 \cup E_n^h \cup E_n^c$. By induction hypothesis, suppose the result is true for AQ_{n-1} . Let C_0 be a hamiltonian cycle of AQ_{n-1}^0 such that $AQ_{n-1}^0 - E(C_0)$ is a spanning (2n-5)-regular and (2n-5)-connected containing a spanning ladder-like subgraph L. Let C_1 be the corresponding hamiltonian cycle in AQ_{n-1}^1 . Then, $AQ_{n-1}^1 - E(C_1)$ is a spanning, (2n-5)-regular and (2n-5)-connected. Let L' be the corresponding spanning ladder-like subgraph in $AQ_{n-1}^1 - E(C_1)$. Let $ab \in E(C_0)$ and let a'b' be the corresponding edge in $E(C_1)$. Let, $C = (C_0 - \{ab\}) \cup (C_1 - \{a'b'\}) \cup \{aa', bb'\}$. Then C is a hamiltonian cycle of AQ_n .

Let $H = AQ_n - E(C)$. Then, $H = (AQ_{n-1}^0 - E(C_0)) \cup (AQ_{n-1}^1 - E(C_1)) \cup \{ab, a'b'\} \cup (E_n^h - \{aa', bb'\}) \cup E_n^c$. Obviously, H is a spanning, (2n-3)-regular subgraph of AQ_n .

We prove that H is (2n-3)-connected. Let $S \subset V(AQ_n)$ with $|S| \leq 2n-4$. Write $S = S_0 \cup S_1$ with $S_0 = V(AQ_{n-1}^0) \cap S$ and $S_1 = V(AQ_{n-1}^1) \cap S$. It is suffices to prove that H - S is connected. Suppose $S = S_0$. As each component of $AQ_{n-1}^0 - E(C_0) - S$ is joined to $AQ_{n-1}^1 - E(C_1)$ by an edge of E_n^h or E_n^c , H - S is connected. Suppose $S_0 \neq \emptyset$ and $S_1 \neq \emptyset$. If $|S_0| < 2n-5$ and $|S_1| < 2n-5$, then $AQ_{n-1}^i - E(C_i) - S_i$, for i = 0, 1 are connected and are joined to each other by an edge. Thus H - S is connected. If $|S_0| = 2n-5$ and $|S_1| = 1$. Then $(AQ_{n-1}^1 - E(C_1)) - S_1$ is connected. As each component of $(AQ_{n-1}^0 - E(C_0)) - S_0$ is connected to $(AQ_{n-1}^1 - E(C_1)) - S_1$ by at least one edge from E_n^c , H - S is connected. Hence H is (2n-3)-connected.

Now we construct a spanning ladder-like subgraph of H. By induction, there is a ladder-like subgraph L in $AQ_{n-1}^0 - E(C_0)$ and corresponding subgraph L' in $AQ_{n-1}^1 - E(C_1)$. By Lemma 2.5(i), using L and L', we get a spanning ladder-like subgraph in H.

The case $n_1 = 2$ of Theorem 1.2 follows from above proposition and Lemma 2.3.

4. Case
$$n_1 = 3$$

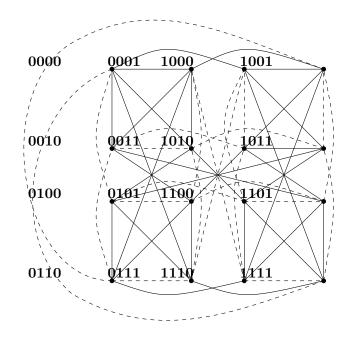
In this section, we prove Theorem 1.2 for the special case $n_1 = 3$. First we prove the result for n = 4.

Recall from Definition 2.2 that a ladder-like subgraph of AQ_n on $2m \geq 12$ vertices u_1, u_2, \ldots, u_m and v_1, v_2, \ldots, v_m contains the edges $u_i v_i$ for $i = 1, 2, \ldots, m$ and the two edges $u_1 v_4, u_4 v_1$.

Lemma 4.1. The augmented cube AQ_4 contains a spanning ladder-like subgraph L_1 such that

- (i) $H = L_1 \{u_1v_1, u_4v_4\}$ is 3-regular and 3-connected;
- (ii) $AQ_4 E(H)$ is 4-regular, 4-connected containing a spanning ladder-like subgraph L_2 with a special 4-cycle, which avoids the edges u_1v_1 and u_4v_4 .

Proof. A decomposition of AQ_4 into a spanning subgraph H and its complement, where the edges of H are denoted by dashed lines and the edges of the complement graph by solid lines, is shown in Figure 5(a). These two graphs are redrawn separately in Figure 5(b) and 5(c). Let $u_1 = 1000$, $v_1 = 1001$, $u_4 = 1011$, $v_4 = 1010$, and let $L_1 = H \cup \{u_1v_1, u_4v_4\}$. Then, from Figure 5(b), it is clear that L_1 is a ladder-like spanning subgraph of AQ_4 . Clearly, H is a 3-regular spanning subgraph of AQ_4 . Also, by Lemma 2.3, H is 3-connected. This proves (i).



(a).
$$AQ_4 = H \cup (AQ_4 - E(H))$$

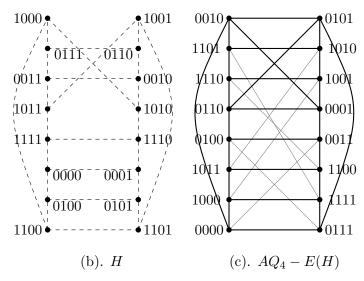


Figure 5: Decomposition of AQ_4 for $n_1 = 3$

We now prove (ii). Obviously, $AQ_4 - E(H)$ is a 4-regular spanning subgraph of AQ_4 . We prove that $AQ_4 - E(H)$ is 4-connected. Let W_1 be a subgraph of AQ_4 induced by the eight vertices 0010, 1101, 1110, 0110, 0001, 1001, 1010, 0101 and let W_2 be a subgraph of AQ_4 induced by the remaining vertices. Then W_1 is 3-regular and 3-connected and is isomorphic to W_2 . Observe that $AQ_4 - E(H)$ is union of W_1 and W_2 and a perfect matching between them. Therefore, by Lemma 2.7, $AQ_4 - E(H)$ is 4-connected.

Let L_2 be the spanning subgraph of $AQ_4 - E(H)$ consisting of edges denoted by dark lines in Figure 5(c). Then L_2 is a ladder-like subgraph of $AQ_4 - E(H)$ containing a special 4-cycle < 0100, 1011, 1100, 0011, 0100 >. Further, L_2 does not contain the edges u_1v_1 and u_4v_4 . This completes the proof.

We extend the above result for the general n.

Proposition 4.2. For $n \geq 4$, the augmented cube AQ_n contains a spanning ladder-like subgraph L_1 satisfying the following properties.

- (1) $H = L_1 \{ u_1v_1, u_4v_4 \}$ is 3-regular and 3-connected; and
- (2) $AQ_n E(H)$ is (2n 4)-regular and (2n 4)-connected containing a spanning ladder-like subgraph L_2 with a special 4-cycle, which avoids the edges u_1v_1 and u_4v_4 .

Proof. We proceed by induction on n. By Lemma 4.1, the result holds for n=4. Suppose $n \geq 5$. Suppose by induction AQ_{n-1}^0 contains a spanning ladder-like subgraph l_1 such that $H_0 = l_1 - \{ u_1v_1 , u_4v_4 \}$ is 3-regular and 3-connected and $AQ_{n-1}^0 - E(H_0)$ is spanning, (2n-6)-regular, (2n-6)-connected containing a spanning ladder-like subgraph

 l_2 with a special 4-cycle, which avoids the edges u_1v_1 , u_4v_4 . Let l_i' be the spanning ladder-like subgraph of AQ_{n-1}^1 corresponding to l_i for i=1,2. Then $l_1'-\{u_1'v_1',u_4'v_4'\}$ is 3-regular and 3-connected. Further, $(AQ_{n-1}^1-E(l_1'))\cup\{u_1'v_1',u_4'v_4'\}$ is (2n-6)-regular, (2n-6)-connected containing l_2' which has a special 4-cycle. Moreover, l_2' contains none of the edges $u_1'v_1'$ and $u_4'v_4'$. Note that l_1' contains the two edges $u_1'v_4'$ and $u_4'v_1'$. Let $H_1=l_1'-\{u_1'v_4',u_4'v_1'\}$. Then H_1 is isomorphic to $C\times K_2$ for some cycle C of length 2^{n-2} . Hence H_1 is a spanning 3-regular and 3-connected subgraph of AQ_{n-1}^1 . Therefore $AQ_{n-1}^1-E(H_1)$ is a spanning, (2n-6)-regular and (2n-6)-connected subgraph of AQ_{n-1}^1 containing l_2' . Define a subgraph H as follows:

 $H = (H_0 - \{u_t u_{t+1}, v_t v_{t+1}\}) \cup (H_1 - \{u_t' u_{t+1}', v_t' v_{t+1}'\}) \cup \{u_t u_t', v_t v_t', u_{t+1} u_{t+1}', v_{t+1} v_{t+1}'\}$ (see Fig. 6.)

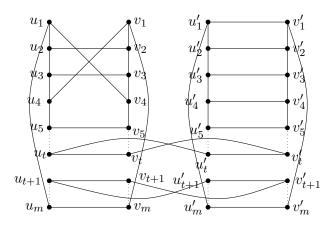


Figure 6: Construction of H in AQ_n for $n_1 = 3$

Clearly, H is a spanning ladder-like subgraph of AQ_n without the edges u_1v_1 and u_4v_4 . By Lemma 2.3, H is 3-regular and 3-connected.

Hence $AQ_n - E(H)$ is a spanning (2n-4)-regular subgraph of AQ_n . Let $K = AQ_n - E(H)$. We prove that K contains a spanning ladder-like subgraph L_2 with a special 4-cycle. By induction hypothesis and construction of K, it is easy to see that K contain a spanning ladder-like subgraph l_2 of AQ_{n-1}^0 and l'_2 that of AQ_{n-1}^1 . By Lemma 2.5(ii), we get a spanning ladder-like subgraph L_2 with a special 4-cycle in K using l_2 and l'_2 .

We now prove that K is (2n-4)-connected. Note that

$$K = K_0 \cup K_1 \cup E_n^c \cup (E_n^h - \{u_t u_t', v_t v_t', u_{t+1} u_{t+1}', v_{t+1} v_{t+1}'\}),$$

where $K_0 = (AQ_{n-1}^0 - E(H_0)) \cup \{u_t u_{t+1}, v_t v_{t+1}\}$ and $K_1 = (AQ_{n-1}^1 - E(H_1)) \cup \{u_t' u_{t+1}', v_t' v_{t+1}'\}$. Observe that there are $2^n - 4$ edges of K between K_0 and K_1 . Since $AQ_{n-1}^i - E(H_i)$ is (2n-6)-connected for i=0,1, both K_0 and K_1 are (2n-6)-connected. Let S be a subset of V(K) with |S| = 2n-5. It suffices to prove that K-S is connected. Suppose $S \subset V(K_0)$. Observe that every component of $(K_0 - S)$ is joined by an edge of E_n^h or

 E_n^c to the connected graph K_1 . Hence K-S is connected. Similarly, K_S is connected if $S \subset V(K_1)$. Suppose S intersects both $V(K_0)$ and $V(K_1)$. Then $S = S_0 \cup S_1$, where $S_0 = S \cap V(K_0)$, $S_1 = S \cap V(K_1)$. We may assume that $|S_0| \geq |S_1|$. Suppose $|S_0| < 2n - 6$. Then $|S_1| < 2n - 6$ and therefore both $(K_0 - S_0)$ and $(K_1 - S_1)$ are connected and are joined to each other by an edge belonging to E_n^c . Hence (K - S) is connected. Suppose $|S_0| = 2n - 6$. Then $|S_1| = 1$. Hence $(K_1 - S_1)$ is connected. Let D be a component of $K_0 - S_0$. Let v be a vertex of D. If $v \notin \{u_t, u_{t+1}, v_t, v_{t+1}\}$, then v has at least two neighbours in K_1 . Suppose $v \in \{u_t, u_{t+1}, v_t, v_{t+1}\}$. Then the degree of v in K_0 is at least 2n - 5 and therefore it has at least one neighbour in $K_0 - S_0$, say w. Then v has at least one neighbour in v has at least one neighbour in v has only one component v has at least one neighbour in v has only one component and so it is connected.

The case $n_1 = 3$ of Theorem 1.2 follows from Proposition 4.2 as the graph H and its complement are 4-pancyclic by Lemma 2.3.

5. Case $n_1 = 4$

In this section, we prove Theorem 1.2 for the case $n_1 = 4$. To prove this we require the following lemma.

Lemma 5.1 ([12]). Any two vertices in AQ_n have at most four common neighbours for $n \geq 3$.

Proposition 5.2. For $n \geq 5$, there exists a spanning, 4-regular, 4-connected subgraph H of AQ_n such that $AQ_n - E(H)$ is spanning, (2n-5)-regular, (2n-5)-connected. Moreover, H contains a spanning ladder-like subgraph and $AQ_n - E(H)$ contains a spanning ladder-like subgraph with a special 4-cycle.

Proof. Write AQ_n as $AQ_n = AQ_{n-1}^0 \cup AQ_{n-1}^1 \cup E_n^h \cup E_n^c$. By Proposition 4.1, AQ_{n-1}^0 contains a ladder-like spanning subgraph l_1 such that if $H_0 = l_1 - \{u_1v_1, u_4v_4\}$, then $AQ_n - E(H_0)$ is spanning, (2n-6)-regular, (2n-6)-connected and contains a spanning ladder-like subgraph l_2 with a special 4-cycle, which avoids the edges u_1v_1 and u_4v_4 . Let l'_1 be the spanning ladder-like subgraph in AQ_{n-1}^1 corresponding to l_1 . Let $H_1 = l'_1 - \{u'_1v'_1, u'_4v'_4\}$. Then $AQ_{n-1}^1 - E(H_1)$ is a spanning, (2n-6)-regular and (2n-6)-connected subgraph of AQ_{n-1}^1 . Let l'_2 be the spanning ladder-like subgraph of $AQ_{n-1}^1 - E(H_1)$ corresponding to l_2 . Then l'_2 does not contain $u'_1v'_1$ and $u'_4v'_4$.

Let H be a spanning subgraph of AQ_n constructed from l_1 and l'_1 as follows. Let $F_1 = \{u_2u'_2, u_3u'_3\} \cup \{u_iu'_i : 5 \le i \le 2^{n-1}\}$ and let $F_2 = \{v_2v'_2, v_3v'_3\} \cup \{v_iv'_i : 5 \le i \le 2^{n-1}\}$. Define

$$H = l_1 \cup l'_1 \cup F_1 \cup F_2$$
 (see Figure 7).

Note that the edges $u_1u'_1, u_4u'_4, v_1v'_1$ and $v_4v'_4$ do not belong to H.

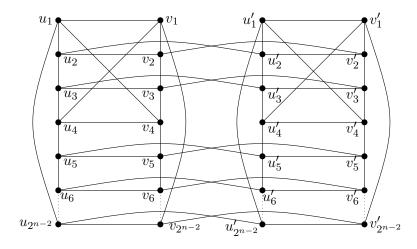


Figure 7: 4-regular, 4-connected subgraph H of AQ_n

From Figure 6, it is clear that H is a spanning, 4-regular subgraph of AQ_n . By Lemma 2.5(i), we get a spanning ladder-like subgraph L in H using l_1 and l'_1 . By Corollary 2.1, l_1 and l'_1 are 3-connected. Now we prove that H is 4-connected. Let $S \subset V(H)$ with |S| = 3. Let $S = S_1 \cup S_2$, where $S_1 \subset V(l_1)$ and $S_2 \subset V(l'_1)$. We may assume that $|S_1| \geq |S_2|$. Suppose $|S_1| < 3$ and $|S_2| < 3$. As l_1 and l'_1 are 3-connected, both $l_1 - S_1$ and $l'_1 - S_2$ are connected. Since there are $2^n - 4$ edges from E_n^h in between l_1 and l'_1 , H - S is connected. Suppose $|S_1| = 3$. Then $S_2 = \emptyset$. Every vertex of $l_1 \setminus \{u_1, u_4, v_1, v_4\}$ is connected to l'_1 by an edge from E_n^h . Observe that each of $\{u_1, u_4, v_1, v_4\}$ have four neighbours in l_1 and hence each of $\{u_1, u_4, v_1, v_4\}$ has at least one neighbour in $l_1 - S_1$. Through this neighbour they are connected with l'_1 . Therefore H - S is connected. Thus, H is 4-connected.

Observe that $AQ_n - E(H)$ is spanning and (2n - 5)-regular. Also, by Lemma 2.5(ii), we get a spanning ladder-like subgraph with a special 4-cycle in $AQ_n - E(H)$ from l_2 and l'_2 .

It remains to prove that $AQ_n - E(H)$ is (2n-5)-connected. Let $G = AQ_n - E(H)$, $G_1 = AQ_{n-1}^0 - l_1$ and $G_2 = AQ_{n-1}^1 - l_1'$. Then, we have $G = G_1 \cup G_2 \cup \{u_1u_1', v_1v_1', u_4u_4', v_4v_4'\} \cup E_n^c$. Since $(AQ_{n-1}^0 - E(l_1)) \cup \{u_1v_1, u_4v_4\}$ and $(AQ_{n-1}^1 - E(l_1')) \cup \{u_1'v_1', u_4'v_4'\}$ are (2n-6)-connected, the graphs G_1 and G_2 are (2n-8)-connected. Let $S \subset V(G)$ with |S| = 2n-6. It is sufficient to prove that G - S is connected.

Let $U = \{u_1, v_1, u_4, v_4\}$ and let $x \in V(G_1)$. If $x \in U$, then the degree of x in G_1 is 2n-7 and it has two neighbours in G_2 . If $x \notin U$, then the degree of x in G_1 is 2n-6 and it has only one neighbour in G_2 . If $S \subset V(G_1)$ or $S \subset V(G_2)$, then G - S is obviously connected. Suppose $S = S_1 \cup S_2$, where $S_1 \subset V(G_1)$ and $S_2 \subset V(G_2)$ with $2n-7 \geq |S_1| \geq |S_2| \geq 1$. Suppose $|S_1| < 2n-8$. Then $|S_1| < 2n-8$. Therefore $G_1 - S_1$ and $G_2 - S_2$ are connected and joined to each other by an edge of G. Thus G - S is connected.

Suppose $|S_1|=2n-8$ or 2n-7. Then $|S_2|\leq 2$. Then G_2-S_2 is connected since G_2 contains a ladder-like subgraph l_2' which is 3-connected. Let D be a component of G_1-S_1 . We prove that D has a neighbour in the connected graph G_2-S_2 . The minimum degree of D is at least one. If D has more than two vertices, then D has at least three neighbours in G_2 and so it has a neighbour in G_2-S_2 . Suppose D has only two vertices, say u and v. Clearly, D is an edge uv. Then D has at least two neihgbours in G_2 and so has a neighbour in G_2-S_2 if $|S_2|=1$. Therefore we may assume that $|S_1|=2n-8$ and $|S_2|=2$. This implies that both u and v belong to U and further, every vertex in S_1 is a common neighbour of both. If n=5, then from Figure 5(b), we have existence of H in AQ_5 such that any two adjacent vertices in U, together have four neighbours in G_2 and so D has a neighbour in G_2-S_2 in AQ_5 . Suppose $n\geq 6$. Then u and v have at least $|S_1|=2n-8\geq 4$ common neighbours in G_1 . By Lemma 5.1, u and v can not have more than four common neighbours in graph AQ_n . Hence the neighbours of u and v in G_2 are all distinct and therefore, D has at least one neighbour in G_2-S_2 . Thus G-S is connected.

Therefore G is (2n-5)-connected. This completes the proof.

The case $n_1 = 4$ of Theorem 1.2 follows from the above proposition as the graph H and its complement are 4-pancyclic by Lemma 2.3.

6. General Case

Proposition 6.1. Let $n \geq 4$ and $2n - 1 = n_1 + n_2$ with $n_1, n_2 \geq 2$. Then the augmented cube AQ_n can be decomposed into two spanning subgraphs H and K such that H is n_1 -regular and n_1 -connected and K is n_2 -regular and n_2 -connected. Further, H contains a spanning ladder-like subgraph and K contains a spanning ladder-like subgraph with a special 4-cycle if $n_1, n_2 \geq 4$.

Proof. We prove the result by induction on n. We may assume that $n_1 \leq n_2$. Suppose n = 4. Then $n_1 = 2$ or 3 the result holds. By Propositions 3.1, 4.1 and 4.2 the result

is true for $n_1=2,3,4.$ Hence the result holds for n=4 and n=5. Suppose $n\geq 6$ and $n_1\geq 5.$

By induction hypothesis, AQ_{n-1}^0 can be decomposed into two spanning subgraphs H_0 and K_0 such that H_0 is $(n_1 - 1)$ -regular, $(n_1 - 1)$ -connected and K_0 is $(n_2 - 1)$ -regular, $(n_2 - 1)$ -connected. Further, H contains a spanning ladder-like subgraph, say l_1 and K contains a spanning ladder-like subgraph with a special 4-cycle, say l_2 . Let H_1 and K_1 be the corresponding spanning subgraphs of AQ_{n-1}^1 . Let l'_1 and l'_2 be the corresponding spanning ladder-like subgraphs of H_1 and K_1 , respectively.

We can write
$$AQ_n = AQ_{n-1}^0 \cup AQ_{n-1}^1 \cup E_n^h \cup E_n^c$$
.

Define
$$H = H_0 \cup H_1 \cup E_n^h$$
 and $K = K_0 \cup K_1 \cup E_n^c$.

Clearly, H is n_1 -regular and K is n_2 -regular and further, both are spanning subgraphs of AQ_n . By Lemma 2.7, H is n_1 -connected and K is n_2 -connected. Now, by Lemma 2.5(i), we get a spanning ladder-like subgraph L_1 in H from l_1 , l'_1 and using four edges of E_n^h . Similarly, by Lemma 2.5(ii), we get a spanning ladder-like subgraph L_2 in K with a special 4-cycle, from l_2 , l'_2 and using four edges of E_n^c .

Proof of Main Theorem 1.2.

Proof. We may assume that $n_1 \leq n_2$. The result holds for the case $n_1 = 2$ by Proposition 3.2 and Lemma 2.3. Suppose $n_1 = 3$. Then, by Proposition 4.2, AQ_n has spanning ladder-like subgraph L such that $H = L - \{u_1v_1, u_4v_4\}$ is 3-regular and 3-connected and its complement $AQ_n - E(H)$ is (2n - 4)-regular and (2n - 4)-connected containing a spanning ladder-like subgraph with a special 4-cycle. Thus H and $AQ_n - E(H)$ are spanning subgraphs of AQ_n and, by Lemma 2.3, they are 4-pancyclic. Suppose $n_1 \geq 4$. Then $n_2 \geq 4$. Now the result follows from Proposition 6.1 and Lemma 2.3.

Concluding Remarks. The main theorem of the paper guarantees the existence of a decomposition of AQ_n into two spanning, regular, connected and pancyclic subgraphs, whose degrees correspond to the parts of the given 2-partition of the degree 2n-1 of AQ_n . This result can be generalized to the decomposition of AQ_n into k subgraphs according to the given k-partition of n. In particular, the problem of decomposing AQ_n into Hamiltonian cycles and a perfect matching is still open.

We also note that the main theorem of the paper provides a partial solution to the following question due to Mader [[10], pp.73].

Question([10]). Given any n-connected graph and $k \in \{1, 2, ..., n\}$ is there always a k-connected subgraph H of G so that G - E(H) is (n - k)-connected?

References

- [1] B. Alspach, J.-C. Bermond and D. Sotteau, Decomposition into cycles I: Hamilton decompositions, Proceedings of NATO Advanced Research Workshop on Cycles and Rays (1990)9 18.
- [2] D. W. Bass and I. H. Sudborough, Hamiltonian decompositions and (n/2)-factorizations of hypercubes, J. Graphs Algorithms Appl. 7no.1(2003)79 98.
- [3] Y. M. Borse and S. A. Kandekar, Decomposition of hypercubes into regular connected bipancyclic subgraphs, Discrete Math. Algorithms Appl. 7no.3(2015)Article155003310pp.
- [4] Y. M. Borse and S. R. Shaikh, Decomposition of the product of cycles based on degree partition, Discuss. Math. Graph Theory (to appear).
- [5] Y. M. Borse, A. V. Sonawane and S. R. Shaikh, Connected bipancyclic isomorphic *m*-factorizations of the Cartesian product of the graphs, Australas. J. Combin. 66(1)(2016)120 129.
- [6] D. Cheng, R.-X. Hao, Y.-Q. Feng, Conditional edge-fault pancyclicity of augmented cubes, Theoret. Comput. Sci. 510(2013)94 – 101.
- [7] S. A. Choudum, V. Sunitha, Augmented cubes, Networks 40(2)(2002)71 84.
- [8] J.-S. Fu, Vertex-pancyclicity of augmented cubes with maximal faulty edges, Inform. Sci. 275(2014)257 266.
- [9] S.-Y. Hsieh, J.-Y. Shiu, Cycle embedding of augmented cubes, Appl. Math. Comput. 191(2007)314 319.
- [10] W. Mader, Connectivity and edge-connectivity in finite graphs. in Surveys in Combinatorics, ed. B. Bollobas, London Math. Soc. Lecture Note Ser. Vol.38(1979)pp.66 95.
- [11] M. Ma, G. Liu, J.-M. Xu, Panconnectivity and edge-fault-tolerant pancyclicity of augmented cubes, Parallel Comput. 33(2007)36 – 42.
- [12] M. Ma, G. Liu and J.-M. Xu, The super connectivity of augmented cubes, Inform. Process. Lett. 106(2)(2008)59 63.
- [13] M. Ma, Y. Song, J.-M. Xu, Fault Tolerance of Augmented Cubes, AKCE Int. J. Graphs Comb. 101(2013)37 55.
- [14] S. A. Mane, Domination Parameters and Fault Tolerance of Hypercubes, Ph.D. Thesis, Pune University 2012.
- [15] S. A. Mane, S. A. Kandekar and B. N. Waphare, Constructing spanning trees in augmented cubes, J. Parallel Distrib. Comput. (2018) https://doi.org/10.1016/j.jpdc.2018.08.006.
- [16] S. A. Mane, B. N. Waphare, Regular connected bipancyclic spanning subgraphs of hypercubes, Comput. Math. Appl. 62(2011)3551 3554.
- [17] M. Mollard and M. Ramras, Edge decompositions of hypercubes by paths and by cycles, Graphs Combin. 31no.3(2015)729741.
- [18] A. V. Sonawane and Y. M. Borse, Decomposing hypercubes into regular connected subgraphs, Discrete Math. Algorithms Appl. 7no.4(2016), Article1650065, 6pp.
- [19] W.-W. Wang, M.-J. Ma, J.-M. Xu, Fault-tolerant pancyclicity of augmented cubes, Inform. Process. Lett. 103(2007)52 56.
- [20] S. G. Wagner and M. Wild, Decomposing the hypercube Q_n into n isomorphic edge-disjoint trees, Discrete Math. 312no.10(2012)1819 1822.
- [21] H.-L. Wang, J.-W. Wang, J.-M. Xu, Fault-tolerant panconnectivity of augmented cubes, Front. Math. China 20094(4)697 719.
- [22] D. B. West, Introduction to Graph Theory, Pearson Education, Delhi 2001.

Department of Mathematics, Savitribai Phule Pune University, Pune 411007, M.S., INDIA. *E-mail address*: smitakandekar540gmail.com; ymborse110gmail.com; waphare@yahoo.com