
Lightweight Collaborative Anomaly Detection

for the IoT using Blockchain

Yisroel Mirsky1,2, Tomer Golomb2 and Yuval Elovici2

1Georgia Institute of Technology, Atlanta, USA
2Ben-Gurion University, Beer Sheva, Israel

yisroel@gatech.edu, golombt@post.bgu.ac.il, elovici@bgu.ac.il

Preprint of accepted publication, June 2020:
Journal of Parallel and Distributed Computing, Elsevier, ISSN: 0743-7315

Abstract

Due to their rapid growth and deployment, the Internet of things (IoT)
have become a central aspect of our daily lives. Unfortunately, IoT devices
tend to have many vulnerabilities which can be exploited by an attacker.
Unsupervised techniques, such as anomaly detection, can be used to secure
these devices in a plug-and-protect manner. However, anomaly detection
models must be trained for a long time in order to capture all benign
behaviors. Furthermore, the anomaly detection model is vulnerable to
adversarial attacks since, during the training phase, all observations are
assumed to be benign. In this paper, we propose (1) a novel approach
for anomaly detection and (2) a lightweight framework that utilizes the
blockchain to ensemble an anomaly detection model in a distributed envi-
ronment. Blockchain framework incrementally updates a trusted anomaly
detection model via self-attestation and consensus among the IoT devices.
We evaluate our method on a distributed IoT simulation platform, which
consists of 48 Raspberry Pis. The simulation demonstrates how the ap-
proach can enhance the security of each device and the security of the
network as a whole.

Keywords— IoT Security, Markov-Chain, Anomaly Detection, Distributed Sys-

tems, Blockchain, Collaborative Security.

1 Introduction

The Internet of Things (IoT) is the next evolution of the Internet [1] where de-
vices, of any kind and size, will exchange and share data autonomously among
themselves. By exchanging data, each device can improve their decision-making

1

ar
X

iv
:2

00
6.

10
58

7v
1

 [
cs

.C
R

]
 1

8
Ju

n
20

20

processes. IoT devices are ubiquitous in our daily lives and critical infrastruc-
ture. For example, air conditioners, irrigation systems, refrigerators, and railway
sensors [2] have been connected to the Internet in order to provide services and
share information with the relevant controllers. Due to the benefits of con-
necting devices to the Internet, massive quantities of IoT devices have been
developed and deployed. This has led leading experts to believe that by 2020
there will be more than 20 billion devices connected to the Internet [3].

While the potential for IoT devices is vast, their success depends on how
well we can secure these devices. However, IoTs are diverse and have limited
resources. Therefore, securing them is a difficult challenge which has taken a
central stage in both industry and academia. One significant security concern
with IoTs is that many manufactures do not invest in the security of these
devices during their development. Furthermore, discovered vulnerabilities are
seldom patched by the manufacture [4]. These vulnerabilities enable attackers
to exploit the IoT devices for nefarious purposes [5] which endanger the users’
security and privacy.

There are various security tools for detecting attacks on embedded devices.
One such tool is an intrusion detection system (IDS). An anomaly-based IDSs
learn the normal behavior of a network or host, and detect when the behavior
deviates from the norm. In this way, these systems have the potential to detect
new threats without being explicit programmed to do so (e.g., via remote up-
dates). Aside from being able to detect novel ‘zero-day’ attacks, this approach
is desirable because there is vertically no maintenance required.

In order to prepare an anomaly-based IDS (or any anomaly detection model),
the system must collect and learn from normal observations acquired during a
time-limited “training phase”. A fundamental assumption is that the observa-
tions obtained during the training phase are both benign and capture all of the
device’s possible behaviors. This assumption might hold true in some systems.
However, when considering the IoT environment, this assumption is challenging
for the following reasons:

1. Model Generality It is possible to train the anomaly detection model
safely in a lab environment. However, it is difficult to simulate all the pos-
sible deployments and interactions with the device. This is because some
logic may be dependent on one or more environmental sensors, human
interaction, and event based triggers. This approach is also costly and
required additional resources. Alternatively, the model can be trained on-
site during the deployment itself. However, the model will not be available
for execution (detection of threats) until the training phase is complete.
Furthermore, it is questionable whether the trained model will capture
benign yet rare behaviors. For example, the behavior of the motion detec-
tion logic of a smart camera or the response generated by a smoke detector
while sensing a fire. These rare but legitimate behaviors will generate false
alarms during regular execution.

2. Adversarial Attacks Although training on-site is a more natural ap-
proach to learning the normal behavior of an IoT device, the model must

2

assume that all observation during the training-phase are benign. This
approach exposes the model to malicious observations, thus enabling an
attacker to exploit the device to evade detection or cause some other ad-
verse effect.

To overcome these challenges, the IoT devices can collaborate and train an
anomaly detection model together. Consider the following scenario:

Assume that all IoT devices of the same type simultaneously begin training
an anomaly detection model, based on their own locally observed behaviors. The
devices then share their models with other devices of the same type. Finally,
each device merges the received models, into a single model by filtering out
potentially malicious behaviors. Finally, each device uses the combined model as
it’s own local anomaly detection model. As a result, the devices (1) collectively
obtain an anomaly detection model which captures a much wider scope of all
possible benign behaviors, and (2) are able to significantly limit adversarial
attacks during the training phase. The latter point is because the initial training
phase is much shorter (scaled according to the number of devices), and rare
behaviors unseen by the majority are filtered out.

Using concept, we present a lightweight, scalable framework which utilizes
the blockchain concept to perform distributed and collaborative anomaly detec-
tion on devices with limited resources.

A blockchain is an innovative protocol for a distributed database, which is
implemented as a chain of blocks and managed by the majority of participants
in the network [6]. Each block contains a list of records and a hash value
of the previous block and is accepted into the chain if it satisfies a specific
criteria (e.g., bitcoin’s proof-of-work criterion [7]). The framework uses the
blockchain’s concept to define a collaboration protocol which enables devices
to autonomously train a trusted anomaly detection model incrementally. The
protocol uses self-attestation and consensus among the IoT devices to protect
the integrity of the trained model. In our blockchain, a record in a block is a
model trained on a specific device, and a block in the chain represents a potential
anomaly detection model which has been verified by a significant mass/majority
of devices in the system. By using the blockchain as a secured distributed ledger,
we ensure that the devices (1) are using the latest validated anomaly detection
model, and (2) can continuously contribute to each other’s model with newly
observed benign behaviors.

Furthermore, in this paper we also propose a novel approach for performing
anomaly detection on a local device using an Extensible Markov Model (EMM)
[8]. The EMM tracks a program’s jump sequences between regions on the appli-
cation’s memory space. The EMM can be incrementally updated and merged
with other models, and therefore can be trained with real-world observations
across multiple devices in parallel. Although there are many other methods for
modeling sequences, we chose the EMM model because:

1. The update and prediction procedures have a complexity of O(1). This is
critical considering that many IoT devices have weak processors.

3

2. Our collaborative framework requires a model which can be merged with
other models efficiently. Moreover, to filter out malicious transitions dur-
ing the combine step, we needed an efficient and clear algorithm for com-
paring learned behaviors between different models. The process of compar-
ing and combining other discreet transitional anomaly detection models
can be complex or simply has not been defined.

3. In our evaluations, we found that the EMM performs better than other
algorithms in our anomaly detection task.

We evaluate both the framework and the anomaly detection model on our
own IoT emulation platform, involving 48 Raspberry Pis. We simulate several
different IoT devices to assert that the evaluation results do not depend on the
IoT device’s functionality. Moreover, we exploit real vulnerabilities in order to
evaluate our method’s capability in detecting actual attacks. From our evalua-
tions, we found that our method is capable in creating strong anomaly detection
models in a short period of time, which are resistant to adversarial attacks. To
encourage further research and development, the reader may download our data
sets and source code from GitHub.1 We have also published a blockchain sim-
ulator for our protocol to help the reader understand and implement the work
in this paper.2

In summary, this paper’s contributions are:

• A method for detecting code execution attacks by modeling
memory jumps sequences - We define and evaluate a novel approach
to efficiently detect abnormal control-flows at a set granularity. The ap-
proach is efficient in because we track the program counter’s flow between
regions of memory, and not actual memory addresses or system calls. As
a result, the model is compact (has relatively few states) and is suitable
for devices with limited resources (IoT devices).

• A method for enabling safe distributed and collaborative model
training on IoTs - We outline a novel framework and protocol which uses
the concept of blockchain to collaboratively train an anomaly detection
model. The method is decentralized, reduces train time, false positives,
and is robust against potential adversarial attacks during the initial train-
ing phase.

The rest of the paper is organized as follows. In Section 2, we review related
work, and discuss how the proposed method overcomes their limitations. In
Sections 3 and 4, we present introduce our novel host-based anomaly detection
algorithm and the framework for applying the algorithm in the collaborative
distributed setting using the blockchain. In Section 5, we evaluate the proposed
method on several different applications and use-cases, and discuss our insights.

1https://git.io/vAIvd.
2https://github.com/ymirsky/CIoTA-Sim

4

https://drive.google.com/drive/folders/15gLytEJyQyYCmhB-EZSkES77KsuCW0hw?usp=sharing
https://drive.google.com/drive/folders/15gLytEJyQyYCmhB-EZSkES77KsuCW0hw?usp=sharing

In section 6 we analyze the framework’s security. In Section 7, we provide a dis-
cussion on the security and challenges of implementing the proposed framework.
Finally, in Section 8 we present a summary and conclusion.

2 Related Works

The primary aspects of this work relate to both Intrusion Detection and IoT
Security. Therefore, in this section we will discuss recent works from both fields,
and the limitations of these approaches.

2.1 Discreet Sequence Anomaly Detection for Intrusion
Detection

Software inevitable contains flaws which pose security vulnerabilities if exploited
by an attacker. Many of these vulnerabilities remain unknown until they are
discovered and exploited in the wild (referred to as zero days). An effective way
to detect these exploits is to analyze a program’s behavior in real-time.

A program’s behavior can be observed during runtime by monitoring its
system calls, or by tracking the program in the memory [9, 10, 11, 12]. In
both cases, the behavior is observed as an ordered sequence of events on which
anomaly detection can be performed [13, 14]. To detect attacks in these se-
quences, many works utilize discreet sequence anomaly detection algorithms.
We will now summarize these works in chronological order.

In [15] the authors create a database of normal sequences by windowing
over system calls, and flag sequences as anomalous sequences if they do not
appear in the database. In [16] the authors extended the windowing approach
to longer sequences via partitioning. In [17] the authors use RIPPER to extract
concise rule sets from systems calls to classify malicious sequences. The authors
then expanded their work in [18] by using the frequent episodes algorithm,
computing inter/intra-audit record patterns, and by proposing a general agent
architecture. In [19] the authors proposed a system based on the defenses of
natural immune systems. First a database of short normal sequences is created.
Then new sequences are scored according to the number of matches (substrings)
the sequence has in common.

In [20] the authors performed a comparative evaluation involving Hidden
Markov Models (HMM), RIPPER, and threshold-based sequence time delay
embedding (t-STIDE). An HMM is similar to a MC except that it model trans-
missions based on output symbols at each state. We did not use an HMM since
the framework needs a light weight model that can be trained efficiently and can
be merged with other models. t-STIDE works by looking up the frequency of
new sequences (window) in normal dictionary (hash table). Infrequent sequences
below a given threshold are considered anomalous. The authors found that the
HMM provided the best performance, but t-STIDE had similar performance
and was significantly faster to train.

5

In [21] the authors propose modeling a finite-state machine over system calls
such that novel sequences are labeled anomalous. In [22] the authors apply an
HMM over a sliding window of system calls. In [23] the authors revisit the use
of association rule mining by considering the system call’s arguments. Based
on a mining algorithm called LERAD, the authors propose three variants which
out performed t-STIDE for certain attacks. In [24] the authors propose a multi-
layer approach which first uses a normal database and then passes suspicious
sequences to a HMM for further analysis. In [25] the authors use a Markov
Chain to model normal shell-command sequences, and then detect abnormal
(malicious) sequences as an indication of misuse in the system.

In [26, 27, 28] the authors use probability suffix trees (PST) to model normal
system call sequences. A PST is a variable length Markovian model which forms
a tree-liek data structure.

In [29] the authors propose a method for speeding up HMM training on sys-
tem calls by 50%. They accomplish this by prepossessing the training sequences
and by performing incremental training. In [30] the authors prose a kernel trick
to transfer sequences to Euclidean space in order to perform kNN lookups. In
[11] the authors propose the use of a long-term short-term (LSTM) neural net-
works to detect abnormal system call sequences. In [31] the authors extent the
work of [31] by stacking convolutional networks (CNN) followed by a recurrent
neural network (RNN) with Gated Recurrent Units (GRU). Although the use
of GRU reduced the training time, the authors needed to use powerful GPUs
to train their network.

Our proposed framework uses an EMM, a type of Markov Chain, as the
anomaly detection model for detecting abnormal control flows in the memory of
applications. In contrast to the above works, the limitation to these approaches
are:

Attack Vector Coverage Many exploits do not use the shell or require the
evocation of abnormal system-calls, so the Markov model would not ob-
serve any malicious activity during their exploitation processes. For ex-
ample, exploitation of a buffer overflow vulnerability can be accomplished
without making explicit calls.

Modeling the True Behavior An application’s system and shell calls only
capture an application’s high-level behavior. As a result, some exploits
can be designed so that the executed code will generate seemingly benign
sequences (obfuscation) and evade detection. Furthermore, some malware
may only require to make benign call sequences to accomplish its objective.
For example, a randsomware will read and write files via system-calls
(benign) but encrypt the files internally (malicious).

System Overhead In order to intercept the system calls of a specific appli-
cation, one must intercept the system-calls of all applications. As a re-
sult, these approaches are suitable for devices with strong computational
power such as personal computers, but not IoTs. Moreover, models such

6

as HMMs and neural networks cannot be trained (and sometimes not even
executed) on IoTs.

By modeling a Markov Chain on a target application’s general jumps through
its memory space, our approach is not restricted by the above limitations.
Namely, our approach can (1) capture the internal behavior of the application,
regardless of the system-calls or shell-code, (2) detect exploitation of vulnera-
bilities occurring within an application’s memory space, and (3) be applied to
specific applications, as opposed to the whole system, thus minimizing overhead
–making our approach appropriate for IoTs.

Similar to our approach, in [32] the authors detect anomalous activities by
maintaining a heatmap of the kernel’s memory space. An anomaly is detected
when the probability of a region of the kernel’s memory being accessed is below
a threshold. By doing so, the authors were able o detect abnormal application
activities reflected by interactions with the kernel. This work differs from ours
in the following ways:

1. The kernel-heatmap method cannot detect all of those which our method
can. For example, code reuse attacks are ignored because the kernel in-
teractions seem normal. Moreover, abnormal interactions with the kernel
can be considered benign because other applications may be performing
similar interactions. For example, when privilege escalation is obtained
and abused, restricted system calls will not seem abnormal because the
context of the requesting app is not considered.

2. When an anomaly is detected, there is indication of which application has
been compromised. This makes it harder to mitigate the threat.

3. The method in [32] suffers from significantly higher false alarm rates than
an EMM. This is because the probability of accessing a memory region is
normalized over all accesses. Therefore, rare benign memory interactions
are considered anomalous. In contrast, by using an EMM over memory
regions, we consider the transition across the memory space which provides
an implicit context for each interaction. Later in section 5 we provide a
comparative evaluation.

4. Like all other anomaly detection algorithms (including EMMs), the method
in [32] is subject to adversarial attacks (poisoning) during training and
false positives due to rare benign behaviors (due to human interactions
and other stimuli). In our paper we propose a framework which provides
accelerated on-site model training in a hostile environment via collabora-
tion, filtration, and self-attestation.

Another approach to deploying an IDS is to distribute the detection across
multiple devices [33, 34, 35]. In these approaches, the devices share information
with one another regarding malicious traffic and the network’s state. Similar
to our method, a distributed IDS utilizes on collaboration between devices.
However, the proposed methods are limited to analyzing network traffic. In

7

many cases, network traffic from a device cannot indicate the exploitation of an
application running on the device (e.g., encrypted payloads). When considering
the IoT topology and the vision of allowing them to autonomously exchange
data, a network based IDS might be problematic, since network traffic near each
IoT device may differ significantly. In contrast, our anomaly detection approach
on an application’s the memory jumps is not affect by the diversity of network
traffic near each device. Furthermore, distributed IDS solutions are designed to
work collectively as a single intrusion detection system. However, should one
node be compromised by an attacker, the security of the entire system may fail.
In contrast, our method allows for safe collaboration via self attestation and
model anomaly filtration –which makes compromising the whole system much
more difficult.

2.2 IoT Specific Solutions

The IoT device security solutions have been researched extensively over the last
few years. However, the proposed solutions typically do not address all of an
IoT’s characteristics: their (1) mass quantity, (2) limited resources, (3) global
deployment, (4) dependence on external sensors/triggers.

In [36, 37] the authors propose deploying static analysis tools on the IoT de-
vices. However, these approaches require that (1) the device maintain a database
of virus signatures and (2) that experts continuously update this database. Fur-
thermore, these approaches are not sufficient when facing viruses which can only
be detected during runtime (e.g., execution of a malicious encrypted payload).
Our method is anomaly-based and therefore can detect threats automatically
without human intervention, and performs continuous dynamic analysis of an
application’s behavior.

Several studies try to secure IoT devices by deploying an anomaly detection
model on the device itself [38, 39, 40, 41]. Some of them suggest to simply
apply traditional solutions (meant for stronger devices), while others suggest
a novel approaches which are more light-weight. A common denominator for
all these approaches is: they neglect of the fact that (1) an anomaly detection
model is sensitive to adversarial attacks during the training phase, and (2) rare
benign activities (which did not appear in the initial training data) can generate
false positives (e.g., an IoT smoke detector being triggered). Our method, on
the other hand, has a very short initial training-phase and learns from the
experiences (events) of millions of IoTs.

Other studies propose that a centralized server should be deployed [42, 43,
44]. However, the centralized approach does not scale well with the number of
IoT devices. Our method is distributed and autonomous.

Another direction in the literature is to deploy a network-based IDS at the
gateway of IoT distributions [41, 45]. Although this is a suitable solution for
smart homes and offices, it does not scale to industrial deployments (e.g., smart
railways), or where the IoT devices are connected directly to the Internet (e.g.,
some survallaince cameras). Our method does not depend on the IoT devices’
deployment or topology.

8

Other studies have tried to avoid the issue of training altogether, by using a
trust anchor, such as an IoT device’s functional relationship to detect anoma-
lies. In [46], the authors propose executing every distributed computation twice
across different IoT devices and then compare the results to detect deviations
(infected devices). However, this method was only designed to protect specific
types of IoT devices, from specific types of attacks. Our method is generic to
the type of device, and the type of attack.

Other trust anchors solutions include the Trusted Platform Module (TPM)
[47] and Trusted Execution Environment (TEE) [48]. ARM’s TrustZone [49] is
a TEE implemented in the hardware, providing a one-way separation between
two worlds: “unsecured” and “secured”. In [42] the authors proposed C-FLAT
which utilizes the Trust Zone for attesting the IoT device’s control-flow be-
havior against a simulation run in parallel on a central server. Although an
application’s control-flow can be used to detect a vast range of code execution
attacks, C-FLAT is limited to specific IoT devices which (1) do not execute
code continuously or (2) devices whose behavior is not affected by external sen-
sory events (e.g., smart cameras). Our method analyzes control-flow behavior
to detect abnormalities dynamically on-site, and therefore does not have these
limitations.

3 The Anomaly Detection Model

In this section, we present a novel method for efficiently modeling an appli-
cation’s control-flow, and then detecting abnormal patterns with the trained
model. The method is applied locally and continuously on a single IoT device.
Later, in Section 4, we will present the proposed framework for enabling the
decentralized collaborative training of the anomaly detection model.

3.1 Motivation

When an application is executed, the kernel designates a region of memory for
the program to operate in. The region contains the program’s code (machine
instructions) and room for data (e.g., variables) to be manipulated by the pro-
gram. As a program runs, a program counter (PC) tracks the current location
(in memory) of the current instruction being executed. The PC will jump to
different locations when functions, if statements, and loops are performed. By
following the location of the PC over the application’s region in memory, a
pattern emerges. This pattern captures the behavior (control-flow) of the ap-
plication. The objective is to model the normal behavior of an application’s
control flow, and then later detect when the behavior changes.

When an attacker does not have the victim’s credentials, the attacker may
attempt to exploit a software vulnerability in order to obtain access to restricted
assets, or to perform some other undesirable task (e.g., install a bitcoin mining
bot). When an exploit is executed on an application, the control-flow of the app
will deviate from the behavior intended by the app’s developers. By detecting

9

Figure 1: A visualization of a smart-light’s program control-flow over the mem-
ory space, and the affect caused when a vulnerability is exploited to run mali-
cious code.

this abnormality, we can identify the threat and then take the proper steps to
alter the user and mitigate it.

Buffer overflow and code-reuse are examples of attacks which abnormally
affect the PC’s location in memory. Another example is the “Zimperlich” [50]
vulnerability in Android which gives the attacker privileged escalation. When
exploited, the “Zimperlich” causes the setuid operation to fail. However, by
monitoring the control-flow of the application, we can detect that the app was
attempting access to the region of memory where setuid is located, at an unusual
time. As a result, we can raise an alert which will reveal the attack to the user.

With this approach, it is challenging for the attacker to evade detection. This
is because most systems cannot change the code loaded into memory. Therefore,
in order for the attacker to execute code which will hide the malicious activities,
the attacker must either (1) add code of his own (which will make the PC jump),
or (2) override existing code with his own (which will change the behavioral
flow of the PC). This places the attacker in a catch-22, where his exploit will
ultimately detected as an anomaly (Fig. 1).

3.2 Markov Chains

In order to efficiently model sequences, we use a probabilistic model called a
Markov chain (MC). An MC is a memory-less process, i.e., a process where the
probability of transition at time t only depends on the state at time t and not
on any of the states leading up that state. Typically, an MC is represented as an
adjacent matrix M , such that Mij stores the probability of transitioning from
state i to state j at any given time t. Formally, if Xt is the random variable
representing the state at time t, then

Mij = Pr(Xt+1 = j|Xt = i) (1)

An EMM [8] is the incremental version of the MC. LetN = [nij] be the frequency
matrix, such that nij is the number of transitions which have occurred from state

10

i to state j. From here, the MC can be obtained by

M = [Mij] =

[
nij
ni

]
(2)

where ni =
∑
j ni,j is the total number of outgoing transitions observed by

state i. By maintaining N , we can update M incrementally by simply adding
the value ’1’ to Nij whenever a transition from i to j is observed. In most cases,
N is a sparse matrix (most of the entries are zero). When implementing an
EMM model, one can use efficient data structures (e.g., compressed row storage
or hash maps) to track large numbers of states with a minimal amount of storage
space.

If N was generated using normal data only, then the resulting MC can be
used for the purpose of anomaly detection [51]. Let Qk be the last k observed
states in the MC, where k ∈ {1, 2, 3, . . .} is a user defined parameter. The
simplest anomaly score metric is the probability of the observed trajectory Qk =
(s0, . . . , st) w.r.t the given MC. This is given by

Pr(Qk) = Pr(

k∧
i=0

(Xi = si)) =

k−1∏
i=0

Msi,si+1
(3)

When a new transition from state i to state j is observed, we assert that the
transition was anomalous if Pr(Qk) < pthr, where pthr is a user defined cut-
off probability. However, for large k, or in the case of noisy data, Pr(Qk)
can generate many false positives. In this case, the average probability of the
sequence can be used

Pr(Qk) =
1

t

k−1∑
i=0

Msi,si+1
(4)

Lastly, to avoid corrupting the model, one should not update Nij with a tran-
sition deemed an abnormal (part of an attack).

3.3 Detecting Abnormal Control-Flows in Memory

To track the logical address of the PC in real-time, we can use a kernel debugger
such as the Linux performance monitoring API (linux/perf event.h)3. The
debugger runs in parallel to the target application and tracks addresses of the
PC. The debugger periodically reports the addresses observed since the last
report. The sequence of observed addresses can then be modeled in the MC.

Modeling a memory space as states in an MC is a challenging task. Due to
memory limitations, it is not practical to store every address in memory as a
state. Doing so would also require us to track the location of the PC after every
operation. This would incur a significant overhead. Therefore, we propose that
a state in the MC should be region of memory (Fig. 2). We also configure the

3The API can be found here: http://man7.org/linux/man-pages/

man2/perf event open.2.html, and sample code can be found here: https://git.io/vAIvd

11

Figure 2: A visualization of partitioning a smart-light’s memory-space into
states in a Markov Chain.

debugger to report right after branch and jump instructions. To accomplish
this, we used a kernel feature via the debugger.4

Let PCaddr be the current logical address of the application’s program
counter, where 0x0 is the start of the app’s logical memory-space. Let B be
the partition size in Bytes, defined by the user. The MC state i, in which the
program is currently located, is obtained by

i =

⌊
PCaddr
B

⌋
(5)

The partition size of a memory space is a user defined parameter. When selecting
the partition size, there is a trade off between the true positive rate and memory
requirements. For an Apache web-server, we found that a partition size of
256 Bytes was is enough to detect our evaluated attacks, where the memory
consumption of the model N was only 20KB of memory.

In Algorithm 1, we present the complete process for modeling and monitoring
an application’s control-flow in memory. There, Tgrace is the initial learning time
given to the MC, before we start searching for anomalies.

3.4 Collaborative Training of EMMs

Multiple devices can collaborate in parallel to train N . The benefit of parallel
collaboration is (1) we arrive at a converged/stable model much faster, and
at a rate which scales with the number of collaborators, and (2) we increase
the likelihood of observing rare yet benign occurrences, which reduces our false
positive rate. To collaborate across multiple devices, we assume that the devices’
hardware, kernel, and target application (being monitored) are of the same
version. For example, all of the Samsung smart-fridges of the same model.

Let N be a set of EMM models, where N
(k)
ij is the element Nij in the k-th

model of N. Since we assume that multiple devices statistically observe the same

4The feature is called coresight in ARM CPUs, and lastjump in Intel CPUs.

12

Algorithm 1 The algorithm for training an MC, and detecting anomalies in
an application’s control flow via the memory.

1: function Monitor(app name, k, B, pthr, Tgrace)
2: N ← DynamicSparseMatrix() . init MC
3: Qk ← FIFO(k) . init state trace ring-buffer
4: i← 0 . initial state
5: fd ← register(app name) . track app with debugger
6: while buffer ← read(fd) do
7: for addr ∈ buffer do
8: j =

⌊
PCaddr

B

⌋
. determine current state

9: if notInGrace(Tgrace) and Pr(Qk) < pthr then
10: raise alert
11: else
12: Nij + + . update MC

13: i = j

state sequences, then EMMs (N) trained at separate locations can be merged
into a single EMM. Since an EMM is a frequency matrix, we can combine the
models by simply adding the matrices together by

N∗ = [N∗ij] = [
∑
k

N
(k)
ij] (6)

It is critical that the combined model N∗ be trained on normal behaviors
only. However, we cannot assume that all models have not been negatively
affected. We propose two security mechanisms to protect N∗: model-attestation
and abnormality-filtration.

Abnormality-filtration is used to combine a set of models N into a single
model N∗, in manner which is more robust to noise and adversarial at-
tacks than (6). The approach is to filter out transitions found in N∗ if
the majority of models in N have not observed the same transition. To
produce N∗ from N in our framework, Algorithm 2 is performed, where
pa the minimum percent of devices which must observe a transition in or-
der for it to be included into the combined model. After forming the MC
model M∗ from N∗ using (2), an agent can attest that M∗ is a verified
model via model-attestation.

Model-attestation is used to determine whether a trusted model N (i) is sim-
ilar to a given model N (j). If N (j) is similar, than it is considered to be
a verified model with respect to N (i). To determine the similarity, we
measure the linear distance between the EMMs, defined as

d(N (i), N (j)) =

∑dim(M)
k=1

∑dim(M)
l=1 |M (i)

kl −M
(j)
kl |

dim(M)2
(7)

13

where dim(M) is the length of M ’s dimensions, and M is the Markov
chain obtained from N . A local device i can attest that model N (j) is
a self-similar model, if d(N (i), N (j)) < α, where α is a parameter of our
framework (see Section 4).

Algorithm 2 The algorithm for combining a set of EMMs.

1: function Combine(N, pa)
2: N ← empty EMM() . initialize empty freq. matrix
3: for nij ∈ N do
4: C ← 0 . init the counter
5: for k ∈ 1 : |N| do

6: nij ← nij + N
(k)
ij

7: if N
(k)
ij > 0 then

8: C + +

9: if C
|N| ≤ pa then . not enough devices have observed ij

10: nij ← 0

11: return N

4 The Framework

In this section, we present the proposed framework and protocol. The framework
enables distributed devices to safely and autonomously train anomaly detection
models (Section 3), by utilizing concepts from the block chain protocol.

First we will provide an overview and intuition of the framework (4.1). Then
we will present the terminology which we use to describe the blockchain protocol
(4.2). Finally, we will present the protocol and discuss its operation (4.3). Later
in Section 7, we will discuss the various challenges and design considerations.

4.1 Overview

The purpose of the framework is to provide a means for IoTs to perform anomaly
detection on themselves, and to autonomously collaborate to find the anomaly
detection model. For example, a company may want gradually deploy thousands
or millions of IoT devices. Each of the devices have an application, such as
a web server (so that the user can interface and configure the device). The
application may have un/known vulnerabilities which can be exploited by an
attacker to accomplish some nefarious task. To detect threats affecting the
devices, the company installs an agent on each device, and has the agent monitor
the application.5

5An agent can cover multiple applications on a single device by maintaining separate models
and blockchains. For simplicity, we will focus on protecting a single application.

14

The job of an agent is to (1) learn the normal behavior of the application,
and (2) report abnormal activity in the application (Algorithm 1 on the local
model M (`)), and (3) report abnormal agents compromised or infected with
malware.

Each agent then collaborates with the other agents by trying to figure out
how to safely combine everybody’s local models into a single global model M (g1).
Once the agents agree upon a global model, each device will replace their M (`)

with M (g1). The agents continue to update their M (`) and collaborate on cre-
ating M (g2). This collaboration cycle repeats indefinitely.

The benefit of collaboration is:

1. An agent who has accidentally trained his M (`) on malicious behaviors
will now detect them as malicious.

2. The agents will benefit from the vast experience of all the devices together,
and accurately classify rare benign events.

3. The agents will be able to identify rouge agents by detecting corrupt
partial-blocks which fail model-attestation.

A critical part of the collaboration process is filtering out rare benign be-
haviors from possible malicious behaviors. The difference between the two is
that we expect to see rare benign behaviors among more devices than mali-
cious behaviors, especially at the outset of an attack (e.g., the propagation of
a worm). This is relative to the parameter pa: we expect at least pa% of the
agents to experience the rare-benign events, and less than pa% to be infected.
Note that after M (g) converges the malicious behaviors are detected, and M (`)

is not updated with detected malicious behaviors (detailed in the protocol later
on).

Since agents do not update their M (`) when an anomaly is detected, we ex-
pect each of the local models to remain pure. However, there are cases where an
M (`) can be corrupted. For example, when an agent launches after a malicious
behavior begins, but before M (g1) has been created. To protect the integrity
of the next global model, when an agent which receives a set of local models
(under collaboration to become the next global model), an agent will. . .

1. [trust] . . .consider only sets which contain authenticated models from
different agents.

2. [filter] . . .combine the set into a potential M (g), and remove behav-
iors from M (g) which have not been reported by the majority of agents
(abnormality-filtration).

3. [attest] . . .accept the set of models as a potential M (g), if it does not
conflict with the agent’s current local model (model-attestation).

4. [inform] . . .share the accepted set of models (including his own) with
other agents, while reporting abnormal application behaviors and prob-
lematic agents (rejected partial-blocks).

15

The following analogy provides some intuition for how the agents create
M (g):

Analogy

A group of painters (agents) are looking at the same colored object (tar-
get application), and they are working together to select a single colored
paint (M (g)) to describe it. Each painter produces a bucket of paint
(M (`)) based on their perception of the object’s color. The painters then
share their paint buckets with their neighbors, who mix the received
paints together, while filtering out imperfections (abnormality-filtration),
but only if they feel the resulting color will still resemble the colored ob-
ject (model-attestation). The painters continue to adjust the paints, and
after a set number of iterations of sharing, each painter pours some of
the paint onto his/her pallate, and uses it to paint (perform anomaly
detection). Then, the cycle repeats as the painters continue to adjust,
filter, and share the paints in hopes of perfecting the color.

To enable this autonomous trusted distributed collaboration, we use a blockchain.
In the following sections, we will detail how blockchain is used for this purpose.

4.2 Terminology & Notation

In the framework, a blockchain is a linked list of sequential blocks, where each
block contains a set of records (EMM models) acquired from different IoT de-
vices of the same type (see Fig. 3). Each device maintains a copy of the latest
chain, and collaborates on the next block.

We will now list the terminology and notations necessary to explain the
framework in detail:

Model A Markov chain anomaly detection model denoted M , where N denotes
the model in its EMM frequency matrix form. The model supports (1)
the calculation of a distance between models, and (2) combining (merging)
several models of the same type together. In this version, we use an EMM.
We denote a model which is currently deployed on the local device as N (`).

Combined Model A model created by merging a set of models together. The
combined model only contains elements (transitions) which are present in
at least pa percent of the models (see abnormality-filtration in Algorithm
2).

Verified Model Let d(M (i),M (j)) be the distance between models M (i) and
M (j). A model M (i) is said to be verified by a device if d(M (i),M (`)) < α,
where α is a parameter given by the user (see model-attestation in (7)).

Record A record is an entry in a block. A record consists of the model N (i)

from device i, and a digital signature Ski(m, n,N), where ki is device i’s
private key, m is the blockchain’s meta-data (hash of previous block, target

16

application, version. . .), N is the set of models from the start of the current
block up to and including N (i), and n is a counter which is incremented
with each new block. The purpose of n is to track the length of the chain
and to prevent replay attacks. A record is valid if the format is correct
and the signature can be verified using device the corresponding device’s
public key.

Block A list of exactly L records from different devices and some metadata.
Each record is verified by the agent’s digital signatures, where each agent’s
signature covers its model, all preceding models, the current block number
(n), and its metadata (e.g., the agents’ IP addresses). We denote the i-th
record in a block as ri. The models in a block, when combined, represent
a collaborative model M (g) which can be used to replace a local model
M (`). A block is valid if the format is correct and contains valid records.

Partial Block The same as a block, but it is less than L entries long. The com-
bined models in a partial-block represent a proposed collaborative model
M (g) in progress. An agent contributes (add its own model) to a partial-
block only if (1) the partial-block is valid, (2) the agent does not already
have a record there, and (3) the combined model, using the enclosed mod-
els, form a verified model (with respect to the agent’s local model N (`)).
The length of a partial-block, in the perspective of agent i, is the number
of records in the partial-block minus i’s if it exists.

Chain A series of blocks (blockchain), where each block contains a hash of
the previous block in m, and where the counter n is the index of the
block in the chain (n = 1 for the first block, etc.) A chain contains the
current collaboration for the next M (g) (partial-block), the current model
with consensus (the last block in the chain), and an optional history of
collaboration used for analytical purposes (all other blocks). The length of
a chain is defined as the total number of full blocks in that chain. Finally,
a chain may have at most one partial block appended to the end of the
chain. We denote the i-th block in a chain as Bi.

Agent A program that runs on an IoT device which is responsible for (1) train-
ing and executing the local model N (`), (2) downloading more advanced
broadcasted chains to replace N (`) and the locally stored chain, (3) pe-
riodically broadcasting the locally stored chain, with the agent’s latest
N (`) as a record in the partial block, and (4) reporting any anomalous
behaviors/blocks.

4.3 The Blockchain Protocol

By using a block-chain, agents are able to collaborate autonomously in manner
which is robust to adversarial attacks. Every agent maintains a local copy of
the ‘best’ chain.

17

𝑟1 𝑁(𝒄) 𝑆𝑘𝒄 m, 1, 𝑁
(𝒄)1 𝒄

𝑟2 𝑁(𝒂) 𝑆𝑘𝒂 m, 1, 𝑁(𝒄), 𝑁(𝒂)1 𝒂

𝑟𝐿 𝑁(𝒘) 𝑆𝑘𝒘 m, 1, 𝑁(𝒄), 𝑁(𝒂), …𝑁(𝒘)1 𝒘

⋮ ⋮ ⋮ ⋮

Device IDs:
𝒂, 𝒃, 𝒄, …

𝑁 𝑛 ID Signature

𝑟1 𝑁(𝒃) 𝑆𝑘𝒃 m, 2, 𝑁(𝒃)2 𝒃
𝑟2 𝑁(𝒔) 𝑆𝑘𝒔 m, 2, 𝑁

(𝒃), 𝑁(𝒔)2 𝒔

𝑟𝐿 𝑁(𝒆) 𝑆𝑘𝒆 m, 2, 𝑁(𝒃), 𝑁(𝒔), …𝑁(𝒆)2 𝒆

⋮ ⋮ ⋮ ⋮

𝑟1 𝑁(𝒂) 𝑆𝑘𝒂 m, 3, 𝑁(𝒂)3 𝒂
𝑟2 𝑁(𝒅) 𝑆𝑘𝒅 m, 3, 𝑁(𝒂), 𝑁(𝒅)3 𝒅

𝐵1

𝐵2

p
a
rt
ia
l-
b
lo
ck

m

m

m

M
eta

-d
a
ta

Figure 3: An example of a chain with two blocks and a partial block, where the
device IDs are {a,b, c . . .}.

Closed blocks in the chain represent past completed global models, where
the last completed block in the chain contains the most recently accepted model
M (g). The next global model is collaborated via a partial-block appended to
the chain. A partial block only grows if agents can verify that it contains a
safe model that captures the training distribution (the target app’s behaviors).
This is accomplished through trust propagation: agents (1) broadcast their
partial block to other agents, (2) replace their local partial-block with received
ones if they are both longer and similar to N (`) (same distribution check via
model attestation), and (3) reject and report partial-blocks that are significantly
different than N (`).

The blockchain protocol is as follows (illustrated in the flow-chart of Fig. 4):

Blockchain Protocol

A. Initialize. An agent starts with an empty chain (an empty partial-
block with no preceding blocks) stored locally on its device, and
initializes an empty local model N (`).

18

B. Gather Intelligence (Monitor). The agent (1) monitors the
target application, (2) updates N (`) incrementally, and (3) reports
anomalies if Tgrace has passed (Algorithm 3.3).

C. Share Intelligence. Every T seconds:

C.1. The agent adds its own local model N (`) to the partial-block as
a record, if M (`) is stable (passed Tgrace), and does not yet exist
in the partial-block.

C.2. The agent shares its block-chain (partial-block and all preceding
blocks) with b other agents in a random order.a

D. Receive Intelligence. When an agent receives a block-chain:b

D.1. If the chain is shorter than the local chain: then the agent
discards the received chain.

D.2. If the chain is longer than the local chain: then the agent
checks...

D.2.1. If the last block is a valid block: then the received chain
replaces the local chain, and the models N in the last block
are combined (abnormality-filtration) to form N (g) which
replaces N (`).cd

D.2.2. Else: the agent discards the received chain.

D.3. If the chain has the same length as the local chain: then the
agent checks...

D.3.1. If (1) the received chain’s partial-block is longer than the
local chain’s partial-block (excluding his own record from
both), (2) the received partial-block is valid, and (3) the
models N in the partial-block form a combined model
(abnormality-filtration) which the agent can attest is a ver-
ified model (model-attestation): then the received chain re-
places the local chain.

D.3.2. Else If (1) the chain’s partial-block has the same length
as local chain’s partial-block (excluding his own record),
(2) the two partial-blocks have different agent IDs, (3) the
partial-block is valid, and (4) this is the k-th received chain
of equal length whose partial-block was that was not used:
then send the local chain to the agent(s) in received partial-
block who do not appear in the local partial-block.e

D.3.3. Else: (1) the agent discards the received chain, and (2) If
in steps D.3.1. or D.3.2. the partial-block failed the validity
check or failed the model-attestation to a significant degree,
then report the block and sending agent.f

19

aThe agent only needs to broadcast the chain to a few ‘neighboring’ agents, similar
to how Etherium and Bitcoin work.

bTo avoid DoS attacks, an agent will at most process b chains once every T seconds.
cThe agent does not perform model-attestation on a valid block.
dOption: Agents update T to be a factor of the number of closed blocks in the

local chain. Since M(g) converges over time, it is safer to prolong changes to the next
version, increasing the response time when an attack on the blockchain is detected.
See Section 6.2 for details.

eThe received partial-block has the IP addresses of the target agents.
fAlternative version: If the last block is valid yet different than the local chain’s,

then merge that block’s combined model into N(`). This helps form a more general
N(g) without communities. A limitation must be placed on the number of merges
per T seconds.

4.4 Proof of Cumulative Majority

In blockchains, there is often some form of effort which deters an attacker from
making false records. In systems like Etherium, it’s the effort of solving a
crypto challenge. This type of challenge is necessary in systems like Etherium,
because there is a base assumption that all participants are untrusted from the
start. In contrast, our system assumes that the majority participants (agents)
are on uncompromised devices at the start, because they are deployed by the
manufacture. This is a common assumption for IDS systems.

Therefore, this blockchain uses “proof of cumulative majority” to deter at-
tacks. The cumulative majority refers to the distributed consensus, or significant
mass, achieved by accumulating L the participants’ signatures on a set of models
to be combined as the next global model.

Concretely, an agent only replaces its local partial-block with a received
partial-block if it is similar to the behaviors is has seen locally (model-attestation).
Therefore, a partial-block of length L can only exist if L agents can attest that
the model is similar to their own model/observations (i.e., there are L compro-
mised agents within T seconds). Since L is very large in practice (10k-100k),
and partial-blocks are indiscriminately shared and propagated: (1) a closed block
has majority trust on it, and (2) is unlikely to be malicious due to the attacker’s
significant challenge.

The attacker’s challenge/effort in this blockchain is to compromise a signifi-
cant number of devices before T seconds pass. Otherwise, the attack is reported
in step D.3.3. of the protocol. At which point, the attack is discovered and (1)
the affected devices’ keys can be invalidated, and (2) the devices can be cleaned
and patched.

With this in mind, we can see how the proposed blockchain system achieves
its objective as an IDS. When a device is compromised, either (1) the agent will
detect an abnormal behavior and report it to the SOC, or (2) the model will be
corrupted/tainted by the latent behavior. In the latter case, if the compromised
device publishes its model, it will be rejected by the other devices, because the
tainted partial block (PB) will no longer be self-similar to the other devices

20

C. Share IntelligenceA. Initialize

Sleep 𝑇

Has 𝑇𝑔𝑟𝑎𝑐𝑒
elapsed?

𝑁 ℓ in 𝑝𝑏 ℓ ?

Add record of

𝑁 ℓ to 𝑝𝑏 ℓ

Send 𝐶 ℓ to 𝑏
neighbors in

random order

Does a chain
exist on disk?

𝐶(ℓ) ← load()

𝑁(ℓ) ← 𝑐𝑜𝑚𝑏𝑖𝑛𝑒(𝐿𝐵 ℓ) 𝑁 ℓ ← ∅

Set 𝑇𝑔𝑟𝑎𝑐𝑒 TimerExpire 𝑇𝑔𝑟𝑎𝑐𝑒 Timer

T

𝑁𝑖𝑗 ++

Exec 𝑀 ℓ

Publish alert

Wait for
control-flow

event

Has 𝑇𝑔𝑟𝑎𝑐𝑒
elapsed?

𝑃𝑟 𝑄𝑘 < 𝑝𝑡ℎ𝑟

Has there
been an alert

recently?

yes

yes

yes

no

no

no

B. Gather Intelligence (Monitor)

C.2
C.1

yes

yes

yes

no

no

no

Receive Chain 𝐶(𝑟)

Publish alert

𝐿𝐵 𝑟 is
valid?

𝐶(𝑟) < 𝐶(ℓ)

𝐶(𝑟) > 𝐶(ℓ)

𝐶(𝑟) = 𝐶(ℓ)

𝑁 ℓ ←
𝑐𝑜𝑚𝑏𝑖𝑛𝑒(𝐿𝐵(𝑟))

𝐶 ℓ ← 𝐶 𝑟

optional

𝑝𝑏 𝑟 > 𝑝𝑏 ℓ

*

*

𝑝𝑏 𝑟 = 𝑝𝑏 ℓ ⋀

pb 𝑟 ⊕pb ℓ ≠ ∅

Is 𝑝𝑏 𝑟

valid?
𝑐𝑜𝑚𝑏𝑖𝑛𝑒 𝑝𝑏 𝑟

is a verified
model

Send 𝐶 ℓ to agents

in 𝑝𝑏 𝑟 ⊕𝑝𝑏 ℓ

* The length of a 𝑝𝑏 is
measured excluding records
from the local agent

** Only done if this is the 𝑘-th

time 𝑝𝑏(𝑟) was not used

𝐿 = 𝑓 𝐶 ℓ

𝐿𝐵 ℓ ≠ 𝐿𝐵 𝑟

𝐶: Chain, 𝐿𝐵 last block
𝑝𝑏: partial-block
ℓ: local, 𝑟: received

𝑁(ℓ) ←

𝑐𝑜𝑚𝑏𝑖𝑛𝑒(𝑁 ℓ , 𝐿𝐵 𝑟)

optional

yes

yes

yes yes yes

yes

yes
no

no

no

no

no

no

no

no

yes

D. Receive Intelligence

D.1

D.2

D.3 D.3.1

D.3.2

D.2.1

Figure 4: A flow-chart of the blockchain protocol.

models in the model-attestation step. The other agents will then report rejected
blocks, for example, to a Security Operations Center (SOC), and it will be clear
who the infected device is (identified with problematic model’s key from the
reported PBs). The SOC can then invalidate that device’s key and investigate
the intrusion. Therefore, if the agent is compromised then the tainted model will
be detected by the community, and if the model is corrupt (contains abnormal
behaviors) then the agent will detect the intrusion when it replaces the local
model with the next global model.

21

4.5 Model Conflicts in Partial Blocks

A concern might be that the agents will disagree on the models in the partial-
block and not reach a consensus. However, all agents monitor the same ap-
plication running on the same type of hardware. Therefore, their models are
very similar to one another. This is intuitive because each agent’s training data
follows the same distribution, and the Markov chain captures the probabilities
of PC transitions.

Since the models are trained on the same distribution, any model formed by
combining a subset of all agents’ models will also be similar all agents’ models.
More formally, we observe that

d
(
combine

(
N

(`)
i

)
, n

(`)
j

)
< α ∀i, j : n

(`)
j ∈ N

(`), N
(`)
i ∈ N(`) (8)

where N(`) is the set of all agents’ models, and d is the average parameter
distance defined in (7). This holds true since all agents are sampling from the
same distribution (hardware and software). In our experiments, we were able to
set α to a low value because the agents’ benign models were consistently very
similar (Section 5). Therefore, it is highly unlikely that the partial-block will be
in conflict given a reasonable α.

4.6 Deadlock Prevention

As mentioned in the protocol, agents should only message a few other agents
in step C.2. to minimize traffic overhead. However, a deadlock can occur if (1)
connectivity between agents is incomplete (some agent’s cannot directly message
other agents), (2) all agents have their neighbor’s records in their partial-block,
and (3) all partial-blocks have the same length. Although it is very rare for this
to occur (one in a million depending on the connectivity), step D.3.2. prevents
any deadlocks that may happen.

The following is the formal proof that our revised system will not have any
deadlocks in reaching a partial-block of length L.

Let the undirected graph G = (E,A) represent the agent’s connectivity,
where i ∈ A is the set of agent IDs. Let pbi be the partial-block of agent i such
that pbi ⊆ A. We denote the set of neighbors which are directly connected to
agent i as Γi. Finally, we refer to an epoch as an iteration where all agents have
broadcasted a their pb to their neighbors (every T seconds).

In our proof, we assume that G forms a single connected component. We
also assume that L = |A| because if a pb reaches length |A| then it will reach
all possible L, where L ≤ |A|. We also assume that all agents are drawing
observations from the same distribution to train their models, and therefore
will not have any issue during the pb validation checks (Section 4.5).

A deadlock occurs if ∀i ∈ A : D(i) where the predicate D is defined as

D(i) : pb
(t)
i = pb

(t+1)
i ∧ |pb(t)i | < L.

22

Lemma 1. If there was no update after an epoch (deadlock), then all agents
have their own ID in their partial block. Formally, ∀i ∈ A : D(i) → ∀i ∈ A :
pbi ∩ {i} = {i}.

Proof. Let’s assume that ∀i ∈ A : D(i) and that ∃i ∈ A : pbi ∩ {i} = ∅. This
cannot be because of step C.1. of the protocol: every agent i adds record ‘i’ to
pbi if pbi ∩ {i} = ∅. Therefore, ∀i ∈ A : D(i)→ ∀i ∈ A : pbi ∩ {i} = {i}.

Lemma 2. If there was no update after an epoch (deadlock), and agents i
and j are neighbors, then both agents have IDs i and j in their partial blocks.
Formally, ∀i ∈ A : D(i)→ ∀(i, j) ∈ E : pbi ∩ {i, j} = {i, j}}.

Proof. If we prove ∀i ∈ A : D(i) → ∀(i, j) ∈ E : pbi ∩ {i} ∩ pbj = {i}, then we
have proven Lemma 2 by symmetry: Let’s assume ∀i ∈ A : D(i) but ∃(i, j) ∈
E : pbj ∩ {i} = ∅. This could not be true because (1) agent i shared its pb
with agent j and vice versa (step C.2. of the protocol), (2) pbi ∩ {i} = {i} and
pbj ∩{j} = {j} (Lemma 1, and (3) in all cases, agent i would have replaced it’s
pb with j’s (or vice versa):

Case 1 : |pbi| = |pbj | and pbi either has j or not. If pbi has j then agent i
should have replaced pbi with pbj because |pbi⊕{i}| < |pbj⊕{i}| (step D.3.1. of
the protocol). Similarly, if pbi doesn’t have j then agent j would have replaced
pbj with pbi because |pbj ⊕ {j}| < |pbi ⊕ {j}|.

Case 2 : If |pbi| < |pbj | then agent i would have replaced pbi with pbj because
|pbi ⊕ {i}| < |pbj ⊕ {i}| since pbj ∩ {i} = ∅.

Case 3 : If |pbi| > |pbj | then there is only one case where |pbi ⊕ {i}| =
|pbj ⊕ {i}| resulting neither agent performing an update: pbi ∩ {j} = {j} and
|pbi| = |pbj | − 1. However, because pbj ∩ {j} = {j} (Lemma 1), |pbj ⊕ {j}| <
|pbi ⊕ {j}| so agent j would have replaced pbj with pbi Therefore, we conclude
that ∀i ∈ A : D(i) → ∀(i, j) ∈ E : pbi ∩ {i} ∩ pbj = {i}, so Lemma 2 holds
true.

Lemma 3. Lemma 3. If there was no update (deadlock) then all partial blocks
have the same length. Formally, ∀i ∈ A : D(i)→ ∀ij ∈ A : |pbi| = |pbj |

Proof. Let’s assume that ∀i ∈ A : D(i) but ∃(i, j) ∈ E : |pbi| < |pbj |. However,
pbi ∩ {i, j} ∩ pbj = {i, j} (Lemma 2). This means that |pbi ⊕ {i}| < |pbj ⊕ {i}|
so agent i would have set pbi = pbj , and ∀i ∈ A : D(i) would not hold true.
Therefore, it must be that |pbi| = |pbj |.

Lemma 4. Lemma 4. If there was no update (deadlock), then there exist two
neighbors with different partial blocks, of same length. Formally, ∀i ∈ A :
D(i)→ ∃(i, j) ∈ E : pbi 6= pbj.

Proof. Let’s assume ∀i ∈ A : D(i) but ∀(i, j) ∈ E : pbi = pbj . According to
Lemma 1, all agents have their own ID in their partial block. However, if all
agents have the same partial block, then that means that |pbi| = L and ∀i ∈ A :
D(i) does not hold true. Therefore, it must be that ∃(i, j) ∈ E : pbi 6= pbj .

23

Theorem 1. Given a set of agents A, the connectivity network G, and L = |A|,
there will never be a deadlock. Formally, L = |A| → @i ∈ A : D(i).

Proof. Let’s assume that L = |A| but ∀i ∈ A : D(i) (there is a deadlock). This
would mean that ∃(i, j) ∈ E : pbi 6= pbj (Lemma 4). If so, it must be that
there is at least one ID in pbj that is not in pbi (via Lemmas 2 and 3). Let’s
say that one of these IDs is that of agent k. When agent j shared pbj with
agent i (step C.2. of the protocol), agent i would have sent pbi directly to its
non-neighbor k (step D.3.2. of the protocol). Since |pbk| = |pbi| (Lemma 3),
and |pbk ⊕ {k}| < |pbi ⊕ {k}| because pbi does not have k, agent k must have
replaced pbk with pbi. Therefore, it is impossible for ∀i ∈ A : D(i) to hold true
since in the next epoch, agent k would have added itself to its partial block
making |pbk| > |pbi|.

The continuation can be seen through Lemma 3: it must be that all other
agents will grow their partial blocks to the same length as pbk. Then, if there
is another deadlock, the above process repeats until ∃i ∈ A : |pbi| = |A| and the
block is closed.

Corollary 1.1. Corollary 1. Given a set of agents A, the connectivity network
G, and L ≤ |A|, there will never be a deadlock. Formally, L ≤ |A| → @i ∈ A :
D(i).

Proof. The proof is trivial via Theorem 1 since there exists an agent that will
reach a partial block length longer than |A|, and step C.1. of the protocol
ensures that partial block grow in length by one at time.

As a side note, if step D.3.2. (direct messaging) is removed from the protocol,
the system will reach a partial block length of the maximum degree plus one
without any deadlocks:

Theorem 2. Theorem 2. Given a set of agents A, the connectivity network G,
and L = ∆(G) + 1, there will never be a deadlock. Formally, L = ∆(G) + 1→
@i ∈ A : D(i).

Proof. Let’s assume that agent i has the maximum degree. According to Lemma
2, pbi must have all of its neighbor’s IDs and i before a deadlock can occur.
Therefore, there can’t be a deadlock because |pbi| = |∆(G) + 1| = L.

4.7 Peer Discovery

To broadcast the latest chain, an agent must know the IP addresses of the re-
ceiving agents. It is important to note that an agent does not need to broadcast
to all other agents. Instead, an agent broadcasts to b other agents where b is
much smaller than the population size. In practice, b can be in the order a tens
or hundreds where there is a trade-off between the rate at which information
is shared across the network (iterations of T) and the amount of work that is
put into each broadcast. Regarding the discovery and selection of peers, we
suggest that the Ethereum’s p2p discovery protocol [52] be used and that an
agent should periodically draw new peers at random.

24

4.8 Maintaining Software Versions

As time goes on, the target application may receive software updates during
its software life-cycle. Although the app’s new behavior will be accepted as
normal (due to the majority consensus), there may be other devices where not
yet updated or may never be updated. To ensure that these outdated devices
aren’t ‘forced’ to use an incompatible model, we suggest that blockchain should
support branching. In this approach, the chain forms a version tree were devices
with newer versions can ‘fork’ off to. To enable this the following additions are
made to the protocol: (1) the respective software version must be stored in the
metadata of each block, (2) multiple partial blocks of different version can be
stored at the end of a chain, (3) if a partial block is completed but it has a
different version than the current branch, then a separate chain is ‘forked’ from
that point, and (4) agents always follow the longest chain with their version.

5 System Evaluation

In this section, evaluate the proposed collaboration framework: the experiment
testbed, parameters, results, and observations. A video demo of the framework
is available online.6

5.1 Experiment Setup

Our experiments were composed of four aspects: the (1) test environment, (2)
implementation, (2) target applications, and (3) attack scenarios. We will now
discuss each of these aspects in detail.

5.1.1 Test Environment

We built a LAN which served as a simulation platform for emulating a dis-
tributed IoT environment (Fig. 5). This network involves 48 Raspberry Pis
connected together through a single large switch.

In our environment, each Raspberry Pi was equipped with additional boards
(sheilds) and sensors. For example, the PiCamera and Pibrella Board7 which
provides programmatic access to three LED lamps and simple 8-bit PC speaker.
For each experiment, a target application (IoT software) was loaded and exe-
cuted on all of the devices, along with an agent.

The source code for the agent can be found on GitHub.8

5.1.2 Agent Implementation

To implement Algorithm 3.3 (monitor), we implemented the agent using OS
and CPU features. Specifically, we used the performance counters API and

6The short demo of the framework protecting 48 Pis running web servers can be found at
https: // youtu. be/ T4t_ SnTJV3w

7Pibrella module can be found at www. pibrella. com
8The agent’s code from the experiment can be found at https://git.io/vAIvd

25

https://youtu.be/T4t_SnTJV3w
www.pibrella.com

Figure 5: IoT simulation testbed consisting of 48 Raspberry Pis

Core-sight (on ARM) and Last-Branch (on Intel). By using these libraries and
features, we were able to track the application’s control-flow in an asynchronous
manner.

In our implementation, the kernel fills a large ring-buffer with observed jump
and branch addresses. When the OS scheduler switches to the agent, the agent
iterates over the new entries in the buffer and updates M (`) accordingly. To
improve performance further, the agent was written entirely in C++. However,
the code was not optimized to its full potential.

The underlying network protocol we used in our experiment was the UDP
Multicast protocol, though in practice, the Bitcoin or Etherium P2P neighbor
discovery algorithm should be used. The following lists the parameters used in
all experiences, unless noted otherwise:

• T (Processing interval): one minute

• L (Block size): 20

• pa (Percent of reporting devices required to include a transition):
25%

• α (Verification distance): 0.05

• pthr (Anomaly score threshold): 0.012

• k (Probability averaging window): 10, 000

• Region size: 256 Bytes

26

5.1.3 Target Applications

Every application has a different control-flow, and reacts differently to environ-
mental stimuli. Therefore, we evaluated the framework using several different
target applications:

Smart Light Smart lights can perform custom functionalities programmed by
the user. By evaluating the framework on a smart light, we are able to
determine whether each agent is able to learn its functionality, and how
the propagation of these behaviors affect other agents. To implement the
smart light’s software, we combined several Open-Source projects [53, 54,
55]. The final application contained a vulnerable web-based interface for
controlling the light’s features.

Smart Camera Smart cameras often consume a significant amount of re-
sources to perform real-time image processing. By monitoring such an
application, we are able to evaluate how well the framework performs in
resource heavy applications. The application which we used monitors a
video feed and sends an alert when it detects a movement. The alert is
sernt to a control server and is accompanied with a short video or image
of the event. A user interfaces with the camera via the server, and can
either (1) change its configuration or (2) view the camera’s current frame.
We included with the final application a null dereference vulnerability in
the communication process with the control server.

Router Routers are widespread and provide Internet facing IPs (i.e., are not
hidden behind a NAT). They are a good example of vulnerable IoTs which
have been the target of many recent attacks (e.g., Mirai and the VPNFilter
malware9). By evaluating the framework on a router’s software, we are
able to consider how well our agent handles complex control-flows. Routers
typically have a Linux kernel, and provide their functionality via several
different applications. In our evaluation, we chose to target the Hostapd
(Host access point daemon) applicaiton. Hostapd is a user space software
access point capable of turning normal network interface cards into access
points and authentication servers. We took version 2.6 of Hostapd which
is vulnerable to a known replay attack.10

5.1.4 Attack Scenarios

To understand the framework’s detection capabilities, we evaluated how well the
agents can detect the exploitation of different vulnerabilities and the execution
of malicious code:

Buffer Overflow When writing information into a buffer, without proper bound-
ary checks, it is possible to write more data than the buffer’s size. When

9https://www.symantec.com/blogs/threat-intelligence/vpnfilter-iot-malware
10The code is available at https://github.com/vanhoefm/krackattacks-scripts

27

https://www.symantec.com/blogs/threat-intelligence/vpnfilter-iot-malware
https://github.com/vanhoefm/krackattacks-scripts

this occurs, the data overflows and overwrites the code and variables in
memory. If executed correctly, a buffer overflow can be used to alter a
programs code and alter the control-flow of the program. This situation is
dangerous because a crafted input data can contain machine instructions,
thus causing the program to execute arbitrary code in the software’s con-
text [56]. In this scenario, we (1) exploit a buffer overflow vulnerability in
the application, (2) covertly have the app behave like a bot, and (3) pre-
serve the application’s original behavior. The bot attempted to connect
with a C&C server once every minute.

Code-Reuse Instead of injecting new code into the program’s memory layout,
a code-reuse attack [57, 58, 59] uses the existing code of the program
to create a new logic, mostly by performing jumps to unusual places in
the code. For example, jumping to the middle of functions or jumping
multiple times to different instructions which perform the desired logic.
These attacks were proved to be, in many cases, tuning complete [60]. This
means that an attacker can potentially cause a typical program to execute
any desired logic. A common approach is called “return-to-libc” [58] which
reuses code in the libc library to execute the desired code. More advanced
approaches are to use the ROP (Return-oriented programming [57]) and
JOP (Jump-oriented programming [59]) techniques. In this scenario, we
attack perform a code-reuse attack on the target application in order to
get the app to send sensitive data to a remote server.

Replay Attack (Key Reinstallation Attack) The Key Reinstallation At-
tack is a type of replay attack in which one or more protocol’s messages
are sent again in a different, unexpected, point of the protocol. The Key
Reinstallation Attack tries to leak information about encrypted traffic by
changing the application state in the middle of the encryption process.
Unlike the previous two attacks, this attack does not execute new arbi-
trary logic within the application’s memory space, but rather abuses the
control-flow to reveal encryption secrets which can be used to decrypt a
user’s traffic off-site.

5.1.5 The Experiments

To evaluate the framework’s anomaly detection capabilities with different ap-
plications and attacks, we used several different experiment setups summarized
in Table 1. We will refer to these experiments using their short-form notation
from the table.

Unless stated differently, for every experiment, the target application and
a local agent were launched on 48 Raspberry Pis simultaneously. After two
hours, we paused the training and began to record the performance for another
two hours. Finally, at the start of the fifth hour, the specified attack was
executed. Although it was not part of the protocol, we paused the training
in order to observe the performance of a collaborative model which has been
trained for exactly two hours. It is critical that the target application would

28

Table 1: Summary of Experiment Setups

Attack Scenario

Buffer

Overflow

Code

Reuse

Replay

Attack

Smart Light Exp1 Exp3 -

Smart Camera Exp2 Exp4 -

Router - - Exp5

Model Parameters False Positive Rate [2 hr]

Train Time

[min]

Number of

Devices

Smart

Light

Smart

Camera
Router

1

5 0.3644 0.3309 0.1399

10 0.3211 0.3266 0.1372

20 0.2487 0.3226 0.0809

30 0.2286 0.2725 0.0244

48 0.1997 02549 0.0214

48 1 0.2003 03230 0.0216

48 48 0.0003 0.0012 0.0000

T
a
rg

et

A
p

p
.

not remain dormant, but rather, is exposed to normal interactions like an IoT
device. Therefore, to successfully simulate a real environment, during all of our
experiments we legitimately interacted with the target application manually,
using random fuzzing, and previously recorded data on the application’s input
channels. For example, we used a prerecorded video stream in the experiments
involving the smart camera.

5.2 Experiment Results

The contributions of this paper are (1) a method for detecting abnormal control-
flows (2) efficiently, and (3) a method for performing collaborative training (4)
in the presence of an adversary. We will now present our results accordingly.

5.2.1 Anomaly Detection

We will now evaluate the use of EMMs over regions of an application’s memory
space as a method for anomaly detection, on a single device.

The code injection attacks (buffer-overflow and code-reuse) were detected
entirely with no false positives. Fig. 5.2.1 plots the EMM probability scores
Pr(Qk) for Exp2. The Key Reinstallation Attack (Exp5) was more difficult to
detect (Fig. 6). This is because the attack does not inject own code, and the
impact on the control-flow is very brief (a single step in the protocol). However,
the attack still influences the probability scores, and we are able to detect the
attack when k is increased. Furthermore, when the train time is increased,
the performance increases as well. This is evident in the collaborative training
setting where two hours of training on 48 devices is equivalent to two days of
training. In this case the EMM model yields perfect detection with no false
positives.

In summary, given enough train time, our proposed anomaly detection method
is capable of detecting arbitrary code injection attacks and other kinds of ex-
ploits (such as protocol exploits).

5.2.2 Collaboration Training

In section 5.2.1, we showed how EMMs can detect a variety of attacks on IoT
devices, given enough train time. However, an anomaly detection model is

29

0 15 30 45 60 75 90 105 120
Time [Minutes]

0.01

0.02

0.03

0.04

0.05
Pr

ob
ab

ili
ty

 S
co

re

Attack
probability

Figure 6: The probability scores of M (`) from Exp2 after two hours of training,
where the red area marks the attack period.

0 30 60 90 120
Time [Minutes]

0.0

0.1

0.2

0.3

0.4

Pr
ob

ab
ili

ty
 S

co
re

Attack probability

Figure 7: The probability scores of M (`) from Exp5 after two hours of training,
where the red area marks the attack period.

30

vulnerable during its initial train time (Tgrace). Furthermore, a single device
may not experience all possible behaviors in the alloted time. In contrast,
collaborative training, using multiple IoT devices, can produce a model a shorter
period of time which performs better.

Model Performance By performing collaborative learning, the final model
contains the collective experiences from many different devices. As a re-
sult, each device can better differentiate between rare-benign behaviors
and malicious behaviors. Fig. 5.2.2 shows that the same amount of train
time distributed over 48 devices produces a model which can detect an at-
tack sooner than when simply performing all of the train time on a single
device. The reason for this is the distributed model captures a more di-
verse set of behaviors, which helps it differentiate better between malicious
and benign.

Model Train Time Fig. 8 shows that several models trained in parallel can
produce a stronger model than a single model (Fig. 5.2.2) in the same
amount of time. Thus, we see that M (g) converges at a rate which is
inverse to size of the network. As a result, a large IoT deployment will
obtain a strong model quickly, and is much less likely to fall victim to an
adversarial attack.

Table 2: False Positive Rates with Collaborative Learning: All Attack Scenarios

Attack Scenario

Buffer

Overflow

Code

Reuse

Replay

Attack

Smart Light Exp1 Exp3 -

Smart Camera Exp2 Exp4 -

Router - - Exp5

Model Parameters False Positive Rate [2 hr]

Train Time

[min]

Number of

Devices

Smart

Light

Smart

Camera
Router

1

5 0.3644 0.3309 0.1399

10 0.3211 0.3266 0.1372

20 0.2487 0.3226 0.0809

30 0.2286 0.2725 0.0244

48 0.1997 02549 0.0214

48 1 0.2003 03230 0.0216

48 48 0.0003 0.0012 0.0000

120 48 0.0000 0.0000 0.0000

T
a
rg

et

A
p

p
.

In Table 2, we present the false positive rates (false alarm rates) of the
framework with various numbers of devices and train time. The Table shows
that just 48 devices training for two hours (2 days of experience) is enough to
mitigate the false alarms. For the code-reuse and buffer-overflow attacks, there
were no false negatives. However, in the replay-attack (Key-Reinstallation)
there were a few false negatives. However, since the attacker sends a malformed
packet multiple times, we ultimately detect the attack.

31

0 20 40 60 80 100 120 140
Time [Minutes]

0.005

0.010

0.015

0.020

0.025

0.030

0.035

Pr
ob

ab
ili

ty
 S

co
re

1 device - 48 minutes of training
48 devices - 1 minute of collaborative training

Figure 8: The probability scores of M (`) with 48 minutes of training, and M (g)

with one minute of training across 48 devices (Exp1).

0 20 40 60 80 100 120 140
Time [Minutes]

0.005

0.010

0.015

0.020

0.025

0.030

Pr
ob

ab
ili

ty
 S

co
re

5 Models
10 Models

20 Models
30 Models

48 Models

Figure 9: The probability scores of M (g) with increasingly larger sets of models
(devices) in the case of Exp1.

32

5.2.3 Resilience Against Adversarial Attacks

Since agents are constantly learning (even after Tgrace), it is important that
the framework be resilient against accidentally learning malicious behaviors as
benign (i.e., poisoning). The acceptance criteria of a partial block ensures that
these behaviors are not incorporated into the global models.

If some of the IoT devices are infected after the publication of the first block,
we expect the collaborated N (g) to detect the malware, and not learn from it by
accident. However, let’s say that some of the IoT devices were infected prior to
the publication of the first block and the elapses of Tgrace. When the infected
agents add their poisoned model to the partial-block, other poisoned agents will
reject their partial-blocks because the model-attestation step will reveal that the
potential new N (g) is very different than their own local models N (`). Fig. 10
visualizes this concept as heat maps, where the intensity of index (i, j) represents

the linear distance between the probabilities of transition M
(`)
ij and M∗ij , where

M∗ij is a combined model from a partial-block. In 10a, the partial-block has 10
clean models, and in 10a, the partial-block has 10 poisoned models. When an
agent performs model-attestation, the agent will find that d(N (`), N∗) < α, and
reject the partial-block. Assuming L is large enough (e.g., L = 10, 000), and that
a minority of agents are not infected, we expect that a poisoned partial-block
will never be closed before a clean one achieves consensus.

Let’s say that α was set too low, or that the malicious jump sequences were
very similar to the legitimate ones. In this case, the model-attestation step
will accept the partial-block, but the abnormality-filtration step will remove the
malicious behaviors. This is assuming that less than pa percent of the models
in the partial-block contain the malicious transitions. Fig. 11 shows that with
L = 20 and pa = 75%, an attacker must poison 15/20 models (during Tgrace)
in order to evade the detection of the next M (g). This is very difficult for the
attacker to achieve because (1) he must infect the IoT devices without detection,
(2) there is a chance that not all infected models will appear together in a partial-
block (e.g., with 48 or 1,000 devices), and (3) if he does not succeed before the
first block if published, then it is likely that the new M (g), accepted among all
agents, will detect the malware.

Another possibility is that the attacker may try and sabotage the agent via
target application. However, by accessing the agent’s memory from the moni-
tored application will require additional exploits from the malware. Ultimately,
the agent will detect either the initial intrusion, or the exploits used to gain
access to the agent’s memory space.

Another insight is that when a minority of models are infected yet the agent’s
model-attestation accepted the partial-block, the abnormality-filtration removes
the malicious transitions but keeps the benign ones (observed by pa percent of
the models). As a result, healthy information is retained from the poisoned
models, while the abnormalities are filtered out.

33

0 5 0 0 1 5 0 0 2 0 0 0
0

2 5 0

5 0 0

7 5 0

1 0 0 0

1 2 5 0

1 5 0 0

1 7 5 0

2 0 0 0

Loca l M od e l vs
Com b in e d M od e l

1 0 0 0
To State [Index]

Fr
om

 S
ta

te
 [I

nd
ex

]

0 .0 0

0 .1 5

0 .3 0

0 .4 5

0 .6 0

|M
ij
 -
 M
ij
|

(l)
(*
)

(a) Linear distance between a benign model and a clean combined model

0 5 0 0 1 5 0 0 2 0 0 0
0

2 5 0

5 0 0

7 5 0

1 0 0 0

1 2 5 0

1 5 0 0

1 7 5 0

2 0 0 0

1 0 0 0
To State [Index]

F
ro

m
 S

ta
te

 [I
nd

ex
]

0 .0 0

0 .1 5

0 .3 0

0 .4 5

0 .6 0

Loca l M od e l vs
In fe c t e d Com b in e d M od e l

|M
ij(l) -

 M
ij(*
) |

(b) Linear distance between a benign model and a positioned combined model.

Figure 10: Heat maps of the linear distance between models in Exp4.

34

0 20 40 60 80 100 120 140
Time [Minutes]

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Pr
ob

ab
ili

ty
 S

co
re

Attack

1 poisioned models
8 poisioned models

14 poisioned models
15 poisioned models

Figure 11: The combined model normalized probability generated from the
latest block B, where various numbers of the models in B have been infected
(attacked).

5.2.4 Baseline Comparisons

To understand the capabilities of the proposed collaborative framework, we eval-
uate the selected the anomaly detection method (EMM over memory regions)
and the entire host-based intrusion detection system (the blockchain framework)
to their respective baselines.

To validate the use of the EMM, we compare its performance to two well-
known sequence-based anomaly detection algorithms: t-STIDE and PST (see
2). For the PST we took a sequence length of 10. We also compare the EMM
to the heatmap method proposed in [32]. In these experiments, we performed
the buffer overflow attack in the Smart Light (Exp1), the code reuse attack on
the Smart Camera (Exp4), and the replay attack on the router (Exp5). All of
the algorithms were given the same 30 min of normal training data and then
were tested on 20 min of normal data followed by 10 min of attacks.

To measure the performance we compute the area under the curve (AUC).
The AUC is computed by plotting the true positive and false positive rates
(TPR and FPR) for every possible threshold, and then by computing the area
under the resulting curve. Intuitively, it provides a single measure for how well
a classifier performs. A value of ‘1’ indicates a perfect predictor and a value of
‘0.5’ indicates that the predictor is guessing labels at random. Since the AUC
measure ignores precision it is slightly misleading in the case of anomaly detec-
tion. Therefore, we also compute the average precision-recall curve (avPRC)
which is computed in a similar manner.

In Fig. 12 we present the results from this baseline test. We found that
although t-STIDE sometimes our performed the MC, the MC consistently pro-
vide the best performance for all target applications. This justifies our use of

35

the EMM for our system. We also note that the PST took several hours to train
on a strong PC, and therefore is not practical to train on an IoT.

0.
96

3

0.
94

9

0.
95

5

0.
96

9

0.
54

4

0.
51

7

0.
93

9

0.
93

5

0.
89

3

0.
53

0.
97

1

0.
91

6

0.00

0.25

0.50

0.75

1.00

Router Smart Camera Smart Light
Target App

A
U

C

Algorithm

MC

t−STIDE

PST

HeatMap

0.
91

9

0.
73

6

0.
76

4

0.
92

5

0.
04

3

0.
04

3

0.
41

7

0.
65

7

0.
68

2

0.
00

70.
11

3

0.
61

4

0.00

0.25

0.50

0.75

1.00

Router Smart Camera Smart Light
Target App

A
ve

ra
ge

 P
R

C

Algorithm

MC

t−STIDE

PST

HeatMap

Figure 12: The AUC (left) and the PRC (right) of each algorithms for each
attack/target app.

In Fig. 13 we plot the anomaly scores (predicted probabilities) of the algo-
rithms over time during the attack phase. From the figure, it is clear why the
MC consistently had a high avPRC since there is a clear separation between
the anomalous scores and benign scores. This is important when deciding on
a threshold. In practice, the threshold is determined based on a statistical
measure given the benign data distribution.

To validate the use of entire framework, we evaluated our host-based intru-
sion detection system (H-IDS) in comparison to others. Since we targeting IoT
devices, we selected H-IDSs which are well-known, operate on Linux, and can
be compiled to run on an ARM processor: OSSEC, SAGAN, Samhain, and Cla-
mAV. OSSEC is an open-source system which performs integrity checking, log
analysis, rootkit detection, time-based alerting, and active response. We loaded
OSSEC with all it’s default detection rules. SAGAN is an open source multi-
threaded system which performs real-time log analysis with a correlation engine.
Sagan’s structure and rules work similarly to the Sourcefire Snort IDS/IPS, and
we loaded it will all available community rules. Table 3 compares the H-IDSs to
ours in the context of the content being monitored, and the intrusion detection
mechanism used. Samhain is an integrity checker and host intrusion detection
system. Finally, ClamAV is a free software open-source antivirus software which
we loaded will all current virus signatures.

Once we loaded all four H-IDSs onto a Raspberry Pi, we launched each target
application and performed the same attacks described above. We found that
none of the four H-IDSs reported any alerts. This makes sense because these
systems do not perform dynamic analysis on the target application’s control
flow. Therefore, the buffer overflow, code reuse, and replay attacks evaded
detection.

36

F
ig

u
re

13
:

T
h

e
an

om
al

y
sc

or
es

(p
re

d
ic

te
d

p
ro

b
a
b

il
it

ie
s)

o
f

th
e

a
lg

o
ri

th
m

s
ov

er
ti

m
e

d
u

ri
n

g
th

e
a
tt

a
ck

p
h

a
se

.
T

h
e

a
ct

u
a
l

a
tt

a
ck

p
er

io
d
s

ar
e

m
ar

ke
d

in
re

d
.

37

Table 3: The Host-based Intrusion Detection Systems compared to Ours

 H-IDS

O
SS

EC

SA
G

AN

Sa
m

ha
in

C

la
m

AV

O
ur

 H
-I

D
S

Analyzes…
Real-time Activity X X X
Executable Code X

File System X
Detection

Mechanism
Anomaly Detection X X
Rules / Signatures X X X X

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

0 5 10 15
Time Elapsed [min]

U
til

iz
at

io
n

Resource

%MEM

%CPU

0

10

20

30

0.0% 10.0% 20.0% 30.0% 40.0% 50.0%
%CPU

de
ns

ity

0

2

4

6

2.8 3.2 3.6 4.0
Memory [MB]

de
ns

ity

Figure 14: The resource utilization of the agent on a 500 MHz CPU. Top:
Resource utilization over the first 15 minutes. Bottom: Resource utilization
expressed as density plots.

38

5.3 Complexity Analysis & Benchmark

The time complexity of an agent can be broken down according to the three
parallel processes in Fig. 4. The Gather Intelligence process periodically re-
ceives a ring buffer from the kernel will the last n jump operations, checks for
anomalies, and updates the EMM. Therefore, It’s complexity is O(n). However,
if an averaging window is used over the anomaly cores, then the complexity
is O(n + wn) where w is the window size. However, w << n in practice and
thus we can consider the complexity to remain as O(n). When the Retrieve
Intelligence process receives a loner chain than the local one, it will check the
legitimacy of the last block by validating its signatures, and then possible val-
idate the signatures int he partial block as well. Therefore, in the worst case
scenario, the agent will perform 2L − 1 signature checks. Although this may
take a second to process, it will not affect the system since at most b broadcasts
will be accepted by the agent during each interval T , where T in the order of
minutes or greater. Finally, the Share Intelligence process wakes up and sends
the local chain to b other agents at random. Although the p2p discovery proto-
col and network transfer may take some time, it has a negligible affect on the
CPU.

We performed a performance benchmark to evaluate the agent’s CPU and
memory utilization. The benchmark was performed on a Linux embedded device
with a single ARM Cortex CPU clocked at 500 MHz since this CPU configu-
ration is common among IoT devices [61]. The test was run for one hour in
the presence of 48 other agents having the same protocol configurations used
in the evaluations. The target app was a web facing log server with a known
CVE. The results can be found in Fig. 14. The results show that the resource
consumption of the agent is negligible using only 1% of the CPU on average and
4MB of RAM.

5.4 Blockchain Simulator

To help other reproduce our work and understand how the blockchain protocol
works, we have published a discreet event simulator (DES) of the protocol writ-
ten in Python.11 The DES is object oriented and creates an instance of each
agent to help users follow the protocol logic and the propagation of the chains.
The DES only simulates the high level protocol logic (e.g., Section 4.6), and not
the model-attestation training or combining. For code on model management,
please see our other repository.12

The user selects the number of agents, L, T , the number of blocks to close,
and the connectivity between the agents. The connectivity can be set to fully
connected or random: Barabasi-Albert Algorithm (preferential attachment) or
Watts-Strogatz (small world attachment). The DES queue then manages the
agent’s information sharing (when elapses of T) where some small amount of
noise is added to the event times.

11https://github.com/ymirsky/CIoTA-Sim
12https://git.io/vAIvd

39

https://drive.google.com/drive/folders/15gLytEJyQyYCmhB-EZSkES77KsuCW0hw?usp=sharing

Node Degree #Epochs
Graph Generator Min Max Median Mean Std. Mean Std.

Complete 999 999 999 999 0.00 1 0
agents connected to all agents

Watts-Strogatz 6 10 6 6.59 0.74 142.80 3.14
small world attachment

Barabasi-Albert 1 99 1 1.99 3.56 800.46 3.16
preferential attachment

Table 4: The network generators’ node degrees (number of neighbors per agent),
and the number of epochs (T) elapsed until a block was completed.

For each type of graph, we ran the simulator 100k times with 1,000 agents
and set L = 800. For the Barabasi-Albert generator we set attachment to 1, and
for the Watts-Strogatz generator we set the neighbors to 5 with a probability
of 0.1. For each trial we generated a new random network.

Table 4 presents the agent connectivity (node degree) of the agents in the
simulations and the number of times (epochs) an agent executed step C.2. of
the protocol until a block was closed. Fig. 15 plots the distribution of the epoch
counts over 100k trials. The results show that blocks are closed faster with better
connectivity between agents (larger node degrees). A fully connected network
closes a block in 1 epoch and a sparsely connected network (Barabasi-Albert)
can take up to 800 epochs (2.2 hours with T = 10 seconds).

6 Security Analysis

In this section we will discuss the security coverage of the agents and potential
attacks against the framework.

6.1 Agent Coverage

It is not necessary to have an agent monitor every application on an IoT device
because the most common attack vector on the IoT is via the devices’ Internet-
facing applications. Therefore, to provide maximal coverage, we recommend
that an agent protect all such applications (web servers, telnet daemons, ...)

The agent can detect the exploitation of software vulnerabilities, misuse, and
denial of service attacks if the attacks result in an abnormal control-flow, or an
irregular read/write operation in memory:

Confidentiality There are many ways in which an attacker can violate the
confidentiality of the device. Our agent can only detect these attacks if it
causes an irregular control flow. For example, if the attacker performs an
algorithm downgrade attack on an encryption channel like in the cases of

40

2 4 19 70 21
9 53

7 11
83

22
80

40
77

62
36

88
75

10
88

1 12
02

7
12

50
2

11
59

3
99

82
75

67
52

27
32

42
17

98
93

4
41

6
18

3
61 25 5 3 1 10

1

2

3

4

5

6

7

8

9

10

11

12

13

14

13
0

13
1

13
2

13
3

13
4

13
5

13
6

13
7

13
8

13
9

14
0

14
1

14
2

14
3

14
4

14
5

14
6

14
7

14
8

14
9

15
0

15
1

15
2

15
3

15
4

15
5

15
6

15
7

19
1

Number of Epochs (until block was closed)

C
ou

nt
 (

th
ou

sa
nd

s)

Watts–Strogatz (Small World)

1 2 20 80 28
5 98

6
24

47
50

19
80

11
10

94
5

13
00

1
13

18
9

12
22

1
10

11
8

77
41

56
35

37
51

25
11

15
89

10
19

59
0

35
3

18
8

11
2

71 36 18 6 5 4 3 2 1 10

1

2

3

4

5

6

7

8

9

10

11

12

13

14

78
9

79
0

79
1

79
2

79
3

79
4

79
5

79
6

79
7

79
8

79
9

80
0

80
1

80
2

80
3

80
4

80
5

80
6

80
7

80
8

80
9

81
0

81
1

81
2

81
3

81
4

81
5

81
6

81
7

81
8

81
9

82
0

82
1

82
2

Number of Epochs (until block was closed)
C

ou
nt

 (
th

ou
sa

nd
s)

Barabasi−Albert (Preferential Attachment)

Figure 15: The number of epochs (times T elapsed) until a block was completed,
sampled one million times from each type of random network (containing 10,000
agents).

Beast, Poodle, and Krack [62, 63, 64]. then the protocol behaves differently
than usual (as shown in our evaluation). Another example is where the
attacker pulls data from a database via SQL an injection. In this case the
interpreter will perform two queries back-to-back or ti may even perform
a query that is never performed (e.g., drop table). Lastly, the attacker
may perform a buffer overflow to reveal data in the server as was done in
heartbleed to obtain private encryption keys [65]. When a buffer-overflow
occurs, the program counter moved operates in a region of memory in a
transition that it never does.

Integrity In some cases, an attacker may want to compromise the integrity
of an IoT device by executing custom code or by abusing existing code
(reuse). In doing so the attacker could install malware to recruit the device
into a botnet, perform an act od ransomware, or some other malicious
act. Many, of these code executions are achieved by altering the memory
control flow. For example, buffer-overflow attacks via web inputs and
irregular interactions with services (e.g., using ssh/telnet to download a
payload [66]). Moreover, in some cases the agent can discover when an
attacker is perform reconnaissance to reveal potential vulnerabilities. One
approach is to brute-force well-known credentials and another approach is
to execute a variety of crafted malformed inputs until one succeeds (e.g.,
directory traversal attacks). In both cases, the operations will generate
irregular loops in memory.

41

Availability The goal of an attacker may be to disable the device’s web server
in a denial of service attack (e.g., if the device is a surveillance camera).
Our agent can detect and alert for some of these attacks. For example,
the agent can detect when a malformed packet causes a server to halt, and
when SYN flood or SSL Renegotiation attack occur (due to the looping).
However, the agent cannot detect a loss in connectivity if the channel is
jammed, overloaded, of if a nearby router has been compromised.

Please refer to Fig. 5 in the appendix for a list of high-level Common Weakness
Enumerations (CWE) which the agent covers. We note that the agent’s perfor-
mance is not perfect, and the detection of some of these attacks may require a
smaller region (state) size to provide the right granularity. In future work we
plan to address this issue by letting he agent choose the state size based on the
amount of code loaded into memory.

6.2 Adversarial Attacks

Although the framework aims to protect IoT devices from attackers, to ensure
reliability, we must consider how an attacker may target our framework. Once
again, we will refer to the ‘CIA’ of security:

Confidentiality One potential attack against the system is to intercept and
extract M (`) for a target device. In doing so, the attacker may be able to
violate the user’s privacy by inferring the user’s high-level interactions with
the application. This threat only applied during the creation of the first
block since the shared models have not yet been generalized (combined)
with others. To mitigate this threat, the manufacturer can initiate the
blockchain with an initial model, similar to how stream ciphers use IVs
(see cold start later in section 7). It is also a good idea to choose a relatively
large state size for better obscurity. Another concern is if the user installs
3rd party apps, and the manufacturer has an agent automatically assigned
each new app. In this case the attacker can infer which apps the user is
using and when by monitoring the broadcasted chains. To mitigate this
threat and the other cases, all p2p communications should be encrypted
using SLL.

Integrity If an attacker corrupts (poisons) the model in training, he can in-
tentionally cause high false alarm rates or evade detection. There are two
ways in which an attacker can poison the model. The first way is to in-
stall malware on the majority of the population before the first block is
closed (supply chain attack or a regular infection). Infecting the majority
of devices is very hard to accomplish because (1) it involves a short time
window, (2) requires infection without detection,13 and (3) a large num-
ber (pa%) of devices need to be infected. While it is not impossible, it is
considerably more difficult than exploiting a single device. To minimize

13The detection phase begins after Tgrace and not after completing the first block

42

the attack window and bandwidth of the system, one may change the pro-
tocol so that T is a monotonically increasing with the length of the local
chain. For example, a linear function can be used or the exponential decay
function T (m) = (1− 2−λm) ∗ (tmax − tmin) + tmin, where m is the length
of the local chain, λ is the half-life rate, tmin is the shortest interval, and
tmax is the longest.

Another way to corrupt the model is to (1) evade detection by compromis-
ing the device via an application which is not monitored, or via physical
access to the device, then (2) achieve root privileges to compromise the
agent, then (3) repeat this process until the majority of agents are under
the attacker’s control, and then (4) broadcast a compromised model in
unison to all other devices. To mitigate this attack, users should consider
which apps should be monitored and the physical security of their devices.
Another option is to place the agent in the device’s TrustZone (e.g., [67]).

We note that an attacker may attempt to avoid detection by crafting
exploit to follow a common flow through the application’s memory. How-
ever, designing such an attack very limited and difficult since the opera-
tions are limited to a normal jump sequence. Moreover, to initiate this
flow, the attacker will need to initially override some instructions (e.g.,
buffer-overflow), and as a result will likely trigger an alert.

Availability An attacker may attempt a denial of service (DoS) attack to
overload the agent thus disabling the device, or to block an agent access
to new models by disrupting the agent’s connectivity. In our protocol
(section 4), we took steps to ensure that an agent cannot be overloaded
with broadcasted chains by limiting the processing rate to b/T chains per
second (section 4.7). However, care should be taken regarding the software
used in the agent’s server implementation to avoid flooding attacks, buffer
overflows, and other attack vectors.

Moreover, the system is robust to network and hardware failures. This is
because the system is distributed and agents only need to be connected to
b other random other agents. Moreover, collaboration is only necessary to
accelerate the EMM model’s initial training, and to handle future concept
drifts (e.g., software updates). Therefore, during an outage, each agent
will still continuously (1) execute the latest model to detect attacks on the
target application, and (2) update the local model N (`) on sequences which
are considered safe (above the probability threshold). In this case, each
agent will still act as an efficient standalone host-based anomaly detection
system, and continue to improve its model until it converges.

7 Discussion

In this section, we discuss the assumptions and design considerations of frame-
work.

43

7.1 Assumptions

The framework’s primary goal is to autonomously learn more in less time. To
achieve this goal, we take the following assumptions.

Population size There are enough participants with the same hardware model
to support the system. As noted earlier, a separate block chain is main-
tained for each device model version. If the homogeneous population is
not large enough, then consensus will never be reached. However, IoT
products are often mass produced and is likely that there will be tens of
thousands of identical devices deployed around the world at a given time.
Once a block has been closed, future generations can benefit from it even
if the population has decreased below the consensus threshold.

More is better Learning from more data will produce a better anomaly detec-
tion model. This is because more data captures a more complete view of
the behaviors, and therefore, the trained model will have a lower the false
positive rate (FPR).

Achieving consensus Given an appropriate α, the majority of participants
will reach a consensus for M (g) among themselves. With a very large α,
the agents will surely achieve consensus. Although smaller values of α will
improve the quality of the consensus, it will also increase the likelihood
that partial-blocks will be rejected –increasing the time it takes to com-
plete a block (achieve consensus). If α is too low, consensus may never
converge, and a collaboration will never occur. In our evaluation and
proof of concept, we used empirical observations to select a constant value
for α. However, as future research, a dynamic algorithm for selecting the
appropriate value of α should be used to optimize the quality-convergence
trade off.

Benign majority The majority of local models distributed among the agents
are not poisoned. The blockchain is a peer-to-peer (P2P) protocol for
a distributed (server-less) database that is managed by consensus of the
network. Therefore, the blockchain architecture can only work under the
assumption that most of the participants are clean at the outset. In the
case of our framework, this means that the majority of agents are not
accidentally updating their local models with malicious behaviors.

Benign start An agent on a device monitors all applications (on separate
chains) which are potential infection vectors from the Internet. If the
IoT device gets infected via an application which is not being monitored,
then the agent cannot detect the threat. Therefore, in order to protect
the device, all applications which can be exploited via the Internet should
be monitored.

44

7.2 Implementation

The following are some discussion points which relate to the implementation of
the framework.

Remediation Policies While detection is a powerful tool for security, with-
out acting on detected threats, detection is meaningless. When an agent
detects an anomaly, the agent can (1) send an alert to a control server, (2)
suspend the infected application via the kernel, (3) restart the infected
application, or (4) a perform a combination of these options. We note
that scope of this paper is detection, whereas remediation is a task spe-
cific problem. For example, restarting the infected app may be acceptable
for a smart air conditioner, but not a survallaince camera (an implicit DoS
attack). Therefore, the remediation should be considered accordingly.

Address Space Layout Randomization Today, many operating systems use
Address Space Layout Randomization (ASLR) [68] to prevent outside en-
tities from knowing the memory layout of applications in execution. ASLR
ensures that an identical application will have a different memory layout
on each device, making it very hard for attackers to exploit memory cor-
ruption vulnerabilities. However, since ASLR is an internal state, each
agent can parse the memory layout of other agents to its natural state.
Concretely, for each memory region captured by N (`), an agent will in-
clude a library identifier and the region’s offset from the library’s initial
address for other agents to rearrange the model.

Authentication and Identification In the paper, the framework uses PKI
(public-key infrastructure [69]) in order to prevent an attacker from creat-
ing or replaying fake chains or records. Conventional PKI uses certificate
authority (CA) servers to sign, manage, verify and revoke public key cer-
tificates. The use of a CA may incur some delay in processing blocks.
However, there is no immediate rush to process these blocks since T is in
minutes or hours, and the agent continues to perform real-time intrusion
detection in the meantime. Regardless, using CAs introduces single points
of failure since they are centralized. To overcome this, several researchers
have developed PKI for IoT networks [70, 71, 72, 73]. For example, in [70]
the authors propose three different methods for distributing CAs over a
blockchains using Etherium smartcontracts and even the Emercoin infras-
tructure. Aside from PKI, another option is to use a shared secret among
the agents and perform symmetric encryption. By doing so, no additional
infrastructure is needed.

The risk of using symmetric encryption is that an attacker can obtain a
device an extract the shared key and compromise all agents. Therefore, to
implement this approach, we recommend using an IoT devices’ TrustZone.
A TrustZone is a safe house inside the device (untrusted territory) that
has access to the untrusted territory within the device. In this setup, the
agent and its symmetric encryption key (provided by the administrator)

45

is located in the TrustZone. By doing so, the agent and it’s secrets are
secured while avoiding the issues of PKI. However, if the TrustZone does
not implement tamper protection, an attacker can physically interact with
the device to extract the key.

Memory Region Size (state size) The memory region size is a parameter
configured by the user. This parameter incurs a trade-off: a large region
size has low false-positive-rate but a high false-negative-rate, and a small
region size has a high true-positive-rate but a high false-alarm-rate. Al-
though we found that 256 Bytes is a sufficient size, one should consider
finding the smallest region size possible for their application. Another
option is to use a small region size but increase Tgrace.

Cold-start In this paper we presented how agents distributed across a set IoT
devices can build a detection mechanism with no prior knowledge. Al-
though we expect the collaboration process to help agents learn rare yet
benign behaviors, some benign behaviors may never cross the pa% thresh-
old. For example, the function which is executed by a smoke detector when
a smoke is detected. To ensure that these behaviors make it into M (g), a
manufacturer can post M (g) as the starting point for the blockchain. In
this case, M (g) is a model from a single device in a lab, which has been
exposed to the rare functionalities. By bootstrapping the blockchain with
an initial model, it is possible to maintain a secure population with very
few devices since the initial window of exploitation is diminished.

We note that this can be implemented by reserving a special certificate for
the manufacturer who can sign this block. Doing so would also benefit the
manufacturer since he can force updates in cases where there are software
updates that significantly affect the applications’ behavior.

In the cases where a cold-start is necessary, we stress that majority of the
training should still occur on-site and not in the lab. The reasons are that
(1) it costs less, (2) it is very difficult to simulate natural dynamic human
interactions with the devices, (3) it is challenging to stimulate the sensors
realistically, and (4) simulating every single possible control-flow (fuzzing)
is not practical.

Deployment There are two ways the framework can be deployed: open and
closed. In an open deployment anyone can register an agent to the net-
work. In this mode of operation, a central entity should be entrusted
with registering new users in order prevent an attacker from registering
many accounts and overtaking the consensus. In a closed deployment,
only invited agents can participate in the blockchain consensus. This de-
ployment prevents unwanted entities from corrupting or eavesdropping on
the blockchain.

46

8 Conclusion

The number IoT devices is steadily increasing. However, manufacturers seldom
patch older models and unintentionally write vulnerable code. As a result, large
numbers of IoT devices are being exploited on a daily basis. Due to the scale of
the problem, a generic stand-alone method for monitoring and protecting these
devices is necessary. In this paper, we introduced a blockchain-based solution
for autonomous collaborative anomaly detection among a large number of IoT
devices.

To detect the exploitation of software on an IoT device, an agent is de-
ployed on the device and efficiently models the software’s normal control-flow
for anomaly detection. However, the model training is vulnerable to adversar-
ial attacks, and it is unlikely that a single IoT device will observe all normal
behaviors (sensors readings, triggers, interactions, etc. . .). Therefore, the agent
uses a blockchain protocol to incrementally update the anomaly detection model
via self-attestation and consensus among other agents running on similar IoT
devices. By collaborating among other agents, the training phase (convergence)
is significantly shorter, and false-alarm-rate is reduced due to the shared expe-
rience.

To evaluate the proposed framework, we used 48 Raspberry Pis running a
wide variety of IoT applications. We also made a discreet event simulator of
the agents with different connectivity to simulate larger systems and help the
reader follow the protocol. Our evaluations show that the proposed method can
efficiency detect different types of attacks with no false-alarms (given enough
devices and a sufficient training period).

The proposed framework does not require any a manual process of creating
virus signatures, or a manual process for pushing updates. Furthermore, IoT de-
vices are able to detect exploits without prior knowledge of the exploits. In terms
of practicality, the framework is platform generic, completely autonomous, and
scales with the number of IoT devices. Therefore, the proposed framework has
the potential to provide IoT manufactures with a cheap and effective solution.

We hope that this framework, and its variants, will assist researchers and
the IoT industry in securing the future of the Internet of Things.

References

[1] Rafiullah Khan, Sarmad Ullah Khan, Rifaqat Zaheer, and Shahid Khan.
Future internet: the internet of things architecture, possible applications
and key challenges. In Frontiers of Information Technology (FIT), 2012
10th International Conference on, pages 257–260. IEEE, 2012.

[2] Strukton. 2000 IoT sensors to monitor rail infrastructure assets in the
Netherlands .

[3] Nathan Eddy. Gartner: 21 billion iot devices to invade by 2020. Informa-
tionWeek, Nov, 10, 2015.

47

[4] Bruce Schneier. E-mail vulnerabilities and disclosure.

[5] Bruce Schneier. The internet of things is wildly insecure–and often un-
patchable. Schneier on Security, 6, 2014.

[6] Melanie Swan. Blockchain: Blueprint for a new economy. ” O’Reilly Media,
Inc.”, 2015.

[7] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2008.

[8] U Narayan Bhat. Extended markov models. An Introduction to Queueing
Theory, pages 115–139, 2008.

[9] Sandeep Ankush Maske and Thaksen J Parvat. Advanced anomaly intru-
sion detection technique for host based system using system call patterns.
In 2016 International Conference on Inventive Computation Technologies
(ICICT), volume 2, pages 1–4. IEEE, 2016.

[10] Man-Ki Yoon, Sibin Mohan, Jaesik Choi, Mihai Christodorescu, and Lui
Sha. Learning execution contexts from system call distribution for anomaly
detection in smart embedded system. In Proceedings of the Second Interna-
tional Conference on Internet-of-Things Design and Implementation, pages
191–196. ACM, 2017.

[11] Gyuwan Kim, Hayoon Yi, Jangho Lee, Yunheung Paek, and Sungroh
Yoon. Lstm-based system-call language modeling and robust ensem-
ble method for designing host-based intrusion detection systems. arXiv
preprint arXiv:1611.01726, 2016.

[12] Wael Khreich, Babak Khosravifar, Abdelwahab Hamou-Lhadj, and
Chamseddine Talhi. An anomaly detection system based on variable n-
gram features and one-class svm. Information and Software Technology,
91:186–197, 2017.

[13] Mohiuddin Ahmed, Abdun Naser Mahmood, and Jiankun Hu. A survey of
network anomaly detection techniques. Journal of Network and Computer
Applications, 60:19–31, 2016.

[14] Varun Chandola, Arindam Banerjee, and Vipin Kumar. Anomaly detection
for discrete sequences: A survey. IEEE transactions on knowledge and data
engineering, 24(5):823–839, 2010.

[15] Stephanie Forrest, Steven A Hofmeyr, Anil Somayaji, and Thomas A
Longstaff. A sense of self for unix processes. In Proceedings 1996 IEEE
Symposium on Security and Privacy, pages 120–128. IEEE, 1996.

[16] Andrew P Kosoresow and SA Hofmeyer. Intrusion detection via system
call traces. IEEE software, 14(5):35–42, 1997.

48

[17] Wenke Lee, Salvatore J Stolfo, and Philip K Chan. Learning patterns from
unix process execution traces for intrusion detection. In AAAI Workshop
on AI Approaches to Fraud Detection and Risk Management, pages 50–56.
New York;, 1997.

[18] Wenke Lee and Salvatore Stolfo. Data mining approaches for intrusion
detection. 1998.

[19] Steven A Hofmeyr, Stephanie Forrest, and Anil Somayaji. Intrusion detec-
tion using sequences of system calls. Journal of computer security, 6(3):151–
180, 1998.

[20] Christina Warrender, Stephanie Forrest, and Barak Pearlmutter. Detecting
intrusions using system calls: Alternative data models. In Proceedings of
the 1999 IEEE symposium on security and privacy (Cat. No. 99CB36344),
pages 133–145. IEEE, 1999.

[21] Christoph C Michael and Anup Ghosh. Two state-based approaches to
program-based anomaly detection. In Proceedings 16th Annual Computer
Security Applications Conference (ACSAC’00), pages 21–30. IEEE, 2000.

[22] Bo Gao, Hui-Ye Ma, and Yu-Hang Yang. Hmms (hidden markov models)
based on anomaly intrusion detection method. In Proceedings. International
Conference on Machine Learning and Cybernetics, volume 1, pages 381–
385. IEEE, 2002.

[23] Gaurav Tandon and Philip K Chan. Learning rules from system call argu-
ments and sequences for anomaly detection. Technical report, 2003.

[24] Xuan Dau Hoang, Jiankun Hu, and Peter Bertok. A multi-layer model for
anomaly intrusion detection using program sequences of system calls. In
Proc. 11th IEEE Intl. Conf. Citeseer, 2003.

[25] Dit-Yan Yeung and Yuxin Ding. Host-based intrusion detection using dy-
namic and static behavioral models. Pattern recognition, 36(1):229–243,
2003.

[26] Eleazar Eskin, Wenke Lee, and Salvatore J Stolfo. Modeling system calls
for intrusion detection with dynamic window sizes. In Proceedings DARPA
Information Survivability Conference and Exposition II. DISCEX’01, vol-
ume 1, pages 165–175. IEEE, 2001.

[27] Geoff Mazeroff, Victor De, Cerqueira Jens, Gregor Michael, and G Thoma-
son. Probabilistic trees and automata for application behavior modeling.
In 41st ACM Southeast Regional Conference Proceedings. Citeseer, 2003.

[28] Geoffrey Mazeroff, Jens Gregor, Michael Thomason, and Richard Ford.
Probabilistic suffix models for api sequence analysis of windows xp appli-
cations. Pattern Recognition, 41(1):90–101, 2008.

49

[29] Jiankun Hu, Xinghuo Yu, Dong Qiu, and Hsiao-Hwa Chen. A simple and
efficient hidden markov model scheme for host-based anomaly intrusion
detection. IEEE network, 23(1):42–47, 2009.

[30] Miao Xie and Jiankun Hu. Evaluating host-based anomaly detection sys-
tems: A preliminary analysis of adfa-ld. In 2013 6th International Congress
on Image and Signal Processing (CISP), volume 3, pages 1711–1716. IEEE,
2013.

[31] Ashima Chawla, Brian Lee, Sheila Fallon, and Paul Jacob. Host based in-
trusion detection system with combined cnn/rnn model. In Joint European
Conference on Machine Learning and Knowledge Discovery in Databases,
pages 149–158. Springer, 2018.

[32] M. Yoon, S. Mohan, J. Choi, and L. Sha. Memory heat map: Anomaly
detection in real-time embedded systems using memory behavior. In 2015
52nd ACM/EDAC/IEEE Design Automation Conference (DAC), pages 1–
6, June 2015.

[33] Ajith Abraham, Ravi Jain, Johnson Thomas, and Sang Yong Han. D-scids:
Distributed soft computing intrusion detection system. Journal of Network
and Computer Applications, 30(1):81–98, 2007.

[34] Yichi Zhang, Lingfeng Wang, Weiqing Sun, Robert C Green II, and Man-
soor Alam. Distributed intrusion detection system in a multi-layer network
architecture of smart grids. IEEE Transactions on Smart Grid, 2(4):796–
808, 2011.

[35] Steven R Snapp, James Brentano, Gihan V Dias, Terrance L Goan, L Todd
Heberlein, Che-Lin Ho, Karl N Levitt, Biswanath Mukherjee, Stephen E
Smaha, Tim Grance, et al. Dids (distributed intrusion detection system)-
motivation, architecture, and an early prototype. In Proceedings of the 14th
national computer security conference, volume 1, pages 167–176. Washing-
ton, DC, 1991.

[36] Ralf Huuck. Iot: The internet of threats and static program analysis de-
fense. In EmbeddedWorld 2015: Exibition & Conferences, page 493, 2015.

[37] Doohwan Oh, Deokho Kim, and Won Woo Ro. A malicious pattern detec-
tion engine for embedded security systems in the internet of things. Sensors,
14(12):24188–24211, 2014.

[38] Shahid Raza, Linus Wallgren, and Thiemo Voigt. Svelte: Real-time intru-
sion detection in the internet of things. Ad hoc networks, 11(8):2661–2674,
2013.

[39] Briana Arrington, LiEsa Barnett, Rahmira Rufus, and Albert Esterline.
Behavioral modeling intrusion detection system (bmids) using internet of

50

things (iot) behavior-based anomaly detection via immunity-inspired algo-
rithms. In Computer Communication and Networks (ICCCN), 2016 25th
International Conference on, pages 1–6. IEEE, 2016.

[40] Colin O’Reilly, Alexander Gluhak, Muhammad Ali Imran, and Suthar-
shan Rajasegarar. Anomaly detection in wireless sensor networks in a
non-stationary environment. IEEE Communications Surveys & Tutorials,
16(3):1413–1432, 2014.

[41] Mukesh Taneja. An analytics framework to detect compromised iot devices
using mobility behavior. In ICT Convergence (ICTC), 2013 International
Conference on, pages 38–43. IEEE, 2013.

[42] Tigist Abera, N Asokan, Lucas Davi, Jan-Erik Ekberg, Thomas Nyman,
Andrew Paverd, Ahmad-Reza Sadeghi, and Gene Tsudik. C-flat: control-
flow attestation for embedded systems software. In Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security,
pages 743–754. ACM, 2016.

[43] Lukas Jäger, Richard Petri, and Andreas Fuchs. Rolling dice: Lightweight
remote attestation for cots iot hardware. In Proceedings of the 12th In-
ternational Conference on Availability, Reliability and Security, page 95.
ACM, 2017.

[44] David Ott, Claire Vishik, David Grawrock, and Anand Rajan. Trust evi-
dence for iot: Trust establishment from servers to sensors. In ISSE 2015,
pages 121–131. Springer, 2015.

[45] Dong Chen, Guiran Chang, Lizhong Jin, Xiaodong Ren, Jiajia Li, and
Fengyun Li. A novel secure architecture for the internet of things. In
Genetic and Evolutionary Computing (ICGEC), 2011 Fifth International
Conference on, pages 311–314. IEEE, 2011.

[46] Yong-Hyuk Moon, Yong-Sung Jeon, and Chan-Hyun Youn. A functional
relationship based attestation scheme for detecting compromised nodes in
large iot networks. In Advances in Computer Science and Ubiquitous Com-
puting, pages 713–721. Springer, 2015.

[47] Thomas Morris. Trusted platform module. In Encyclopedia of cryptography
and security, pages 1332–1335. Springer, 2011.

[48] Joseph Yiu. Armv8-m architecture technical overview. ARM WHITE PA-
PER, 2015.

[49] Jiff Kuo Alan P Su, Kuen-Jong Lee, Jer Huang, Guo-An Jian, Cheng-An
Chien, Jiun-In Guo, and Chien-Hung Chen. Multi-core software/hardware
co-debug platform with arm coresight, on-chip test architecture and
axi/ahb bus monitor. In VLSI Design, Automation and Test (VLSI-DAT),
2011 International Symposium on, pages 1–6. IEEE, 2011.

51

[50] Sebastian. Zimperlich sources, 2011. [Online] http://c-skills.

blogspot.com/2011/02/zimperlich-sources.html.

[51] An overview of anomaly detection techniques: Existing solutions and latest
technological trends. Computer Networks, 51(12):3448–3470, 2007.

[52] Ethereum. Discovery overview ethereum/devp2p wiki github. https:

//github.com/ethereum/devp2p/wiki/Discovery-Overview, 2019. (Ac-
cessed on 07/04/2019).

[53] cesanta. mongoose. https://github.com/cesanta/mongoose, 2010. [On-
line].

[54] pimoroni. Pibrella GitHub. https://github.com/pimoroni/pibrella,
2013. [Online].

[55] WiringPi. WiringPi. https://github.com/WiringPi/WiringPi, 2012.
[Online].

[56] Jason Deckard. Buffer overflow attacks: detect, exploit, prevent. Syngress,
2005.

[57] Marco Prandini and Marco Ramilli. Return-oriented programming. IEEE
Security & Privacy, 10(6):84–87, 2012.

[58] Saif El Sherei. Return to libc.

[59] Tyler Bletsch, Xuxian Jiang, Vince W Freeh, and Zhenkai Liang. Jump-
oriented programming: a new class of code-reuse attack. In Proceedings of
the 6th ACM Symposium on Information, Computer and Communications
Security, pages 30–40. ACM, 2011.

[60] Minh Tran, Mark Etheridge, Tyler Bletsch, Xuxian Jiang, Vincent Freeh,
and Peng Ning. On the expressiveness of return-into-libc attacks. In In-
ternational Workshop on Recent Advances in Intrusion Detection, pages
121–141. Springer, 2011.

[61] ARM. Inside the numbers: 100 billion arm-based chips - processors
blog - processors - arm community. https://community.arm.com/

developer/ip-products/processors/b/processors-ip-blog/posts/

inside-the-numbers-100-billion-arm-based-chips-1345571105,
2017. (Accessed on 07/05/2019).

[62] Mathy Vanhoef and Frank Piessens. Key reinstallation attacks: Forcing
nonce reuse in wpa2. In Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security, pages 1313–1328. ACM, 2017.

[63] Bodo Möller, Thai Duong, and Krzysztof Kotowicz. This poodle bites:
exploiting the ssl 3.0 fallback. Security Advisory, 2014.

52

http://c-skills.blogspot.com/2011/02/zimperlich-sources.html
http://c-skills.blogspot.com/2011/02/zimperlich-sources.html
https://github.com/ethereum/devp2p/wiki/Discovery-Overview
https://github.com/ethereum/devp2p/wiki/Discovery-Overview
https://github.com/cesanta/mongoose
https://github.com/pimoroni/pibrella
https://github.com/WiringPi/WiringPi
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/inside-the-numbers-100-billion-arm-based-chips-1345571105
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/inside-the-numbers-100-billion-arm-based-chips-1345571105
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/inside-the-numbers-100-billion-arm-based-chips-1345571105

[64] Pratik Guha Sarkar and Shawn Fitzgerald. Attacks on ssl a comprehen-
sive study of beast, crime, time, breach, lucky 13 & rc4 biases. Inter-
net: https://www. isecpartners. com/media/106031/ssl attacks survey. pdf
[June, 2014], 2013.

[65] Zakir Durumeric, Frank Li, James Kasten, Johanna Amann, Jethro Beek-
man, Mathias Payer, Nicolas Weaver, David Adrian, Vern Paxson, Michael
Bailey, et al. The matter of heartbleed. In Proceedings of the 2014 confer-
ence on internet measurement conference, pages 475–488. ACM, 2014.

[66] Manos Antonakakis, Tim April, Michael Bailey, Matt Bernhard, Elie
Bursztein, Jaime Cochran, Zakir Durumeric, J Alex Halderman, Luca In-
vernizzi, Michalis Kallitsis, et al. Understanding the mirai botnet. In 26th
{USENIX} Security Symposium ({USENIX} Security 17), pages 1093–
1110, 2017.

[67] ARM. Trustzone for cortex-m arm. https://www.arm.com/

why-arm/technologies/trustzone-for-cortex-m, 2019. (Accessed on
07/05/2019).

[68] Hovav Shacham, Matthew Page, Ben Pfaff, Eu-Jin Goh, Nagendra
Modadugu, and Dan Boneh. On the effectiveness of address-space ran-
domization. In Proceedings of the 11th ACM conference on Computer and
communications security, pages 298–307. ACM, 2004.

[69] Carlisle Adams, Stephen Farrell, Tomi Kause, and Tero Mononen. Internet
x. 509 public key infrastructure certificate management protocol (cmp).
Technical report, 2005.

[70] A. Singla and E. Bertino. Blockchain-based pki solutions for iot. In 2018
IEEE 4th International Conference on Collaboration and Internet Comput-
ing (CIC), pages 9–15, Oct 2018.

[71] B. Oniga, S. H. Farr, A. Munteanu, and V. Dadarlat. Iot infrastructure
secured by tls level authentication and pki identity system. In 2018 Second
World Conference on Smart Trends in Systems, Security and Sustainability
(WorldS4), pages 78–83, Oct 2018.

[72] Wenbo Jiang, Hongwei Li, Guowen Xu, Mi Wen, Guishan Dong, and Xi-
aodong Lin. Ptas: Privacy-preserving thin-client authentication scheme in
blockchain-based pki. Future Generation Computer Systems, 96:185 – 195,
2019.

[73] S.S. Shetty, C.A. Kamhoua, and L.L. Njilla. Blockchain for Distributed
Systems Security. Wiley, 2019.

Appendix

53

https://www.arm.com/why-arm/technologies/trustzone-for-cortex-m
https://www.arm.com/why-arm/technologies/trustzone-for-cortex-m

Table 5: The Common Weaknesses (CWE) which are covered by the proposed
solution. Note that the agents ability to detect attacks on these weaknesses
depends on the agent’s configuration and the affect which the attack has on the
control flow in memory.

Weaknesses (CWEs) Covered by the Proposed Framework

CWE Description

670 Always‐Incorrect Control Flow Implementation

390 Detection of Error Condition Without Action

172 Encoding Error

1120 Excessive Code Complexity

250 Execution with Unnecessary Privileges

73 External Control of File Name or Path

673 External Influence of Sphere Definition

159 Failure to Sanitize Special Element

75 Failure to Sanitize Special Elements into a Different Plane (Special Element Injection)

754 Improper Check for Unusual or Exceptional Conditions

913 Improper Control of Dynamically‐Managed Code Resources

94 Improper Control of Generation of Code ('Code Injection')

799 Improper Control of Interaction Frequency

116 Improper Encoding or Escaping of Output

707 Improper Enforcement of Message or Data Structure

573 Improper Following of Specification by Caller

665 Improper Initialization

20 Improper Input Validation

138 Improper Neutralization of Special Elements

77 Improper Neutralization of Special Elements used in a Command ('Command Injection')

269 Improper Privilege Management

119 Improper Restriction of Operations within the Bounds of a Memory Buffer

829 Inclusion of Functionality from Untrusted Control Sphere

696 Incorrect Behavior Order

705 Incorrect Control Flow Scoping

704 Incorrect Type Conversion or Cast

1038 Insecure Automated Optimizations

1061 Insufficient Encapsulation

192 Integer Coercion Error

636 Not Failing Securely ('Failing Open')

757 Selection of Less‐Secure Algorithm During Negotiation ('Algorithm Downgrade')

706 Use of Incorrectly‐Resolved Name or Reference

Weaknesses (CWEs) Sometimes Covered by the Proposed Framework

CWE Description

405 Asymmetric Resource Consumption (Amplification)

362 Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition')

216 Containment Errors (Container Errors)

675 Duplicate Operations on Resource

1093 Excessively Complex Data Representation

912 Hidden Functionality

703 Improper Check or Handling of Exceptional Conditions

790 Improper Filtering of Special Elements

755 Improper Handling of Exceptional Conditions

228 Improper Handling of Syntactically Invalid Structure

74 Improper Neutralization of Special Elements in Output Used by a Downstream Component ('Injection')

424 Improper Protection of Alternate Path

682 Incorrect Calculation

681 Incorrect Conversion between Numeric Types

732 Incorrect Permission Assignment for Critical Resource

684 Incorrect Provision of Specified Functionality

669 Incorrect Resource Transfer Between Spheres

1176 Inefficient CPU Computation

221 Information Loss or Omission

671 Lack of Administrator Control over Security

862 Missing Authorization

638 Not Using Complete Mediation

271 Privilege Dropping / Lowering Errors

400 Uncontrolled Resource Consumption

637 Unnecessary Complexity in Protection Mechanism (Not Using 'Economy of Mechanism')

1177 Use of Prohibited Code

451 User Interface (UI) Misrepresentation of Critical Information

54

	1 Introduction
	2 Related Works
	2.1 Discreet Sequence Anomaly Detection for Intrusion Detection
	2.2 IoT Specific Solutions

	3 The Anomaly Detection Model
	3.1 Motivation
	3.2 Markov Chains
	3.3 Detecting Abnormal Control-Flows in Memory
	3.4 Collaborative Training of EMMs

	4 The Framework
	4.1 Overview
	4.2 Terminology & Notation
	4.3 The Blockchain Protocol
	4.4 Proof of Cumulative Majority
	4.5 Model Conflicts in Partial Blocks
	4.6 Deadlock Prevention
	4.7 Peer Discovery
	4.8 Maintaining Software Versions

	5 System Evaluation
	5.1 Experiment Setup
	5.1.1 Test Environment
	5.1.2 Agent Implementation
	5.1.3 Target Applications
	5.1.4 Attack Scenarios
	5.1.5 The Experiments

	5.2 Experiment Results
	5.2.1 Anomaly Detection
	5.2.2 Collaboration Training
	5.2.3 Resilience Against Adversarial Attacks
	5.2.4 Baseline Comparisons

	5.3 Complexity Analysis & Benchmark
	5.4 Blockchain Simulator

	6 Security Analysis
	6.1 Agent Coverage
	6.2 Adversarial Attacks

	7 Discussion
	7.1 Assumptions
	7.2 Implementation

	8 Conclusion

