
Learning-based Dynamic Cache Management in a
Cloud

Jinhwan Choi∗ Yu Gu† Jinoh Kim∗

Texas A&M University, Commerce, TX 75428, USA ∗

VISA Inc., Austin, USA †

Email: jchoi8@leomail.tamuc.edu, yugu1@visa.com, jinoh.kim@tamuc.edu

Abstract—Caches are an important component of modern
computing systems given their significant impact on performance.
In particular, caches play a key role in the cloud due to the nature
of large-scale, data-intensive processing. One of the key challenges
for the cloud providers is how to share the caching capacity
among tenants, under the circumstance that each often requires
a different degree of quality of service (QoS) with respect to data
access performance. The invariant is that the individual tenants’
QoS requirements should be satisfied while the cache usage is
optimized in a system-wide manner. In this paper, we introduce
a learning-based approach for dynamic cache management in a
cloud, which is based on the estimation of data access pattern
of a tenant and the prediction of cache performance for the
access pattern in question. We consider a variety of probability
distributions to estimate the data access pattern, and examine a
set of learning-based regression techniques to predict the cache
hit rate for the access pattern. The predicted cache hit rate is
then used to make a decision whether reallocating cache space
is needed to meet the QoS requirement for the tenant. Our
experimental results with an extensive set of synthetic traces
and the YCSB benchmark show that the proposed method
consistently optimizes the cache space while satisfying the QoS
requirement.

I. INTRODUCTION

Caches are an important component of modern computing
systems given their significant impact on the data access
performance, which is more critical in a large-scale data
processing environment. For example, leading Web service
providers such as Google, Facebook and Amazon largely
rely on in-memory processing using Memcached [1], [2] and
Redis [3]. Even small-scale providers employ the caching
services through Amazon ElastiCache [4], Memcachier [5],
and so forth. This is because that the efficient use of in-
memory caching has a significant impact on the performance
as the reading from the storage is much more expensive than
from the cache. In addition to the performance benefits, using
a cache reduces the load in the back-end data servers giving
greater scalability. Since the cloud often requires processing
massive data (e.g., for hosting Web or e-Commerce services),
in-memory caching is an essential part to improve the data
access performance.

As the number of users and network traffic increases, service
providers may need to expand the infrastructure. However,
adding hardware resources infinitely for better performance
is costly and impossible. Thus, it is important to use the
limited resources more in an efficient way. In that sense, cache
management plays a key role to better utilize the limited cache

spaces, in order to maximize the performance and efficiency of
data access. Cache management consists of a set of functions
including cache space (re)allocation and eviction. In this work,
we focus on the problem of cache space optimization under
the assumption of the use of in-memory caching in a cloud.

A crucial concern for cache management in a cloud is
that the caches are shared by multiple tenants that may have
different quality of service (QoS) requirements with respect
to data access performance. Thus, it is necessary to meet
the per-tenant requirement in addition to the optimal use
of the cache in a system-wide manner. A simple technique
to deal with this problem is static caching that allocates
the exclusively dedicated cache blocks to tenants based on
the individual QoS specifications. However, it may not be
straightforward to determine how many cache blocks would
be needed for a tenant without having the knowledge of data
access pattern. Moreover, the access pattern can be changed
over time, and the initially assigned cache blocks can be
too small violating the performance requirement or too large
causing the waste of the limited system resource. Dynamic
caching (re)allocates cache space based on the demand of
tenants dynamically, and it would be beneficial not only to
meet the per-tenant requirement but also to improve the overall
system performance. Hence, it is essential to properly capture
the demand of cache space when using dynamic caching.
Another alternative is to use a global cache shared among
tenants but isolation guarantee, which is one of the desirable
properties in a cloud, cannot be provided [6], [7]. In this
work, we take dynamic caching into account to deal with
the problem of cache management with the benefit of low
overhead in the cache replacement time since the interval of
cache re-allocation is relatively infrequent and does not need
to be performed at every eviction.

For dynamic caching in a cloud, there has been a body
of work in the past few years, mainly by estimating the
cache performance of individual tenants (or applications) [6],
[8]–[10], However, previous studies are largely limited with
the lack of well-defined models for the estimation of data
access patterns and the prediction of cache performance for
a given access pattern. With the recent disruptive advance
of machine learning technologies, we take a learning-based
approach to cache management in a cloud. To estimate data
access patterns varied over time, we consider a set of prob-
abilistic distributions (uniform, Gaussian, exponential, and

ar
X

iv
:1

90
2.

00
79

5v
1

 [
cs

.D
C

]
 2

 F
eb

 2
01

9

Fig. 1. Process model for dynamic cache management

Zipf). The information of the estimated access pattern is
then used to predict the cache size to meet the specified
data access performance, and we assume the QoS is defined
with the required cache hit rate. For this purpose, we ex-
amine various regression methods, including Support Vector
Regression (SVR), Gaussian Process Regression (GPR), and
Fully Connected Neural Network (FCN). Figure 1 shows our
process model to implement dynamic caching in a cloud with
the aforementioned functions of access pattern estimation and
cache performance prediction. For a query-based transaction
system, we assume that the access pattern is inferred based on
the query key distribution. From the estimated distribution,
cache hit rate is predicted to determine the right size of
cache space to meet the given QoS requirement. Finally, cache
resizing takes place if needed.

The key contributions of this paper are summarized as
follows:
• We formulate a problem of dynamic caching in a cloud,

with two objectives of QoS guarantee and optimization
of the cache space in the system;

• We present a method for the query distribution estimation
with a set of probabilistic distributions including normal,
Gaussian, exponential, and Zipf. We demonstrate that our
estimation method using the Kolmogorov-Smirnov Test
(KS-Test) [11] can yield accurate estimations even with
a small number of query samples (≤ 1000 samples),
which is beneficial for responding to the temporal pattern
changes in a timely manner;

• We examine a set of learning-based regression techniques
including SVR, GPR, and FCN, to predict the cache hit
rate based on the estimated query distribution. Our evalu-
ation supports the effectiveness of the FCN model across
the diverse distributions with respect to the prediction
performance;

• We evaluate our proposed process for dynamic caching
with an extensive set of synthetic traces and Yahoo! Cloud
Serving Benchmark (YCSB) [12], on a cluster computing
system with Open Source Apache Ignite [13] as the in-
memory caching infrastructure. The evaluation results
confirm that the proposed method consistently optimizes
the cache space, maintaining the required cache hit rate
as the QoS requirement.

This paper is organized as follows. In the next section, we
specify the description of the problem tackled in this study
and provide a summary of the closely related studies in the
area of cache management in the cloud. Section III presents
our proposed process model with the details of the functional
elements. We report the evaluation results in Section IV
conducted with the synthetic traces and YCSB benchmark
tools. Finally, we conclude our presentation in Section V with
a summary of the work and future directions.

TABLE I
NOTATION

Notation Description
Tk Tenant k in the tenant set T (Tk ∈ T)
C Total cache space in the system
CTk

Cache size allocated to Tk
hTk

Measured cache hit rate for Tk
HTk

Minimum cache hit rate requirement for Tk
H(x, y) Predicted cache hit rate under cache size x

and access distribution y
δ Safety margin

II. BACKGROUND

A. Problem Statement

In this work, we assume a cloud system equipped with
a large-scale in-memory cache. A tenant loads their data to
the cloud and accesses them. We assume a read-many, write-
rare environment through key-value stores like a database
transaction system. Hence, the cache performance is a predom-
inant factor for the overall system performance. The tenant is
associated with an agreement (SLA) that specifies a set of QoS
requirements including data access performance. In this study,
we focus on the cache hit rate to measure the data access
performance.

To formulate, we use the notation defined in Table I. A set of
tenants T = {T1, T2, ..., Tn} exist in the cloud with the total
cache space of C. Initially, a cache space CTk

is allocated
to tenant Tk, which can be adjusted over time to meet the
specified cache hit rate requirement (HTk

). The current cache
hit rate (hTk

) is periodically measured, and our objective is to
keep hTk

≥ HTk
for the tenant.

It would be easy to guarantee HTk
by simply allocating

a plenty of cache space to the tenant which would be much
greater than the actual need. However, there will be a sig-
nificant waste of the expensive cache resource in that case.
In order to perform the system-wide optimization as well as
the minimum QoS guarantee for individual tenants, this work
addresses the following optimization problem:

Minimize
∑
Tk∈T

CTk

such that
∑
Tk∈T

CTk
≤ C

and hTk
≥ HTk

,∀Tk

If the system has insufficient free cache space to allocate
to a certain tenant, we assume that it is reported to the
administrator who conducts the defined policy to deal with
such an exceptional situation.

B. Related Work

There exist several interesting studies for in-memory
caching in the cloud environment. This section summarizes

Fig. 2. Cache performance estimation using a log function-based least-
square fit: This concave function may not be adequate for cache performance
prediction with large errors over 10% gaps to the measured result.

the most relevant studies to this research with the differences
from our work.

Blaze [10] is the first generation work for the data caching
in a cloud with the consideration of multiple tenants. The main
objective of this work is not only to guarantee the minimum
QoS requirement for each tenant but also to maximize the
overall cache hit rate. To meet the tenant’s QoS goal, the
authors proposed to estimate the cache hit rate using a log
function (y = a + b log x) based on a least-square fit, where
the output (y) is the predicted cache hit rate from the given
cache size (x). In this scheme, determining the parameters (a
and b) is a non-trivial challenge. More critically, we observed
considerable errors from our preliminary experiment, as shown
in Figure 2 that compares the measured hit rates and the log-
based fitted result for two different access patterns. The figure
shows over 10% errors for certain predictions. As will be
demonstrated in Section III, it would be hard to fit the hit rates
using a simple concave function, and we employ learning-
based techniques to provide greater accuracy and flexibility.

There have been some studies utilizing the concept of stack
distance [14] to estimate the data access pattern for the cloud
cache management. In the SC2 work [9], a cache space utility
model is introduced to maximize the overall cache hit rate
in a multi-tenant environment. The cache space utility model
is a cumulative distribution function of the stack distance hit
histogram. The cumulative curve is then used to figure out
the minimum cache space that satisfies the required minimum
cache hit rate. A critical problem referencing to stack distances
to estimate data access patterns is the heavy complexity to
keep shadow eviction queues for incoming requests, in order to
track the location of the request to calculate the stack distance.

Dynacache [8] has been proposed to improve the cache hit
rates in a multi-application environment. This technique also
relies on stack distances to infer the cache hit rate curve,
and interestingly, it uses an approximation technique using
buckets to reduce the overhead for calculating stack distances.
However, the estimation is still expensive when assuming
hundreds of applications running in a system. Dynacache
defines a metric to identify applications that can be more

Fig. 3. Architecture for dynamic cache management: Pattern Estimator
estimates the distribution of query keys sampled by Profiler for each tenant
periodically. Once an estimated distribution information is available, Predictor
makes a prediction using a regression model to calculate the tenant’s cache
hit rate with the currently allocated cache size and the estimated probability
distribution. Cache Manager determines whether the tenant’s cache needs to
be resized or not, based on the prediction result.

benefited from the cache management and stack distances are
estimated only for a small set of the identified applications.
While beneficial to reference to the stack distance information,
it is heavy to calculate and even the approximation is still
expensive. We do not rely on stack distances, but employ a
set of probability models to estimate tenants’ access patterns,
with a distribution comparison function. This past work also
assumes a simple concave function to predict cache hit rates
from the given cache size.

A recent work FairRide [6] tackles a cheating problem that
may lead to monopolizing the cache resource by a greedy user.
The cheating problem can happen in an environment that the
users often access the same data (e.g., utility programs). For
example, a greedy user can get a free ride by accessing the
shared files already in the cache space loaded by other users.
The authors proposed a simple idea to mitigate this problem by
imposing a penalty (e.g., delay) to such users. The work in [7]
further studies on the problem of fair cache allocation for in-
memory analytics to prevent from free-rideing manipulations
that may result in poor cache utilization. In this work, we do
not deal with a cheating problem, but it may be an interesting
topic for future exploration.

III. PROPOSED DESIGN

In this section, we present our design to tackle the problem
stated in the previous section. Figure 3 shows the proposed ar-
chitecture for our learning-based dynamic cache management
in a cloud. The overall scenario to meet the QoS requirement
(i.e., cache hit rate) for each tenant is as follows. Pattern
Estimator estimates the distribution of query keys sampled
by Profiler for each tenant periodically (e.g., at every k
number of samples). Once the estimation result is available,
Predictor makes a prediction using a regression function to
calculate the tenant’s cache hit rate with the currently allocated
cache size CTk

and the estimated probability distribution d.
In Table I, we define the predicted cache hit rate for tenant
k as H(CTk

, d). Then the predicted hit rate is compared to
the minimal requirement (HTk

). Based on the comparison
result, Cache Manager determines whether the tenant’s cache

TABLE II
DISTRIBUTION PARAMETER VALUES

Distribution Parameter value range Step parameter
Uniform N/A N/A
Gaussian 0.5 ≤ σ ≤ 2.0 s = 0.1

Exponential 0.5 ≤ λ ≤ 2.0 s = 0.1
Zipf 0.5 ≤ ρ ≤ 3.0 s = 0.1

needs to be resized or not. We next discuss the functional
components in the proposed model in detail.

A. Query Distribution Estimation
Once a tenant begins to access her data, the system starts

estimating the distribution of the keys. A hypothesis here is
that the key distribution approximates one of the probabilistic
distributions we consider in this study, including uniform, Zipf,
exponential, and Gaussian. Past studies assumed a Zipf distri-
bution to model the workload in a cloud and caching [15]–[19].
In the thorough workload study based on cache miss rate [20],
it is observed that many workloads can be modeled using
Zipf and uniform distribution. We also take the exponential
distribution into account, based on the observation that this
distribution would be effective to approximate certain models
(e.g., the reference rank model of Internet media objects) [21].
Additionally, we consider Gaussian distributions for estimating
the access pattern.

The estimation of distribution takes place through the KS
test, which has been broadly employed for comparing em-
pirical distributions [11]. In the KS test, the resulted p-value
indicates the similarity of the two distributions in question. In
our context, two samples in comparison are: (1) the collection
of query samples for a tenant, and (2) the synthetic samples
derived from the tenant’s key space using a distribution model.
A higher p-value indicates the tenant access pattern is closer
to the synthetic distribution in comparison.

Estimating the degree of uniformity is straightforward and
can be done through a single KS test, since any sample set
from the uniform distribution have the identical property. In
contrast, measuring the similarity against the non-uniform
distributions would be complicated and the property of the
samples can be varied by the distribution-specific parameter.
For example, a Zipf distribution becomes unique with parame-
ter ρ, based on y ∼ x−ρ. Similarly, the exponential distribution
has parameter λ from y ∼ e−λx, and Gaussian is defined
with a variance σ in the standard distribution where µ=0. We
consider a broad range of values for the distribution-specific
parameters for greater accuracy in the estimation process,
as summarized in Table II. From the table, the parameter
values are ranged from the min to max, which determines
the skewness of the distribution. For example, higher ρ and
λ values indicate greater skewness for Zipf and exponential,
respectively. In contrast, a lower σ implies a greater skewness
for Gaussian.

To measure the similarity against the non-uniform distribu-
tions, we define a step parameter s = 0.1 as the granularity
in comparison. For each non-uniform distribution, a KS test

is arranged for a specific parameter value, from the min
to max value increased by s. For example, the estimation
process runs 16 independent KS tests to measure the similarity
against the Gaussian distribution with a σ value from 0.5
to 2.0, incrementing it by s=0.1. The estimation process
continues with the exponential and Zipf distributions with
their distribution parameter and s. Finally, a distribution with
the greatest similarity is chosen as the estimated distribution
to model the tenant’s access pattern. If the KS test fails to
identify a candidate distribution for the given access samples,
the uniform distribution is assumed as the access pattern
that requires the largest cache space compared to the other
distributions as the fallback scenario.

Intuitively, using a larger number of query samples would
be helpful for estimating the access pattern more accurately.
Table III shows the impact of the number of samples in the
estimation process. In the table, ε stands for the difference
between the actual distribution parameter value (p) and the
estimated one (p̂) (i.e., ε = |p − p̂|). As seen from the table,
it is possible to estimate the distributions correctly only with
200 samples. However, 15% of the estimations show ε > 0.2,
which may lead to a non-negligible error in the next stage for
predicting cache hit rates. It becomes quite stable with 1,000
samples or more, and 100% of the estimates are bounded to
ε ≤ 1.0. Since we assume a high access rate (e.g., eCommerce
services), collecting 1,000 samples would not be a big deal and
could be made within a short time interval.

B. Cache Hit Rate Prediction

Once a query distribution is estimated, the next step in
the process model is to predict the cache performance for
the tenant in question. Depending on the prediction result,
the tenant’s cache space can be adjusted to keep up with
the data access pattern changes over time. A high degree of
accuracy for the prediction is thus essential and the tenant’s
QoS requirement may not be met otherwise. In this section, we
examine a set of regression techniques including SVR, GPR,
and FCN, with the metric of MSE (Mean Squared Error) to
evaluate the regression performance. For thorough analysis,
we employ an extensive set of data sizes and distribution
parameter values, summarized in Table IV and Table V. Note
that the data sets for training and testing are disjoint without
any overlaps, as can be seen from the tables. We also examine
the models under the assumption of different cache sizes from
0.1 GB to 4 GB. For simplicity, we assume four bytes for the
key field and 100 KB for the value stored in the key-value
repository; for example, there exist 10,240 unique keys if the
data size is 1 GB (i.e., 1GB

100KB).
To measure actual cache hit rates, we set up a cloud testbed

using five servers in a cluster computing system installed
with Apache Ignite as the in-memory caching infrastructure.
Three nodes are assigned for the cache service, and one node
each for a client and backend database server. The detailed
information regarding our experimental settings can be found
in Section IV-A.

1) SVM Regression (SVR): SVM has been widely employed
for classification and regression [22]–[24]. To predict the cache

TABLE III
IMPACT OF THE NUMBER OF SAMPLES TO KS TEST

samples 100 200 300 500 1000 2000 5000 7000 10000
Correct dist. 97% 100% 100% 100% 100% 100% 100% 100% 100%
Exact param. 58% 53% 68% 66% 76% 81% 93% 93% 97%
ε ≤ 0.1 75% 78% 93% 90% 100% 100% 100% 100% 100%
ε ≤ 0.2 90% 85% 95% 98% 100% 100% 100% 100% 100%

TABLE IV
LEARNING DATA FOR CACHE HIT RATE PREDICTION

Training
Distribution data size parameter values

Uniform {1GB, 2GB, 4GB, 8GB} N/A
Gaussian(σ) [1GB..9GB] incremented by 1GB {0.5, 1.0, 1.5, 2.0}

Exponential(λ) [1GB..9GB] incremented by 1GB {0.5, 1.0, 1.5, 2.0}
Zipf(ρ) [1GB..9GB] incremented by 1GB {0.5, 1.0, 1.5, 2.0, 2.5, 3.0}

TABLE V
TESTING DATA FOR CACHE HIT RATE PREDICTION. NOTE THAT THE TESTING DATA SETS ARE disjoint FROM THE TRAINING DATA SETS IN TABLE IV WITH

NO OVERLAPS.

Testing
Distribution data size parameter values

Uniform {3GB, 6GB} N/A
Gaussian(σ) [1GB..9GB] by 1GB {0.7, 1.2, 1.9}

Exponential(λ) [1GB..9GB] by 1GB {0.7, 1.2, 1.9}
Zipf(ρ) [1GB..9GB] by 1GB {0.7, 1.2, 1.9, 2.3, 2.6}

hit rate, the first regression model we examined is SVM
regression (SVR). We assumed the Radial Basis Function
(RBF) kernel and the standard scaler for normalization1. A
tricky part using SVR is to tune a set of parameters to
optimize. We examined SVR with an extensive set of the
values for the penalty parameter (C) and the kernel coefficient
parameter (γ): 10−3 ≤ C ≤ 107 and 10−5 ≤ γ ≤ 103.

Figure 4 shows the regression performance (with respect to
MSE) with the combinations of the parameter values in SVR.
Lighter colors indicate smaller errors. The figure shows that it
needs to optimize the parameters for each distribution indepen-
dently and there exists no single pair of parameters working
well for all the distributions. We observed that SVR works
better for heavy-tail distributions (i.e., Zipf and exponential
distributions) showing MSE < 5.0 with the parameter tuning,
but poorly works for the uniform distribution with large errors
(MSE > 22.0) even at best.

2) Gaussian Process Regression (GPR): GPR has also been
utilized for regression [25] and we take GPR into account
to predict cache hit rates for individual distributions. We set
it up with two kernels of a constant kernel configured with
Constant Value (CV) and a RBF kernel tuned with Length
Scale (LS) [26]. The value ranges for CV and LS to search
the optimal are: 0.0001 ≤ CV ≤ 1000 and 0.0001 ≤ LS ≤

1We examined both standard and MinMax scalers for SVR and GPR, and
observed none of them outperforms the other completely.

1000.
Figure 5 shows the regression performance when using GPR

across the parameter values. From the figure, LS shows a
greater impact to the regression performance, and LS ≥ 1.0
works much better than the other. The trend is similar with
SVR, showing lower prediction errors for the heavily skewed
distributions. Overall, we observed no better performance from
GPR compared to SVR.

3) Regression with Fully Connected Network (FCN): The
recent advances in deep learning has led to an introduction of
many useful tools to implement learning models, promoting a
wide adoption of the relevant techniques for many applications
that require analyzing the data with a non-linear property.
Another regression model we investigate in this study is based
on a fully connected neural network (FCN in short). We exam-
ined the FCN architecture with the following considerations
to evaluate their impacts on the accuracy of prediction:
• Network architecture: To keep it simple, we designed

a basic form of the FCN architecture with a single
hidden layer. The number of neurons in the hidden layer
examined in the experiment is {16, 32, 64, 128, 256},
while we set the number of neurons in the input layer to
20.

• Loss functions and regularization: Kernel regularizers
play an important role to calculate penalties on layer
parameters, which are then combined in the loss function
to optimize the network. We evaluated L1 and L2 regu-

(a) Uniform (best: C=10, γ=1.0, MSE=22.03) (b) Gaussian (best: C=1000, γ=1.0, MSE=10.01)

(c) Exponential (best: C=1000, γ=1.0, MSE=4.90) (d) Zipf (best: C=10000, γ=1, MSE=1.35)

Fig. 4. SVR parameter tuning for cache hit rate regression: C=penalty parameter and γ=kernel coefficient parameter

larizers. We did not apply dropout and the expansion of
training data for regularization. For the loss function, we
compared Mean Absolute Error (MAE) and MSE (Mean
Squared Error).

• Activation function: The activation function is the non-
linear transformation that determines which neurons are
activated or not. We tested Sigmoid and ReLU, widely
used in practice.

• Number of epochs: In an epoch, the training process
performs forward and backward propagation over the
entire dataset. Typically, a higher number of epochs is
required for a complex dataset with a longer training time,
and vice versa. We examined the impact of the number
of epochs by setting the epoch time to one of {500, 1000,
2000, 4000}.

• Learning rate: This rate indicates the weights update
strength in back-propagation in the gradient decent.
Choosing this parameter is important for training since
it may not converge with a too large value, while it will
be slow to converge if the learning rate is too small. A
typical value for learning rate is 1e-3, which also used in
our experiments.

• Batch normalization: The normalization layer is a key

element to update the weights between neurons; that is,
the weights are normalized at each update to the network.
Our FCN model improves the regression performance
with a batch normalization layer.

Figure 6 illustrates our FCN model. The input layer takes
the input data containing three features of data size, cache size,
and distribution parameter value. As mentioned, the Batch
Normalization (BN) layer is a key to optimize the overall
performance and we observed a significant performance im-
provement with this intermediate layer. We evaluated a set of
structures with different numbers of hidden layers but observed
insignificant performance gaps among them; for simplicity,
we chose a single hidden layer structure. The output is the
predicted cache hit rate. We employed Adam as the optimizer
in the implementation [27].

We conducted extensive experiments to evaluate the impact
of the parameters, including the number of neurons, number
of epochs, activation functions (Sigmoid and ReLU), loss
functions (MAE and MSE), and regularization (L1 and L2).
Table VI shows the configuration performing the best for each
distribution. Overall, we observed Sigmoid and L2 regularizer
work slightly better than the other options. MAE works better
for uniform and Zipf, whereas MSE is more a suitable choice

(a) Uniform (best: CV =1, LS=10.0, MSE=18.76) (b) Gaussian (best: CV =1000, LS=1.0, MSE=10.90)

(c) Exponential (best: CV =1000, LS=1.0, MSE=5.3) (d) Zipf (best: CV =1000, LS=1.0, MSE=3.48)

Fig. 5. GPR parameter tuning for cache hit rate regression: CV =Constant Value and LS=Length Scale

Fig. 6. The FCN structure for cache hit rate prediction: The input layer
takes the input data containing three features of data size, cache size, and
distribution parameter value. We chose a single hidden layer structure based
on our evaluation results. The output is the predicted cache hit rate.

for Gaussian and exponential. In our experiments, the number
of neurons in the hidden layer do not make considerable
impacts on the regression performance. We also observed that
the epoch parameter has a slightly greater sensitivity than the
number of neurons.

4) Comparison of Prediction Performance: We next report
the performance comparison for the three regression models.

TABLE VI
OPTIMAL CONFIGURATION FOR FCN MODEL

Distribution # Neuron Loss Activation # Epochs Reg.
Uniform 16 MAE Sigmoid 4000 L2
Gaussian 64 MSE Sigmoid 4000 L2

Exponential 64 MSE Sigmoid 4000 L2
Zipf 32 MAE Sigmoid 500 L2

We present a subset of the experimental results due to the
space reason, but the other results also show almost the same
trend with insignificant differences.

Figure 7 shows cache hit rates over different cache sizes,
under the assumption of the uniform access. Figure 7(a)
and 7(b) assume 3 GB and 6 GB for the data size to be
accessed, respectively. The x-axis shows the cache size per
server (hence, the aggregated cache size is three times of the
cache size per node as we assume three cache servers in our
experiments). While the regression models work quite well,
we can see that FCN slightly outperforms the others.

Figure 7(c) and 7(d) demonstrate cache hit rates for two
tenants over the different cache size configurations with re-
spect to the cache allocation ratio in the x-axis. That is, the
ratio of 1:9 in x-axis indicates that 10% of the cache space is

(a) Data=3 GB (b) Data=6 GB

(c) 2 tenants w/ cache=1 GB/server (d) 2 tenants w/ cache=2 GB/server

Fig. 7. Regression performance with Uniform distributions: (a) and (b) show the regression performance over different cache sizes for a tenant, and (c) and
(d) show the performance for two tenants over different cache allocation ratios.

TABLE VII
REGRESSION PERFORMANCE (MSE)

Distribution SVR GPR FCN
Uniform 22.03 18.76 1.70
Gaussian 10.01 10.90 4.87

Exponential 4.90 5.35 0.66
Zipf 1.35 3.48 1.43

allocated to one tenant and the rest of the cache space (90%
of the total space) is assigned to the other. The regression
model used in this experiment is FCN. Figure 7(c) compares
the measured and predicted cache hit rates when using a 1
GB cache memory, while Figure 7(d) shows the result with
a 2 GB cache memory, under the assumption of the uniform
access. The plots show the regression performs very well for
two independent tenants.

We also conducted a set of experiments for the non-
uniform distributions and observed similar trends. We omit the
presentation of the results due to the space reason. Table VII
summarizes the best performance of each regression model,
in which we can see that SVR and GPR work poorly for the

uniform distribution. A simple FCN model works consistently
outperforming the other techniques. In terms of the training
and prediction complexities, FCN showed greater overheads
than SVR and GPR. The FCN training complexity is quite
high (with no use of GPUs) showing two orders of magnitudes
higher. Although the prediction overhead for FCN is slightly
greater than the others, we observed that a single prediction
could be made within 0.26 sec on a commodity computer
(equipped with Intel core i5).

C. Dynamic Cache Resizing
As a result of the cache hit rate prediction, the cache man-

agement function determines whether the cache space needs
to be resized or not. The procedure for resizing the tenant
cache space is straightforward with the given distribution d,
as follows:

(i) If H(CTk
, d) < HTk

− δ1, then the minimal cache space
s such that H(CTk

+ s, d) ≥ HTk
+ δ1 is additionally

allocated to tenant k;
(ii) If H(CTk

, d) > HTk
+δ2, then the maximal cache space

s such that H(CTk
− s, d) ≥ HTk

+ δ2 is returned from
the tenant to the system;

(iii) Otherwise, cache size for tenant k remains the same.

Fig. 8. Flow chart of the experiment procedure

TABLE VIII
EXPERIMENTAL SETTING FOR SYNTHETIC TRACES. NOTE THAT THE

TESTING TRACES WERE CHOSEN FROM OUT OF THE TRAINING DATA SETS.

Test case Distribution Data size Parameter
T1 Uniform 3 GB –
T2 Gaussian 3 GB σ =0.7
T3 Exponential 3 GB λ =0.7
T4 Zipf 3 GB ρ =0.7

Here, δ parameters are configurable to consider safety
margins. The worst scenario is no more cache space available
in the system in case (i); if this is the case, we assume that
the system needs to install more resources to expand the cache
space in the system to meet the SLA goals for the entire
tenants.

IV. EVALUATION

We designed a set of experiments to validate the operation
of the dynamic cache management with the presented esti-
mation and prediction functions in the previous section. In
this section, we report our evaluation results conducted on
a real cluster system, with (1) the synthetic traces based on
different distributions, and (2) the YCSB benchmark tool. We
first describe the experimental settings, and then discuss the
experimental results with the metrics of cache hit rate and
response time to measure the performance.

A. Experimental Settings

We conducted our experiments in a computing cluster
(elephant.tamuc.edu) that consists of 27 nodes mounted
in a rack. Each node consists of 4 CPU cores, 8 GB memory,
and 2 TB hard disk storage. The nodes are interconnected via a
Gigabit Ethernet switch. We installed Apache Ignite 1.8.0 [13]
and MariaDB [28] as the in-memory cache infrastructure and
the backend DBMS, respectively. We configured three nodes
for the in-memory cache service, each of which is configured
with 6 GB cache space, and hence, the total cache space is
18 GB in the system. Apache Ignite provides a set of built-in

eviction methods including FCFS and LRU, and we simply
chose LRU for cache replacement. One node is dedicated as
a database server with MariaDB.

Figure 8 illustrates the procedure for experiments, the main
objective of which is to see if the proposed dynamic cache
management is effective to meet the tenant’s QoS requirement
based on the data access pattern and the specified cache hit
rate requirement. We assume that the data size is 3 GB for
the tenant and the required cache hit rate is 80% at minimum.
The initial cache size is 0.1 GB/node (i.e., 0.3 GB/system
with three cache servers). Each experiment consists of N
queries with a certain distribution (to generate keys), and N=1
million by default. For each query, the get(key) operation
is invoked to look up the cache. In case of cache miss, the
backend server is accessed to retrieve the entry associated with
the given key from the database, and the put(key,val)
operation is executed to add a new entry to the cache. Once M
queries are serviced, the system performs the estimation and
prediction functions to see if resizing of cache space is needed.
We set M = N

2 in our experiment to compare the performance
before and after the event of cache resizing. Since the initial
cache size is too small (0.3 GB) compared to the data size
(3 GB), cache resizing will be triggered to meet the desired
performance requirement. Note that the distribution estimation
is performed with the KS-test and the prediction takes place
using the FCN model, described in the previous section. The
parameter values used for FCN can be found from Table VI.

B. Experiments with Synthetic Traces

We first present the experimental results conducted with a
set of synthetic traces with different distribution models. For
the experiments, we installed Yardstick-ignite as a benchmark
tool. Yardstick-Ignite provides 8 types of benchmark tests, and
we utilized PutGetTxBenchmark providing transactional
distributed cache put and get operations. Table VIII shows the
test cases prepared for the experiments with the synthetic data.
As noted earlier, the data sets used for training and testing
are disjoint without any overlaps, as summarized in Table IV
and Table V. Thus, the data size (3 GB) and the distribution
parameter values used for testing were chosen from outside
the training data sets.

Figure 9 shows the cache hit rates before and after the
cache resizing. In the figure, “optimal” resizes the cache based
on the measurement data without relying on the prediction,
while “predicted” manages the cache based on our prediction
procedure. For the prediction, we set the safety margin to
5% (i.e., δ=0.05) based on the observation that the max
difference between the measured and predicted hit rates is
less than 0.05. With the safety margin, our prediction-based
cache management will try to adjust the cache size to make
the predicted hit rate to be (80 + δ)% at minimum.

From the figure, the initial hit rates are very low. Based on
the estimation of the access distribution and the prediction of
the hit rate, the cache size is adjusted at n=500,000 queries,
and the cache hit rates jump up to over 80% on average. The
figure shows that the prediction works very well and allocates

(a) Uniform (b) Gaussian

(c) Exponential (d) Zipf

Fig. 9. Cache hit rates before and after resizing cache size with synthetic traces (minimum hit rate requirement=80%, δ=0.05)

a slightly greater space for the cache compared to optimal (0.1
GB greater on average), due to the safety margin.

Figure 10 shows the corresponding response time over the
number of queries. In the initial warm up phase, the response
time is very high since there is no entry in cache and every
operation triggers the database access. As soon as the entire
cache space is filled in, the average response time becomes
stable. We can see that the response time significantly goes
down after the cache is resized at n=500,000. The response
time based on the prediction is slightly lower than optimal,
since the prediction-based resizing allocates the more space
to cache (and hence, with greater hit rates).

Table IX and Table X summarize the experimental results
with the four synthetic data sets. We can see that our estimation
process is able to identify the exact distribution and the
associated parameter value. In the table, the measured hit rate
and response time stand for the cache hit rate and response
time after resizing the cache space based on the predicted
cache size information, which meet the required hit rates.

We next assume consecutive changes of the data access
patterns over time. In this experiment, the estimation process
takes place at every 10,000 queries. If any pattern change
is identified, the cache prediction process is activated and

the cache space is reallocated if needed. The injected trace
includes four different distributions in order: (1) exponential
(λ=0.9), (2) Zipf (ρ=1.1), (3) uniform, and (4) Gaussian
(σ=1.3). The initial cache size allocated is 0.1 GB, and the
required hit rate is 80%. We simply set δ=0.0 (i.e., no safety
margin) in this experiment. The following lists the the events
and observations over the temporal pattern changes:

(i) At x=0, the initial pattern follows exponential (λ=0.9);
(ii) At x=10,000, the cache is resized to 0.7 GB (from 0.1

GB);
(iii) At x=250,000, the pattern is changed to Zipf (ρ=1.1);
(iv) At x=260,000, the cache size is reduced to 0.3 GB;
(v) At x=500,000, the pattern is changed to uniform;

(vi) At x=510,000, the cache size increases to 1.4 GB;
(vii) At x=750,000, the pattern is changed to Gaussian

(σ =1.3);
(viii) At x=760,000, the cache size is changed to 1.1 GB.

Figure 11 demonstrates the dynamic cache management
over time. Initially, the system identifies the access pattern and
resizes the cache space to 0.7 GB to meet the QoS requirement.
Although the cache space is adjusted at x=10,000, it takes a
time to warm up the cache as shown in the figure. At every
time that the access pattern is changed, we can see the degra-

(a) Uniform (b) Gaussian

(c) Exponential (d) Zipf

Fig. 10. Response times before and after resizing cache size with synthetic traces (minimum hit rate requirement=80%, δ=0.05)

TABLE IX
EXPERIMENTAL RESULT WITH SYNTHETIC TRACES BEFORE RESIZING CACHE MEMORY

Test Initial Initial Initial
case cache size hit rate resp. time
T1 0.1 GB 10.2% 4.58 ms
T2 0.1 GB 24.1% 3.59 ms
T3 0.1 GB 21.1% 3.67 ms
T4 0.1 GB 33.2% 3.37 ms

TABLE X
EXPERIMENTAL RESULT WITH SYNTHETIC TRACES AFTER RESIZING CACHE MEMORY

Test Optimal Optimal Estimated Predicted Measured Measured
case cache size hit rate distribution cache size hit rate resp. time
T1 0.8 GB 81.8% Uniform 0.9 GB 91.8% 1.77 ms
T2 0.4 GB 83.7% Gaussian(0.7) 0.5 GB 94.0% 1.78 ms
T3 0.5 GB 80.6% Exponential(0.7) 0.6 GB 88.7% 1.84 ms
T4 0.6 GB 80.7% Zipf(0.7) 0.7 GB 86.4% 1.96 ms

dation of the cache hit rate, but the performance is restored
by dynamically resizing the cache space. At x=260,000 the
cache size becomes shrunk (from 0.7 GB to 0.3 GB), but

we can see that the cache hit rate meets the requirement.
Figure 11(b) shows the corresponding response time over the
temporal changes.

(a) Cache hit rate

(b) Response time

Fig. 11. Cache hit rate and response time over data access pattern changes:
The injected trace includes four different distributions in order: (1) exponential
(λ=0.9), (2) Zipf (ρ=1.1), (3) uniform, and (4) Gaussian (σ=1.3). The initial
cache size is 0.1 GB, the required hit rate is 80%, and δ=0.

C. Experiments with YCSB

We next report the experimental results conducted with
YCSB, a benchmark tool widely used for evaluating the
performance for RDBMS and NoSQL [6], [12]. We slightly
modified this benchmark tool to perform the experiments as
specified in the experimental procedure in Figure 8.

Figure 12 demonstrates the cache hit rate and response time
experimented with the YCSB tool. As the experiments with
the synthetic traces, we initially allocate 0.1 GB/node for the
cache space, and the estimation and prediction take place at
n=500,000. With the initial cache space, the cumulative cache
hit rate is 53.7% and the average response time is 4.46 msec.
With the estimation process, the distribution is identified as
Zipf with ρ=1.0. As a result of the prediction through FCN,
the cache is resized to 0.8 GB/node. The observed cache hit
rate is 80.9% with 2.10 msec of average response time after
resizing.

V. CONCLUSIONS

The in-memory cache has been widely employed to improve
data access performance in a cloud. Despite its importance,
the past studies were largely limited with the lack of well-
defined models for the estimation of data access patterns and
the prediction of cache performance for the access pattern in
question. In this paper, we proposed a learning-based approach
to dynamic caching in a cloud to meet the per-tenant QoS
requirement. We first presented an estimation method that
approximates the data access pattern to one of four distribution
models of uniform, Gaussian, exponential, and Zipf, based on
the KS test. We observed that our estimation method works
well with a high degree of accuracy even with a small number
of query samples (≥ 200 samples), which should be beneficial

(a) Cache hit rate

(b) Response time

Fig. 12. Cache hit rate and response time before/after resizing cache size
using YCSB benchmark (minimum hit rate requirement=80% and δ=0)

for responding to the temporal pattern changes in a timely
manner. We next presented the evaluation results of a set of
regression methods including SVR, GPR, and FCN, to predict
the cache hit rate based on the estimated access pattern. From
the experiments, we observed that the FCN model outperforms
the others across the distributions. Finally, we evaluated our
dynamic cache management method with an extensive set of
synthetic traces and the YCSB benchmark. The evaluation re-
sults show that the proposed method consistently optimizes the
cache space, while preserving the tenant’s QoS requirement.

The cloud cache management consists of a set of functions
and this work focused on the problem of cache space optimiza-
tion. Another important function in the cache management is
cache eviction that has a significant impact on the data access
performance. In this work, we simply assumed LRU as the
eviction policy but the estimated access pattern would be the
helpful information to improve the hit rate. A planned future
work is to investigate adaptive methods for cache eviction over
access pattern changes.

REFERENCES

[1] Brad Fitzpatrick. Distributed caching with memcached. Linux J.,
2004(124):5–, August 2004.

[2] Ubaid Ullah Hafeez, Muhammad Wajahat, and Anshul Gandhi. Elmem:
Towards an elastic memcached system. In ICDCS, 2018 Proceedings,
pages 278–289. IEEE, 2018.

[3] Redis. https://redis.io/.

[4] Amazon ElastiCache. https://aws.amazon.com/elasticache/.

[5] MemCachier. https://www.memcachier.com/.

[6] Qifan Pu, Haoyuan Li, Matei Zaharia, Ali Ghodsi, and Ion Stoica.
Fairride: Near-optimal, fair cache sharing. In Proceedings of the 13th
Usenix Conference on Networked Systems Design and Implementation,
NSDI’16, pages 393–406, 2016.

[7] Yinghao Yu, Wei Wang, Jun Zhang, Qizhen Weng, and Khaled B.
Letaief. Opus: Fair and efficient cache sharing for in-memory data
analytics. In ICDCS, 2018 Proceedings, pages 154–164. IEEE, 2018.

[8] Asaf Cidon, Assaf Eisenman, Mohammad Alizadeh, and Sachin Katti.
Dynacache: Dynamic cloud caching. In Proceedings of the 7th USENIX
Conference on Hot Topics in Cloud Computing, HotCloud’15, pages
19–19, 2015.

[9] Gregory V. Chockler, Guy Laden, and Ymir Vigfusson. Design and
implementation of caching services in the cloud. IBM Journal of
Research and Development, 55(6):9, 2011.

[10] Gregory Chockler, Guy Laden, and Ymir Vigfusson. Data caching as
a cloud service. In Proceedings of the 4th International Workshop on
Large Scale Distributed Systems and Middleware, LADIS ’10, pages
18–21, New York, NY, USA, 2010. ACM.

[11] Jaesik Choi, Kejia Hu, and Alex Sim. Relational dynamic bayesian
networks with locally exchangeable measures. Technical Report LBNL-
6341E, Lawrence Berkeley National Laboratory, 2013.

[12] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan,
and Russell Sears. Benchmarking cloud serving systems with ycsb. In
Proceedings of the 1st ACM Symposium on Cloud Computing, SoCC
’10, pages 143–154, New York, NY, USA, 2010. ACM.

[13] Apache Ignite in-memory platform. https://ignite.apache.org/.

[14] George Almási, Cǎlin Caşcaval, and David A. Padua. Calculating stack
distances efficiently. SIGPLAN Not., 38(2 supplement):37–43, June
2002.

[15] Gyorgy Dan and Niklas Carlsson. Dynamic content allocation for cloud-
assisted service of periodic workloads. In INFOCOM, 2014 Proceedings,
pages 853–861. IEEE, 2014.

[16] Hui Zhang, Guofei Jiang, Kenji Yoshihira, and Haifeng Chen. Proactive
workload management in hybrid cloud computing. IEEE Transactions
on Network and Service Management, 11:90–100, 2014.

[17] N. Golrezaei, A. G. Dimakis, and A. F. Molisch. Scaling behavior
for device-to-device communications with distributed caching. IEEE
Transactions on Information Theory, 60(7):4286–4298, July 2014.

[18] Konstantinos V. Katsaros, George Xylomenos, and George C. Polyzos.
Globetraff: A traffic workload generator for the performance evaluation
of future internet architectures. In NTMS, pages 1–5, 2012.

[19] Jiang Yu, Xu Du, Tai Wang, and Chun Tung Chou. Internal popularity
of streaming video and its implication on caching. In 20th Int. Conf.
on Advanced Information Networking and Applications (AINA 2006),
Vienna, Austria, pages 35–40, 2006.

[20] Jake Wires, Stephen Ingram, Zachary Drudi, Nicholas J. A. Harvey, and
Andrew Warfield. Characterizing storage workloads with counter stacks.
In Proceedings of the 11th USENIX Conference on Operating Systems
Design and Implementation, OSDI’14, pages 335–349, 2014.

[21] Lei Guo, Enhua Tan, Songqing Chen, Zhen Xiao, and Xiaodong Zhang.
The stretched exponential distribution of internet media access patterns.
In Proceedings of the Twenty-seventh ACM Symposium on Principles
of Distributed Computing, PODC ’08, pages 283–294, New York, NY,
USA, 2008. ACM.

[22] Yogachandran Rahulamathavan, Raphael Chung-Wei Phan, Suresh
Veluru, Kanapathippillai Cumanan, and Muttukrishnan Rajarajan.
Privacy-preserving multi-class support vector machine for outsourcing
the data classification in cloud. IEEE Trans. Dependable Sec. Comput.,
11(5):467–479, 2014.

[23] W. Zhou, Y. Wang, Y. Xiang, J. Zhang, Y. Xiang, and Y. Guan. Network
traffic classification using correlation information. IEEE Trans. on
Parallel and Distributed Systems, 24:104–117, 01 2013.

[24] Sunhee Baek, Donghwoon Kwon, Jinoh Kim, Sang Suh, Hyunjoo
Kim, and Ikkyun Kim. Unsupervised labeling for supervised anomaly
detection in enterprise and cloud networks. In Proceedings of the 4th
IEEE International Conference on Cyber Security and Cloud Computing
(IEEE CSCloud 2017), New York, NY, USA, July 2017.

[25] Dongbing Gu and Huosheng Hu. Spatial gaussian process regression
with mobile sensor networks. IEEE Transactions on Neural Networks
and Learning Systems, 23(8):1279–1290, 2012.

[26] GPR. http://scikit-learn.org/stable/modules/gaussian process.html.
[27] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic

optimization. CoRR, abs/1412.6980, 2014.
[28] MariaDB. https://mariadb.org/.

https://redis.io/
https://aws.amazon.com/elasticache/
https://www.memcachier.com/
https://ignite.apache.org/
http://scikit-learn.org/stable/modules/gaussian_process.html
https://mariadb.org/

	I Introduction
	II Background
	II-A Problem Statement
	II-B Related Work

	III Proposed Design
	III-A Query Distribution Estimation
	III-B Cache Hit Rate Prediction
	III-B1 SVM Regression (SVR)
	III-B2 Gaussian Process Regression (GPR)
	III-B3 Regression with Fully Connected Network (FCN)
	III-B4 Comparison of Prediction Performance

	III-C Dynamic Cache Resizing

	IV Evaluation
	IV-A Experimental Settings
	IV-B Experiments with Synthetic Traces
	IV-C Experiments with YCSB

	V Conclusions
	References

