
Improving Multitask Performance and Energy

Consumption With Partial-ISA Multicores

Jeckson Dellagostin Souzaa, Pedro Henrique Exenberger Beckera,b, Antonio
Carlos Schneider Becka

aUniversidade Federal do Rio Grande do Sul - Porto Alegre, Brazil
bUniversitat Politècnica de Catalunya - Barcelona, Spain

Abstract

Modern GPPs implement specialized instructions in the form of ISA ex-
tensions aiming to increase the performance of emerging applications. These
extensions impose a significant overhead in the area and power of the pro-
cessor because of their specific datapaths (e.g. hardware for SIMD and FP
instructions may represent more than half of the core area). Considering that
some devices (e.g., edge computing), must be as energy- and area-efficient as
possible, and the sporadic usage of specialized instructions in many applica-
tions, we propose PHISA multicores. PHISA is composed of heterogeneous
cores of the same single base ISA, but asymmetric functionality: some of the
cores do not fully implement the costly instruction extensions, making room
for the designers to add more efficient cores. We show that PHISA increases
performance in (32%) and reduces energy consumption in (82%) compared
to full-ISA systems with the same power budget, in multi-workload environ-
ments.

Keywords: heterogeneity, partial-isa, overlapping-isa, reduced-isa, energy
efficiency, scheduling

1. Introduction

The Internet of Things (IoT) domain is composed of systems of differ-
ent complexity: from very simple nodes driven by ultra-low power micro-

Email addresses: jeckson.souza@inf.ufrgs.br (Jeckson Dellagostin Souza),
pedro@ac.upc.edu (Pedro Henrique Exenberger Becker), caco@inf.ufrgs.br (Antonio
Carlos Schneider Beck)

© 2021 Elsevier. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
 http://creativecommons.org/licenses/by-nc-nd/4.0/ 



controllers forming wireless sensors networks [1] to complex wearables that
demand high-performance processors [2]. It is natural that, as these systems
evolve, computation will be brought closer to the user, which makes edge
computing important for IoT applications [3]. Nonetheless, although it re-
quires high-performance processors, power and area will always be a strong
constraint in IoT systems. Therefore, in an environment of fast-paced appli-
cation evolution, the adaptability of executing different applications provided
by General Propose Processors (GPP), allied with techniques for reducing
energy consumption, will be essential for IoT devices.

Current embedded systems implement a variety of strategies to efficiently
deliver high-performance throughput at small power budgets, which can in-
spire IoT processor designs. One of the strategies that engage directly into
the processor core efficiency is the single-ISA (Instructions Set Architecture)
heterogeneous processors [4]. Examples adopted by the industry are the
ARM big.LITTLE[5], and - more recently - ARM DynamIQ[6], which com-
prise distinct cores with different performance and energy characteristics in
the same die. As they all implement the same ISA, threads can transparently
migrate between processors, allowing a scheduler to allocate jobs according to
the applications needs and non-functional requirements, such as performance
and energy.

The ISA of these GPPs has been incrementally tailored to increase the
performance of emerging applications. Each architectural iteration adds
newer instructions in the form of extensions (e.g., SSE and AVX in the x86,
and NEON and SVE in the ARM), increasing the complexity of the mi-
croarchitecture. However, not all applications will take advantage of such in-
structions. For instance, x86 AVX SIMD (Single Instruction Multiple Data)
instructions are specifically used for highly vectorized applications.

As the figure 1 shows, this is no different for NEON instructions in ARM
architectures, which is the instruction extension that contains both the Float-
ing Point (FP) and the Single Instruction Multiple Data (SIMD) instructions.
This figure shows the percentage of dynamic instructions executed in a wide
range of workloads from different benchmark sets (details on the experiments
are in Section 3). It demonstrates how NEON instructions (i.e., both SIMD
and FP operations) are underused, with many of the analyzed benchmarks
not issuing any Floating Point or SIMD instructions at all. Besides, the
NEON functional unit adds considerable area overhead, as one can observe
in figure 2, which shows the area breakdown of components for two ARM pro-
cessors. According to our experiments, the ARM A7, an in-order processor,



3
.9

6
%

0
.0

0
%

0
.0

5
%

0
.0

0
%

1
0

.5
9

%

1
9

.3
3

%

0
.0

0
%

9
.7

0
%

0
.0

0
%

0
.0

0
%

1
.8

5
%

1
.5

2
%

0
.1

6
%

0
.3

8
%

1
.2

9
%

0
.0

6
%

2
.8

0
%

0
.0

0
%

0
.3

8
%

0
.0

0
%

0
.0

0
%

0
.0

0
%

0
.0

0
%

6
.7

1
%

3
.3

0
%

0
.0

7
%

0
.0

0
%

0
.0

0
%

1
1

.6
8

%

1
2

.2
6

%

2
2

.9
8

%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

b
a

si
cm

a
th

b
it

co
u

n
t

q
so

rt

st
ri

n
g

se
a

rc
h

3
m

m

a
ta

x

d
y

n
p

ro
g lu

jp
e

g
-d

jp
e

g
-e

su
sa

n
-c

su
sa

n
-e

su
sa

n
-s

2
d

co
n

v

h
is

to
g

ra
m

li
b

p
n

g

li
b

a
v

-e
n

c

h
2

6
4

-d
e

c

re
g

-d
e

te
ct

A
E

S
-c

S
H

A

b
lo

w
fi

sh
-d

b
lo

w
fi

sh
-e

F
F

T
-i

F
F

T

g
sm

-d

g
sm

-e

C
R

C
3

2

co
rr

e
la

ti
o

n

e
cg

rs
y

n
th

algebra image/video processing security telecomm misc

SIMDFloat STORE LOAD MUL ALU

Figure 1: Instruction breakdown by category. The percentages in the top are from the
SIMDFloat (NEON) instructions only.

has a single NEON pipeline that occupies 26% of its total core area, while
the A15, an out-of-order processor, has two larger NEON pipelines that fill
69% of its core area. This data suggests that, even though there should be
some kind of hardware support to execute these extensions - as they can be
important for specific applications, they will come at high implementation
costs. Furthermore, it is very likely that implementing such support in every
core in a multicore system is neither performance- nor energy-wise.

Given this scenario, we propose the PHISA (Partially Heterogeneous ISA)
Multicore. A PHISA system comprises cores that partially implement an
ISA, removing selected instruction extensions and all the physical compo-
nents that are specific to the execution of those instructions. The best can-
didates for removal are the instructions that require vast portions of the
processor area, such as shown in figure 2, and that are not commonly used,
as demonstrated in figure 1. Although full-ISA cores may still be required
to execute the extensions, partial-ISA cores can replace a portion of these
full cores, reducing the area and the power dissipation of the entire multicore
system. With the resultant freed area and power, the designer can introduce
new cores, which may significantly improve performance on multi-workload
environments. The base reasoning of the PHISA system is that the designer
can trade part of the performance provided by the ISA extension units (in
the form of processed Instructions Per Cycle (IPC) for specific applications)
for more cores that can increase the system throughput (in the form of Task



Instruction Fetch 

Unit 10%

L1i 26%

Load Store 

Unit 4%

L1d 26% MMU 2%

Execution Unit

6%

NEON Unit 26%

(a) A7 in-order processor

Instruction Fetch 

Unit 3%

L1i 4% Renaming Unit

1%

Load Store Unit

2%

L1d 7%

MMU 1%
Execution Unit 13%

NEON Unit 69%

(b) A15 out-of-order processor

Figure 2: Area breakdown by processor component.

Parallelism (TP) for general applications). Therefore, instead of introduc-
ing more area and power to the highly constrained IoT system environment,
we use the resources once given to the expensive instruction extensions to
improve our system.

As in any heterogeneous system of homogeneous ISA, correctly allocat-
ing threads accordingly to their needs is also essential in our partial-ISA
system. Nonetheless, our system introduces an extra challenge: the sched-
uler must deal with tasks that require removed instruction extensions and
allocate them to full-ISA cores. Therefore, we also propose different ap-
proaches for scheduling and emulation of such instructions, aiming for both
performance and energy optimizations.

We evaluate the proposed system with different ratios of Full/Partial
ISA cores, using as a case study the ARM architecture with and without
the NEON instruction set, even though PHISA can be generalized to most
ISAs and extensions. Furthermore, our evaluation extends to different or-
ganization scenarios, comparing both systems of symmetric and asymmetric
performance and partial- and full-ISA. We show that a PHISA multicore
can improve performance and reduce energy in traditional edge computing
scenarios when compared to its full ISA system counterpart, considering the
same power budget. Furthermore, we show how PHISA compares to existing
heterogeneous processors (such as DynamIQ designs) and how it can also im-
prove performance and energy consumption in these scenarios using different
scheduling policies.

The remaining of this article is organized as follows. In section 2 we
present details on the implementation of PHISA multicores and its scheduler



requirements. Section 3 describes the methodology used to evaluate the
proposed system, while section 4 presents the many analyzed results for the
different scenarios. Section 6 discusses recent works related to this paper.
Finally, section 7 concludes this work.

2. PHISA Multicore

2.1. Proposed System

The PHISA multicore design removes hardware components specifically
used by an ISA extension while leaving the remaining microarchitecture of
a core unaltered. This core, which we call a Partial ISA core, keeps its
ability to execute instructions from its base ISA. Therefore, performance is
only affected for the removed instructions, as parameters such as issue-width,
execution order, and branch prediction are all kept the same. With the area
and power freed from removing these ISA extensions, we propose to increase
the core count of the system with smaller and simpler in-order cores. Figure
3 demonstrates our proposed design.

To handle the support for asymmetric ISA cores in a PHISA system, a
scheduler must be aware of the presence of faulting instructions. Whenever
a partial-ISA core fetches an instruction from a non-implemented extension,
it sends an unsupported op exception to the Operating System (OS) (e.g.
the already existent X86 TRAP UD trap in linux), which must handle this
exception - through the scheduler -, either emulating the instruction or mi-
grating it to a full core.

Full ISA 

OoO core

SIMD/FP

Unit

Partial ISA 

OoO core

Free Area

Full

InO

Full

InO

Figure 3: Example of PHISA configuration. The resources freed by an instruction exten-
sion are used to increase the core count.



L1 Instruction Cache

Instruction Fetch

3-way Instruction 

Decode

Register Rename

Dispatch
Issue (8-entry queue per issue port)

Lo
a

d
/S

to
re

Lo
a

d
/S

to
re

M
u

l/
D

iv

N
E

O
N

/F
P

U

N
E

O
N

/F
P

U

B
ra

n
ch

In
t 

A
LU

 0

In
t 

A
LU

 1

Writeback (60 entries) Retirement Buffer

Load/Store Unit

Store Buffer

L1 Data Cache

1
 S

ta
g

e
1

 S
ta

g
e

7
S

ta
g

e
5

 S
ta

g
e 1

2
 S

ta
g

e
 In

-O
rd

e
r P

ip
e

lin
e

3
-1

2
 S

ta
g

e
 O

u
t-o

f-O
rd

e
r P

ip
e

lin
e

1
 S

ta
g

e

2
-1

0
S

ta
g

e
s

4
 S

ta
g

e
s

4
 S

ta
g

e
s

Figure 4: A15 pipeline blocks. White blocks are components that can be simplified when
removing NEON support.

Each ISA extension adds its particular logic complexity. In this work, we
have focused on the NEON instructions from the ARM architecture (both
SIMD and FP operations) as a use case, as it is a high source of logic overhead
in the processors (figure 2). When excluding the NEON extension, we can
safely remove the entire SIMD and floating point pipelines from the execution
unit of the processor. The decoder stage can also be trimmed by removing
support for these instructions, as well as the FP instruction window in the
fetch stage of out-of-order designs. Separate FP register renaming table and
the FP register file (assuming the multiplication unit is adapted to use the
integer RF) in the dispatch stage can also be removed. Other general targets
for trimming include routing logic like write-backs, forwarding and even the
clock-tree of the processor. Figure 4 shows a diagram of the Cortex A15
pipeline. The white boxes indicate the processor components that can be
simplified when removing NEON instructions.

Other ISA extensions (not considered in this work) would incur into more
logic trimming in different regions of the processor. For instance, DSP in-



structions would simplify the integer pipeline of the processor, by removing
the Multiply-Accumulate (MAC) operations. It is important to notice that
some extensions are simpler to remove - from a design perspective - than
others. For instance, the NEON components are quite modular in ARM ar-
chitectures and could be easily removed - in fact, they are optional in some
ARM processor families, such as the A9. Nonetheless, design modifications
are unavoidable if the goal is to achieve an efficient PHISA system.

Considering that a PHISA system is composed of a combination of full-
and partial-ISA cores, it will always be able to execute any instruction from
the architecture set (by migrating tasks to the full cores whenever necessary).
Therefore, while PHISA multicore does not require any special compilers or
tools and can execute any application that has already been deployed, it re-
quires modifications in micro architecture and in the OS, especially in its
scheduler.

2.2. Scheduling

As with any heterogeneous processor, an efficient scheduler plays a major
role in the performance and energy consumption. In a PHISA multiprocessor,
the scheduler must be aware of which cores are capable of executing the
ISA extensions so that it can migrate workloads from partial to full cores
when necessary. Figure 5 shows a graphical representation of the scheduler
decisions. Each core (which can be a partial- or full-ISA core) keeps a queue
of workloads (different applications) to execute (1). When a core is idle,
it fetches a workload from its queue in a FIFO manner and executes the
workload until a migration event is triggered.

There are two events in which a workload can migrate from a core to
another. The first is when a partial core fetches an unimplemented instruc-
tion (2). When a typical processor fetches an instruction that cannot be
decoded, it generates a trap to the operating system, which would signal a
kill command for the process. In this work, we implement a fault-and-migrate
strategy [7] to handle the reallocation of workloads. Instead of treating the
trap with a signal kill, the operating system activates the ISA-aware sched-
uler that migrates the workload to the less busy full core in the system (with
the shortest workload queue)(3). The second event for migration is activated
after a workload has been executed for a minimum time in a full core(4).
Similarly, the workload will be migrated to the less busy core (which can be
either partial or full)(5).



Exec

Unit

Exec

Unit

Workload 

Queue

Workload 

Queue

Workload 

Queue

Exec

Unit

Exec

Unit

Workload 

Queue

1

2

3 4

5

Partial ISA

Partial ISA

Full ISA

Full ISA

Figure 5: Scheduler events between full and partial ISA cores.

Many applications present the behavior of interleaving integer and float-
ing point operations, which would cause frequent back and forth migrations.
To handle it, we consider a minimum time a thread must stay on full cores
of 160K cycles, as per suggested by previous studies as a period that intro-
duces minimal impact on performance [8]. The established minimum time
on a core helps to reduce these migrations when the application is executing
on the full core. However, they will still happen if the interleaved applica-
tion is rescheduled to a partial core after the minimum time. Our scheduler
handles this situation by (a) prioritizing migration of FP applications to full
cores or (b), if available to the system, by triggering FP instruction emula-
tion in software. In the case of software emulation, the task requiring the
non-implemented instruction can remain to execute in the partial core for a
threshold time (we use the same 160K cycles as threshold). We explore both
these solutions in our experiments.

2.3. Advanced Scheduler and Policies

In the previous subsection we introduced a simple scheduler to cope with
partial-ISA migrations that arise from our proposed PHISA system. How-
ever, this scheduler lacks support for different optimization goals (e.g., max-
imize performance), which is an essential feature in a scheduler for hetero-
geneous processors. To overcome this, we go one step further and improve
the former scheduler, introducing scheduling policies on it. The scheduling
policies coordinate task allocation in order to prioritize either overall perfor-
mance or energy efficiency.



In this improved version of the scheduler, we introduce the following
modifications:

• The workload queue is unified. Instead of using a queue for each
core, all workloads are sent to the same queue, where they can be
prioritized.

• Preemption in all cores. In the former scheduler we time-preempt
applications running in the full-cores to share NEON resources among
different tasks. The advances scheduler adopts time preemption on
partial-cores, so all applications have the same time slice to execute,
giving fairness to the system.

• Application annotation. Since the queue is now unified, we need to
keep track of applications that were preempted by partial-cores when
tried to execute a NEON instruction. The scheduler mark those appli-
cations to be assigned to full-cores in their next allocation (otherwise
they would be preempted from the partial-cores once again). The mark
is removed when applications are time preempted without requiring
NEON instructions during their last execution time slice.

Given these modifications, we create two versions of the advanced sched-
uler, one trying to optimize execution for performance, and the other for
energy consumption. For performance optimization, we assume that the sys-
tem’s OoO cores always present better performance than the in-order cores,
thus we prioritize allocation in the OoO cores first. For energy, we assume
that the in-order cores will always have better energy efficiency, prioritizing
the allocation on them. Furthermore, applications that are not specifically
marked to use instruction extensions (are executing instructions from the
base ISA) will prioritize execution in partial-ISA cores, leaving the full free
for applications that need these cores.

In this new scheduler scheme, all workloads are released from their cores
after the preemption phase (again of 160K cycles) and sent back to the now
unified workload queue. Cores that fetch non-supported instructions will im-
mediately release their workloads and call the scheduler for a new assignment.
These workloads are annotated as ISA dependent on their next allocation.
The algorithm is executed after the preemption release for all workloads in
the queue, in a FIFO manner, until no core is left idle or the queue is empty.



3. Methodology

Modeling and Simulation: We have used the gem5 simulator [9] to
model the different versions of the ARM’s A7 and A15 processors. For area
and power measurements, we have modeled the same processors in McPAT
[10] using a node technology of 28nm, with both running at the same fre-
quency of 2GHz. Our models consider the entire core (including MMU and
instruction and data L1 caches) without L2 caches. Although McPAT mod-
els its components according to an A9 processor, we have used an approach
similar to the one proposed in [11] to model the A7 and A15. The authors
show that this approach results in models very close to the real processors.
McPAT also allows for configurations without FP and SIMD units (by sim-
ply setting the FP related tags in the template to zero), which also triggers
the exclusion of the FP instruction window, the FP Register File (RF) and
the FP register renaming structures. Nonetheless, this approach is a conser-
vative model, as removing the NEON extension and all its hardware would
also affect other structures, such as the instruction decoder and the clock
tree [12]. Thus, our model very likely represents a pessimistic view of the
potential area and power reductions.

Workload and Scheduling: Our workload set uses applications from
different sources [13] [14] [15] [16] to form representative use case scenarios
for edge computing, as listed in figure 1. We aim to simulate traditional but
assorted scenarios. We assume scenarios in which the applications run either
completely in parallel, or in a pipeline manner - applications can output
partial results to feed the input of the next benchmark. These scenarios are
illustrated in table 1, in which the column ’Task’ briefly describes the goal
of the scenario, column ’Workloads’ lists the benchmarks executed, column

Table 1: Workloads in each scenario.

Task Workloads Exec Mode % NEON

Scenario 1 Image processing
Susan (smooth, edges, corners);
2dconv; histogram; reg-detect;
libpng; aes; CRC32; FFT

pipeline 0.5%

Scenario 2 Video encoding FFT-i; libav-enc; aes; CRC32; FFT pipeline 3.34%
Scenario 3 Video decoding FFT-i; aes; h264-dec; CRC32; FFT pipeline 0.04%
Scenario 4 Health app FFT-i; ecg; libpng; aes; CRC32; FFT pipeline 2.55%
Scenario 5 Voice synthesis rsynth; aes; CRC32; FFT pipeline 3.48%

Scenario 6 Multitasking
basicmath; bitcount; qsort;
stringsearch; 3mm; atax;
dynprog; correlation

parallel
tasks

8.92%



’Exec Mode’ specify if the scenario runs in pipeline or in parallel and ’%
NEON’ shows the percentage of dynamic NEON operations executed.

In scenario 1, we include a series of image filters and kernel operations
that represent an image processing application. Scenario 2 and 3 include
opensource libraries for encoding and decoding videos, along with kernels
that represent data transmission (FFT and FFT-i), criptografy (AES) and
redundancy and fault tolerance checks (CRC32)[17]. These latter kernels
are also used in scenario 4 - a health app that performs an ECG and uses
the opensource libpng library to create an image from the source -, and
scenario 5, an app that uses rsynth to generate synthetic voice for user-device
conversation. Finally, scenario 6 represents a multitasking environment in
which the edge device is receiving tasks from multiple sources. For instance,
3mm and atax are matrix multiplication, transpose and vector multiplication
kernels used in graphic processing, and dynamic programming (dynprog) and
correlation are commonly used in data analitics.

Most of the chosen applications contain some degree of NEON usage.
For instance, the selected kernels (correlation, 3mm, atax) are known for
generating vectorized instructions, while the opensource libraries libav and
libpng are optimized to use NEON operations. In our scenarios, from the
23 benchmarks used, only the applications bitcount, stringsearch, dynprog,
h264-dec, CRC32 and AES do not present NEON instructions, representing
common integer-only workloads. Although the selected applications - and
their NEON usage - are representative for an assorted edge computing en-
vironment, a scalability study, in which we further increase the number of
NEON operations executed, will be presented in the section 5.

Finally, to compile our workloads, we have used the gcc arm cross com-
piler arm-linux-gnueabihf-gcc version 7.3.0 with -O3 optimization flag, which
includes flags to generate vectorized instructions. The open source libraries
were also configured to use optimizations for NEON.

During our experimentation we consider the reallocation cost that occur
each time a workload is selected from the queue and assigned to a core.
This cost considers the amount of time necessary to populate the L1 data
cache, which is claimed to be the dominant time of task migration [18].
The A15 processors need an average of 12K cycles to fill its data cache,
while the A7 requires 17K cycles. This value may be improved, since we
are not using any data prefetch technique when migrations are applied. We
performed a number of experiments to estimate the cost of emulating NEON
instructions. We have run applications with high NEON usage both using



Table 2: Multicore configurations. *PHISA core using emulation

Configuration
A7 A15

Area (mm²) Power (W)
Full PHISA Full PHISA

A15(4F0P) 0 0 4 0 14.12 2.76
A15(3F1P) 0 0 3 1 11.76 2.66
A15(2F2P) 0 0 2 2 9.41 2.56
A15(1F3P) 0 0 1 3 7.05 2.45

A15(1F0P) 0 0 1 0 3.53 0.69
A15(0F1P)A7(2F0P) 2 0 0 1 2.19 0.69
A15(0F1P)A7(1F1P) 1 1 0 1 2.07 0.69
A15(0F1E)A7(2F0P) 2 0 0 1* 2.19 0.69
A15(0F1E)A7(1F1E) 1 1* 0 1* 2.07 0.69

A15(1F0P)A7(2F0P) 2 0 1 0 4.54 0.80
A15(0F1P)A7(4F0P) 4 0 0 1 3.20 0.80
A15(0F1E)A7(2F2E) 2 2* 0 1* 2.96 0.79

the NEON hardware and using software emulation and found that for each
cycle executing in the NEON unit, an average of 40 cycles are required for
emulation. We use this data for our emulation scenarios. Again, this is a
higher cost than considered in previous works [12].

Experiments: We have built several PHISA configurations using A7
and A15 processors with different ratios of full and partial cores. Table 2
shows all the tested configurations with their area and power characteristics,
while table 3 brings a summary of all experiments (which we name Setups)
evaluated in this work, with a description, goals, the selected baseline, and
the tested configurations. Below we briefly describe all the setups shown in
the Results section. In Setup 1 (4.1), we progressively replace full A15 cores
by partial-ISA A15 cores to observe the impact of excluding the instruction
extension datapaths. The first block of configurations in table 2 shows all the
tested scenarios of this experiment, along with their extracted peak power
and area, where the configuration names represent the type of cores they
implement. For instance, the A15(3F1P) is a 4-Core processor with 3 Full
cores and 1 PHISA.

We then build extra PHISA configurations composed of A15 cores without
NEON units (partial cores) and full A7 cores in Setup 2 (4.2). The second
block in table 2 provides details on them. In this experiment, we compare
the PHISA configurations that have the same peak power as a single-, full-
ISA A15 core. We also try to extrapolate - aiming to further reduce energy
- replacing one of the A7 full cores with a partial core.



Table 3: The experiments and their goals

Description Goal Baseline Configurations Section

Setup 1
Homogeneous PHISA
organization

Measure the impact of removing ISA
extensions from a multicore processor

A15(4F0P)
A15(4F0P); A15(3F1P);
A15(2F2P); A15(1F3P)

4.1.1

Setup 2
Heterogeneous PHISA
organization with same
power budget of single core

Use the extra area and power of
removing ISA extensions to create
a heterogeneous system

A15(1F0P)
A15(1F0P);
A15(0F1P)A7(2F0P);
A15(0F1P)A7(1F1P)

4.2.1

Setup 3
Heterogeneous PHISA
organization vs
DynamIQ-like configuration

Understand which gains are derived
from the heterogeneous PHISA
organization and which are from
the use of big and little cores

A15(1F0P)A7(2F0P)
A15(1F0P)A7(2F0P);
A15(0F1P)A7(2F0P);
A15(0F1P)A7(1F1P)

4.3.1

Setup 4
Heterogeneous PHISA
organization with emulation vs
DynamIQ-like configuration

Using emulation to reduce migrations
in the PHISA system and
amortize the performance loses

A15(1F0P)A7(2F0P)
A15(1F0P)A7(2F0P);
A15(0F1E)A7(2F0P);
A15(0F1E)A7(1F1E)

4.3.3

Setup 5
Heterogeneous PHISA
organization with same power
budget of DynamIQ-like

Reestabilish the power budget to
compare the DynamIQ-like system
with the PHISA multicores

A15(1F0P)A7(2F0P)
A15(1F0P)A7(2F0P);
A15(0F1P)A7(4F0P);
A15(0F1E)A7(2F2E)

4.3.4

We perform another experiment in Setup 3 (4.3) in which the power and
area constraints are lifted to compare the PHISA system against a traditional
single-ISA heterogeneous processor - reflecting an ARM DynamIQ configura-
tion. The goal is to understand if the gains observed in Setup 2 were due to
the PHISA configuration or because of the heterogeneous environment. We
also discuss, in Setup 4 (4.3.3), how these configurations would perform using
emulation in the partial-ISA cores before migrating to a full core, without
considering any power or area constraints. Finally, we apply the power con-
straints back to show how a PHISA system of same power as the DynamIQ
configuration would perform, both with and without emulation (Setup 5,
4.3.4). These are presented in the third block of configurations in table 2.

The experiments presented in the setups of table 3 were all executed using
the simple scheduler without any optimization policies. In subsection 4.4 we
analyze the same experiments of setups 2 and 5 (single core and DynamIQ-
like baselines against same power budget PHISAs) using scheduling policies
to optimize performance and energy.

We also perform a final analysis in section 5, in which we estimate the
behavior of PHISA in environments with high NEON usage. We have tested
configurations similar to those from the previous experiments to analyze the
behavior of Energy-Delay Product (EDP) when hypothetical applications
with high usage of NEON instructions are executed.

4. Results

In this section, we present the results for the Setups described in table 3.
From subsections 4.1 to 4.3, we present all results using the simple scheduler



described in subsection 2.2. This scheduler is meant to provide the behav-
ior of a PHISA system without necessarily optimizing it for any particular
requirement. Later, in subsection 4.4, we introduce new results for some of
the most interesting Setups, but using an advanced scheduler with policies
to optimize for either performance or energy consumption, as described in
subsection 2.3.

4.1. Impact of Partial ISA Cores

4.1.1. Experiment discussion:

In this experiment, we measure the impact of implementing partial ISA
cores in a multicore environment. The goal is to evaluate if removing cores
capable of executing NEON operations would impact the performance and
energy of the system, and in which ratio (full:partial) this impact would
become relevant. This is done - as described in table 3 as setup 1 - by pro-
gressively replacing full A15 ISA cores by partial A15 ISA ones in systems
with 4 cores. The first block of configurations in table 2 shows how area and
power behave in the modeled systems of this experiment, with an expressive
reduction in area and a smaller, but considerable, decrease in power for con-
figurations that comprise partial ISA cores. For example, when aggressively
replacing full cores in the quad core processor, the area is reduced by 50%,
while power decreases by 11%.

Given the expected area and power decrease, we now analyze how they
influence performance and energy consumption. We have executed all the
six scenarios in table 1 in all systems from the first block in table 2. Figure
6 shows results for this experiment. The x-axis contains the different A15
multicore versions, separated by each evaluated application scenario. The
y-axis shows the normalized number of cycles (the lower the number of cy-
cles, the better is the performance), energy and EDP with respect to the
A15(4F0P) configuration, which represents a traditional full-ISA multicore
processor. For all the metrics, the lower the bar, the better. As the figure 6
shows, for most of the scenarios, the number of cycles increases as we include
more partial cores, which is expected, as partial cores will need to migrate
tasks that require NEON instructions. Energy, on the other hand, remains
almost constant in most cases, due to the power reductions of the partial
cores.



0

0.5

1

1.5

2

2.5
A

1
5

(4
F

0
P

)

A
1

5
(3

F
1

P
)

A
1

5
(2

F
2

P
)

A
1

5
(1

F
3

P
)

A
1

5
(4

F
0

P
)

A
1

5
(3

F
1

P
)

A
1

5
(2

F
2

P
)

A
1

5
(1

F
3

P
)

A
1

5
(4

F
0

P
)

A
1

5
(3

F
1

P
)

A
1

5
(2

F
2

P
)

A
1

5
(1

F
3

P
)

A
1

5
(4

F
0

P
)

A
1

5
(3

F
1

P
)

A
1

5
(2

F
2

P
)

A
1

5
(1

F
3

P
)

A
1

5
(4

F
0

P
)

A
1

5
(3

F
1

P
)

A
1

5
(2

F
2

P
)

A
1

5
(1

F
3

P
)

A
1

5
(4

F
0

P
)

A
1

5
(3

F
1

P
)

A
1

5
(2

F
2

P
)

A
1

5
(1

F
3

P
)

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 6

Cycles Energy EDP

Figure 6: A15 Full cores being progressively replaced by their partial ISA counterparts
considering each application scenario. Performance, Energy and EDP are normalized to
the A15(4F0P) configuration

4.1.2. Observations from this experiment:

Two observations should be highlighted at this point. (i) Although the
cycle count increase is significant in the tested scenarios, this increase is
much smaller when the proportion of full cores is high. For example, in
the configuration with 75% of full ISA cores and 25% partial ISA cores (the
A15(3F1P)), the increase in cycle counts is only relevant in scenario 6 (about
10%). In other words, partial cores can be introduced in the system as long
as we provide enough full cores for NEON execution. (ii) As seen in Table 4,
the full ISA A15 processor power is about 14x higher than the full A7 and
occupies about 7x more area. A single partial A15 ISA core has 66% less
area from a full A15 core, and 15% of less power. The freed area represents 4
times the area of a full A7, while the freed power is approximately the same
as 2 full A7 cores. Thus, extra A7 cores (which may be full or partial) can
be introduced in the freed area of the system, while still respecting a power
budget. Next, we explore the trade-off between replacing full A15 by partial
A15 cores - which consequently decreases performance - and adding A7 cores
to recover some of the performance and increase energy efficiency.

Table 4: Area and power of full and partial A15 and A7 processors.

A15 A7
Full PHISA Full PHISA

Area(mm2) 3.53 1.17 0.5 0.38
Power(W ) 0.69 0.59 0.05 0.046



4.2. Full Core vs PHISA Multicore - Sharing a Power Budget

According to the discussion provided by the previous subsection, let us
consider that most IoT systems are battery-powered and it is necessary
to limit their designs to a particular peak power supplied by their batter-
ies. Thus, we establish a power budget for our system and use the extra
area and power provided by PHISA multicores to retrieve the lost perfor-
mance (due to fewer NEON units) using extra A7 cores. For that, we create
heterogeneous multicore configurations (in organization and ISA) that fit
in the same area and power budgets of a traditional single-core processor.
For that, we have built Setup 2 as described in table 3, with configura-
tions A15(0F1P)A7(1F1P) and A15(0F1P)A7(1F1P), which have approxi-
mately the same peak power as the traditional single-core A15 processor
(A15(1F0P), as shown in table 2).

4.2.1. Experiment discussion:

Figure 7 shows the performance and energy consumption of the PHISA
configurations A15(0F1P) A7(0F2P), A15(0F1P) A7(1F1P) and the tradi-
tional single-core A15(1F0P). PHISA multicores can significantly decrease
energy consumption while also improving performance, as long as enough
full cores are provided. A15(0F1P) A7(2F0P) reduces energy by 3.11x while
improving performance by 1.94x in scenario 1 (Image Processing) when com-
pared to the baseline. Similar results are observed in the other scenarios.
The performance increase is mainly attributed to the extra cores present in
the system, which can execute more workloads in parallel. As the workloads
are independent (apart from their pipelined behavior), the scheduler can eas-
ily distribute the applications between cores, so more cores result in more
performance. On the other hand, energy is reduced by the use of much less
power hungry cores. Not only the partial ISA A15 cores have reduced power
when compared to the traditional design, but the full A7 processors added
to the system are also much more efficient. The exception is when execution
scenario 6 (Mathematics & Algorithms), which is also the scenario that uses
NEON operations the most. In this scenario, the pressure on the full cores
(A7 cores) is much higher, thus the performance drop.

4.2.2. About the cores usage:

Figure 8 shows the usage of the cores in configuration A15(0F1P) A7(2F0P)
running scenario 6. In the figure, Core0 is the partial A15 core, and the others
are the full A7. The figure shows how the big cores are idle (low step) during



a great part of the execution. The ”solid bar” in Core0 are constant changes
in the core state, which happen when the core has no more tasks to run
(idle), receives a task (active) and the task fetches a NEON instruction and
migrates again (idle). Such periods of inactivity are usually of 160K cycles,
which is the period of migration in the full cores. This smaller load in the
big cores greatly affects the energy consumption, as the A7 cores have a peak
power nearly 10x lower than the A15. Thus, although the maximum peak
power of the PHISA is the same as the baseline, the dynamic peak power of
the system is smaller because the workload is not fully concentrated in the
big cores.

4.2.3. Introducing partial-ISA A7:

Extrapolating further the reduction of power using partial cores, config-
uration A15(0F1P)A7(1F1P) - also in figure 7 - replaces a full A7 core with
its partial version, leaving the configuration with only one full core. The
energy consumption shows a small decrease in the scenarios, but the extra
pressure in the only full core in the system causes a high increase in the
number of cycles, which in turn, prevents higher energy reductions. This is
consistent with the experiments in section 4.1.1, in which the ratio of full
cores should be bigger than partial to maintain performance. In general, the
trade-off between performance and energy consumption - the EDP - is worse
in configuration A15(0F1P)A7(1F1P), mainly because of the poor perfor-
mance of such a system. Scenarios 1 and 6 show a huge reduction in energy,
and, controversially, a high increase in the number of cycles. This is because
both of these scenarios include many applications that execute NEON in-
structions and compete for the only full core, an A7 core. As most of the

0

0.5

1

1.5

2

A
1

5
(1

F
0

P
)

A
1

5
(0

F
1

P
)

A
7

(2
F

0
P

)

A
1

5
(0

F
1

P
)

A
7

(1
F

1
P

)

A
1

5
(1

F
0

P
)

A
1

5
(0

F
1

P
)

A
7

(2
F

0
P

)

A
1

5
(0

F
1

P
)

A
7

(1
F

1
P

)

A
1

5
(1

F
0

P
)

A
1

5
(0

F
1

P
)

A
7

(2
F

0
P

)

A
1

5
(0

F
1

P
)

A
7

(1
F

1
P

)

A
1

5
(1

F
0

P
)

A
1

5
(0

F
1

P
)

A
7

(2
F

0
P

)

A
1

5
(0

F
1

P
)

A
7

(1
F

1
P

)

A
1

5
(1

F
0

P
)

A
1

5
(0

F
1

P
)

A
7

(2
F

0
P

)

A
1

5
(0

F
1

P
)

A
7

(1
F

1
P

)

A
1

5
(1

F
0

P
)

A
1

5
(0

F
1

P
)

A
7

(2
F

0
P

)

A
1

5
(0

F
1

P
)

A
7

(1
F

1
P

)

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 6

Cycles Energy EDP

Figure 7: Evaluation PHISA multicores against a homogeneous baseline under a 700mW
power budget. Performance, Energy and EDP are normalized to the A15(1F0P) configu-
ration



Figure 8: Core usage in configuration A15(0F1P)A7(2F0P) running scenario 6. High step
means the core is in usage, low step is idle. Solid bars are constant idle-active changes.
Dots represent migrations.

execution happens in the A7 core, which is extremely energy efficient, the
energy consumption falls, but the cycle count increase. Other scenarios have
higher NEON usage than scenario 1, however, in these scenarios, the NEON
operations are concentrated in fewer applications. For instance, in scenario
5 the NEON operations are only required by rsynth and FFT, which makes
it simpler for the scheduler to manage the full A7 resources. In general, the
power reduction from replacing a full A7 core with a partial version is too
small, and do not show enough advantages as is the case of the bigger A15
cores.

In this experiment, we have seen that it is possible to create heteroge-
neous systems with PHISA and have better energy consumption than power
equivalent full processors. Nonetheless, if the power budget is not considered,
this is as expected from all heterogeneous processors. In the next section,
we show through setup 3 which are the real gains provided by the PHISA
system.

4.3. PHISA vs Traditional Heterogeneous Systems (DynamIQ)

4.3.1. Experiment discussion:

Heterogeneous processors naturally deliver better energy efficiency than
homogeneous multicores. To understand which gains are derived from the
usage of PHISA and which are simply from having additional cores, we now



evaluate configuration A15(1F0P)A7(2F0P), which represents a DynamIQ
heterogeneous processor in figure 9. Nonetheless, it is important to highlight
that, in this configuration, the power and area budgets are completely
ignored. Configuration A15(1F0P)A7(2F0P) is much bigger (more than
twice the size) and has higher power (about 14%) than the PHISA equivalents
of same core count. Thus, it is expected that the PHISA system will be worse
in performance in this scenario, as the DynamIQ has much more resources
to use.

As can be seen in the figure 9, the cycle count of the configurations with
partial cores is higher than those from the DynamIQ configuration, which
was expected, as the full core configuration does not require migrations to
execute NEON instructions. On the other hand, energy consumption in the
PHISA systems is usually lower, showing that partial ISA cores are essen-
tial to decrease energy. In fact, the EDP of the PHISA system is usually
lower, showing that the partial cores can deliver better trade-off between
performance and energy consumption. Energy consumption in the PHISA
configurations is reduced due to the partial A15 cores. The original A15 pro-
cessor has a peak power 15% higher than its counterpart partial ISA version.
Besides, since in the PHISA configuration the A15 cannot execute NEON in-
structions, the scheduler must migrate the workloads from the power-hungry
A15s to the efficient A7s more frequently than in the traditional system.
Effectively, these migrations increase the usage of the A7 cores, leaving the
A15 idler and reducing energy consumption.

The DynamIQ configuration, on the other hand, tends to use the A15 core
more often to increase performance, which comes at the price of energy. If the
scheduler of the DynamIQ were to be changed to optimize energy - and use

0

1

2

3

A
1

5
(1

F
0

P
)

A
7

(2
F

0
P

)

A
1

5
(0

F
1

P
)

A
7

(2
F

0
P

)

A
1

5
(0

F
1

P
)

A
7

(1
F

1
P

)

A
1

5
(1

F
0

P
)

A
7

(2
F

0
P

)

A
1

5
(0

F
1

P
)

A
7

(2
F

0
P

)

A
1

5
(0

F
1

P
)

A
7

(1
F

1
P

)

A
1

5
(1

F
0

P
)

A
7

(2
F

0
P

)

A
1

5
(0

F
1

P
)

A
7

(2
F

0
P

)

A
1

5
(0

F
1

P
)

A
7

(1
F

1
P

)

A
1

5
(1

F
0

P
)

A
7

(2
F

0
P

)

A
1

5
(0

F
1

P
)

A
7

(2
F

0
P

)

A
1

5
(0

F
1

P
)

A
7

(1
F

1
P

)

A
1

5
(1

F
0

P
)

A
7

(2
F

0
P

)

A
1

5
(0

F
1

P
)

A
7

(2
F

0
P

)

A
1

5
(0

F
1

P
)

A
7

(1
F

1
P

)

A
1

5
(1

F
0

P
)

A
7

(2
F

0
P

)

A
1

5
(0

F
1

P
)

A
7

(2
F

0
P

)

A
1

5
(0

F
1

P
)

A
7

(1
F

1
P

)

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 6

Cycles Energy EDP

Figure 9: Evaluation of PHISA multicores against a DynamIQ baseline. The baseline has
the same amount of cores as the PHISA configurations, thus there is no power/area budget.
Performance, Energy and EDP are normalized to the A15(1F0P)A7(2F0P) configuration



the A7 cores at the same ratio as PHISA - it would still consume more energy,
as the full A15 core dissipates more power than the partial-ISA version. This
balance is clearly seen with configuration A15(0F1P)A7(1F1P) in scenario
6, which frequently requires the NEON unit. There is only one full A7 in
the system and it has to execute all the NEON requests from the workloads.
This pressure increases the time required to execute all applications, but also
reduces energy consumption, as the A7 is much more efficient than the A15.

4.3.2. About task migration:

Scheduling in PHISA multicores is tied to the usage of NEON instructions
by a workload. In figure 8 we have seen that the full A7 cores are constantly
receiving tasks by the scheduler and this is due to two reasons: (i) every time
a workload migrates to a full core, it must stay for a minimum amount of
cycles (160K in this work); and (ii) when a partial A15 core fetches a NEON
instruction, it must migrate the job to an A7. In figure 8, to avoid constant
migration, the simple scheduler we used (from subsection 2.2) will prioritize
NEON applications to full cores: if a full core migrates an application and
there are two possible targets (same size of workload queue), being one full
and the other a partial core, it will schedule the application to the full core.
This helps to avoid constant back and forth migrations from the partial
cores, as they will be assigned more integer workloads. However, this does
not completely remove the problem, as when the full cores are all busy, and
the partial ones are free, workloads will be assigned to the partial cores,
independently of the type of instruction they hold. This can be seen, as
already mentioned, in the Core 0 of figure 8 as a ”solid bar.” This event is
frequently observed in scenario 6 that is composed of many applications with
NEON usage.

These excessive migrations are also the reason for the high increases in
the cycle counts of PHISA systems observed in the experiment of figure
9. To mitigate this problem and reduce the number of migrations we have
implemented the ability to emulate NEON instructions in the partial cores.
We have established a threshold time in which the partial cores will emulate
NEON instructions before migrating the task to a full core. In other words,
every time a NEON instruction is fetched by a partial core, the scheduler will
decide whether the instruction should be emulated in software or migrate to
a capable core: if the workload has already been executed for more than
the threshold time in that core, it migrates. Otherwise, it emulates the
instruction. For the sake of compatibility of the migration times, we have set



0

0.5

1

1.5

2
A

1
5

(1
F

0
P

)

A
7

(2
F

0
P

)

A
1

5
(0

F
1

E
)

A
7

(2
F

0
P

)

A
1

5
(0

F
1

E
)

A
7

(1
F

1
E

)

A
1

5
(1

F
0

P
)

A
7

(2
F

0
P

)

A
1

5
(0

F
1

E
)

A
7

(2
F

0
P

)

A
1

5
(0

F
1

E
)

A
7

(1
F

1
E

)

A
1

5
(1

F
0

P
)

A
7

(2
F

0
P

)

A
1

5
(0

F
1

E
)

A
7

(2
F

0
P

)

A
1

5
(0

F
1

E
)

A
7

(1
F

1
E

)

A
1

5
(1

F
0

P
)

A
7

(2
F

0
P

)

A
1

5
(0

F
1

E
)

A
7

(2
F

0
P

)

A
1

5
(0

F
1

E
)

A
7

(1
F

1
E

)

A
1

5
(1

F
0

P
)

A
7

(2
F

0
P

)

A
1

5
(0

F
1

E
)

A
7

(2
F

0
P

)

A
1

5
(0

F
1

E
)

A
7

(1
F

1
E

)

A
1

5
(1

F
0

P
)

A
7

(2
F

0
P

)

A
1

5
(0

F
1

E
)

A
7

(2
F

0
P

)

A
1

5
(0

F
1

E
)

A
7

(1
F

1
E

)

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 6

Cycles Energy EDP

Figure 10: Evaluation of PHISA multicores allowing emulation against a DynamIQ base-
line. The baseline has the same amount of cores as the PHISA configurations, thus
there is no power/area budget. Performance, Energy and EDP are normalized to the
A15(1F0P)A7(2F0P) configuration

this threshold to 160K cycles, the same time as the original migration event
for full cores.

4.3.3. The impact of emulation:

Figure 10 shows the results for configurations A15(0F1E)A7(2F0P) and
A15(0F1E)A7(1F1E) compared to the DynamIQ-like configuration. In this
processor, the ’E’ in the name means a partial-ISA core that can emulate
NEON instructions in software. As the figure shows, the emulation strategy
can amortize some of the impacts in cycle counts caused by the partial cores.
In some scenarios, such as 2, 4 and 5, the cycle count is even smaller than
the baseline, due to the balancing of workloads in the cores. The energy, on
the other hand, increases when compared to the non-emulation scenario, as
now the partial A15 cores are used more frequently. When one considers the
EDP, the PHISA systems are better than the baseline in almost all cases.
Nonetheless, it is important to remember that, in this case, the original
DynamIQ-like configuration is 2x bigger and has 14% higher peak power
than the PHISA configurations (table 2).

4.3.4. PHISA vs DynamIQ with Power Parity:

When one considers a power budget parity between the DynamIQ and the
PHISA configurations, it is possible to add two extra A7 cores in the system.
This parity is represented in configuration A15(0F1P)A7(4F0P) and a version
with more partial cores, but with emulation, A15(0F0E)A7(2F2P) in table 2.
Figure 11 shows the results for running the scenarios in these configurations.
In all the scenarios, the PHISA processors have better performance, energy



0

0.5

1

1.5

2
A

1
5

(1
F

0
P

)

A
7

(2
F

0
P

)

A
1

5
(0

F
1

P
)

A
7

(4
F

0
P

)

A
1

5
(0

F
1

E
)

A
7

(2
F

2
E

)

A
1

5
(1

F
0

P
)

A
7

(2
F

0
P

)

A
1

5
(0

F
1

P
)

A
7

(4
F

0
P

)

A
1

5
(0

F
1

E
)

A
7

(2
F

2
E

)

A
1

5
(1

F
0

P
)

A
7

(2
F

0
P

)

A
1

5
(0

F
1

P
)

A
7

(4
F

0
P

)

A
1

5
(0

F
1

E
)

A
7

(2
F

2
E

)

A
1

5
(1

F
0

P
)

A
7

(2
F

0
P

)

A
1

5
(0

F
1

P
)

A
7

(4
F

0
P

)

A
1

5
(0

F
1

E
)

A
7

(2
F

2
E

)

A
1

5
(1

F
0

P
)

A
7

(2
F

0
P

)

A
1

5
(0

F
1

P
)

A
7

(4
F

0
P

)

A
1

5
(0

F
1

E
)

A
7

(2
F

2
E

)

A
1

5
(1

F
0

P
)

A
7

(2
F

0
P

)

A
1

5
(0

F
1

P
)

A
7

(4
F

0
P

)

A
1

5
(0

F
1

E
)

A
7

(2
F

2
E

)

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 6

Cycles Energy EDP

Figure 11: Evaluation of PHISA multicores with and without emulation against a Dy-
namIQ baseline under a 800mW power budget. Performance, Energy and EDP are nor-
malized to the A15(1F0P)A7(2F0P) configuration.

and, consequentially, EDP than the completely full-ISA processor. The best
performance improvement is observed in scenario 4 (Health app) with 32%
reduction in cycle count. This scenario presents applications that contain
high NEON usage (ECG), but that are very fast to execute, creating a perfect
scenario for the extra A7 cores. The best energy consumption is observed
in scenario 5 (Voice synthesis) - with 82% reduction -, which is composed
of only two NEON applications, which can execute in the two full cores of
the system, while the other applications are executing in the (more energy
efficient) partial-ISA cores. Furthermore, as shown in table 2, the PHISA
configurations are still smaller, in area, than the DynamIQ-like processor.
Thus, the PHISA designs present as an opportunity to create systems that
are smaller and more energy efficient than the current industry trend.

4.4. Advanced Scheduler and Policies Impact

4.4.1. Scheduling for Performance

As previously discussed, we have redesigned the initial simple scheduler
to make a best effort to optimize the system for different goals. In the
performance policy, the scheduler always gives priority to allocate tasks in
the big OoO cores (A15), assuming that this core will execute the application
faster than the small in-order cores (A7). Although this prioritization can
improve system performance, it might not be the best strategy if one expects
higher energy efficiency.

In this experiment, we have simulated the same scenarios from table 1,
comparing the the configurations from setup 2 (heterogeneous PHISA against
single-core baseline with same TDP) and setup 4 without emulation (hetero-
geneous PHISA against traditional DynamIQ-like system with same area



0

0.5

1

1.5

2

A
1

5
(1

F
0

P
)

A
1

5
(0

F
1

P
)

A
7

(2
F

0
P

)

A
1

5
(0

F
1

P
)

A
7

(1
F

1
P

)

A
1

5
(1

F
0

P
)

A
1

5
(0

F
1

P
)

A
7

(2
F

0
P

)

A
1

5
(0

F
1

P
)

A
7

(1
F

1
P

)

A
1

5
(1

F
0

P
)

A
1

5
(0

F
1

P
)

A
7

(2
F

0
P

)

A
1

5
(0

F
1

P
)

A
7

(1
F

1
P

)

A
1

5
(1

F
0

P
)

A
1

5
(0

F
1

P
)

A
7

(2
F

0
P

)

A
1

5
(0

F
1

P
)

A
7

(1
F

1
P

)

A
1

5
(1

F
0

P
)

A
1

5
(0

F
1

P
)

A
7

(2
F

0
P

)

A
1

5
(0

F
1

P
)

A
7

(1
F

1
P

)

A
1

5
(1

F
0

P
)

A
1

5
(0

F
1

P
)

A
7

(2
F

0
P

)

A
1

5
(0

F
1

P
)

A
7

(1
F

1
P

)

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 6

Cycles Energy EDP

Figure 12: Evaluation PHISA multicores against a single-core baseline under a 700mW
power budget. Scheduling of tasks follows a performance optimization policy for all con-
figurations, including the baseline. Performance, Energy and EDP are normalized to the
A15(1F0P) configuration.

TDP). Our goal is to evaluate how the performance policy affects the same
scenarios already evaluated using the naive approach.

Figure 12 shows the performance, energy, and EDP of the PHISA con-
figurations using the performance policy normalized by the single-core A15
processor. The figure shows that the PHISA configurations have better per-
formance and energy consumption in all the scenarios. When compared to
the naive scheduler, the performance is improved in every scenario for almost
every configuration. The PHISA configurations with only one full core show
even further improvements when compared to the naive scheduler. This is
not only because of the policy itself but also because of the improvements
in task preemption and workload queues that this new scheduler introduces.
Again, scenario 6 is the only one in which the PHISA systems show worse
performance than the baseline, and this is because the scenario was built
with high NEON usage in mind. The scheduler will prioritize the partial
A15 for performance, but will constantly have to migrate to workloads to A7
cores because of the high occurrence of SIMD and FP instructions.

Figure 13 shows the performance, energy and EDP of the PHISA configu-
rations using the performance policy normalized by a traditional DynamIQ-
like configuration. Again, the PHISA configurations show both better perfor-
mance and energy consumption in all scenarios. What is mostly interesting
in this evaluation is that the differences between the results in the PHISA
systems (with one or two full cores) are very small (close to 2% only).

Finally, figure 14 shows the scheduler behaviour of the traditional Dy-
namIQ configuration A15(1F0P) A7(2F0P) while executing the applications
in scenario 1. Figure 15 shows the behaviour in the same scenario for the



PHISA A15(0F2P) A7(4F0P) configuration. As shown in the figure 15, the
PHISA configuration has more cores to execute the multiple applications,
increasing the throughput of the scenario. Migrations in the traditional Dy-
namIQ happens only during preemption phases, while in the PHISA the
applications have to change cores whenever a non-implemented function is
fetched in a partial core. This is better observed in the final execution of the
FFT application, as in figure 14 it is completely run in the big full core, while
in figure 15 it has to migrate from the big partial to the little full several
times.

4.4.2. Scheduling for Energy

In this experiment, we prepare the same configurations and scenarios
from subsection 4.4.1, but change the scheduler policy to optimize energy
consumption. This policy prioritizes the allocation of tasks in the little cores,
assuming that these will be more energy efficient. It is important to notice
that in these scenarios, all the configurations use the energy consumption
optimization policy, including the baseline.

Figure 16 shows the results for this experiments. The PHISA configu-
rations using this policy are able to reduce the energy consumption further
when compared to the results in subsection 4.4.1. Performance is also im-
proved in relation to the baseline, as the baseline is also running the energy
policy.

Figure 17 shows the same experiment for the PHISA configuration with
same TDP as a traditional DynamIQ. Again, PHISA is able to further reduce
the energy consumption, performance, and - consequently - their trade-off in

0

0.5

1

1.5

2

A
1

5
(1

F
0

P
)

A
7

(2
F

0
P

)

A
1

5
(0

F
1

P
)

A
7

(4
F

0
P

)

A
1

5
(0

F
1

P
)

A
7

(2
F

2
P

)

A
1

5
(1

F
0

P
)

A
7

(2
F

0
P

)

A
1

5
(0

F
1

P
)

A
7

(4
F

0
P

)

A
1

5
(0

F
1

P
)

A
7

(2
F

2
P

)

A
1

5
(1

F
0

P
)

A
7

(2
F

0
P

)

A
1

5
(0

F
1

P
)

A
7

(4
F

0
P

)

A
1

5
(0

F
1

P
)

A
7

(2
F

2
P

)

A
1

5
(1

F
0

P
)

A
7

(2
F

0
P

)

A
1

5
(0

F
1

P
)

A
7

(4
F

0
P

)

A
1

5
(0

F
1

P
)

A
7

(2
F

2
P

)

A
1

5
(1

F
0

P
)

A
7

(2
F

0
P

)

A
1

5
(0

F
1

P
)

A
7

(4
F

0
P

)

A
1

5
(0

F
1

P
)

A
7

(2
F

2
P

)

A
1

5
(1

F
0

P
)

A
7

(2
F

0
P

)

A
1

5
(0

F
1

P
)

A
7

(4
F

0
P

)

A
1

5
(0

F
1

P
)

A
7

(2
F

2
P

)

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 6

Cycles Energy EDP

Figure 13: Evaluation of PHISA multicores against a DynamIQ baseline under a 800mW
power budget. Scheduling of tasks follows a performance optimization policy for all con-
figurations, including the baseline. Performance, Energy and EDP are normalized to the
A15(1F0P)A7(2F0P) configuration.



the form of EDP.
Finally, figures 18 and 19 show the scheduling behaviour of configurations

A15(1F0P)A7(2F0P) (DynamIQ) and A15(0F1P)A7(4F0P) (PHISA) using
the energy policy respectively. Once more, the PHISA configuration can
deliver more throughput than the DynamIQ. However, as the full little cores
are prioritized due to their energy efficiency, the number of migrations is
reduced. This is seen in the final execution of the FFT application, in which
in both figures, it finishes executing in one of the full little cores (in contrast
with the performance policy).

5. Analysis of PHISA on High NEON Usage

Our experiments have been using scenarios with some of the single-
threaded workloads presented in figure 1. Although the selected set of work-
loads covers a wide range of applications from the embedded system and IoT
market, one may question the behavior of the system when exposed to higher
amounts of NEON instructions. Considering that the number of instructions
from removed extensions will directly influence the behavior of a PHISA mul-
ticore, we now use an analytic model of hypothetical applications, in which

0 1B 2B 3B 4B 5B 6B

02 - little full

01 - little full

00 - big full

2dconv
aes-d
FFT
jpeg-e
susan-c
susan-e
crc
susan-s
histogram

Cycles

Figure 14: Scheduler migrations using the performance policy in the traditional DynamIQ
configuration A15(1F0P)A7(2F0P) during execution of scenario 1. Bars represent each
application being run over time in each processor core.



0 1B 2B 3B 4B

04 - little full

03 - little full

02 - little full

01 - little full

00 - big partial
2dconv
aes-d
FFT
jpeg-e
susan-c
susan-e
crc
susan-s
histogram

Cycles

Figure 15: Scheduler migrations using the performance policy in the PHISA configuration
A15(0F2P)A7(4F0P) during execution of scenario 1. Bars represent each application being
run over time in each processor core.

we can vary the number of issued NEON instructions, as shown in figure 20.
The goal is to observe how the different PHISA configurations scale with the
number of NEON instructions compared to a traditional full-ISA system.

In this new environment, we assume configurations from the previous ex-
periments, in which the partial cores only execute integer operations,
and the full cores execute both integer and NEON operations. In

0

0.5

1

1.5

2

A
1

5
(1

F
0

P
)

A
1

5
(0

F
1

P
)

A
7

(2
F

0
P

)

A
1

5
(0

F
1

P
)

A
7

(1
F

1
P

)

A
1

5
(1

F
0

P
)

A
1

5
(0

F
1

P
)

A
7

(2
F

0
P

)

A
1

5
(0

F
1

P
)

A
7

(1
F

1
P

)

A
1

5
(1

F
0

P
)

A
1

5
(0

F
1

P
)

A
7

(2
F

0
P

)

A
1

5
(0

F
1

P
)

A
7

(1
F

1
P

)

A
1

5
(1

F
0

P
)

A
1

5
(0

F
1

P
)

A
7

(2
F

0
P

)

A
1

5
(0

F
1

P
)

A
7

(1
F

1
P

)

A
1

5
(1

F
0

P
)

A
1

5
(0

F
1

P
)

A
7

(2
F

0
P

)

A
1

5
(0

F
1

P
)

A
7

(1
F

1
P

)

A
1

5
(1

F
0

P
)

A
1

5
(0

F
1

P
)

A
7

(2
F

0
P

)

A
1

5
(0

F
1

P
)

A
7

(1
F

1
P

)

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 6

Cycles Energy EDP

Figure 16: Evaluation PHISA multicores against a single-core baseline under a 700mW
power budget. Scheduling of tasks follows a energy consumption optimization policy for
all configurations, including the baseline. Performance, Energy and EDP are normalized
to the A15(1F0P) configuration.



the configuration A15(0F1E)A7(2F0P) the partial-ISA A15 core can also
emulate NEON instructions. As a best-case comparison, we have selected
configuration A15(1F0P)A7(2F0P), which represents a similar processor, but
with all full-ISA cores.

We assume there is a migration cost (12K for the A15 and 17K for the A7,
the same as in previous configurations) and that the number of migrations

0

0.5

1

1.5

2

A
1

5
(1

F
0

P
)

A
7

(2
F

0
P

)

A
1

5
(0

F
1

P
)

A
7

(4
F

0
P

)

A
1

5
(0

F
1

P
)

A
7

(2
F

2
P

)

A
1

5
(1

F
0

P
)

A
7

(2
F

0
P

)

A
1

5
(0

F
1

P
)

A
7

(4
F

0
P

)

A
1

5
(0

F
1

P
)

A
7

(2
F

2
P

)

A
1

5
(1

F
0

P
)

A
7

(2
F

0
P

)

A
1

5
(0

F
1

P
)

A
7

(4
F

0
P

)

A
1

5
(0

F
1

P
)

A
7

(2
F

2
P

)

A
1

5
(1

F
0

P
)

A
7

(2
F

0
P

)

A
1

5
(0

F
1

P
)

A
7

(4
F

0
P

)

A
1

5
(0

F
1

P
)

A
7

(2
F

2
P

)

A
1

5
(1

F
0

P
)

A
7

(2
F

0
P

)

A
1

5
(0

F
1

P
)

A
7

(4
F

0
P

)

A
1

5
(0

F
1

P
)

A
7

(2
F

2
P

)

A
1

5
(1

F
0

P
)

A
7

(2
F

0
P

)

A
1

5
(0

F
1

P
)

A
7

(4
F

0
P

)

A
1

5
(0

F
1

P
)

A
7

(2
F

2
P

)

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 6

Cycles Energy EDP

Figure 17: Evaluation of PHISA multicores against a DynamIQ baseline under a 800mW
power budget. Scheduling of tasks follows a energy consumption optimization policy for
all configurations, including the baseline Performance, Energy and EDP are normalized
to the A15(1F0P)A7(2F0P) configuration.

0 1B 2B 3B 4B 5B 6B

02 - little full

01 - little full

00 - big full

2dconv
aes-d
FFT
jpeg-e
susan-c
susan-e
crc
susan-s
histogram

Cycles

Figure 18: Scheduler migrations using the energy policy in the traditional DynamIQ
configuration A15(1F0P)A7(2F0P) during execution of scenario 1. Bars represent each
application being run over time in each processor core.



increases proportionally to the ratio between NEON and integer instructions :
the higher is the ratio, the higher are chances of these instructions being
interleaved, causing multiple migrations. This cost rises until 50% of NEON
instructions, and from 60% forward, the cost decreases as the ratio inverts,
and there is a lower chance of interleaved operations. For example, when
the application has 10% NEON instructions, there will be nine integer in-
structions for one NEON instruction, which would cause one migration. For
50% NEON instructions, there will be five integer instructions for each five
NEON, which can be interleaved (1 int, 1 NEON, 1 int, 1 NEON...), and
would cause five migrations. However, this scenario will reverse if there are
more NEON instructions than integers. We also assume that a NEON in-
struction takes twice as many cycles to execute than an integer instruction
in the A15 core and eight times more in the A7 core. These are average
numbers estimated from simulations.

Figure 20 shows the behavior of the EDP of the configurations as the
number of NEON instructions in the application increase. As the figure
shows, configuration A15(0F1P)A7(2F0P) has good scalability, which is tied
to its types of cores. As the number of NEON instruction increases, the par-

0 1B 2B 3B 4B

04 - little full

03 - little full

02 - little full

01 - little full

00 - big partial
2dconv
aes-d
FFT
jpeg-e
susan-c
susan-e
crc
susan-s
histogram

Cycles

Figure 19: Scheduler migrations using the energy policy in the PHISA configuration
A15(0F2P)A7(4F0P) during execution of scenario 1. Bars represent each application being
run over time in each processor core.



0

1000

2000

3000

4000

5000

6000

7000

E
D

P
 (

C
y

cl
e

s*
E

n
e

rg
y

)

% of NEON instructions

A15(0F1P)A7(2F0P) A15(0F1E)A7(2F0P) A15(1F0P)A7(2F0P)

Mibench 

Mediabench 

(~2%)

Spec CPUfp 

Polybench 

(~38%)

Figure 20: Behaviour on high NEON usage PHISA multicore (with and without emulation)
and DynamIQ.

tial A15 will become idle more often. Although this becomes a burden for
the processor performance, migrating the load to the A7 processors greatly
reduces the system dynamic peak power, which decreases the energy con-
sumption. This allows the PHISA configuration to stay very close in EDP
to its full-ISA counterpart. It is important to notice that the configuration
with full cores has more than twice the area and higher peak power than the
PHISA version.

On the other hand, the same PHISA configuration but with emulation ca-
pacity A15(0F1E)A7(2F0P) shows bad scalability in higher rates of NEON.
When executing few NEON instructions, the emulation has good perfor-
mance, however as the NEON instructions increase, the A15 processors will
be assigned to emulate more of these instructions, which will incur in high-
performance overhead. Furthermore, the A15 is a power-hungry core, which
will also increase consumption.

This experiment demonstrates that the PHISA multicore has potential
even when the ratio of NEON instructions increases, as its expected EDP
stays close to that of a full-ISA system. In fact, the difference in EDP
from the full-ISA processor and the PHISA system in a modeled application
with 90% of NEON instructions is of less than 10%. For both applications
with low NEON usage (such as in the Mediabench and Mibench suites) and
for high NEON usage applications (such as SPEC CPUfp and Polybench),
the PHISA system can have similar scalability as the traditional DynamIQ-



like heterogeneous processor. For low NEON usage, such as in Mibench
applications, emulation is also a good choice to balance workloads between
cores.

6. Related Work

In this section we will present state-of-the-art works related to this paper.
We will discuss works that have explored single-ISA heterogeneous proces-
sors, as well as researches on the impact of the different ISAs in a system. We
also present works that have explored the concept of partial (or overlapping)
ISAs, both by the software (and scheduling) and hardware sides. Finally, we
summarize the novelty of our work when compared to the state-of-the-art.

Single-ISA heterogeneous processors have been proposed by Kumar et al.
[4][19] as an alternative to power efficiency. The authors show how a mix of
in-order and OoO Alpha processors with different issue widths can be used to
adapt the system power usage accordingly to the application requirements.
One of the main advantages of this technique is that it is transparent to the
application and does not require special tools to deal with many different
ISAs, as in the case of accelerator rich processors or MPSoC [20]. On this
heterogeneous environment, a runtime system manager - such as the Op-
erating System - can identify the resource requirements of the applications
and schedule threads to cores that fulfill these requirements while minimizing
energy consumption. As the entire system uses the same ISA, threads can
easily migrate between cores using a shared memory space, as in traditional
multicore processors. This approach has been used by the industry, leading
to technologies such as the ARM big.LITTLE[5], which allows the use of
clusters of A15 (big) and A7 (LITTLE) cores, and, more recently, the ARM
DynamIQ[6]. In DynamIQ, cores from different sizes can be mixed in the
same cluster and share a coherent cache for fast thread migration, allow-
ing for more diverse design space exploration. Nonetheless, there are many
works employing different strategies to implement heterogeneous processors
of single-ISA [21], from using DVFS to reach performance asymmetry in dif-
ferent voltage domains [22] to using binary translation to keep transparency
between cores and accelerators [23].

On the other hand, some current works evaluate the impact of the ISA in
the microarchitecture. The work of Venkat and Tullsen[24][25] show that a
system can exploit the many traits of different ISA to improve the effective-
ness of heterogeneous processors. The authors combine cores of three ISAs



(32 bit Thumb, X86-64 and Alpha 64 bits) in a single system, classifying their
performance according to aspects such as FP and SIMD operations, register
pressure, code density, and dynamic instruction count. The results show that
most applications have phases in which different ISAs would perform better,
suggesting that a diverse ISA environment is more efficient than a single-ISA
one. In [26] and [27], Blem et al. discuss how the RISC and CISC models
affect modern architectures. By the combination of [24] and [27], Blem con-
cludes that what affects power and performance in modern systems is the
presence or absence of specialized ISA extensions (such as vectorization, FP,
crypto instructions) that may appear in some ISAs, but not in others. In
[28], Lopes et al. perform an extensive analysis of ISA aging and the cost of
the decoder for keeping old operations in the architecture set. The authors
propose a technique to remove and recycle instructions that are not used
by compilers anymore. Removed instructions that are eventually fetched for
execution must be emulated for backward compatibility.

These mentioned works show that a diverse and renewed ISA is essential
for processor performance, although most of the added instructions are used
for specific applications. To try to balance instruction extensions between
cores, overlapping-ISAs have been used on previous works. These are pro-
cessors in which the cores individually implement different extensions, but
all share a base ISA. In [7], Li et al. discuss the challenges of implement-
ing Operating System (OS) support for overlapping ISAs and propose a fair
scheduling algorithm for these systems. One of the major contributions of
[7] is arguably the mechanism that allows for detection and migration of
instructions that cannot be executed in a partial-ISA core, named Fault-
and-Migrate. In [29], Reddy et al. present design techniques for bridging
software to functionally asymmetric cores and discuss the pros and cons of
each method.

On a microarchitectural level, Lee et al. [12] study the usage of different
ISA extensions in an ARM processor and propose a system with a reduced-
and a full-ISA core, both based on the ARM A15. The reduced A15 is
deprived of the NEON, predicate, DSP and load/store multiple instructions,
which makes it more power and area efficient due to the simpler datapath.
As the goal is to optimize energy consumption, the reduced core is given
full priority to execute the applications. On the other hand, the full core is
assigned whenever a specialized instruction is fetched, at the cost of migrating
the task and spending extra power.

Another similar strategy adopted by the industry is to share resource ex-



6 Issue

(OOO)

8 Issue

(OOO)

2 Issue

4 Issue

(a) Single-ISA het-
erogeneous multicore,
as proposed by Ku-
mar et al. [4]

Full

A7

Full ISA A15

NEON

Unit

Full

A7

Full

A7

Full

A7

Full ISA A15

NEON

Unit

(b)
big.LITTLE/DynamIQ
technilogy by ARM
[5]

Partial ISA A15

Free Area

Full ISA A15

NEON

Unit

(c) Heterogeneous
partial-ISA multi-
core, as proposed by
Lee et al. [12]

Partial ISA A15

Free Area

Full

A7

Full

A7

Partial ISA A15

Free Area

Full

A7

Full

A7

(d) Our proposal:
heterogeneous ISA
and microarchi-
tecture, exploiting
partial-ISA area to
increase the system
throughput

Figure 21: Different approaches for multicore and our proposed system.

pensive processing units between more than a single core. The UltraSPARC
T1 [30] was a SUN multicore processor that shared a single FPU between
eight integer cores, while the AMD Bulldozer core presented one FPU for
each two integer clusters, which were used as in a simplified Simultaneous
Multithreading (SMT) approach.

Our Contribution: Figure 21 illustrates the most significant ap-
proaches discussed in this section. Our solution (figure 21d) exploits a new
level of heterogeneity that has not been considered in any of the previous
works: a multicore partial-ISA implementation coupled with performance
asymmetric cores. We bridge the gap between the DynamIQ technology and
the partial-ISA design, demonstrating how a processor can trade parts of its
specialized units (which would provide single-task performance) to increase
the core count (improve multi-task performance) and be more EDP efficient
without increasing the power and area of traditional processors.

More specifically, [7] and [29] focus on OS and software support (sched-
uler and framework), while [12] investigates some of the microarchitectural
impacts of a partial ISA implementation, but in a dual-processor/single task
of different ISA extensions aprroach, and considering the execution of only
one application at a time (i.e., either the reduced or the full core is active at
a given moment). On the other hand, we propose a new environment that
gracefully merges the heterogeneity of the micro-architectures that compose
the system with the artificially imposed restrictions to their ISAs to im-
prove over real designs in terms of performance, energy or EDP. This is only
achieved with extra micro architectural changes and support to concurrent



multitasking.
Other works share some specialized units, such as the the UltraSPARC

T1. However, its single FPU and loosely integration with the cores make
floating point operations too costly for this system. Another example is the
AMD Bulldozer, whose approach improve resource usage in the core, but
may also be inefficient in single-threaded tasks, as only one integer/FPU
cluster could be used per thread. Our solution avoids these problematic
scenarios by implementing full-ISA cores that can execute both specialized
and common control and integer instructions, thus that are no extra costs
in executing applications that interleave these operations. The overhead of
a PHISA multicore is associated only with the migration costs of the tasks
and the amount of instructions competing for resources in the applications.
In other words, we move the overhead from the instruction to the task level,
which may be higher but has lower occurrence.

7. Conclusions

In this paper, we have proposed PHISA multicores as a mean to reduce
area and power from multicore systems, by removing ISA extensions that are
not constantly used. We show that it is possible to use partial ISA cores in
edge computing systems, without incurring into large performance impacts.
Furthermore, we show how the extra area and power can be used to add
more cores to the multicore system and further increase performance and
decrease energy consumption. When coupled with a specialized scheduler,
our system is also able to further optimize its behavior for a specific goal,
such as energy consumption or performance. Our approach can scale well,
even if the applications issued to the multicore have high amounts of NEON
instructions.

Acknowledgement

This study was financed in part by the Coordenação de Aperfeiçoamento
de Pessoal de Nı́vel Superior, Brasil (CAPES) - Finance Code 001, the
Fundação de Amparo à Pesquisa do Estado do RS (FAPERGS) and the
Conselho Nacional de Desenvolvimento Cient́ıfico e Tecnológico (CNPq).



References

[1] L. Mainetti, L. Patrono, A. Vilei, Evolution of wireless sensor networks
towards the internet of things: A survey, in: SoftCOM 2011, 19th In-
ternational Conference on Software, Telecommunications and Computer
Networks, 2011.

[2] Exynos 7 Dual 7270 Processor: Specs, Features — Samsung Exynos,
https://www.samsung.com/semiconductor/minisite/exynos/products/
mobileprocessor/exynos-7-dual-7270/ (2019).

[3] W. Shi, S. Dustdar, The Promise of Edge Computing, Computer 49 (5)
(2016) 78–81. doi:10.1109/MC.2016.145.

[4] R. Kumar, et al., Single-ISA heterogeneous multi-core architectures: the
potential for processor power reduction, MICRO-36. (2003).

[5] big.LITTLE, https://developer.arm.com/technologies/big-little (2019).

[6] DynamIQ, https://developer.arm.com/technologies/dynamiq (2019).

[7] T. Li, et al., Operating system support for overlapping-ISA heteroge-
neous multi-core architectures, HPCA’10 (2010) 1–12.

[8] T. Constantinou, et al., Performance implications of single thread mi-
gration on a chip multi-core, SIGARCH Comput. Archit. News (2005).

[9] N. Binkert, et al., The gem5 simulator, ACM SIGARCH Computer Ar-
chitecture News 39 (2) (2011) 1. doi:10.1145/2024716.2024718.
URL http://dl.acm.org/citation.cfm?doid=2024716.2024718

[10] S. Li, et al., McPAT: An Integrated Power, Area, and Timing Modeling
Framework for Multicore and Manycore Architectures, in: MICRO 42:
Proceedings of the 42nd Annual IEEE/ACM International Symposium
on Microarchitecture, 2009.

[11] F. Endo, et al., Micro-architectural simulation of embedded core hetero-
geneity with gem5 and McPAT, RAPIDO ’15 (2015) 1–6.

[12] W. Lee, et al., Exploring Heterogeneous-ISA Core Architectures for
High-Performance and Energy-Efficient Mobile SoCs, GLSVLSI’17
(2017) 419–422.

https://www.samsung.com/semiconductor/minisite/exynos/products/mobileprocessor/exynos-7-dual-7270/
https://www.samsung.com/semiconductor/minisite/exynos/products/mobileprocessor/exynos-7-dual-7270/
https://doi.org/10.1109/MC.2016.145
https://developer.arm.com/technologies/big-little
http://dl.acm.org/citation.cfm?doid=2024716.2024718
https://doi.org/10.1145/2024716.2024718
http://dl.acm.org/citation.cfm?doid=2024716.2024718


[13] M. Guthaus, et al., MiBench: A free, commercially representative em-
bedded benchmark suite, in: IEEE WWC-4’01, IEEE, 2001, pp. 3–14.

[14] J. E. Fritts, et al., Mediabench ii video: Expediting the next generation
of video systems research, Microprocess. Microsyst. 33 (4) (2009) 301–
318.

[15] L.-N. Pouchet, PolyBench/C – The Polyhedral Benchmark suite, http:
//web.cse.ohio-state.edu/∼pouchet.2/software/polybench/ (2019).

[16] C. Tan, et al., Locus: Low-power customizable many-core architecture
for wearables, ACM Trans. Embed. Comput. Syst. 17 (1) (Nov. 2017).

[17] T. Adegbija, et al., Microprocessor Optimizations for the Internet of
Things: A Survey, IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems 37 (1) (2018) 7–20.

[18] T. Li, D. Baumberger, D. A. Koufaty, S. Hahn, Efficient operat-
ing system scheduling for performance-asymmetric multi-core architec-
tures, in: ACM/IEEE Conference on Supercomputing, 2007. doi:

10.1145/1362622.1362694.

[19] R. Kumar, D. Tullsen, P. Ranganathan, N. Jouppi, K. Farkas, Single-
ISA heterogeneous multi-core architectures for multithreaded workload
performance, in: Proceedings. 31st Annual International Symposium on
Computer Architecture., IEEE, 2004, pp. 64–75. doi:10.1109/ISCA.

2004.1310764.
URL http://ieeexplore.ieee.org/document/1310764/

[20] W. Wolf, A. A. Jerraya, G. Martin, Multiprocessor system-on-chip
(MPSoC) technology, IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems 27 (10) (2008) 1701–1713. doi:

10.1109/TCAD.2008.923415.

[21] S. Mittal, A Survey of Techniques for Architecting and Managing Asym-
metric Multicore Processors, ACM Computing Surveys (2016).

[22] A. Annamalai, et al., An opportunistic prediction-based thread schedul-
ing to maximize throughput/watt in amps, in: PACT’13, 2013, pp.
63–72.

http://web.cse.ohio-state.edu/~pouchet.2/software/polybench/
http://web.cse.ohio-state.edu/~pouchet.2/software/polybench/
https://doi.org/10.1145/1362622.1362694
https://doi.org/10.1145/1362622.1362694
http://ieeexplore.ieee.org/document/1310764/
http://ieeexplore.ieee.org/document/1310764/
http://ieeexplore.ieee.org/document/1310764/
https://doi.org/10.1109/ISCA.2004.1310764
https://doi.org/10.1109/ISCA.2004.1310764
http://ieeexplore.ieee.org/document/1310764/
https://doi.org/10.1109/TCAD.2008.923415
https://doi.org/10.1109/TCAD.2008.923415


[23] J. Souza, et al., A Reconfigurable Heterogeneous Multicore with a Ho-
mogeneous ISA, in: DATE’16, 2016, pp. 1598–1603.

[24] A. Venkat, D. Tullsen, Harnessing ISA diversity: Design of a
heterogeneous-ISA chip multiprocessor, ISCA’14 (2014) 121–132.

[25] A. Venkat, H. Basavaraj, D. M. Tullsen, Composite-ISA Cores: En-
abling Multi-ISA Heterogeneity Using a Single ISA, in: 2019 IEEE In-
ternational Symposium on High Performance Computer Architecture
(HPCA), IEEE, 2019, pp. 42–55. doi:10.1109/HPCA.2019.00026.
URL https://ieeexplore.ieee.org/document/8675215/

[26] E. Blem, et al., Power struggles: Revisiting the RISC vs. CISC debate
on contemporary ARM and x86 architectures, in: HPCA’13, 2013, pp.
1–12.

[27] E. Blem, et al., ISA Wars: Understanding the Relevance of ISA being
RISC or CISC to Performance, Power, and Energy on Modern Archi-
tectures, ACM Transactions on Computer Systems (2015).

[28] B. Lopes, et al., Shrink: Reducing the ISA Complexity Via Instruction
Recycling, ISCA’15 (2015) 311–322.

[29] D. Reddy, et al., Bridging functional heterogeneity in multicore archi-
tectures, ACM SIGOPS Operating Systems Review (2011) 21.

[30] OpenSPARC T1.
URL https : / / www . oracle . com / technetwork / systems / opensparc /
opensparc-t1-page-1444609.html

https://ieeexplore.ieee.org/document/8675215/
https://ieeexplore.ieee.org/document/8675215/
https://doi.org/10.1109/HPCA.2019.00026
https://ieeexplore.ieee.org/document/8675215/
https://www.oracle.com/technetwork/systems/opensparc/opensparc-t1-page-1444609.html
https://www.oracle.com/technetwork/systems/opensparc/opensparc-t1-page-1444609.html
https://www.oracle.com/technetwork/systems/opensparc/opensparc-t1-page-1444609.html


Jeckson Dellagostin Souza received his MSc and PhD degrees from
UFRGS, Brazil, in 2015 and 2020, respectively. His primary research in-
terests include binary compatibility, heterogeneous processors and multicore
environments, particularly focusing on power reduction techniques. For more
information, please visit http://www.inf.ufrgs.br/˜jdsouza/.

Pedro Henrique Exenberger Becker received his BSc degree in Com-
puter Engineering in 2018 and his MSc degree in Computer Science in 2019,
both from Universidade Federal do Rio Grande do Sul (Brazil). In Jan-
uary 2020 he joined Universitat Politècnic de Catalunya (Spain) where he
is currently pursuing his PhD. His research focuses on the area of computer
architecture for performance- and energy-constrained applications, particu-
larly targeting hardware support for autonomous driving systems. Contact
him at pedro(at)ac.upc.edu.

Antonio Carlos Schneider Beck received his Dr. degree from UFRGS,
Brazil, in 2008. Currently, he is an associate professor at the Applied In-
formatics Department at the Informatics Institute of UFRGS, in charge of
Embedded Systems and Computer Organization disciplines at the undergrad-
uate and graduate levels. His primary research interests include computer
architectures and embedded systems design, focusing on power consumption.
For more information, visit www.inf.ufrgs.br/˜caco/.


	Introduction
	PHISA Multicore
	Proposed System
	Scheduling
	Advanced Scheduler and Policies

	Methodology
	Results
	Impact of Partial ISA Cores
	Experiment discussion: 
	Observations from this experiment: 

	Full Core vs PHISA Multicore - Sharing a Power Budget
	Experiment discussion: 
	About the cores usage: 
	Introducing partial-ISA A7: 

	PHISA vs Traditional Heterogeneous Systems (DynamIQ)
	Experiment discussion: 
	About task migration: 
	The impact of emulation: 
	PHISA vs DynamIQ with Power Parity: 

	Advanced Scheduler and Policies Impact
	Scheduling for Performance
	Scheduling for Energy


	Analysis of PHISA on High NEON Usage
	Related Work
	Conclusions

