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Abstract

In recent years, the areas of High-Performance Computing (HPC) and mas-
sive data processing (also know as Big Data) have been in a convergence course,
since they tend to be deployed on similar hardware. HPC systems have histori-
cally performed well in regular, matrix-based computations; on the other hand,
Big Data problems have often excelled in fine-grained, data parallel workloads.
While HPC programming is mostly task-based, like COMPSs, popular Big Data
environments, like Spark, adopt the functional programming paradigm. A care-
ful analysis shows that there are pros and cons to both approaches, and inte-
grating them may yield interesting results. With that reasoning in mind, we
have developed DDF, an API and library for COMPSs that allows developers
to use Big Data techniques while using that HPC environment. DDF has a
functional-based interface, similar to many Data Science tools, that allows us
to use dynamic evaluation to adapt the task execution in run time. It brings
some of the qualities of Big Data programming, making it easier for applica-
tion domain experts to write Data Analysis jobs. In this article we discuss the
API and evaluate the impact of the techniques used in its implementation that
allow a more efficient COMPSs execution. In addition, we present a perfor-
mance comparison with Spark in several application patterns. The results show
that each technique significantly impacts the performance, allowing COMPSs
to outperform Spark in many use cases.

Keywords: COMPSs, Big Data, Performance Evaluation, Data-Flow
Programming

1. Introduction

Traditionally, Big Data and HPC systems are quite different. Big data is
usually related to a high-level programming models, based on MapReduce [1],
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resources managers like YARN and file systems like HDFS [2], using a local
shared-nothing architecture. However, in HPC systems prevail resources man-
agers like Slurm [3], file systems like Lustre [4], in a supercomputer architecture
based on remote shared parallel storage. For a long time, each of these tech-
nologies has been applied only to its specific niches. Lately, the convergence
between HPC and Big Data has become an important research area, driven in
part by the need to incorporate high-level libraries, platforms, and algorithms
for machine learning and graph processing, and in part by the idea of using
Big Data’s fine-grained data awareness to increase the productivity of HPC
systems [5, 6]. Several proposals of higher-level abstractions have emerged to
address the requirements of these two areas in computer systems [7, 8]. Re-
cent frameworks, like COMPSs [7], Twister2 [8], Spark [9] and Flink [10], share
a common dataflow programming model, but each one is still focused on its
respective area.

Dataflow is a special case of task-based models where an application can be
represented as a directed acyclic graph (DAG), with nodes representing compu-
tational steps and edges indicating communication between nodes. The com-
putation at a node is activated when its inputs (events, task data) become
available. A well-designed dataflow framework hides low-level operational de-
tails, such as communication, concurrency control, and disk I/O, from the users
developing parallel applications, allowing them to focus on the application itself.

While sharing that common model, each framework has its own abstraction
and run time system, which are generally related to its original environment.
Traditionally, HPC environments provide an interface through User-Defined
Functions, which gives freedom to write their applications by defining its tasks.
For instance, in COMPSs, an MPI-based framework commonly used in HPC
scenarios, applications are written following the sequential paradigm with the
addition of annotations in the code that are used to inform that a given method
is a task and what are its inputs and outputs. Such frameworks are commonly
used in scientific algorithms such as matrix computations. Despite the good
performance in those scenarios, it is often hard to implement optimized applica-
tions that handle irregular data and complex data flows, such as those commonly
found in machine learning and data mining areas.

The process of transmitting large volumes of input data to tasks has a high
cost in many HPC systems, specially when those data are the output of a pre-
vious task, as it is the case in COMPSs, because it involves data serialization
and de-serialization steps. Because of that, a common practice adopted by ad-
vanced programmers is to minimize the number of different tasks by combining
the code of multiple functions in a single task. This is a challenge when black-
box libraries of parallel algorithms are used, because, depending on the flow of
operations, it might be necessary to merge the code of different functions in
order to obtain better performance, but that code would not be available.

On the other hand, recent Big Data environments have adopted functional
languages [9, 10] as a form to express their data abstractions and flows. Those
frameworks implement a set of common operations and basic algorithms to
facilitate the development of applications by experts in the application domain.
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However, some research shows that, depending on the application (e.g., matrix
computations), those frameworks achieve good scalability, but poor performance
when compared with an MPI implementation [11, 12].

In that context, our work discusses our experience in bringing together the
programming model of COMPSs and the functional programming abstractions
usually found in frameworks like Spark. Our contributions to the convergence
path between HPC and Big Data frameworks are: (i) a discussion of different
implementation techniques used in recent dataflow models to build more opti-
mized systems and their evaluation in COMPSs; (ii) an API, in the form of
the DDF Library, which materializes our vision of a big data analytic tool that
runs on top of an HPC framework to execute applications efficiently; and (iii)
a performance comparison of COMPSs and Spark applications using Python.

The goal of DDF is to provide users with performance comparable to HPC
systems while exposing a well-known user-friendly dataflow abstraction for ap-
plication development. We chose to work on COMPSs, extending it with DDF,
because it is a good framework for Data Scientists that want to create and
execute Big Data applications: it has been gaining popularity, it supports high-
level languages like Python, it has a generic data model, which allows it to be
extended more easily, and it has good performance [11].

To describe our work, the remainder of the paper is structured as follows:
Section 2 presents some related work; Section 3 introduces the COMPSs frame-
work and Section 4 presents some optimization techniques; Section 5 presents
our API, which provides a new data abstraction and interface to COMPSs users.
The validation of our solution is discussed in Section 6, and Section 7 presents
our conclusions and discusses future work.

2. Related work

While dataflow is a prevalent model in many parallel and distributed pro-
gramming frameworks [8], functional programming is slowly becoming a com-
mom interface. In addition to Big Data frameworks like Spark, Flink and
Swift [13], functional interfaces are also being frequently used in other Data
Sciences programming tools (e.g., Scikit-Learn [14] and Pandas [15] use it to
express their dataflow models).

In the Big Data field, Spark is probably the framework that most contributed
to the popularization of the functional interface. It was originally built on top
of the Resilient Distributed Dataset abstraction (RDD), a read-only multiset
of objects partitioned across multiple nodes that holds provenance informa-
tion (lineage). More recently, since Version 2.4, Spark added the DataFrame,
an abstraction equivalent to a table in a relational database, built on top of
the RDD. By working with structured data, the DataFrame allowed Spark to
gain performance using an optimized execution engine [16]. Besides a set of
RDD/DataFrame operators, Spark offers other tools and libraries for machine
learning, graph analytics and stream processing, among others. In particular, it
provides the MLlib [17] and ML machine learning libraries, but on top of RDD
and DataFrames, respectively.
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In past years, many proposed research tried to increase Spark’s performance
in order to make it competitive with HPC frameworks. One of them is Spark-
DIY [18], where authors created a prototype framework with the integration of
an MPI layer into Spark. The prototype is based on overloaded Spark RDD op-
erators with MPI-based implementations (DIY). Although the authors showed
a performance gain by using DIY, Spark’s usability is affected: users need to
provide their own MPI code to replace a given operator.

In the effort to support functional language constructs, existing frameworks
have been extended to make them more attractive to users who are already
familiar with that interface, such as the TSet abstraction for Twister2 frame-
work [8], DDS [19] and DisLib [20] for COMPSs. In the case of Twister2,
the goal of TSet was to provide users with performance of an HPC framework
while exposing a user-friendly dataflow abstraction, similar to Spark’s RDD, in
Java. Although the operators provided are limited, the authors showed that
Twister2 outperforms Spark in algorithms like KMeans and SVM, that can be
written using those operators. DDS and DisLib are the first official efforts of
the COMPSs team to enable large-scale data analytics on HPC infrastructures
by providing an abstraction similar to the RDD and a library like Scikit-Learn,
respectively. Using the DDS interface, applications can be written using opera-
tors like load, map, filter, and reduce, also similar to Spark’s RDD, and
using Dislib, users can execute machine learning algorithms. Although both
projects are in Python, they are not integrated: each project relies on its own
data abstraction, so users might need to convert their data representations to
use both frameworks.

New frameworks are also being proposed on this same premise. A project
that is gaining a lot of popularity at the moment is Dask [21], a framework that
provides data abstractions for n-dimensional arrays and DataFrames that can be
operated in parallel in a transparent manner. The Dask project includes Dask-
ML [22], a library that provides many machine learning algorithms through
an estimator-based interface. Dask is mainly used to scale up on all cores of
a single machine. One of its advantages is the integration with Scikit-Learn’s
algorithms through the Joblib backend [23] which allows for scaling out CPU-
bound workloads; workloads with datasets that fit in RAM, but have many
individual operations, can be run in parallel. However, to scale out RAM-
bound workloads (larger-than-memory datasets) the solutions are more limited.
For instance, in that case Dask-ML recommends some approaches: (i) use the
ParallelPostFit method to distribute the execution of an already trained
mode to the various fragments of data in Dask, which does not parallelize the
training step; or (ii) use Incremental estimators which, although it allows to
fit a model on large volumes of data by incremental training from each chunk
of the data, leads to training that is not parallelized. For this reason, Spark
remains a more popular option when it comes to Big Data scenarios.

The DDF Library we present here resembles TSet, DDS, Dislib, and Dask by
providing a new auxiliary data abstraction, the DDF, for COMPSs to handle
Big Data. Like Dask, we adopted a DataFrame abstraction, an increasingly
popular structure in Data Science [24, 25]. However, we implemented a large
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set of operations and algorithms, many of them not available in DDS nor Dislib.
As in Spark, the central idea of the supported algorithms and operations is the
parallelization of operations on data fragments. We work on Big Data scenarios,
where we assume that we cannot fit all data in a single memory node. In
addition, all available algorithms are integrated in the same interface and use a
context manager to submit dynamical tasks.

This paper extends previous work [26] by providing a detailed description
of the library, discussing implementation techniques not presented before, as
well by adding as some new analysis of the impact of those techniques, and new
performance evaluation results.

3. The COMPSs framework

COMPSs is a programming framework whose main objective is to simplify
the development of applications for distributed environments, composed of a
programming model and an execution runtime that supports it. Applications
in COMPSs are written following the sequential paradigm with the addition
of code annotations that are used to inform that a given method is a task.
That means it can be asynchronously offloaded at execution time, and can
potentially be executed in parallel with other tasks. In the case of Java and
C++, those annotations are provided in an interface file that indicates, among
other information, whether a parameter is an input or output. In the case of
Python (PyCOMPS), tasks are identified with an annotation in the form of
a decorator started with @task on top of a method. With that information,
COMPSs generates a task graph at execution time where each node denotes
a task, and edges between them represent data dependencies. The task graph
expresses the inherent parallelism of the application at task level, which is used
by the runtime.

The COMPSs runtime architecture is based on a main component, the mas-
ter, which executes the main code of the application, and a set of worker pro-
cesses deployed on computational nodes that execute the tasks. Those nodes
can be part of a physical cluster, dynamically instantiated virtual machines,
or containers. The runtime takes care of data transfers, task scheduling and
infrastructure management.

Regarding the programming model, to port an application to COMPSs, be-
sides requiring the identification of the functions as tasks, may require structural
changes to the code in order to improve application efficiency and to achieve
more parallelism. A very common case is, for example, an application with a
single input, possibly a big file, that has to be processed by a task to extract
information from it. The first and quick solution would be to assign the entire
input file to a task and let it read and compute the data. A much more efficient
approach in COMPSs, which exploits a higher level of parallelism, if there are
no dependencies among file data elements, is to split the input file into several
fragments and invoke multiple tasks, one per fragment. In that way, different
resources will be used to execute, in parallel, the different tasks. COMPSs is
able to transfer, transparently, files that are used as input parameter for a task;
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it also supports shared disks or HDFS (by using a connector [27]) to speed up
the read step.
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def title_indexer(row):
   titles = {"Mr.": 1, "Miss": 2, 
                "Mrs.": 3, "Master": 4, 
                "Rare": 5}
   for title in titles:
       if title in row:
           return titles[title]
   return -1

@task(returns=1)
def udf_name(df, col): 
   df[col] = df[col].apply(title_indexer)
   return df

def main():
   num_partitions = 2
   ...
   for f in range(num_partitions):
      df_lst[f] = udf_name(df_lst[f], col)
   ...

(a) user view (b) COMPSs runtime DAG (c) partial code

Drop Columns

Drop NaN rows
Drop Columns

Drop NaN
rows

Drop Columns

Drop NaN
rows

Figure 1: Preprocessing Titanic’s data set in PyCOMPSs.

As an example, Fig. 1(a) shows the visual workflow of an application that
performs a preprocessing step to predict survival on the Titanic Disaster1. The
idea for this implementation is to break the input in two partitions and to
process them concurrently, when possible; the dependency graph, similar to the
one produced during execution, is shown in Fig. 1(b). Some operations are
embarrassingly parallel and do not need more than one stage for each partition,
like Categorize Name. Others, however, like String Indexer, need more than
one stage, since they have some actions that depend on the combination of

1based on: https://bit.ly/2MyBOpa, which uses data from https://www.kaggle.com/c/

titanic
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partial results obtained from each partition. To illustrate the use of PyCOMPSs,
Fig. 1(c) shows part of the code, including the Categorize Name step, which
converts passengers names to an index based on its title (“Mr.” will be mapped
to 1, “Miss” to 2, etc.). That can be done using function udf name on each
partition. The @task annotation indicates that the function is a COMPSs task
which returns one output. The result df will be saved and sent to the next
task transparently. COMPSs provides several tags for better specification, for
example, the FILE OUT tag can be used to inform that a given result is a file.

4. Optimization techniques

In distributed systems, the transmission of volumes of data between workers
is one of the main factors that affect performance. This process often involves
another costly step, the serialization of data into formats that can be trans-
mitted and later interpreted (de-serialized) by the receiver. General purpose
frameworks, such as COMPSs and Spark, focus on minimizing the amount of
serialized data, or reducing the number of data transfers. In the sections that
follow, we describe the optimization techniques that can be used for those frame-
works.

4.1. Serialization

When dealing with Big Data frameworks, data type compatibility, read and
write speed, and compression capability are the major aspects to consider when
choosing a serialization method. For generic environments, the compatibility
with different types of data is a crucial point. For example, due to the char-
acteristic of RDDs in Spark, which can contain any type of data, the standard
solution is the Java serialization. Although Spark supports Kyro, another se-
rialization method that is faster and more compact than the default, it is not
compatible with all the possible data types [28].

On the other hand, when we restrict the scope, for instance, by working
with structured data such as DataFrames, new opportunities for serialization
techniques become available. Nowadays, columnar file formats are well-known
solutions to store structured data in a column-oriented way. For instance, when
Spark works with DataFrames, internally it uses Parquet, a format inspired by
the Google Dremel framework [29], while Apache Hive, a big data framework
for data warehouses, uses the ORC format [30]. Organizing data by columns,
unlike traditional row-oriented formats, allows chunks of data of the same type
to be stored sequentially. Thus, the encoding and compression algorithms can
take advantage of the data type knowledge and homogeneity to achieve better
efficiency both in terms of speed and file size [31]. Besides that, many columnar
formats allow efficient scans when only a subset of the columns is considered.
Because COMPSs does not provide a native data abstraction for structured
data, it does not support such approaches.
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4.2. Grouping tasks

Dataflow frameworks need handle data and control transfers to switch from
one task to the next when processing a flow. In COMPSs, for instance, at the
end of a task its output is always serialized and saved to disk until some other
task requires it. In Spark, results are serialized and saved in memory; only
when that is not possible the result is written to disk. Whatever the procedure
adopted, the context change between tasks always causes overhead. Building an
efficient runtime depends on minimizing that overhead by reducing the number
of different tasks. To be able to do that, we must characterize the way tasks
depend on each other. Like Spark, we define dependencies as narrow, when
each instance of a task depends on at most one instance of each of its parents
(green arrows in Fig. 1(b)); or as wide, when that is not the case (red arrows in
Fig. 1(b)). To filter or drop rows, and to replace values, are examples of narrow
dependencies; to sort data, to perform aggregations/joins and to find duplicate
elements are wide dependencies. In the Titanic application, the Categorize

Name task produces one output item directly for each input, so it is has a narrow
dependency. However, the String Indexer has a wide dependency, because it
needs to create a global result based on all its partial inputs.

Experienced programmers group sets of tasks that have narrow dependencies
in a single set: since those tasks do not need data from other partitions, that
set can be executed as a single pipeline. For example, in the Titanic application
DAG, tasks of the same color can be grouped; in that example, the Standard

Scaler: transform data and Save data tasks could be performed together.
In case of a bifurcation (i.e., when the output of a task is used in two distinct
operation flows), that grouping would have to be interrupted at that level and
a serialization would be necessary for that step. Spark adopted that technique
internally, by grouping sets of narrow tasks into a unit called a Stage. On the
other hand, in COMPSs, the implementation of each task is the responsibility
of the programmer, so it does not know how to classify tasks a priori.

4.3. Lazy evaluation

Frameworks generally create and analyze a DAG of tasks based on the code
provided to decide when a set of tasks can be grouped. However, in interac-
tive environments, which are often used for Data Science exploratory tasks, the
complete code is not always available beforehand. Thus, it is often not possible
to make decisions based on the code available so far. Lazy evaluation is a tech-
nique used in frameworks based on functional language to delay the execution of
a task until the user actually needs its result. In general, operations submitted
by a user are added to a queue until a certain condition is met. In Spark, if
a data transformation operation has narrow dependencies on its parents, it is
added to a queue with them, creating a Stage. When processing is required, like
when an action (operation that returns information to the user) is submitted,
the enqueued tasks are executed. That technique allows frameworks to analyze
and optimize the flow of operations.
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4.4. Repartitioning to minimize data shuffle

Wide dependency tasks generally need to collect data generated in another
worker. For example, consider an inner join operation of two large tables (T1
and T2 ) in a scenario where each table is divided into four fragments. A naive
strategy to join them would be to compare each fragment of T1 with each frag-
ment of T2 ; the merged result would correspond to an exact solution. However,
it would be necessary to create 16 partial inner join tasks to create that re-
sult. The naive inner join is an expensive operation because, in addition to the
computational cost of having to do 16 inner joins, it incurs in network transfer,
serialization and de-serialization costs.

One smarter approach to minimize the cost of wide dependencies is to reor-
ganize (re-partition) the data as part of the process, to reduce communication.
The two most common partitioning modes are hash and range partitioning. In
the first one, given a set of keys (which will be used in the inner join), the new
partition index of each element is defined by its hash code. In the second, each
partition must establish a range condition using key values. The idea is similar
to MapReduce’s shuffle step [1], where it re-organizes its data before the reduce
step.

Fig. 2 exemplifies a generic type of efficient partitioning. Consider, for ex-
ample, a repartitioning of an initial set of two fragments (p1 and p2 ). Each
fragment will be sub-divided into two new fragments based on the color of each
element. Once this step is completed, sub-fragments with the same index are
merged (i.e., all sub-p1 will be merged). In this example, the number of final
fragments is equal to the initial number, but it could be different, if desired. It
is important to note that only sub-fragments are transferred over the network
in the second step (sub-fragment junction). The transfer of each sub-fragment
occurs only once and each of them tends to be smaller than the original frag-
ment.

This idea can also be extended by reducing the data before re-partitioning.
For instance, the operation of removing duplicated rows based on their keys
requires shuffling data between partitions. However, instead of re-partitioning
the raw data, a more beneficial approach might remove the duplicated keys in
each partition, reducing the amount of data to be re-partitioned. Another case
that can be optimized is when a shuffle occurs before an operation that reduces
data. For instance, a flow that contains a filter following a sort operation. In
this example, a better approach would be to filter the data before the sort
operation. Recent frameworks, like Spark, use their functional-based interface
to hide all the complexity of optimizing parallel code by analyzing the flow of
the operations and re-organizing its tasks.

4.5. Exploring data locality

Besides the mentioned techniques, another way to decrease the transfers
between nodes is to explore data locality by scheduling tasks on nodes that al-
ready possess the input data. Recent frameworks, such as COMPSs and Spark,
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Figure 2: Exemplification of an partitioning based on a condition.

implement different schedulers to explore data locality and other policies trans-
parently to users. In addition, distributed storage systems (e.g., HDFS, Cas-
sandra, Hive, among others) that are supported in many frameworks like Spark
(natively) or COMPSs (through an API [27]) can help the schedulers by increas-
ing the possibilities of improving data locality when reading files. Frameworks
that use a conventional file system typically adopt as a rule that input files will
be located on the master computer and will be transferred over the network
when required by a task. When using HDFS, for instance, data is distributed
over nodes and replicated to increase data availability; that information can be
used by schedulers to direct execution to the best data providers in each case.

4.6. Integrating pre-compiled code in applications

Python is an easy-to-use language that has been gaining momentum in
recent years in scientific computing, sometimes replacing traditional tools as
Matlab [7]. However, there are well-known factors (e.g., the absence of strong
typing), that can significantly limit its performance. As a solution, many li-
braries such as NumPy [32], Pandas and Scikit-Learn, provide a set of Python
high-performance operations using pre-compiled functions based on C/C++.
When implementing an application, it is expected that users use the maximum
amount of pre-implemented functions, also called vectorized functions, in con-
trast to pure Python code, to speedup their applications. Spark adopts a similar
idea: its algorithms and operations available in PySpark (Spark using Python)
are executed in Scala through a Java Virtual Machine (JVM) connector in the
Spark runtime.
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5. DDF

Based on our experience developing Data Science applications and the ap-
proaches discussed in Section 4, we developed DDF (Distributed DataFrames),
a high-level data abstraction for COMPSs applications with a functional lan-
guage interface, its extensions to the COMPSs runtime and an initial library
of algorithms for Python. DDF currently includes approximately 40 Extract-
Transform-Load (ETL) operations (e.g., data set union, data load, drop columns
and rows, joins, sort) and more than 30 machine learning algorithms (including
scalers, classifiers, regressions and clustering algorithms), all publicly available2.

DDF is based on the abstraction of the DataFrame, similar to Spark’s and
Panda’s DataFrame, where data is distributed over nodes. Similar to those
tools, DDF expresses operations by using operators that hide all code related
to those tasks and the optimization policies. It runs on top of Pandas, a library
providing high-performance, easy-to-use data structures and data analysis tools
for Python. Figure 3 shows the internal structure of the DDF class. It abstracts
its data as a list of n DataFrames that represents the data fragmented in n parts.
Using Panda’s abstraction allows us to use a wide set of well-implemented and
documented functions. However, there is no fixed relationship between functions
provided by Pandas and by DDF, because working in a distributed environment
may require additional operations. For instance, to sort data in DDF, internally
the data is re-partitioned as mentioned in Section 4 before sorting. Also, some
algorithms available in DDF use NumPy functions to speed up Python execution
by using well-implemented C/C++ functions.

Fig. 4 shows the code of the Titanic application, previously mentioned in
Fig. 1, using DDF and its correspondence in Spark3. As the Fig. 4a shows, first
we import our COMPSsContext, an internal DDF Library’s abstraction, that
is responsible for maintaining the context of a workflow using DDF objects,
following the machine learning functions available in the library. From the
operators supported by the API, we can read a “csv” file stored in HDFS,
which returns a DDF object. After that, a flow can be created by using DDF
operators, where each operator contains a previously implemented COMPSs
function. The input and output of each operator is fixed: a function can have
one or two data inputs, each a DDF variable, which internally keeps a list
of n DataFrames. In addition, each operator has its particular parameters,
described in the official documentation. The output of each function will be a
DDF variable (e.g., when the result is produced by the transformation of input
data), a primitive data type (e.g., the result of a statistical operation), or a
simple DataFrame (e.g., when the result is a table that can fit in memory).
Internally, some machine learning algorithms may have more than one stage,
which produce different types of output; however, the final output will follow
the mentioned standardization. DDF can export the data to users that want to

2available at: https://eubr-bigsea.github.io/Compss-Python
3complete code is available on GitHub: https://github.com/eubr-bigsea/

Compss-Python/tree/master/tests/benchmark/titanic

11

https://eubr-bigsea.github.io/Compss-Python
https://github.com/eubr-bigsea/Compss-Python/tree/master/tests/benchmark/titanic
https://github.com/eubr-bigsea/Compss-Python/tree/master/tests/benchmark/titanic


DDF

Partition 1
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Schema informations:

Columns list and its data types;
Number of rows in each partition;
Size of each partition in-memory;

Column 1 Column ... Column N

Partition N

Column 1 Column ... Column N

Figure 3: Internal structure of DDF.

use their own custom algorithms following the default COMPSs interface, and
also import their DataFrame-based data to DDF.

5.1. Lazy evaluation and grouping tasks

The COMPSsContext, allows DDF to adopt lazy evaluation: when an operator
is submitted, COMPSsContext adds that operation to a queue that describes
the operation flow. Currently, operations in the queue are mapped to three types
based on their dependency category: (i) operations with narrow dependencies
are labeled serial, which indicates that they can be grouped with others if there is
no bifurcation in their flow; (ii) operations that involve more than one processing
stage are labeled as last, indicating an operator in which the first stage must be
done individually (ending any existing chain of serial operators, and the second
can be grouped with the following tasks, if they have a serial label (e.g., the sort
operation has two stages, the first one, where partitioning occurs, which cannot
be grouped, and the second one, where the ordering itself takes place; the later
stage can be grouped with other serial operations); and (iii) operations with
wide dependencies are labeled others and indicate that they currently cannot
benefit from optimization policies, like grouping tasks, and must be submitted
individually. Similar to Spark, operations can be labeled as a transformation
operation, that transforms a DDF into another one, or an action, that will force
the execution of the flow. Transformation tasks are queued until an action (like
save or cache) is submitted.
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from	pyspark.sql	import	SparkSession
from	pyspark.ml.feature	import	StringIndexer,\
	VectorAssembler,	StandardScaler

spark	=	SparkSession.builder.getOrCreate()
...
ddf0	=	spark.read\
	.csv('hdfs://namenode:9000/titanic.csv',schema=Schema)

sti	=	StringIndexer(inputCol='Embarked',	
																				outputCol='New_Embarked').fit(ddf0)

ddf1	=	sti.transform(ddf0)
	.drop('PassengerId',	'Cabin',	'Ticket',	'Embarked')\
	.dropna(columns,	how='any')\
	.withColumn('Sex',	replace_udf(df.Sex))\
	.withColumn('Name',	title_checker_udf(df.Name))\
	.withColumn('Age',	age_categorizer_udf(df.Age))\
	.withColumn('Fare',	fare_categorizer_uff(df.Fare))

ddf2a	=	VectorAssembler(inputCol=columns,	
																								outputCol='features')\
	.transform(ddf1).drop(columns)

scaler	=	StandardScaler(withMean=False,	withStd=True,	
																								inputCol='features',	
																								outputCol='features').fit(ddf2a)

ddf2b	=	scaler.transform(ddf2a)\
	.save.parquet('hdfs://namenode:9000/out.parquet')

spark.stop()
																			

(a) Titanic's workflow in DDF (b) Titanic's workflow in Spark

from	ddf_library.context	import	COMPSsContext
from	ddf_library.functions.ml.feature	import	
			StringIndexer,	StandardScaler

compss	=	COMPSsContext()
...
ddf0	=	compss.read\
	.csv('hdfs://namenode:9000/titanic.csv',	schema=Schema)
		
sti	=	StringIndexer().fit(ddf0,	input_col='Embarked')
			
ddf1	=	sti.transform(ddf0,	output_col='Embarked')\
	.drop(['PassengerId',	'Cabin',	'Ticket'])	\
	.dropna(features,	how='any')\
	.replace({'male':	1,	'female':	0},	subset=['Sex'])\
	.map(title_checker_udf,	'Name')\
	.map(age_categorizer_udf,	'Age')\
	.map(fare_categorizer_udf,	'Fare')
			

scaler	=	StandardScaler(with_mean=False,	with_std=True)\
	.fit(ddf2,	input_col=features)

ddf2	=	scaler.transform(ddf2,	output_col=features)\
	save.parquet('hdfs://namenode:9000/out')
	
compss.stop()	

Figure 4: Comparison of running Titanic’s workflow using DDF and Spark.

In Fig. 4 we divide the flow of operations using three variables (ddf0 to
ddf2) to match the color boxes in Fig. 1, representing how COMPSsContext
will schedule those operations. For instance, operations related to the creation
of ddf1 can be submitted as a single task by COMPSsContext. However, we
could write the code in different forms (e.g., using a single sequence or multi-
ple variables in different command lines); the abstraction is robust enough to
analyze the flow of operations internally and decide if they should be grouped.
Currently, COMPSsContext is capable of deciding how an operation should be
submitted, whether is should be merged with others following it, or executed by
itself. Its design and its Lazy evaluation nature support the addition of other
techniques that can be added in the future like, for instance, re-organizing the
order of some operations, when possible, to reduce the data size before a shuffle
operation.

5.2. Serialization

In COMPSs, by definition, a task result is always stored on disk between
tasks. When a task result is not a file, COMPSs serializes it by adopting a stan-
dard solution like Pickle [33] (for Python) to ensure compatibility of data types.
Currently, in its architecture, the only intelligence added in this part is the
choice of which method to use, one available through the built-in Python or us-
ing Numpy. However, because DDF handles structured data (i.e., DataFrames),
other serialization methods would be more suitable, as mentioned earlier. Be-
cause of this, we decided to take the responsibility of serializing a task result and
choose the most suitable one. The COMPSs is flexible to allow this behavior
by using an annotation to inform that the result is a file. Because DDF adopts
a functional interface, all this is abstracted for the user.
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We evaluated the main columnar file formats currently available in Python.
Feather [34] is a format created early in the Arrow project as a proof of con-
cept for fast, language-agnostic DataFrame storage for Python, however, has
the limitation of not supporting storing columns that have Python lists. ORC
files, although is efficient, only the reading method is available for the Python
language. MessagePack [35], has shown good results, but its support has been
removed from Pandas. The Apache Parquet, the chosen format, supports effi-
cient compression and supports all DDF’s data types.

After a task is finished, including the storage, the master node holds the
location of that output and interprets it as a COMPSs Future Object until a
synchronization is requested (which transfers that output to the master as data
in memory). We use this feature in DDF to not overload the central computer:
once a task has been executed, COMPSsContext updates its status to avoid re-
computation and saves its result as a COMPSs Future Object. Besides the data
output, each transformation on DDF also generates a schema output, as shown
in Fig. 3. This schema contains some useful information about the current
state, like the column name, the number of rows in each partition and its size in
memory. This schema is a lightweight data used internally in many operations
that need some previous information about the data without requiring auxiliary
tasks — for example, the sample operation requires the length of each partition
before it can define the sampling parameters.

5.3. Data locality and repartitioning

Operations with wide dependency tasks are expensive for task-based frame-
works such as COMPSs, especially when their output can be large (e.g., inner
joins or sort operations). To minimize the data shuffle, when possible, DDF tries
to reduce data size when partitioning (e.g., the process of dropping duplicated
rows involves a partial rows drop when data is being re-partitioned to reduce
data size in the second step). However, this is not possible for all operations
that need a shuffle; for instance, sorting is a process where the input size is equal
of the output size. Unlike Spark, that manages it in-memory, COMPSs requires
that each sub-fragment is written to disk to be transferred to workers that will
be in charge of merging sub-fragments with same indices. Although partitioning
can significantly reduce that overhead in COMPSs, it is still a high-cost step.
When a task in COMPSs produces more than one output, all data are saved
at the same time, at the end of the task, even if one output is produced at the
beginning. A better approach, as Spark does, might be to save/transfer each
output at the moment it is produced inside the task, reducing idle time.

Although COMPSs generates a DAG similar to Fig. 1b, which can be mon-
itored by the user, the representation is at level of tasks. Because DDF en-
capsulates implementation details, we have made available a first version of a
monitor web UI, complementary to COMPSs, which is at the level of operators,
similar to Fig. 1a4. The monitor can be used to check the progress and obtain

4A sample of the actual COMPSs/DDF DAGs is available in GitHub along with the Titanic
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some statistics of the execution. Interacting with the monitor, it is possible to
verify, for instance, which tasks had their result persisted and which tasks have
already been executed but had their results deleted.

6. Evaluation

The main purpose of this assessment is to validate DDF as a high-level ab-
straction capable of generating optimized PyCOMPSs code. We analyzed the
performance gain of using our API in contrast to a traditional implementation
that does not follow the guidelines mentioned in Section 4. In addition, we com-
pared the performance of COMPSs using our data abstraction with equivalent
Spark applications.

6.1. Experimental setup

In our evaluation, we compared DDF’s performance to Apache Spark be-
cause that framework has similar characteristics to DDF, including functional
interface, ETL and ML algorithms that are focused on big data, and other
optimizations discussed in this paper.

We perform our experiments on a private cloud at Universidade Federal de
Minas Gerais. All experiments used COMPSs (v. 2.6), HDFS (v. 3.1.3), or a
Spark (v. 2.4.4) cluster with a dedicated master node and eight worker nodes.
The virtualized machines had Intel E56xx processors of 2.5 GHz with 4 cores, 8
GB of RAM, with Ubuntu Linux 18.04 LTS. Although the number of available
cores used in our experiment is small in comparison to usual Big Data clusters,
this setup configuration represents a common pattern in many environments.

6.2. Selected applications

Big data applications are often based on ETL and Machine learning algo-
rithms. Because such algorithms may have different properties, we selected
six of them that cover some of the major execution behaviors in this context.
Our goal was to cover common application patterns, like iteration and/or reg-
ularity. Thus, we select the following algorithms: Titanic workflow, KMeans,
Distributed Support Vector Machines (SVM), Sort , Distinct and People-Paths.

(i) Titanic’s workflow (as presented in Fig. 1) is a good example of a long
flow of operations used in Big Data analytics for feature engineering. In this
type of application, much work is done to extract features from raw data via
ETL operations, to be later used in a Machine Learning model.

(ii) KMeans is a classical machine learning algorithm for data clustering,
and it is a good example of an iterative, intensive application pattern. The goal
of the algorithm is to classify a given data set into a certain number of clusters
(K). Each cluster has a centroid. The algorithm works iteratively in such a
way that in every iteration each data point is assigned to the nearest centroid.

application code
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Those operations are compute-intensive tasks. The algorithm iterates until the
centroids do not change their location or some other criterion is fulfilled.

(iii) SVM is a classical machine learning algorithm for data classification,
and it is another good example of computationally intensive iterative applica-
tion. The goal of this algorithm is to find the best hyper-plane that divides a
dataset in two parts based on its labels. The algorithm works iteratively. In
every iteration, each data point is used to measure the distance from that plane.
The plane is refined at the end of the iteration. The algorithms stops when it
reaches a maximum number of iterations or a threshold.

(iv) Sorting is a very common and useful data-intensive operation. The
sort operation has a wide dependency, and because of that, it cannot be easily
parallelized. It is an example of an operation that could be used a re-partition
step (by range and by hash, respectively) to improve its performance.

(v) Distinct (drop duplicate rows) is other example of an operation with a
wide dependency. Differently from Sort, it can also be optimized by trying to
reduce the data set before the re-partitioning step.

(vi) People Paths [36] is an application for smart cities that performs a
descriptive analysis on bus GPS and passenger ticketing data, finding paths
taken by users of the city Public Transportation system during a time period. It
then matches the paths origins/destinations with the city neighborhoods social
indicators (e.g., population, income and literacy rates). The application has
four inputs: the buses ticketing and GPS data, the shapefile with the map of
the city neighborhoods and the census data of the target city. Figure 5 shows
the workflow for People Paths.

The first five applications are used with artificially generated input data: for
Titanic, we replicated the original data set multiple times to create an input
file varying from 2 to 20 GB; after the data interpretation in memory, that
size varied from 8.8 GB to 94 GB; the other applications use artificial data
generated by a uniform distribution varying from 108 to 109 rows. For KMeans,
four columns are used as features (varying from 3 GB to 30 GB), and for SVM,
one binary column is added to be used as label; for Sort, two of the four columns
are used as keys to order; for Distinct, two of four columns were used to define if
a row is equal to others, besides that, we consider two scenario, one with many
duplicated keys (numbers were generated varying from 1 to 103) and other with
few duplicated keys (in this case, number were generated by varying from 1
to 105). For People Paths we used data from the city of Curitiba, in Brazil,
collected by the EUBra-BIGSEA Project [37] that will be discussed later.

6.3. Impact of grouping tasks

The first experiment, in Fig. 6, evaluates the impact of grouping multiple
functions in a single task using Titanic’s workflow. That application, as shown
in Fig. 1, has some sets of functions (represented by same-color boxes) that can
be reduced to fewer tasks. For instance, all green boxes can be merged into a
single task. We measured the elapsed time that corresponds to the code snippet
of green boxes and also measured the total time of the complete application. We
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Figure 5: The People Paths’s workflow.

computed the speedup achieved and its standard deviation [38] by using DDF
against the original COMPSs code without that optimization. Results shown
are the average of ten executions; the coefficient of variation of the results was
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below 5% in all cases.
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Figure 6: Speedup of grouping tasks on Titanic’s workflow against traditional implementation.

The line in Fig. 6 identified as “Titanic: Largest stage” represents the
speedup of just the group of operations in the green boxes in Fig. 1 when using
DDF (that uses lazy evaluation to groups functions when possible) against a
direct implementation in COMPSs without grouping tasks. The speedup for
all input sizes considered is increasing, varying from 1.4 to 2.1, confirming the
importance of using that technique. When we look at the complete application
(blue line, “Titanic: Complete”), we have a speedup approximately constant
of 1.6. One possible reason for this is that the complete application involves
many tasks, some of which have wide dependencies, and also because the save
operation is expensive (it involves saving data in HDFS, with replication factor
3); all this amortizes the speedup of the technique in this case.

6.4. Impact of a columnar serializer

We also used the same Titanic application to measure the impact of using
the external DDF’s serializer, which saves in Parquet format, taking that re-
sponsibility from COMPSs. In this experiment, we executed the application
implemented in DDF (which groups functions when possible) and varying the
serialization method by using the standard COMPSs way or by using the DDF
alternative (which takes on COMPSs’s serialization responsibility to be able to
save in Parquet format). The speedup of this change on the execution time is
shown in Fig. 7. The line identified as “Largest: columnar versus default” rep-
resents the speedup of the green boxes stage, which contains seven operations
in the same stage, just like the previous experiment and saving the result in
Parquet format. In this case, since it contains only one stage, the benefits of
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using a more efficient serializer could not be noticed. However, as we deal with
more complex workflows (as shown in “Complete: Columnar versus default”),
more stages will be necessary, and so, the benefits of using a columnar format
increase. In the range of the current experiment, the speedup increased to 1.4
for the data sizes tested.
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Largest: Columnar vs default

Figure 7: Columnar-based serializer speedup on Titanic’s workflow against traditional
COMPSs serializer.

6.5. Impact of (re-)partitioning data

Fig. 8 illustrates the impact of using a re-partitioning approach in operations
that need a consensus among its fragments (as exemplified by Sort). In order
to conduct this experiment, we compared the Sort operation implemented in
DDF, which uses an approach of re-partitioning the data to be sorted by range
values, to an implementation of Batcher odd-even mergesort [39], popular in
GPU scenarios, where data is sorted in pairs following a priority sequence. We
show visual traces of both executions created by the COMPSs runtime (Fig. 8(a)
and 8(b), respectively). Each gray line in both traces represents a thread. Each
worker node has five threads, one main thread that communicates with the
master (represented by pink boxes) and other four threads to execute parallel
tasks. The Batcher approach (Fig. 8(a)) is inefficient in big data scenarios5, since
it requires many steps and many transfers of partial results to other workers
(red lines). Because there are many concurrent writes to disk, the serialization

5Despite its inefficiency in this case, among the possible versions of sort, the Batcher
algorithm avoids sincronization steps that are known to cause overheads in COMPSs.
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of results also takes a lot of time (green boxes). On the other hand, the DDF
approach (Fig. 8b) is more efficient, with a speedup of 3.7 in this setup. The total
time comprehends the definition of keys used to split data in new fragments, the
splitting step itself, the time to merge fragments with same index and the time
to sort data locally. In this case, the disk does not suffer an overload because
there are fewer writer tasks and less serialization, leading to an execution time
that is more related to the CPU time proper (white boxes).

Legend

   green boxes: Output serialization;
   red lines: Communication between nodes;
   white boxes: User code execution; 
   pink boxes: Persistent workers threads;

a)

b)
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Figure 8: COMPSs Trace of two different Sort algorithms. a) Batcher approach (811 seconds);
b) partitioning approach (219 seconds).

6.6. Performance comparison between frameworks

The next experiment compared some classes of algorithms and operations
using DDF and Spark’s DataFrame library. The results for Titanic application
is shown in Fig. 9a, KMeans and SVM results are shown in Fig. 9b, Sort and
Distinct results are shown in Fig. 9c. Table 1 shows results for People Paths, a
real use case.

When DDF is compared with Spark using a large ETL application as the
Titanic’s workflow (Fig. 9a), the speedup of DDF over Spark is nearly constant
by 1.7 for all data input size to the complete application. When we consider
only the largest stage, as mentioned before, the speedup have similar behavior
by a factor of 1.4×. It makes sense, because Spark already implements task
grouping, so the difference in execution times is more related to differences of
performance between both runtimes, not due to the serialization overhead. This
result indicates that DDF is capable of working with multi-tasking stages as
efficiently as Spark. We believe that shows that Group functions are a powerful
optimization technique; by comparing DDF with a naive implementation in
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Figure 9: Speedup analysis of DDF in COMPSs applications against Spark implementations.

COMPSs (Fig. 6) we saw that the speedup depends on the data size and on
the number of tasks that can be grouped. Also, by comparing with Spark, we
saw that DDF can lead to optimized executions in COMPSs that are at least
as good as Spark for Big Data applications.

Both DDF machine learning algorithms, KMeans and SVM (Fig. 9b), per-
formed faster than Spark’s versions. The speedup of DDF over Spark varied
from 2.4 to 4.2 for the KMeans algorithm, and from 5.9 to 9.1 for SVM algo-
rithm. The KMeans and SVM speedup indicated that DDF can surpass the
Python language overhead by using a set of top libraries allied a set of well-
designed implementations. Spark, on the other hand, performs the execution of
these algorithms internally in Scala, following the same logic of its operators,
that are responsible to define the computations and communication patterns,
which have already been shown to be inefficient in ML/MLlib algorithms [40].
Unlike in DDF, the internal implementation of our algorithms is freer due to
the COMPSs model, based on tasks, which allows the establishment of different
types of communications and the use of external structures and libraries more
easily.

In this set of experiments, Sort had the lowest speedup from 0.8 to 1.1
(Fig. 9c). As we saw in Fig. 8, the partitioning approach reduces the communi-
cation cost between nodes, but it is still an expensive step in COMPSs. During
the execution of the split stage, each partial output waits until the end of its
task to start the process of saving the output, creating some idle time. How-
ever, when we increase the input size, the speedup tends to increase until we get
the same performance as Spark. That is probably because, as we increase the
data size, Spark starts to have problems to keep data in memory, so it starts
to serialize more data, as COMPSs does. Distinct applications have the same
execution pattern of Sort, i.e., require a re-partitioning to be able to check dis-
tinct elements. The difference, in this case, is that we can also apply a partial
distinct function in each partition before the shuffle to reduce the data first.
Because of that, we executed that operation in scenarios with many duplicate
rows and others with few duplicates rows. As Fig. 9c shows, the optimization
of apply partial functions in operations that are based on reduce data is a great
technique. In a scenario with many duplicates rows, DDF was able to get a
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Ticketing data GPS data
N. of
days

Size
(MB)

N. records
(K)

Size
(GB)

N. records
(K)

Speedup Standard
Deviation

5 173 982 1.5 15,403 1.23 0.02
10 397 2,260 3.6 37,124 1.42 0.04
15 639 3,646 5.7 58,647 1.28 0.03
20 895 5,108 7.7 79,490 1.36 0.06
25 1,144 6,534 9.8 101,115 1.43 0.07
30 1,525 8,708 11.9 122,549 1.39 0.04

Table 1: Speedup of DDF against Spark for People Paths application. Ticketing and GPS
data records are shown in thousands.

speedup of 6.5× over Spark, indicating that the reordering technique is prob-
ably not done by Spark. However, in the case of Distinct with few duplicates
rows, the speedup was smaller, varying from 0.6 to small data to 1.4 to large
data, because a partial function is not able to reduce the data significantly in
that scenario.

The People Paths application (as shown in Fig. 5) is an example of a real Big
Data analytic application. In its logic, it involves many ETL operations with
different execution patterns: operations with narrow dependencies that benefit
from the technique of grouping tasks; operations with wide dependencies such
as Join and Sort that benefit from partitioning; and operations such as Distinct
(Remove duplicated rows), which can also be applied to a partial reduction. This
application was implemented in Spark and DDF6 and executed in a different
number of data collection days, varying from 5 to 30 days, as shown in Table 1.
The increase in the number of records for both data inputs is nearly linear as
a function of the number of days. In Fig. 5 two of those stages are shown, the
others were not represented in the image for simplification. Table 1 also contains
the DDF speedup over Spark for a set of 10 runs each with its standard deviation.
From the result, we can see that DDF has an average performance 35%, higher
than Spark. In addition, we applied the Unpaired Two-Samples t-test on the
largest of input data (30 days) to prove that the two systems are significantly
different. The result of this test gives us a confidence interval (95 %) of (342.6,
377.4), meaning that DDF has a real performance between 343 to 377 seconds
faster than Spark, for the evaluated set. In terms of speedup, this is equivalent
to a speedup between 1.37 to 1.41. This shows us that the optimizations that
DDF provides to COMPS users are a viable alternative. The same calculation
is shown in Appendix A for the other experiments shown.

6available at: https://github.com/eubr-bigsea/Compss-Python/tree/master/tests/

benchmark/people_path/
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7. Conclusion

Despite the variety of distributed and parallel frameworks for HPC and Big
Data, the use of functional-based programming interfaces is becoming a frequent
model in many of them. In this paper, we discussed many implementation as-
pects that affect the performance of task-based frameworks, evaluated their
impact on COMPSs and showed how a functional-based interface, a popular
abstraction used in many Data Science tools, can be used to hide complex-
ity in data-parallel algorithms, improving their performance. We explored the
potential benefits of the integration between COMPSs, a powerful task-based
framework originated in an HPC environment, with a functional-based interface.
Although COMPSs has an easy-to-use native interface, the developer needs to
take care of many implementation details to obtain the maximum of perfor-
mance. With a functional-based API, many of those details can be hidden from
the programmer.

We developed the DDF Library, a set of machine learning algorithms and
operations on top of a functional-based DataFrame interface (DDF), in Python,
for COMPSs. That interface implements a dynamic task evaluator capable of
producing optimized code following the set of guidelines discussed in the paper.
The COMPSs programming model has been shown to be very flexible, and those
techniques and new ones can be added to DDF without major difficulties. We
compared the performance of our proposed API with Spark and the results show
that COMPSs with DDF is a high-performance, user-friendly solution for Big
Data, with a large set of algorithms and operations that could be used as a
viable programming environment. The fact that DDF/COMPSs outperforms
Spark in an infrastructure usually related to Big Data, indicates that COMPSs
is a versatile system.

In view of the results presented, we hope to help on this path of convergence
with the contribution of DDF, and with the validation that such techniques
can be successfully incorporated into an HPC system. The fact that DDF has
been implemented in COMPSs allows it to be combined with the various HPC
integration and supports that COMPSs already provides natively. DDF can be
used by users already in the HPC world that are facing big data problems. But
we also expect that this data abstraction helps users familiar with Big Data
environments to use COMPSs as an easy alternative for a high-performance
framework suited for Big Data applications.

The ongoing work includes developing the support for more functions in
DDF and improving the optimization guidelines, for instance: to support the
dynamic reorganization of tasks to reduce data volume during the shuffle step,
by analyzing the memory footprint of each DDF partition that is already col-
lected by DDF in the schema information; or to support logical optimizations,
for example, by reorganizing code.
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Experiment Application Speedup 95% CI
Titanic: Largest stage 2.09 (1.74, 2.34)Impact of

grouping tasks Titanic: Complete 1.66 (1.62, 1.68)
Largest: Columnar vs default 1.02 (1.01, 1.03)Impact of

serialization Complete: Columnar vs default 1.38 (1.30, 1.39)
Titanic: Largest stage 1.40 (1.38, 1.42)
Titanic: Complete 1.73 (1.72, 1.74)
KMeans 3.46 (3.38, 3.55)
SVM 7.91 (7.79, 8.03)
Sort 1.06 (1.02, 1.11)
Distinct: many duplicates 6.49 (6.07, 6.90)
Distinct: few duplicates 1.39 (1.36, 1.44)

Comparison of
DDF vs Spark

People Paths 1.39 (1.37, 1.41)

Table A.2: Speedup summarization for all experiments with the 95% confidence interval.
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Appendix A. Confidence interval study

Table A.2 summarizes the average speedup with respect to the largest data
input scenarios for all experiments shown in this paper. For each experiment,
we also applied an Unpaired Two-Samples T-Test to obtain a 95% confidence
interval about the difference of execution time between the evaluated systems.
In all scenarios, the results were statistically significant. Finally, we calculated
a range of speedup based on the obtained interval (column 95% CI) by the
equation (1+c1/avga, 1+c2/avga), where: c1 and c2 are the confidence interval
range by an Unpaired Two-Samples t-test and avga is the execution time mean
of the main evaluated system.
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[20] J. Álvarez Cid-Fuentes, et al., dislib: Large scale high performance ma-
chine learning in python, in: 2019 15th IEEE International Conference on
eScience, Vol. 1, 2019, pp. 96–105.

[21] Dask Development Team, Dask: Library for dynamic task scheduling,
https://dask.org, last access: 2020-06-01 (2016).

[22] Dask Development Team, Dask-ML, https://ml.dask.org/, last access:
2020-06-01 (2017).

[23] Dask Development Team, Joblib, https://ml.dask.org/joblib.html/,
last access: 2020-06-01 (2017).

[24] W. Santos, et al., Lemonade: A scalable and efficient spark-based plat-
form for data analytics, in: 17th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing (CCGRID), 2017, pp. 745–748.

[25] Y. Tang, TF. Learn: Tensorflow’s high-level module for distributed machine
learning, arXiv preprint arXiv:1612.04251 (12 2016).

[26] L. M. Ponce, et al., Extension of a task-based model to functional program-
ming, in: 2019 31st International Symposium on Computer Architecture
and High Performance Computing (SBAC-PAD), 2019, pp. 64–71.

[27] L. M. Ponce, et al., Upgrading a high performance computing environment
for massive data processing, Journal of Internet Services and Applications
10 (19) (2019).

[28] Apache Spark, Tuning - Spark 2.4.5 Documentation, https://spark.

apache.org/docs/latest/tuning.html, last access: 2020-06-01 (2020).

[29] S. Melnik, et al., Dremel: Interactive analysis of web-scale datasets, Pro-
ceedings of the VLDB Endowment 3 (1) (2010) 330–339.

26

http://compss.bsc.es/releases/compss/latest/docs/DDS_Manual.pdf
http://compss.bsc.es/releases/compss/latest/docs/DDS_Manual.pdf
https://dask.org
https://ml.dask.org/
https://ml.dask.org/joblib.html/
https://spark.apache.org/docs/latest/tuning.html
https://spark.apache.org/docs/latest/tuning.html


[30] Apache ORC, Apache ORC: High-performance columnar storage for
hadoop, http://orc.apache.org/, last access: 2020-06-01 (2020).

[31] T. Ivanov, M. Pergolesi, The impact of columnar file formats on SQL-on-
hadoop engine performance: A study on ORC and Parquet, Concurrency
and Computation: Practice and Experience 32 (5) (2020) e5523. doi:

10.1002/cpe.5523.

[32] S. van der Walt, S. C. Colbert, G. Varoquaux, The numpy array: A struc-
ture for efficient numerical computation, Computing in Science & Engi-
neering 13 (2) (2011) 22–30.

[33] Python Software Foundation, pickle - Python object serialization, https:
//docs.python.org/3/library/pickle.html, last access: 2020-06-01
(2020).

[34] Apache Arrow, Feather File Format, https://arrow.apache.org/docs/
python/feather.html, last access: 2020-06-01 (2016).

[35] S. Furuhashi, MessagePack: It’s like JSON. but fast and small, https:

//msgpack.org/, last access: 2020-06-01 (2019).

[36] N. Andrade, et al., D7. 3 - Toolbox for GES3 data initial release, Tech.
rep., EUBra-BIGSEA, https://www.eubra-bigsea.eu/sites/default/
files/D7.3%20-%20Toolbox%20for%20GES%C2%B3%20Data%20Initial%

20Release_v1.pdf, last access: 2020-06-13 (2017).

[37] A. S. Alic, et al., BIGSEA: A big data analytics platform for public trans-
portation information, Future Generation Computer Systems 96 (2019)
243–269.

[38] J. S. Firoz, et al., The value of variance, in: Proceedings of the 7th
ACM/SPEC on International Conference on Performance Engineering,
ICPE’16, Association for Computing Machinery, New York, NY, USA,
2016, p. 287–295.

[39] K. E. Batcher, Sorting networks and their applications, in: Proceedings of
Spring Joint Computer Conference, AFIPS ’68 (Spring), ACM, New York,
NY, USA, 1968, pp. 307–314.

[40] Z. Zhang, et al., MLlib∗: Fast training of GLMs using Spark MLlib, in:
2019 IEEE 35th International Conference on Data Engineering (ICDE),
IEEE, 2019, pp. 1778–1789.

27

http://orc.apache.org/
https://doi.org/10.1002/cpe.5523
https://doi.org/10.1002/cpe.5523
https://docs.python.org/3/library/pickle.html
https://docs.python.org/3/library/pickle.html
https://arrow.apache.org/docs/python/feather.html
https://arrow.apache.org/docs/python/feather.html
https://msgpack.org/
https://msgpack.org/
https://www.eubra-bigsea.eu/sites/default/files/D7.3%20-%20Toolbox%20for%20GES%C2%B3%20Data%20Initial%20Release_v1.pdf
https://www.eubra-bigsea.eu/sites/default/files/D7.3%20-%20Toolbox%20for%20GES%C2%B3%20Data%20Initial%20Release_v1.pdf
https://www.eubra-bigsea.eu/sites/default/files/D7.3%20-%20Toolbox%20for%20GES%C2%B3%20Data%20Initial%20Release_v1.pdf

	Introduction
	Related work
	The COMPSs framework
	Optimization techniques
	Serialization
	Grouping tasks
	Lazy evaluation
	Repartitioning to minimize data shuffle
	Exploring data locality
	Integrating pre-compiled code in applications

	DDF
	Lazy evaluation and grouping tasks
	Serialization
	Data locality and repartitioning

	Evaluation
	Experimental setup
	Selected applications
	Impact of grouping tasks
	Impact of a columnar serializer
	Impact of (re-)partitioning data
	Performance comparison between frameworks

	Conclusion
	Confidence interval study

