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Abstract

Recently, a very deep convolutional neural network (CNN) has achieved impressive results in
image super-resolution (SR). In particular, residual learning techniques are widely used. How-
ever, the previously proposed residual block can only extract one single-level semantic feature
maps of one single receptive field. Therefore, it is necessary to stack the residual blocks to ex-
tract higher-level semantic feature maps, which will significantly deepen the network. While
a very deep network is hard to train and limits the representation for reconstructing the hierar-
chical information. Based on the residual block, we propose an enhanced multi-scale residual
network (EMRN) to take advantage of hierarchical image features via dense connected enhanced
multi-scale residual blocks (EMRBs). Specifically, the newly proposed residual block (EMRB)
is capable of constructing multi-level semantic feature maps by a two-branch inception. The two-
branch inception in our proposed EMRB consists of 2 convolutional layers and 4 convolutional
layers in each branch respectively, therefore we have different ranges of receptive fields within
one single EMRB. Meanwhile, the local feature fusion (LFF) is used in every EMRB to adap-
tively fuse the local feature maps extracted by the two-branch inception. Furthermore, global
feature fusion (GFF) in EMRN is then used to obtain abundant useful features from previous
EMRBs and subsequent ones in a holistic manner. Experiments on benchmark datasets suggest
that our EMRN performs favorably over the state-of-the-art methods in reconstructing further
superior super-resolution (SR) images.

Keywords:
Image super-resolution, Enhanced multi-scale residual network (EMRN), Enhanced multi-scale
residual block (EMRB), A two-branch inception

1. Introduction

A high-resolution (HR) image can be reconstructed from its correlated low-resolution (LR)
observation by single image super-resolution (SISR). The SISR methods [3, 4, 5, 6, 7, 8, 9, 10]
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(b) Residual dense block

(c) Enhanced multi-scale residual block

Figure 1: Comparisons of prior residual blocks (a,b) and the proposed module EMRB (c). (a) Residual block in EDSR
[1]. (b) Residual dense block in RDN [2]. (c) Our proposed enhanced multi-scale residual block.

can be well applied to various image restorations, such as image denoising, compression artifacts
reduction, demosaicing, and super-resolution. While SISR is an inherently ill-posed procedure
since a single LR input can reconstruct multiple HR outputs. As a result, the space of the possible
functions of the mapping from LR to HR images becomes extremely large, which makes it hard
to find a good solution [11]. To address this inverse problem, abundant deep neural networks for
image super-resolution [2, 11, 12, 13, 14, 15, 16, 17] have been proposed. These networks aim
to learn a non-linear mapping between LR and HR to reconstruct a HR image of good quality.
Dong et al. [18] first developed a three-layer network, which achieved significant achievements
over traditional algorithms. Kim et al. [13] first successfully used 20 layers to demonstrate that
increasing depth significantly boosted performance with residual learning in VDSR. Meanwhile,
Kim et al. applied recursive-supervision in DRCN [19] to make it easier to train a deeper net-
work. An effective network model for image SR proves that the deeper the network, the better
the reconstruction performance [7]. EDSR [1] built a very wide network and made a significant
breakthrough in terms of SR performance by simplifying the network structure of the SRResNet
[20]. The residual block in EDSR is shown in Fig 1(a). EDSR won the competition of NTIRE
2017 [21]. EDSR has about 43M parameters, 69 layers, and it takes 8 days to train this work.
More recently, based on EDSR, Zhang et al. [2] introduced a residual dense network (RDN)
(over 128 layers), which was built with the residual dense blocks (RDBs). RDB ( Fig 1(b) )
incorporated densely connected [22] convolutional layers into a residual block. Soon they pro-
posed a very deep network RCAN [16] with more than 400 layers. Recently, Zhang et al. also
proposed the residual non-local attention learning and then constructed the very deep residual
non-local attention networks (RNAN) [8] for high-quality image restoration. More recently, Liu
et al. [23] proposed a residual feature aggregation network (RFANet) for more efficient feature
extraction. The RFANet is constructed by incorporating the proposed residual feature aggre-
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Table 1: The main differences between our proposed EMRB and the residual modules proposed by several other methods
Method The proposed residual module Multi-scale Residual blocks Parameters

EDSR [1] Residual block (RB) × 32 43M
RDN [2] Residual dense block (RDB) × 16 22M

RCAN [16] Residual channel attention block (RCAB) × 200 16M
RFANet [23] Residual feature aggregation (RFA) module × 120 11M
EMRN(Ours) Enhanced multi-scale residual block (EMRB) X 4 7M

gation (RFA) modules with the enhanced spatial attention (ESA) blocks. Especially, the RFA
framework groups several residual modules together and adds skip connections to directly for-
ward the features on each local residual branch [23]. Therefore, the RFA framework is able to
aggregate these informative residual features to produce more powerful features. These methods
have performed favorably in visual quality, but they also require a lot of time and massive graph-
ics memory consumption in the training phases. The trend of current algorithms is to deepen
convolutional neural networks (CNN) to obtain better performance [24]. However, deepening
the network will make the training process difficult. Although the deep network models such as
EDSR [1], RDN [2], and RCAN [16] can improve the SR performance, these methods still suffer
from the large space issue of possible mapping functions and result in the limited performance
[11]. More recently, Guo et al. [11] developed a dual regression scheme by introducing an addi-
tional constraint to reduce the space of the possible functions from LR to HR images. Thus, LR
images can be reconstructed to enhance the performance of SR models.

As the depth of the network increases, the hierarchical information extracted by each con-
volutional layer will have different receptive fields. The receptive field is used to represent the
range of the original images received by neurons at different locations within the convolutional
neural network (CNN). The greater the value of the neuronal receptive field, the greater the range
of original images it can access, which also means that it may contain more global and higher
semantic information; and the smaller the value, it means the features it contains tend to be local
and detailed. So the value of the receptive field can be roughly used to judge the abstraction
level of each layer. Therefore, a residual block in EDSR with only one branch can only extract
one single-level semantic information [25]. To get higher-level semantic information, it is neces-
sary to stack residual blocks, which will sharply deepen the network. A very deep network can
make the training process difficult, simultaneously limit the representation for reconstructing the
hierarchical information.

To address these problems, we propose an enhanced multi-scale residual network (EMRN)
with smaller depth to better utilize higher-level hierarchical information from LR images. Based
on the residual dense block (RDB( Fig 1(b) )) in RDN [2], we propose an enhanced multi-scale
residual network (EMRN) with dense connected enhanced multi-scale residual blocks (EMRBs)
( Fig 1(c) ). Our EMRB consists of a two-branch inception and each branch in this inception is
composed of 2 convolutional layers and 4 convolutional layers respectively. We have different
receptive fields in one single EMRB, which is able to extract multi-level semantic information.
Compared with some concurrent networks that improve multi-scale capabilities by extracting
features with different resolutions, our proposed network refers to extracting multi-level features
with different receptive fields in one single residual block. Table 1 shows the main differences be-
tween our proposed EMRB and the residual modules proposed by several other methods. EMRB
also includes local feature fusion (LFF) and local residual learning (LRL) [2]. LFF can adap-
tively preserve the multi-level local feature maps extracted by the two-branch inception [25].
Moreover, LFF allows extremely high learning rates and experiments show that higher learning
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rates can significantly improve the effectiveness of the network [2, 13]. Furthermore, we also use
global feature fusion (GFF) [2] at the bottom of EMRN to adaptively preserve useful hierarchi-
cal information in a global manner [24]. The proposed framework EMRN aims to collect useful
contextual information from a wide range of LR images so that we can better obtain sufficient
knowledge to recover the details in HR images. In summary, the contributions of this article are
as follows:

1. We propose an enhanced multi-scale residual network (EMRN) with smaller depth to re-
construct super-resolution images of high-quality in SISR with different scales (×2, ×3,
×4). Without deepening the network, the EMRN framework can also significantly make
full use of hierarchical information. The proposed network EMRN converges much faster
and performs favorably in reconstructing SR images with high visual quality.

2. We propose an enhanced multi-scale residual block (EMRB), which can extract multi-level
semantic information with different receptive fields in one single EMRB. In the module
EMRB, the concatenation of the outputs obtained by the two-branch inception is sent to a
bottleneck layer, thereby the local feature maps with abundant high-level semantic infor-
mation are adaptively preserved through the bottleneck layer. The proposed EMRBs can
help build a wider network for stabling the training.

The remaining content is organized as follows. We briefly review the related work in Section
2. We present the architecture of the proposed network in Section 3. Experimental results and
analysis are provided in Section 4.

2. Related Work

2.1. Single image super-resolution

Recently, deep learning-based methods have achieved great success against conventional
ones. In this section, we only briefly review some works on single image super-resolution. Dong
et al. [18] first proposed a super-resolution network (SRCNN). This network established an end-
to-end mapping between the LR images and their HR counterparts. Inspired by this baseline,
Kim et al. [13] proposed VDSR by stacking 20 convolutional layers with residual learning. Re-
cursive learning was firstly introduced in DRCN [19] for parameter sharing. Later, Tai et al.
introduced recursive blocks in DRRN [14] and memory blocks in Memnet [26] for deeper net-
works. These methods need to extract features from the interpolated LR images, which results in
massive graphics memory consumption. To solve this issue, Shi et al. proposed an efficient sub-
pixel convolutional layer in ESPCN [27], which was introduced to upscale the LR feature maps
into the HR output at the end of the network. The efficient sub-pixel convolution layer was then
adopted in many very deep networks, which have been proposed for a better performance. Lim
et al. proposed a very wide network EDSR [1], which achieved a significant performance for SR
by removing the batch normalization (BN) layers of the SRResNet [20]. Huang et al. introduced
the dense connections between any two layers in DenseNet [22]. The dense connections were
introduced among memory blocks [26] and dense blocks [15]. More recently, Zhang et al. [2]
and Liu et al. [23] also used dense connections in RDN and RFANet to utilize all the hierarchical
features from all the convolutional layers in the LR space.

4
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UPF
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Figure 2: The architecture of our proposed enhanced multi-scale residual network (EMRN).

2.2. Multi-scale Representations
Multi-scale representation has exhibited dramatic success in a number of vision tasks [28,

29, 30, 31, 32, 33, 34]. Due to its strong robustness and generalization ability, multi-scale rep-
resentation also plays an important role in the deep learning era. Lin et al. introduced feature
pyramid in FPN [25] to fuse features from different depths at the end of the network for ob-
ject detection tasks. PSP [35] proposed the pyramid pooling scheme to aggregate the global
context information from region-based features for segmentation tasks. Sun et al. [36] pro-
posed a well-designed network architecture that contains multiple branches where each branch
has its own spatial resolution. Wang et al. adopted the similar idea in ELASTIC-Net [37] to
design a replacement of residual block for ResNet [38] and thus the network is more effective
to use. Multi-grid CNNs [39] proposed a multi-grid pyramid feature representation and defined
the multi-grid convolutional layer (MG-Conv) operator as a replacement of convolution opera-
tor. MG-Conv is conceptually similar to OctConv[40] but is motivated for exploiting multi-scale
features. Compared with MG-Conv [39], OctConv [40] adopts more efficient design to exchange
inter-frequency information with higher performance.

3. EMRN for Image Restoration

3.1. Network Structure
The configuration of the proposed EMRN is depicted in Fig 2. EMRN can be constructed

by four parts: shallow feature extraction (SFE), enhanced multi-scale residual blocks (EMRBs),
dense feature fusion (DFF), upscale module (UPMod). Let’s denote LR image ILR as the input
and SR image IS R as the output. The low-resolution image ILR is obtained by the bicubic interpo-
lation of its corresponding high-resolution image IHR. The SR image IS R is the super-resolution
version we want to reconstruct. According to the survey of [1, 16, 20], the shallow feature F0 is
extracted from the LR input by using only one 3×3 convolutional layer

F0 = HS F(ILR), (1)

where HS F(·) represents convolution operation. F0 is then used as the input of EMRBs and for
global residual learning. Supposing EMRN contains M EMRBs, let Fm−1 and Fm be the input
and output of the m-th EMRB, and then the output Fm can be further obtained by

Fm = Hm(Fm−1) = Hm(Hm−1(· · · (H1(F0)) · · · )), (2)
5



where Hm indicates the operations of the m-th EMRB. Hm can be a composite function consisting
of operations like convolution and rectified linear units (ReLU) [2]. We assume Fm consists of
G0 feature maps. [F0, F1, · · · , Fm−1] refers to the concatenation of the feature maps produced by
the (m− 1)-th EMRB. Enhanced multi-scale residual blocks 1,· · · ,(m− 1), result in G0+(m− 1)×
G feature maps (G is known as growth rate [2, 22]). In the proposed framework EMRN, short
skip connections are used between an EMRB and every other EMRB. This operation preserves
the feed-forward nature [2] and facilitates the flow of information. The feature reuse by short
skip connections substantially reduces the number of parameters and requires less memory [15].
More details about the proposed EMRB will be shown in Section 3.2.

After we conduct a set of EMRBs to extract high-level semantic information, dense feature
fusion (DFF) can be further utilized in a global manner. The DFF includes two parts: global
feature fusion (GFF) and global residual learning (GRL). We utilize global feature fusion (GFF)
in DFF [2] to obtain the global feature FGF by adaptively fusing the output of the features from
the final EMRB. And we utilize global residual learning (GRL) to take advantage of residual
learning in a global way. By utilizing DFF, we can get richer semantic information. Therefore,
FGF can be formulated as

FGF = Wm ∗ Hm(Hm−1(· · ·H1(F0) · · · )), (3)

where Wm denotes the weight set to the 1×1 convolution of GFF, and we omit the bias term
for simplicity. The weight set Wm is obtained by using the Xavier initialization method and the
Xavier initialization method is a very effective method for initializing neural networks [41]. The
high-level feature maps with multiple ranges of receptive fields are adaptively fused by this 1×1
convolutional layer.

Before conducting up-scaling, we utilize global residual learning (GRL) [2] in DFF to obtain
the dense feature maps

FDF = F0 + FGF , (4)

where F0 represents the shallow features. Before utilizing global residual learning (GRL), we
conduct GFF to adaptively fuse the multi-level dense features with different receptive fields pro-
duced by the proposed EMRBs. Then the dense features FDF are obtained by utilizing global
residual learning (GRL). These hierarchical features with different receptive fields are then up-
scaled by an upscale module

FUP = HUP(FDF), (5)

where FUP denotes the upscaled features, and Hup(·) indicates an upscale module.
Inspired by [1, 2], we utilize ESPCN [27] in UPMod, which has been proven to be superior to

previous up-scaling methods for SR in terms of computational complexity and obtaining better
performance. Then the upscaled features are reconstructed by one 3 × 3 convolutional layer

IS R = HREC(FUP) = HEMRN(ILR), (6)

where HREC and HEMRN denote the final 3 × 3 convolutional layer of reconstruction and the
operation of EMRN respectively.

Then we use L1 loss function to optimize EMRN. The L2 loss function is also one of the most
widely-used optimization functions. Although it can achieve high PSNR/SSIM, the solution for

6
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Figure 3: Details about the architecture of enhanced multi-scale residual block (EMRB).

L2 function is harder to converge in training and easier to lose detail texture information. For
better and more effective results, we choose to optimize the proposed network EMRN with L1
loss function like most previous works [1, 2, 16, 42]. Given a training set

{
ILR
i , IHR

i

}N

i=1
that has

N LR-HR counterparts. Thus, the loss function L(θ) of our EMRN can be defined as

L(θ) =
1
N

N∑
i=1

∥∥∥HEMRN(ILR
i ) − IHR

i

∥∥∥
1, (7)

where θ represents the parameters of our EMRN. Then we will give more details of training in
Section 4.2.

3.2. Enhanced Multi-scale Residual Block

We propose an enhanced multi-scale residual block (EMRB) for extracting multi-level se-
mantic features with different receptive fields. More details about the architecture of EMRB are
shown in Fig 3. The proposed module EMRB contains local feature fusion (LFF), and local
residual learning (LRL) [2].

Local Feature Fusion. The proposed enhanced multi-scale residual block (EMRB) has a
two-branch inception where each branch consists of 2 convolutional layers and 4 convolutional
layers. Our EMRB is different from the previous residual block ( Fig 1(a) ) because the previous
residual block has only one branch and can only extract one single-level semantic information.
In the proposed EMRB, the low-level features extracted by the shorter branch and high-level
features extracted by the longer branch are adaptively fused by a 1 × 1 convolutional layer at the
bottom of the two-branch inception. We call this function performed in each EMRB as the local
feature fusion (LFF) [2]. Therefore, EMRB can extract multi-level semantic information with
different receptive fields in one single residual block. LFF can be obtained by

Fm1,c1 = Hm1,c1 (Fm−1), (8)
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Fm2,c1 = Hm2,c1 (Fm−1), (9)

Fm2,c2 = Hm2,c2 (Fm2,c1 ), (10)

Fm,LF = HLF
m ([Fm1,c1 , Fm2,c2 ]), (11)

where Hm,c denotes a composite function consisting of convolution and ReLU. The subscript
mi(i = 1, 2, 3) indicates the locations of the branches in Fig 3, and ci(i = 1, 2) denotes the
number of the related operations performed in this row. [Fm1,c1 , Fm2,c2 ] refers to the concatenation
operation.

Assume that the input of the first EMRB has G0 feature maps. Due to the existence of dense
connections between EMRBs, the input Fm−1 of the m-th EMRB contains Q feature maps (Q =

G0 + (m − 1) × G), then the output Fm1,c1 by the operation Hm1,c1 of the first row has Q feature
maps. The outputs Fm2,c1 , Fm2,c2 of the second row also have Q feature maps. After the outputs
Fm1,c1 , Fm2,c2 are concatenated, one 1 × 1 convolution is used to adaptively fuse the multi-level
features. We name the function of the 1 × 1 convolution as local feature fusion (LFF). These
feature maps of concatenation contain redundant information, and if they are directly used as the
input of the next EMRB, it will greatly increase the computational complexity. Therefore, the
input 2Q feature maps of the 1×1 convolutional layer are reduced to the output G0 feature maps.
Meanwhile, this 1 × 1 convolution is extremely crucial for rebuilding a high-quality network by
making full use of the multi-level features. The output of this 1×1 convolution is defined as Fm,LF

and this function is named HLF
m . We find that as the network deepens, its spatial expression ability

gradually decreases, but it extracts richer semantic information [24]. The proposed EMRB can
extract multi-level features with different receptive fields in one single residual block and then
the framework EMRN can obtain better experimental results without stacking a large number of
EMRBs, which avoids a series of problems caused by deepening the network.

Local Residual Learning. The proposed module EMRB has a two-branch inception and
each branch in this inception has several convolutional layers. The residual learning is used in
EMRB to make the information flow better and we call this function in every EMRB as local
residual learning (LRL) [2]. It can be defined as

Fm = Fm3,c1 + Fm,LF , (12)

where Fm3,c1 denotes the output of the 3×3 convolution in the third row. The input Fm−1 contains
Q feature maps and is reduced into G0 feature maps by the operation of this 3 × 3 convolution.
This 3 × 3 convolution can help reduce the computational complexity caused by the Q feature
maps, which has a large amount of information. Fm denotes the output of the EMRB and we
get Fm by performing the element-wise addition. In other words, the implementation of LRL
is performing an element-wise addition of the feature maps Fm,LF extracted by the local feature
fusion and the output Fm3,c1 obtained by the 3 × 3 convolution in the third row. We find that the
proposed network EMRN converges much faster with this local residual learning [13] and shows
superior performance in the SISR performance.
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Table 2: Quantitative evaluation of state-of-the-art SR methods: average PSNR/SSIM with scale factor ×2, ×3 and ×4
on datasets Set5, Set14, B100, Urban100, and Manga109. Best and second best results are highlighted and underlined.

Method Scale
Set5

PSNR / SSIM
Set14

PSNR / SSIM
B100

PSNR / SSIM
Urban100

PSNR / SSIM
Manga109

PSNR / SSIM

Bicubic ×2 33.66 / 0.9299 30.24 / 0.8688 29.56 / 0.8431 26.88 / 0.8403 30.80 / 0.9339
SRCNN [43] ×2 36.66 / 0.9542 32.45 / 0.9067 31.36 / 0.8879 29.50 / 0.8946 35.60 / 0.9663
FSRCNN [44] ×2 37.00 / 0.9558 32.63 / 0.9088 31.53 / 0.8920 29.88 / 0.9020 36.67 / 0.9710
VDSR [13] ×2 37.53 / 0.9587 33.03 / 0.9124 31.90 / 0.8960 30.76 / 0.9140 37.22 / 0.9750
DRCN [19] ×2 37.63 / 0.9588 33.04 / 0.9118 31.85 / 0.8942 30.75 / 0.9133 37.55 / 0.9732
DRRN [14] ×2 37.74 / 0.9591 33.23 / 0.9136 32.05 / 0.8973 31.23 / 0.9188 37.88 / 0.9749
LapSRN [42] ×2 37.52 / 0.9591 32.99 / 0.9124 31.80 / 0.8952 30.41 / 0.9103 37.27 / 0.9740
MemNet [26] ×2 37.78 / 0.9597 33.28 / 0.9142 32.08 / 0.8978 31.31 / 0.9195 37.72 / 0.9740
EDSR-baseline [1] ×2 37.99 / 0.9604 33.57 / 0.9175 32.16 / 0.8994 31.98 / 0.9272 38.54 / 0.9769
SRMDNF [45] ×2 37.79 / 0.9601 33.32 / 0.9159 32.05 / 0.8985 31.33 / 0.9204 38.07 / 0.9761
EMRN (Ours) ×2 38.07 / 0.9607 33.67 / 0.9177 32.21 / 0.8999 32.20 / 0.9291 38.56 / 0.9770

Bicubic ×3 30.39 / 0.8682 27.55 / 0.7742 27.21 / 0.7385 24.46 / 0.7349 26.95 / 0.8556
SRCNN [43] ×3 32.75 / 0.9090 29.30 / 0.8215 28.41 / 0.7863 26.24 / 0.7989 30.48 / 0.9117
FSRCNN [44] ×3 33.18 / 0.9140 29.37 / 0.8240 28.53 / 0.7910 26.43 / 0.8080 31.10 / 0.9210
VDSR [13] ×3 33.66 / 0.9213 29.77 / 0.8314 28.82 / 0.7976 27.14 / 0.8279 32.01 / 0.9340
DRCN [19] ×3 33.82 / 0.9226 29.76 / 0.8311 28.80 / 0.7963 27.15 / 0.8276 32.24 / 0.9343
DRRN [14] ×3 34.03 / 0.9244 29.96 / 0.8349 28.95 / 0.8004 27.53 / 0.8378 32.71 / 0.9379
LapSRN [42] ×3 33.81 / 0.9220 29.79 / 0.8325 28.82 / 0.7980 27.07 / 0.8275 32.21 / 0.9350
MemNet [26] ×3 34.09 / 0.9248 30.00 / 0.8350 28.96 / 0.8001 27.56 / 0.8376 32.51 / 0.9369
EDSR-baseline [1] ×3 34.37 / 0.9270 30.28 / 0.8417 29.09 / 0.8052 28.15 / 0.8527 33.45 / 0.9439
SRMDNF [45] ×3 34.12 / 0.9254 30.04 / 0.8382 28.97 / 0.8025 27.57 / 0.8398 33.00 / 0.9403
EMRN (Ours) ×3 34.45 / 0.9273 30.34 / 0.8423 29.11 / 0.8052 28.14 / 0.8519 33.47 / 0.9442

Bicubic ×4 28.42 / 0.8104 26.00 / 0.7027 25.96 / 0.6675 23.14 / 0.6577 24.89 / 0.7866
SRCNN [43] ×4 30.48 / 0.8628 27.50 / 0.7513 26.90 / 0.7101 24.52 / 0.7221 27.58 / 0.8555
FSRCNN [44] ×4 30.72 / 0.8660 27.61 / 0.7550 26.98 / 0.7150 24.62 / 0.7280 27.90 / 0.8610
VDSR [13] ×4 31.35 / 0.8838 28.01 / 0.7674 27.29 / 0.7251 25.18 / 0.7524 28.83 / 0.8870
DRCN [19] ×4 31.53 / 0.8854 28.02 / 0.7670 27.23 / 0.7233 25.14 / 0.7510 28.93 / 0.8854
DRRN [14] ×4 31.68 / 0.8888 28.21 / 0.7720 27.38 / 0.7284 25.44 / 0.7638 29.45 / 0.8946
LapSRN [42] ×4 31.54 / 0.8852 28.19 / 0.7720 27.32 / 0.7275 25.21 / 0.7562 29.09 / 0.8900
MemNet [26] ×4 31.74 / 0.8893 28.26 / 0.7723 27.40 / 0.7281 25.50 / 0.7630 29.42 / 0.8942
EDSR-baseline [1] ×4 32.09 / 0.8938 28.58 / 0.7813 27.57 / 0.7357 26.04 / 0.7849 30.35 / 0.9067
SRMDNF [45] ×4 31.96 / 0.8925 28.35 / 0.7787 27.49 / 0.7337 25.68 / 0.7731 30.09 / 0.9024
EMRN (Ours) ×4 32.21 / 0.8950 28.61 / 0.7827 27.59 / 0.7369 26.07 / 0.7862 30.44 / 0.9085
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Figure 4: Visual comparisons for scale ×4 SR. The SR results are for image “86000” from B100.

4. Experiments

4.1. Datasets and metrics

Recently, a high-quality (2K resolution) dataset DIV2K [46] is widely used in image restora-
tion tasks. DIV2K consists of 800 training images, 100 validation images, and 100 test images.
In our experiments, we use 800 high-resolution training images from DIV2K as training set. For
evaluation, we choose five standard benchmark datasets: Set5 [47], Set14 [48], B100 [49], Ur-
ban100 [50], and Manga109 [51]. The results of the super-resolution images are evaluated by
PSNR and SSIM [52] metrics on Y channel of transformed YCbCr space.

4.2. Implementation details

During training, the LR images patches of size 48 × 48 with corresponding HR images are
used as the input and the mini-batch size is set to 16. All images are pre-processed by subtracting
the average RGB value of the DIV2K dataset. The parameters of ADAM optimizer [53] are
setting as β1 = 0.9, β2 = 0.999, and ε = 10−8. The initial learning rate is 10−4 and then decreases
to half every 2 × 105 iterations. The total iterations are set to 106. We construct the proposed
framework EMRN (benchmark model, M = 4) and EMRN B8 (M = 8) with a scaling factor
1.0. The output of each EMRB has G = 64 feature maps. In EMRN, the convolution kernel size
of all the convolutional layers is set to 3 × 3 except that in LFF and GFF, whose kernel size is
1 × 1. The shallow features at the beginning of EMRN are extracted by one 3 × 3 convolution.
The bottleneck layers for local and global feature fusion have G0 = 64 filters. We implement our
models by applying PyTorch with NVIDIA GTX1080Ti. It roughly takes one day to train the
proposed network.
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Figure 5: Visual comparisons for scale ×4 SR. The SR results are for image “img 005”, “img 092” and “img 093” from
Urban100 respectively.
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4.3. Comparisons with the-state-of-the-arts
We compare EMRN with 9 state-of-the-art methods: SRCNN [43], FSRCNN [44], VDSR

[13], DRCN [19], DRRN [14], LapSRN [42], MemNet [26], EDSR-baseline [1], SRMDNF [45].
Quantitative evaluation. Table 2 shows all the quantitative results for ×2, ×3, and ×4 SR.

The results of SRCNN [43], FSRCNN [44], VDSR [13], DRCN [19], DRRN [14], LapSRN [42],
MemNet [26], EDSR-baseline [1], and SRMDNF [45] are cited from IMDN [7]. In general,
our EMRN outperforms the other compared methods on all the datasets with almost all scale
factors. Especially for scale ×2 and ×4, EMRN achieves the best results on all the datasets. To
further illustrate the effectiveness of the proposed framework, we compare the benchmark model
EMRN with EDSR-baseline. When the scaling factor is ×4, the gains of our EMRN over EDSR-
baseline significantly increase. For datasets Set5 and Manga109, the PSNR gains of EMRN over
EDSR-baseline are 0.12dB and 0.09dB respectively. EDSR-baseline is more in-depth (37 v.s.
20), but our EMRN outperforms much better. The quantitative results prove that the proposed
EMRN with dense connected EMRBs can gradually aggregate these hierarchical information to
form more representative features without deepening the network, while EDSR-baseline has to
deepen the network to obtain hierarchical information with multiple receptive fields by stacking
residual blocks. EMRBs allow our network to provide richer semantic information and improve
the performance for SR.

Visual analysis. Visual comparisons with scale factor ×4 are shown in Fig 4 and Fig 5. For
img ”86000”, we find that most of the methods we compare cannot completely recover the grid
of the window and would produce visual artifacts. However, our EMRN can better remove visual
artifacts and recover the details of the grid. For ”img 005”, most of the methods we compare
produce visible blurring artifacts at the top of the building and fail to recover the structures.
Only the result produced by EMRN is closer to the ground truth image. For ”img 092”, we
observe that at the junction of horizontal and vertical lines, all the methods we compare fail
to recover the junction. In contrast, the image recovered by our EMRN is almost identical to
the ground truth image. EMRN can alleviate the artifacts better. For ”img 093”, we can more
clearly observe the effectiveness of EMRN. As we can see, all the other methods lose the right
structures and produce the wrong structures, while the proposed EMRN can generate the right
structures. The visual comparison results indicate that our EMRN can recover better visible
structures. The multi-level semantic information extracted by these EMRBs can generate better
details in reconstructing super-resolution images, and these reconstructed SR images often have
better structural details and similarity.

4.4. Qualitative Analysis
Ablation Study. In this paper, the proposed framework EMRN consists of 4 dense connected

enhanced multi-scale residual blocks (EMRBs). Different from the previous residual block, the
proposed EMRB can extract different semantic information with multiple receptive fields in each
EMRB. Therefore our EMRN can achieve comparable results even with smaller network depth.
To verify the effectiveness of the proposed EMRB, the longest branch in the two-branch incep-
tion of EMRB is removed, and we call this module EMRB NL. Then we train the framework
EMRN NL with 4 dense connected EMRB NLs with the same environment as EMRN by 106

iterations. Table 3 and Fig 6 show the performance of ablation study on EMRB and EMRB NL.
Compared with EMRN NL, EMRN achieves much higher PSNR on all scales, indicating that the
two-branch inception in EMRB is very necessary and plays an important role in feature learning.

Comparison on Different Network Depths. It is well known that the deeper, the better. In
our experiments, we increase the number of EMRBs to obtain better results. During calculating
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Table 3: The performance of ablation study on EMRB and EMRB NL. Average PSNR/SSIM on Set5, Set14, B100 with
scale factor ×2, ×3 and ×4. Best results are highlighted.

Method Scale
Set5

PSNR/SSIM
Set14

PSNR/SSIM
B100

PSNR/SSIM
EMRN NL

×2 37.84/0.9598 33.38/0.9159 32.05/0.8981
EMRN 38.07/0.9607 33.67/0.9177 32.21/0.8999

EMRN NL
×3 34.11/0.9247 30.13/0.8385 28.96/0.8019

EMRN 34.45/0.9273 30.34/0.8243 29.11/0.8052
EMRN NL

×4 31.84/0.8903 28.41/0.7772 27.44/0.7315
EMRN 32.21/0.8950 28.61/0.7827 27.59/0.7369
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Figure 6: Ablation study of EMRB and EMRB NL. The curves for EMRN and EMRN NL represent the PSNR on Set5
with scale factor ×2, ×3 and ×4 in 200 epochs.

Table 4: Comparison on different network depths. Average PSNR/SSIM on Set5, Set14, B100 with scale factor ×2, ×3
and ×4. Best results are highlighted.

Method Scale Depth
Set5

PSNR/SSIM
Set14

PSNR/SSIM
B100

PSNR/SSIM
EMRN

×2 19 38.07/0.9607 33.67/0.9177 32.21/0.8999
EMRN B8 35 38.20/0.9611 33.85/0.9202 32.30/0.9011

EMRN
×3 19 34.45/0.9273 30.34/0.8243 29.11/0.8052

EMRN B8 35 34.64/0.9289 30.48/0.8449 29.21/0.8080
EMRN

×4 20 32.21/0.8950 28.61/0.7827 27.59/0.7369
EMRN B8 36 32.34/0.8967 28.75/0.7853 27.66/0.7391
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Figure 7: Comparison on different network depths. The curves for EMRN and EMRN B8 represent the PSNR on Set5
with scale factor ×2, ×3 and ×4 in 200 epochs.

13



the network depth, we ignore the 1 × 1 convolutional layer. At the same time, because the
EMRB module contains a two-branch inception, we take the longest branch as the depth of one
EMRB. The experimental results show that we achieve great results when the number of EMRBs
increases. Table 4 shows the average PSNR and SSIM values. The results verify that deeper is
better. The PSNR gain of EMRN B8 over EMRN is 0.13 dB with scale factor ×4 on set5.
Although the proposed framework EMRN with more EMRBs can achieve significant results, it
will become more complicated to train as the network deepens. After weighing the performance
and complexity of the network, we decide to build the most in-depth network EMRN B8 with
8 EMRBs. Fig 7 shows the excellent results of EMRN B8. The proposed EMRN B8 makes a
significant improvement in the SISR performance.

5. Conclusion

In this paper, we propose an enhanced multi-scale residual network (EMRN) for image SR.
The EMRN framework effectively groups the enhanced multi-scale residual blocks (EMRBs)
together, where the features of local residual blocks are sent directly to the end of the EMRN
framework for fully utilizing these useful hierarchical features. The proposed EMRB is capable
of adaptively extracting multi-level semantic information with different receptive fields. Mean-
while, the dense structure of the EMRN also allows reuse of hierarchical features from the previ-
ous EMRBs and subsequent EMRBs, which improves the flow of information between EMRBs.
In the experiments, we build a more stable network with a scaling factor 1.0. The experimental
results demonstrate the effectiveness of the proposed EMRN in terms of both quantitative and
visual results for SR performance. In the future, we hope that the proposed network can be im-
proved on building a lightweight network with a modest number of parameters and solving the
SR problem of an arbitrary scale factor. For the future work, this approach may help to other
image restoration tasks such as image-denoising and image-dehazing.
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