
HAL Id: hal-03207388
https://hal.science/hal-03207388

Submitted on 24 Apr 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Inter-Kernel Communication Facility of a Distributed
Operating System for NoC-Based Lightweight

Manycores
Pedro Henrique Penna, João Vicente Souto, João Fellipe Uller, Márcio Castro,

Henrique Freitas, Jean-François Méhaut

To cite this version:
Pedro Henrique Penna, João Vicente Souto, João Fellipe Uller, Márcio Castro, Henrique Fre-
itas, et al.. Inter-Kernel Communication Facility of a Distributed Operating System for NoC-
Based Lightweight Manycores. Journal of Parallel and Distributed Computing, 2021, 154, pp.1-15.
�10.1016/j.jpdc.2021.04.002�. �hal-03207388�

https://hal.science/hal-03207388
https://hal.archives-ouvertes.fr

Inter-Kernel Communication Facility of a Distributed
Operating System for NoC-Based Lightweight

Manycores

Pedro Henrique Pennaa,b, João Vicente Soutoc, João Fellipe Ullerc,
Márcio Castroc, Henrique Freitasa, Jean-François Méhautb

aPontif́ıcia Universidade Católica de Minas Gerais (PUC Minas), Belo Horizonte, Brazil
bUniversité Grenoble Alpes (UGA), Grenoble, France

cUniversidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil

Abstract

Lightweight manycore processors deliver high performance and scalability by

bundling in a single chip hundreds of low-power cores, a distributed memory ar-

chitecture and Networks-on-Chip (NoCs). Operating Systems (OSes) for these

processors feature a distributed design, in which a communication layer enables

kernels to exchange information and interoperate. Currently, this communi-

cation infrastructure is based on mailboxes, which enable fixed-size message

exchanges with low latency. However, this solution is suboptimal because it

can neither fully exploit the NoC nor efficiently handle the diversity of OS

communication protocols. We propose an Inter-Kernel Communication (IKC)

facility that exposes two kernel-level communication abstractions in addition to

mailboxes: syncs, for enabling a process to signal and unlock another process re-

motely, and portals, for handling dense data transfers with high bandwidth. We

implemented the proposed facility in Nanvix, the only open-source distributed

OS that runs on a baremetal lightweight manycore, and we evaluated our so-

lution on a 288-core processor (Kalray MPPA-256). Our results showed that

our IKC facility achieves up to 16.87× and 1.68× better performance than a

mailbox -only solution, in synchronization and dense data transfers, respectively.

Keywords: Lightweight Manycore Processor, Network-On-Chip, Distributed

Operating System, Message-Passing Communication

2020 MSC: 68M14, 68N25

Preprint submitted to Journal of Parallel and Distributed Computing April 19, 2021

1. Introduction

Lightweight manycore processors were introduced to address the ever-in-

creasing scalability and low-power consumption demands of parallel applica-

tions [1]. They rely on specific architectural characteristics to achieve the former

requirement, such as a distributed memory architecture and a rich Network-on-5

Chip (NoC) [2]. In addition, to improve the energy efficiency, they are built

with simple low-power Multiple Instruction Multiple Data (MIMD) cores [3],

they have a memory system based on Scratchpad Memories (SPMs) with no

hardware coherency support [4] and they exploit heterogeneity by featuring

cores with different capabilities [5]. Some industry-successful examples of these10

processors are the Kalray MPPA-256 [6], the Adapteva Epiphany [7] and the

Sunway SW26010 [8], being the latter employed in Sunway TaihuLight [9], cur-

rently the world’s fourth most powerful supercomputer according to TOP5001.

Operating Systems (OSes) for lightweight manycores embrace a distributed

design to cope with the high core count and the distributed memory architecture.15

This approach enables the system to scale up to thousands of cores [10, 11], while

exposing richer abstractions and Application Programming Interfaces (APIs) to

user-level software. Overall, subsystems of a distributed OS for a lightweight

manycore (e.g., memory manager, process manager and file system manager)

are deployed across the cores of the processor and they communicate with one20

another by exclusively exchanging data through the underlying NoC [12, 13].

The communication layer of a distributed OS for lightweight manycores

resembles a simplified version of a traditional distributed OS for clusters of

workstations. It handles multiplexing of the communication channel, security,

routing, network congestion, message addressing, control flow, reordering and25

network packaging. In contrast to distributed OSes that target clusters of work-

stations, it does not handle communication errors, since the underlying inter-

1Available at: https://www.top500.org.

2

https://www.top500.org

connect is reliable. To enable subsystems to communicate with low-latency and

reliably, distributed OSes for lightweight manycores rely on a mailbox abstrac-

tion [10, 11, 12, 13]. This specialized system-level structure exposes send/receive30

primitives and enable fixed-size data exchanges.

Although mailboxes enable system-level communications in lightweight many-

cores, they may be inefficient. Overall, we argue on this limitation based on two

observations. First, the capabilities of the NoC are not fully exploited. For

instance, these interconnects oftentimes feature special hardware units for effi-35

ciently supporting different types and granularities of communications, such as

small/large data transfers and synchronization signals. Since the right use of

each of these hardware resources depends on the semantics of the communication

and this information is unavailable at the communication layer, the NoC capa-

bilities are not fully exploited. Second, the existing diversity in communication40

protocols across the different subsystems calls out for multiple abstractions, oth-

erwise the implementation of protocols is inefficient. For example, services that

manipulate coarse-grain data (e.g., memory manager and file system manager)

require control flow to avoid a single client process to hug all the bandwidth

of the service. In contrast, subsystems that manipulate fine-grain data (e.g.,45

process manager) do not usually need control flow because they exchange small

fixed-size messages, so control flow is implicitly handled. Therefore, if the same

abstraction (i.e., mailboxes) is used for implementing both protocols, overhead

is unnecessarily imposed in the latter one.

To overcome this problem, we claim that the communication layer of dis-50

tributed OSes for lightweight manycore processors should provide additional

abstractions with richer semantics. Thus, not only the NoC capabilities may be

better exploited but also the communication characteristics between different

subsystems may be better addressed. In this context, this work proposes an

Inter-Kernel Communication (IKC) facility that: (i) abstracts on-chip commu-55

nication capabilities of lightweight manycores; (ii) provides virtualization and

multiplexing of the NoC links; and (iii) enforces communication security at ker-

nel-level. In summary, this work delivers the following contributions to the

3

state-of-the-art in OS support for lightweight manycores:

• A richer kernel-level communication facility for lightweight manycores in60

a distributed OS. Overall, this facility exposes three communication ab-

stractions: (i) syncs, for enabling a process to signal and unlock another

process remotely; (ii) mailboxes, for sending fixed-size messages with low

latency; and (iii) portals, for handling dense data transfers with high band-

width.65

• An implementation and integration of the proposed communication facility

in Nanvix [14], the only open-source distributed OS to date that runs on

a baremetal lightweight manycore.

We evaluated the proposed facility using two complementary approaches.

First, we used micro-benchmarks to study the raw performance and scalabil-70

ity of our abstractions. Then, we relied on a benchmark suite that exercises

important communication protocols that are applied in different subsystems

of Nanvix. We carried out baremetal experiments on Kalray MPPA-256, a

NoC-based lightweight manycore processor that features a distributed mem-

ory architecture and integrates 288 cores in a single chip. Overall, our results75

showed that our communication facility enables up to 16.87× and 1.68× better

performance than a mailbox -only solution, in synchronization and dense data

transfers, respectively.

The remainder of this work is organized as follows. In Section 2, we cover the

background on lightweight manycore processors and distributed OSes. Then,80

we present our IKC facility (Section 3) and we detail how we implemented it

in Nanvix (Section 4). In Section 5, we present our evaluation methodology,

which is then applied in Section 6 to analyze the experimental results. Related

works are presented and discussed in Section 7. Finally, Section 8 concludes

this paper.85

4

DRAM
Devices

Compute Cluster

corecore

core core

SRAM

NoC

I/O Cluster

corecore

SRAM

NoC

core

NoCDMA

DMA

Figure 1: A conceptual lightweight manycore processor with 67 cores.

2. Background

In this section we cover the background of our work. First, we discuss about

lightweight manycores. Then, we present an overview of distributed OSes that

target these architectures.

2.1. Lightweight Manycore Processors90

Lightweight manycore processors have an endeavor to deliver high perfor-

mance with energy efficiency. To this end, they rely on the following features:

(i) they integrate up to thousands of low-power cores in a single die;

(ii) they are designed to cope with MIMD workloads;

(iii) they have their cores disposed in tightly-coupled groups;95

(iv) they feature a constrained memory system, with a distributed memory

architecture and small local memories;

(v) they rely on one or more high-bandwidth NoCs for fast and reliable message-

passing communication; and

(vi) they have a heterogeneous configuration in terms of I/O and/or computing100

capabilities.

5

To better understand these key features, we present a detailed discussion on

a simplified concept processor (Figure 1). Nevertheless, the following discussion

equally applies to any other baremetal lightweight manycore available [6, 15, 9].

The concept processor presented in Figure 1 integrates 67 cores in a single105

chip, which in turn are disposed into 17 tightly-coupled groups (called clusters).

Inside a cluster, cores share some local hardware resources, such as a local Static

Random Access Memory (SRAM) and a NoC interface, and have uniform access

latencies to these components. Clusters may have different characteristics, such

as processing power, local memory sizes and communication capabilities, so110

that they are used to accomplish different goals. For instance, in this example,

the I/O Cluster is specialized in communications with external memories and

devices, while Compute Clusters are meant for processing user workloads.

Clusters have distinct address spaces, and they may communicate with one

another by explicitly exchanging hardware-level messages through the NoC. To115

write to external devices and to the Dynamic Random Access Memory (DRAM)

attached to the I/O Cluster, Compute Clusters must tile in software the out-

put data into hardware-level messages and transfer them through the NoC to

the I/O Cluster. To enable asynchronous communications and provide higher

bandwidth for dense data transfers, lightweight manycores may feature built-in120

Direct Memory Access (DMA) engines in their NoC interfaces.

The aforementioned set of architectural features highlight important distinc-

tions between lightweight manycores and other well-known manycore processors:

• Manycore processors such as Intel Xeon Phi, Tilera TILE-Gx100 and Intel

Single-Cloud Computer do not have a constrained memory system, with125

small local memories that are physically distributed across the clusters;

• Symmetric Multiprocessing (SMP) architectures based on Non-Uniform

Memory Access (NUMA) design are built with multiple CPU packages

that communicate with one another through a dedicated interconnect

hardware outside of the processor chip (e.g., NUMAlink or NumaCon-130

nect); and

6

• Graphics Processing Units (GPUs) are not designed to cope with MIMD

workloads.

Overall, these differences make lightweight manycores more scalable in terms

of performance and energy efficiency. However, they also introduce challenges135

in software programmability, which affects both OS construction and user-level

application development. Some of the challenges are described bellow:

High density circuit integration turns dark silicon [16] into reality. Since all

cores of a lightweight manycore may not be powered on at the same time

in certain situations, thermal-aware scheduling strategies are required to140

achieve high performance.

Distributed memory architecture requires software to be designed to handle data

partitioning and remote data accesses across multiple physical address

spaces. Data should be explicitly fetched from remote memories to lo-

cal ones, in order to be manipulated, which leads to non-trivial software145

design [1].

Small amount of on-chip memory requires the software to explicitly tile the

working data set into chunks, load/store them from/to a remote mem-

ory, and locally manipulate these chunks one at a time [17]. Additionally,

it is up to the software to take care of data caching and replication to150

boost performance.

Rich on-chip interconnect exposes mechanisms for asynchronous programming

and explicit routing on the chip. The former should be used in order

to overlap communication with computation [18]. The latter should be

extensively considered in order to guarantee uniform communication la-155

tencies [19].

Missing cache coherence in hardware forces programmers to handle data coherency

explicitly in software and frequently calls out for a redesign in their appli-

cations [1].

7

Heterogeneous configuration turns the actual deployment of system functional-160

ities and applications into a complex task [20].

2.2. Distributed Operating Systems

Distributed OSes were initially introduced to cope with performance scal-

ability problems of traditional single-chip OS designs [11, 10]. More recently,

they have been used to address the challenges in software development and165

deployment in lightweight manycore processors [12, 13, 14].

Figure 2 pictures a distributed OS running on a parallel architecture. In

this approach, the OS is factored in a set of services, each of which is de-

ployed on a core of the parallel architecture. Cores that do not run OS services

are made available to user-level applications. In this figure, groups of cores170

represent either clusters of a lightweight manycore or processors of an SMP

architecture (e.g., NUMA). Multiple architectures and implementations for a

distributed OS are possible, each one targeting a specific set of design goals

and constraints. Nevertheless, we highlight here a three-tier approach that is

commonly adopted by several distributed OSes such as Barrelfish [11], FOS [10],175

HeliOS [21], MOSSCA [12], M3 [13] and Nanvix [14].

Hardware Abstraction Layer (HAL) In the bottom layer, a generic and flexi-

ble abstraction of the underlying hardware is provided, so that portability

across different processor architectures is enabled. This is either imple-

mented by baremetal supporting libraries or by an exokernel.180

OS Kernel An OS kernel lies in the middle layer, which provides minimum

Interconnect
Idle Core

Application
Core

OS Service
Core

Figure 2: A distributed OS running on a parallel architecture. Groups of cores represent

either clusters of a lightweight manycore or processors of an SMP architecture.

8

system abstractions (e.g., threads), handles local resource multiplexing

and ensures security policies. Any kernel construction design may be

applied at this level (e.g., nanokernel, microkernel or monolithic kernel).

Runtime OS Libraries In the top layer, runtime OS libraries expose a standard185

interface such as the Portable Operating System Interface (POSIX) for

interacting with the OS. These libraries are linked with user-level appli-

cations and interoperate with the underlying kernel and OS services to

provide a transparent programming environment. Overall, this layer aims

at software portability.190

In this work, we are specially interested in distributed OSes designed for

lightweight manycores such as MOSSCA [12], M3 [13] and Nanvix [14]. In these

OSes, a microkernel-based design is employed. The rationale for this lies on the

observation that on-chip resources in a lightweight manycore are scarce, and

thus a full-weight kernel implementation (e.g., monolithic design) is either not195

possible or would yield to low resource availability to user-level applications.

In contrast, the microkernel approach enables the implementation of system

services in user-level, which may be distributed across the processor cores.

It is important to note that the other aforementioned distributed OSes (i.e.,

Barrelfish, FOS and HeliOS) are out of the scope of this work. These systems200

do not target lightweight manycores, so they do not address the architectural

constraints of these processors discussed in Section 2.1. Since these OSes were

not designed to cope with the limited amount of local memory of lightweight

manycores, it is not possible to actually deploy them on lightweight manycores

without a complete redesign and significant source code changes. Furthermore,205

architectures targeted by these OSes do not feature a rich on-chip interconnect

(NoC). Therefore, communication challenges handled by the IKC facility pro-

posed in this paper are not present, such as routing decisions, network congestion

and control flow.

9

3. Kernel-Level Communication Facility210

In this work, we propose an Inter-Kernel Communication (IKC) facility to

better exploit the NoC capabilities of lightweight manycores and to address the

communication characteristics between different subsystems of distributed OSes

for these processors. First, we discuss the design goals of our IKC facility. Then,

we present its three main abstractions: syncs, mailboxes and portals.215

3.1. Design Goals

At hardware-level, lightweight manycores leverage a fast and reliable NoC

to deal with asynchronous data transfers and to enable routing optimizations

and quality of service. At system-level, on the other hand, subsystems of dis-

tributed OSes require concurrency and security in their communication, as well220

as they call out for primitives that efficiently support multiple communication

granularities (i.e., fine- or coarse-grain) and purposes (i.e., data transfer or syn-

chronization). Our IKC facility aims at the following design goals to cope with

these three perspectives:

• Flexibility : different communication patterns should be supported;225

• Efficiency : fine- and coarse-grain data transfers should be efficiently sup-

ported; and

• Composability : the communication facility should expose abstractions

that may serve as building blocks for more complex protocols.

Furthermore, we guided our design and implementation to feature: (i) a uni-230

form addressing scheme, so peers may rely on a logical addressing scheme and

communication is processor-independent; (ii) a transparent setup and manage-

ment of the hardware, so communications between subsystems become less com-

plex; and (iii) a low memory footprint, since this resource is scarce in lightweight

manycores. By accomplishing all these goals and features, we believe that our235

IKC facility makes a step further in the state of the art in kernel-level com-

munication for distributed OSes that target lightweight manycores. Table 1

10

Abstraction Pattern Designed For

sync N:1, 1:N Synchronization

mailbox N:1 Small Message Exchange, Low-Latency

portal 1:1 Dense Data Transfers, High-Bandwidth

Table 1: Summary of communication abstractions proposed in this paper.

summarizes the three abstractions available in our IKC facility, and it gives in-

sights on how they provide flexibility, efficiency and composability. A detailed

discussion on this is presented later, in Section 3.5.240

3.2. Syncs

The sync abstraction (shorthand for synchronization point) provides the ba-

sis for peer synchronization. It works by having on one side multiple peers (i.e.,

receivers) to block and wait for peers on the other side (i.e., senders) to issue a

notification. The notification itself does not carry any information other than245

the required to wake up the receivers, thus this abstraction works with fine-grain

data. At system-level, syncs are used at system startup to synchronize subsys-

tems and when a distributed application is launched. Furthermore, syncs may

be used to build more complex synchronization structures such as distributed

mutexes, semaphores and barriers. The rationale for providing this abstraction250

in our facility is twofold. First, small amounts of data should be transferred

around (i.e., tens of bytes) to synchronize peers. Thus, using a coarser-grain

abstraction such as mailboxes to this purpose would be inefficient. Second, the

on-chip interconnect of some lightweight manycores include special hardware to

enable low-latency inter-cluster synchronization [9, 6]. If the synchronization255

semantic is explicit, our facility may be implemented so as to better exploit the

capabilities of the underlying hardware.

Figure 3 outlines the semantics of the sync abstraction. We propose two op-

erating modes for it: 1:N and N:1, which in turn define senders and receivers. In

1:N mode (Figure 3a), there is a single sender that issues wake up notifications260

to multiple receivers waiting for them. Conversely, in N:1 mode (Figure 3b),

11

Sender Receiver 2

signal

open create

Receiver 1

create

wait

unlink

wait

unlink
close

time

(a) 1:N mode.

Receiver Sender 2

open

signal

Sender 1

open

close
close

unlink

signal

create

wait

time

(b) N:1 mode.

Figure 3: Execution flow of sync abstraction.

multiple senders issue notification signals to a single receiver. The set of op-

erations available for each side of the communication is different. On the one

hand, senders are allowed to open, signal and close a sync. On the other

hand, receivers can create, wait and unlink a sync.265

3.3. Mailboxes

The mailbox abstraction enables peers to exchange fixed-size messages with

each other. The size of a message is designed to be small (i.e., hundreds of

bytes), so that communication latency is reduced. This abstraction features

an N:1 semantic and works as follows. On one endpoint, a receiver owns a270

mailbox from which it reads messages. On the other endpoint, multiple senders

may write messages to this mailbox . At system-level, mailboxes are used for ex-

changing control messages, which either encode simple operations or encapsulate

meta-information of more complex tasks. For instance, the memory manage-

ment subsystem may use a single mailbox message to request a remote peer to275

invalidate its page cache. On the other hand, one peer of the file system man-

ager may rely on a message to pack information concerning a file read/write

operation (i.e., name of the file, offset and read/write size). The dense data

transfer is then carried out with a portal abstraction (see Section 3.4). Overall,

we included this fixed-size mailbox abstraction in our facility to decouple small280

message exchanges from dense data transfers. In this way, we enable low-latency

communication among the peers of a distributed OS for lightweight manycores.

12

Receiver Sender 2Sender 1
open

close

awrite

create

openwait

close

awrite

aread

unlink

wait

aread

time

Figure 4: Execution flow of mailbox abstraction (N:1).

Figure 4 details the semantics of a mailbox . On the receiver side, four op-

erations are available: (i) create, for creating a mailbox ; (ii) aread, for asyn-

chronously reading incoming messages; (iii) wait, for waiting for any income285

message; and (iv) unlink, for destroying a mailbox . Conversely, the sender

features three operations: (i) open, for establishing a connection with a remote

mailbox ; (ii) awrite, for asynchronously posting a message to a remote mailbox ;

and (iii) close, for terminating the connection with a remote mailbox . Note-

worthy, the mailbox abstraction features an asynchronous read/write semantic.290

Nevertheless, synchronous reads may be achieved by issuing an aread followed

by a wait operation. On the other hand, synchronous writes may be accom-

plished by having each side owning a mailbox and a send-acknowledge protocol

implemented.

3.4. Portals295

The portal abstraction allows two peers to exchange arbitrarily large amounts

of data (i.e., thousands of bytes) with each other, with built-in support for

receiver-side control flow. This abstraction presents an 1:1 semantic and works

as follows. On one endpoint, a receiver owns a portal , from which it reads in-

coming data. On the other endpoint, a sender may write data to this portal ,300

once a connection with the remote receiver is established. This connection is

explicitly established by the receiver itself by allowing a write on its portal from

the sender. At system-level, portals may be used in a wide range of scenar-

13

Receiver

create

Sender

open

allow

aread

wait
awrite

closeunlinktime

Figure 5: Execution flow of portal abstraction (1:1).

ios, specially when dense data transfers are needed. For instance, the process

management may rely on this abstraction to deploy a binary file in a remote305

cluster or the file system manager may use portals for transferring file system

blocks around. We included this abstraction in our communication facility to

semantically support efficient dense data transfers. In this way, if the NoC of

the underlying lightweight manycore features special hardware to take care of

this, the overall system performance may be improved.310

Figure 5 outlines the semantics of a portal . On the receiver side, five opera-

tions are available: (i) create, for creating a portal ; (ii) allow, for authorizing

a remote sender to write to the portal ; (iii) aread, for asynchronously reading

data; (iv) wait, for waiting incoming data; and (v) unlink, for destroying a

portal . On the other hand, the sender features three operations: (i) open, for315

establishing a connection with a remote portal ; (ii) awrite, for asynchronously

writing data to a remote portal ; and (iii) close, for terminating the connection

with a remote portal .

3.5. Discussion

In this section we discuss how our IKC facility addresses the design goals out-320

lined in Section 3.1. First, different communication patterns are supported (i.e.,

flexibility) by construction. The sync abstraction features N:1 and 1:N built-in

operating modes; whereas mailbox and portal portal support N:1 and 1:1 com-

munication patterns, respectively. Second, efficient fine- and coarse-grain data

transfers are supported (i.e., efficiency) because we explicitly provide abstrac-325

14

tions for targeting different communication granularities. On the one hand, the

mailbox abstraction is designed for exchanging small and fixed-size messages

with low-latency. On the other hand, the portal abstraction enables dense data

transfers with high bandwidth. Finally, our abstractions may be composed to

construct more complex communication patterns and/or distributed OS proto-330

cols (i.e., composability). For instance, we can easily provide an N:N variant of

the mailbox abstraction by creating a single built-in mailbox in each peer. Also,

we can provide an N:N variant of the portal abstraction by opening N portals

to each peer. Specifically concerning composability for OS protocols, the built-

in sync abstraction may be used to build a master-slave barrier primitive [22],335

which in turn is required to synchronize peers at system startup as well as in

application deployment. The memory manager may rely on a built-in mailbox

to request a remote process to invalidate an entry of its page cache. Finally,

a client of the file system service may use a built-in portal to write back dirty

buffers in the underlying disk block device.340

4. Implementation

In this section, we present the implementation details of our IKC facility in

Nanvix: a POSIX-compliant open-source research OS2 that targets lightweight

manycores [14]. Nanvix currently supports multiple baremetal architectures,

including Kalray MPPA-256 [6] and OpTiMSoC [23]. In addition, Nanvix fea-345

tures a built-in lightweight manycore simulator that enables OS development

and debugging on top of Linux. Thus, other research groups may prototype and

experiment new ideas in Nanvix even if they do not have access to a baremetal

lightweight manycore.

To the best of our knowledge, Nanvix is currently the only open-source dis-350

tributed OS that runs on commercially available baremetal lightweight many-

cores. In contrast, MOSSCA and M3 run on an in-house simulator and a pro-

2Available at: https://github.com/nanvix.

15

https://github.com/nanvix

cessor prototype implemented in a Field Programmable Gate Array (FPGA),

respectively. Due to this reason, we chose to implement our facility in Nanvix

rather than in the other OSes. Nevertheless, it is worth noting that the proposed355

solution may be also implemented in MOSSCA and M3.

Our IKC facility was implemented in two layers of Nanvix: HAL [24] and

microkernel [14]. Overall, we designed our solution using this two-tier approach

in order to fulfill the following requirements:

• Multiplexing : NoC links should be used by several peers at the same time;360

• Virtualization: virtual communication channels should be exposed, so that

the number of communicating peers is not limited by the hardware; and

• Security : third party processes should not overthrow, disable or sniff the

communication of peers.

In the HAL, we narrowed our implementation for the Kalray MPPA-256365

processor and added a module for managing NoC routers. This module is re-

sponsible for setting up and configuring underlying hardware resources, such as

TX/RX buffers and routing tables, as well as to catch and handle interruptions.

Overall, this communication module exposes a uniform interface that features:

(i) a logic cluster numbering scheme; (ii) primitives for sending/receiving syn-370

chronization signals; (iii) primitives for sending/receiving fine-grain fixed-size

messages; and (iv) primitives for sending/receiving coarse-grain fixed-size data

blocks. We intentionally provide three primitives to match the semantics of the

overlying abstractions (i.e., sync, mailbox and portal) while exploiting the best

possible the underlying hardware. The details of these primitives are provided375

below:

• Primitives for synchronization signals are entirely provided on top of a

dedicated and low-latency Control NoC (C-NoC);

• Primitives for fine-grain messages use the general purpose Data NoC (D-

NoC) to exchange data and the C-NoC for communication setup. They380

16

operate with fixed-size buffers that are optimized for low-latency commu-

nication; and

• Primitives for coarse-grain data transfers use the D-NoC to exchange data

and the C-NoC for communication setup. They operate with fixed-size

buffers that are tuned for high-bandwidth communication.385

Noteworthy, both primitives that operate with fine- and coarse-grain data

(i.e., mailboxes and portals) are backed up by fixed-size buffers. The reason

for this stands for the way in which the Kalray MPPA-256 processor setups

communication through the NoC. It requires both ends to know the size of a

transfer beforehand.390

In the microkernel, we introduced an IKC facility that implements the sync,

mailbox and portal abstractions (Section 3). In this level, we aimed at pro-

viding the communication semantics of each abstraction as well as exposing a

multiplexed and virtualized interface of them. These two characteristics are

built on a buffering scheme combined with a port based addressing strategy. At395

creation, each instance of an abstraction reserves a port in the related physical

connection. Then, each virtual instance is referenced uniquely by its connec-

tion identifier combined with its port number, representing an address for the

communication facility.

Figure 6 pictures a generic overview of our implementation. Overall, the400

kernel has two fixed-size tables for each abstraction: one for keeping track of

the active connections (i.e., IKC table); and another for buffering either sig-

nals, messages or data blocks that are yet to be sent/received (i.e., buffer ta-

ble). Two major operations take place whenever a communication abstraction

is opened/created (Figure 6a). First, an entry is allocated in the proper table405

of active connections and is initialized with meta-information concerning the

connection to be established (step 1.1), such as involved peers. Then, the HAL

interface is invoked to setup and establish the connection itself (step 1.2).

As soon as a communication operation is issued (i.e., signal, wait, allow,

read or write), the table of active connections is traversed to determined if a410

17

IKC Facility

Network-On-Chip (NoC)

Buffer Table

TX/RX

COM
Interface

IKC Table
search

connect

Routing Table

1.1

1.2

Buffers Table

(a) Create/open.

IKC Facility

Network-On-Chip (NoC)

Buffer Table

alloc

COM
Interfacealloc

read/write/signal

Routing Table

TX/RX

2.1

2.2

IKC Table Buffers Table

(b) Read/write.

IKC Facility

Network-On-Chip (NoC)

Buffer Table

COM
Interface

Routing Table

TX/RX
wakeup 2.3

IKC Table Buffers Table

(c) Read/write completion.

IKC Facility

Network-On-Chip (NoC)

Buffer Table

TX/RX

COM
Interface

disconnect

Routing Table

3.1

3.3

3.2

IKC Table Buffers Table
close
unlink

(d) Close/unlink.

Figure 6: Execution flow internals in the proposed IKC facility.

connection was previously established (Figure 6b). If so, the operation contin-

ues as follows. For signal, read and write operations, an entry in the table

of buffers is booked and filled in with the information concerning the operation

itself (step 2.1). Next, the request is scheduled in a queue (step 2.2) and even-

tually is dispatched by the HAL (TX/RX registers). For the wait operation,415

however, the table of buffers is searched to determine whether or not the target

on-going operation is completed. If so, data is copied back to the requesting

peer and the respective entry in the table of buffers is released. Otherwise (6c),

18

the calling thread of the requesting peer is blocked until the target operation is

completed. At this time, the thread is then awaken by the interrupt handler of420

the NoC (step 2.3). Finally (Figure 6d), once communication is over, involved

peers call either close or unlink (step 3.1) to hang up. In either way, the

respective entry in the table of active connections is released (step 3.2) and the

HAL interface is invoked to terminate the underlying connection (step 3.3).

5. Evaluation Methodology425

In this section, we present our evaluation methodology, which was conceived

so as to answer the following main questions:

• What is the upper-bound performance and scalability of our IKC facility?

• What is the performance delivered by our IKC facility in realistic OS use

case scenarios?430

This discussion is organized as follows. First, we present the experimental

programs conceived to analyze the performance and scalability of our IKC fa-

cility. Next, we detail the lightweight manycore processor considered in this

paper. Finally, we discuss our experimental design.

5.1. Experimental Programs435

We considered two sets of experimental programs to evaluate our IKC fa-

cility. The first set consists in a suite of micro-benchmarks that make raw use

of the communication abstractions of our IKC facility (i.e., sync, mailbox , and

portal). The second set is a collection of programs that exercise different com-

munication protocols in Nanvix, and thus illustrate the use of our IKC facility440

in use case scenarios. Table 2 summarizes the most important characteristics

of each experimental program. All these programs are publicly available3. The

micro-benchmark suite is composed of the following programs:

3Available at: https://github.com/nanvix/benchmarks.

19

https://github.com/nanvix/benchmarks

fence It assesses the latency of synchronization with our sync abstraction. It

launches up to N processes that repeatedly sync up with each other.445

mail It assesses the latency for exchanging messages with our mailbox abstrac-

tion. It launches up to P = N + M processes, and makes each one of the

N processes to send messages to each one of the M processes.

cargo It assesses the throughput for transferring dense data blocks with our

portal abstraction. It launches up to P = N + M processes, and makes450

each one of the N processes to transfer data blocks to each one of the M

processes.

The benchmark of communication protocols is composed of the following

programs:

spawn It benchmarks the latency for spawning system services. It spawns N455

system services and waits them to boot up with a master-slave barrier

primitive [22] that was implemented on top of our sync abstraction.

lookup It benchmarks the latency for resolving the physical location of a pro-

cess (i.e., the cluster of lightweight manycore processor in which the pro-

cess is running). It launches a process that dispatches several name lookup460

requests to the name server. This program relies on a 1:1 ping-pong com-

munication protocol using a mailbox .

heartbeat It benchmarks the latency for informing the process manager that

a process is alive. It launches multiple processes that iteratively send

heartbeat signals to the name server. This program relies on a N:1 all-465

gather communication protocol using a mailbox .

pginval It benchmarks the latency for invalidating page cache entries of a

remote process. It launches multiple processes that iteratively read data

from the same shared page, and then forces a page cache invalidation on

these processes by writing to this page. This program relies on a 1:N470

broadcast communication protocol using our mailbox abstraction.

20

Type Subsystem Program Abstraction(s) Pattern(s) Transfer Size

Micro-benchmark Communication

fence sync 1:1, 1:N, N:1 Tens of Bytes

mail mailbox 1:1, 1:N, N:1 Hundreds of Bytes

cargo portal 1:1, 1:N, N:1 Tens of Kilobytes

Protocol benchmark

Process management

spawn sync N:N Tens of Bytes

lookup mailbox 1:1 Hundreds of Bytes

heartbeat mailbox N:1 Hundreds of Bytes

Memory management
pginval mailbox 1:N Hundreds of Bytes

pgfetch mailbox + portal 1:1 Tens of Kilobytes

Table 2: Benchmarks to evaluate the proposed communication facility.

pgfetch It assesses the time for transferring a page from the memory server to

a process. It launches a process that fetches several pages from the remote

server by iteratively allocating some memory, reading from it, and releas-

ing it. This program relies on a 1:1 ping-pong communication protocol,475

and uses a mailbox for exchanging meta-information concerning the page

and a portal for transferring the contents of the page.

5.2. Experimental Platform

Among the architectures supported by Nanvix, we chose Kalray MPPA-256

as the experimental platform in this work. This is a single-chip commercial480

lightweight manycore processor that features most of the characteristics dis-

cussed in Section 2. Kalray MPPA-256 features 272 general-purpose cores and

16 firmware-cores, called Processing Elements (PEs) and Resource Managers

(RMs), respectively. The processor is built with 28 nm CMOS technology and

it runs at 400 MHz. All cores implement a 64-bit proprietary instruction set,485

present a 5-issue Very Long Instruction Word (VLIW) pipeline, 8 Kilobytes (kB)

instruction and data caches, and feature a software-managed Memory Manage-

ment Unit (MMU).

The 288 cores of Kalray MPPA-256 are grouped into 16 Compute Clusters,

which are intended for computation, and 4 I/O Clusters, which are designed to490

provide connectivity to peripherals. Each Compute Cluster bundles 16 PEs, one

21

RM, two NoC interfaces and a 2 MB of local SRAM. In these clusters, hardware

cache coherence is not supported. In contrast, I/O Clusters have 4 RMs, 8 NoC

interfaces and 4 MB of SRAM. Two of these clusters are connected to a different

DDR controller, and the other two are attached to PCI and Ethernet controllers.495

Compute Clusters are not attached to a global memory and they all have private

address spaces. Thus, Compute Clusters have to exchange hardware messages

by one of two different interleaved 2-D torus NoCs to carry out communications:

(i) a C-NoC that features low bandwidth and is intended for small data transfers;

and (ii) a D-NoC that presents high bandwidth and is dedicated to dense data500

transfers.

What concerns software development in Kalray MPPA-256, this processor

is shipped with a patched version of GCC 4.9.4 and Binutils 2.11.0. No OS

is provided by the vendor, and software engineers should rely on a proprietary

and non-conformant runtime environment to write their applications [25], if505

not using Nanvix. Furthermore, regarding OS kernel implementation, system

engineers are required to rely on a proprietary hypervisor from Kalray. This

hypervisor runs on the firmware cores of the processor and intermediates all

low-level operations. Noteworthy, Kalray Hypervisor cannot be changed nor

configured, and thus it imposes additional challenges in OS kernel construction510

for this lightweight manycore processor.

5.3. Experimental Design

We conducted three sets of experiments to assess our IKC facility and an-

swer the questions stated earlier in this section. First, we employed micro-

benchmarks to evaluate the upper-bound performance of our communication515

facility. To this end, we considered standalone communications using each one

of the abstractions, while fixing the number of peers involved in communications

and varying the transfer sizes. Overall, we varied the size of transfers from 64

Bytes (B) to 1024 B when using mailboxes and from 64 B to 16384 B when

using portals. Since sync does not carry any information other than a wake520

up signal, we have not evaluated the impact of communication granularity in

22

this abstraction. Second, we aimed at studying the upper-bound scalability of

our abstractions. We did so by also launching the micro-benchmark suite in

standalone mode, but we fixed the communication granularity of each abstrac-

tion and varied the number of communicating peers. Noteworthy, we set the525

communication granularity to the best case scenario that we identified in the

first set of experiments. Finally, we relied on the suite of OS service proto-

cols to benchmark the overall performance of our abstractions in real-world use

case scenarios. We also carried out all the aforementioned experiments using

a mailbox -based primitive. We consider this to be the baseline for our results,530

once related works rely only in this abstraction to carry out all kinds of on-chip

communication.

In all experiments, we gathered execution statistics concerning communica-

tion time and amount of data transferred. All time measurements were per-

formed using hardware performance counters to enable monitoring with mini-535

mum interference. On the other hand, to retrieve energy consumption statistics,

we relied on a device that is externally attached to the board of the processor.

This device measures power dissipation on the board and comprises statistics

for all cores, NoCs and other on-chip resources. With this tool we proceeded as

follows:540

1. We launched a specific experiment to understand the power dissipation

during Nanvix’s startup. Overall, we concluded that while clusters are

being turned on at boot time, power dissipation increases linearly. Then,

it remains steady at around 6.7 W while Nanvix services are running.

2. We re-executed all the protocol benchmarks (heartbeat, pginval, lookup,545

spawn and pgfetch) and collected the power dissipation statistics using

the external device.

3. Based on the Nanvix’s startup time described before, we sliced the power

dissipation measurements in each experiment so as to obtain only the

power dissipation when the benchmark was running.550

23

4. We computed the energy consumption for each experiment by integrating

the sliced power dissipation measurement.

Noteworthy, we had to apply the above methodology because the Kalray MPPA-

256 processor lacks more precise utilities for measuring power dissipation during

a specific portion of execution. Therefore, the presented results unveil an upper-555

bound energy consumption of our solution. Overall, we carried out 10 trials of

each experimental configuration to eliminate undesired warm-up effects, and

then we executed 30 trials to collect results. All comparisons of these metrics

are based on a confidence interval threshold of 95% (significance of 5%).

6. Experimental Results560

In this section, we present and discuss our experimental results. First, we

analyze the upper-bound performance of our IKC facility. Then, we examine

the scalability of our abstractions. Finally, we discuss the performance of our

IKC facility in realistic use case scenarios. All results are compared with a solu-

tion based on fixed-size mailboxes, since this is the communication abstraction565

adopted by related works. Noteworthy, we set the size of mailbox messages

to 128 B, which we found to be the optimum for Kalray MPPA-256. A more

detailed discussion on this conclusion is presented in Section 6.1.

6.1. Raw Performance Analysis

Figure 7 presents the latency for reading/writing to a mailbox obtained with570

the mail micro-benchmark. Overall, we observed two behaviors: (i) latency

proportionally increases with the size of the message payload, for both oper-

ations; and (ii) latency grows slower for reads than for writes due to explicit

copying to underlying TX buffers. These results uncover an important design

aspect: the message size should be kept small to minimize the communication575

latency of both operations. For 64 B payloads, this yields to 26 µs reads and

27 µs writes. In contrast, for 128 B payloads, hits yields to 29 µs reads and 31 µs

writes.

24

At first, one would argue in favor of 64 B payload messages, because mail-

boxes are meant for low-latency communication and payloads of this size yield580

to minimum latency. However, we decided for a different configuration due to

the following important observation. In addition to the payload of a message,

we should transfer a message header that has a fixed size of 16 B. Therefore,

for a 64 B payload we transfer 80 B (20% overhead); and for 128 B payload we

transfer 144 B (12% overhead). Hence, when considering both the size of the585

payload and the communication latency, a 128 B payload yields to the optimum

configuration – minimum latency with the smallest overhead. Noteworthy, from

now onward, all results that picture mailboxes will be based on a 128 B message

payload configuration.

Figure 8 pictures the throughput for reading n bytes when carrying out this590

operation using a fixed-size mailbox of 128 B (baseline) and when using our

portal abstraction with buffers of the same size of the data transfer. These

results were obtained with the cargo micro-benchmark and show up the peak

bandwidth of our portal abstraction, and were used to dimension the size of

buffers for this abstraction.595

Overall, we observed that the throughput delivered by mailbox is constant,

whereas the throughput achieved by portal increases with the transfer size, to

some extent. A three-phase behavior can be noticed in the plot: (i) for transfer

●
●

●

●

●

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

100

64 128 256 512 1024

Message Payload Size (bytes)

La
te

nc
y

(u
s)

Operation
● Read

Write

Figure 7: Mailbox latency when varying message size (mail micro-benchmark).

25

● ● ● ● ● ● ● ● ●

 0

10

20

30

40

50

60

70

64 128 256 512 1024 2048 4096 8192 16384

Transfer Size (bytes)

T
hr

ou
gh

ou
t (

M
B

/s
)

IKC Solution
● Mailbox−Only

Nanvix (best buffer size)

Figure 8: Mailbox and portal throughput when varying transfer size (cargo micro-benchmark).

sizes ranging from 64 B to 1024 B, a linear increase in throughput is observed;

(ii) for transfer sizes ranging from 1024 B to 8192 B, a sub-linear increase in600

throughput is observed; and (iii) for transfer sizes bigger than 8192 B, a constant

throughput is achieved. The rationale for this lies on the fact that transfer sizes

of up to 1024 B are efficiently handled by the NoC, which becomes saturated

beyond that point.

We relied on these conclusions to dimension the default buffer size configura-605

tion of our portal abstraction in Kalray MPPA-256. Recall that this abstraction

is meant to enable efficient coarse-grain communication between the different

subsystems of the OS. In this context, we highlight two typical use cases: 4

kB page transfers involving the memory management subsystem; and 1 kB file

block transfers involving the file management subsystem. Therefore, we set the610

default size of portal buffers to 4 kB to achieve a better performance for the

former subsystem. From now onward, all results with portal will be based on a

4 kB configuration, unless otherwise stated.

6.2. Raw Scalability Analysis

We now analyze the scalability of mailbox , sync and portal abstractions.615

Fine-grain Data Transfers with Mailboxes. Figure 9 presents the throughput

for reading and writing fixed-size messages from/to a mailbox , when increasing

the number of communicating processes. These results were obtained with the

26

mail micro-benchmark. We noted that both operations deliver linear through-

put scalability, with a capacity for reading and writing about 3.2 k and 3.8 k620

messages per second, respectively. These results show the inherent scalability

of rich NoCs, in contrast to traditional interconnects such as buses and crossbar

switches. Notwithstanding, we found that the throughput gap between the two

operations is justified by technical limitations of the hypervisor that runs on the

Kalray MPPA-256 processor. It is not an open-source software, and it is not625

shipped with enough documentation/information to enable us a full utilization

of DMA engines. As a consequence, our implementation relied on polling to

provide this operation, resulting in a slightly worse performance. This obser-

vation uncovers an important point for improvement in the Kalray MPPA-256

hypervisor.630

Process Synchronization with Synchronization Points. Figure 10 shows the la-

tency for sending and receiving synchronization signals between multiple pro-

cesses using either mailbox (baseline) or sync. These results were obtained

with the fence micro-benchmark. On the one hand, we observed an important

difference between mailbox and sync: our sync abstraction handles these sig-635

nals 64× faster than the baseline solution. The rationale for this is three-fold:

(i) synchronization signals require a few bytes of data to be transferred around;

(ii) mailboxes work with a coarser data-transfer granularity (128 B) in contrast

●

●
● ● ● ● ● ● ● ● ● ● ● ● ●

 0

 5

10

15

20

25

30

35

40

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of Processes

T
ho

ug
hp

pu
t(

 1
03

×
 m

es
sa

ge
s/

s)

IKC Solution
● Mailbox−Only Read

Mailbox−Only Write
Nanvix Read
Nanvix Write

Figure 9: Mailbox throughput for fixed-size messages (mail micro-benchmark).

27

●

●

●
●

●
●

●
● ● ● ● ● ● ● ●

21
22
23
24
25
26
27
28
29

210
211
212
213

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of Processes

La
te

nc
y

(u
s)

IKC Solution
● Mailbox−Only Signal

Mailbox−Only Wait
Nanvix Signal
Nanvix Wait

Figure 10: Sync latency scalability for synchronization signals (fence micro-benchmark).

to sync (4 B); and (iii) our abstraction relies on the C-NoC to transfer data,

which delivers lower latencies than the D-NoC, which is narrowed for bandwidth640

and is used by mailboxes. On the other hand, when we contrasted the latency

of the two operations when increasing the number of processes involved, we ob-

served that the wait latency stays constant at 8 µs, whereas the signal latency

increases from 10 µs to 64 µs. The rationale for this comes from the fact that

syncs are backed up by the C-NoC of Kalray MPPA-256 and this NoC can645

receive multiple signals in parallel through the same interface, but it cannot

do the same when sending signals. Finally, concerning the step behavior for

signal operation from seven to eight processes, we found the rationale in the

NoC topology. If we change the deployment layout of processes in this bench-

mark, this step behavior also shows up, but not necessarily when moving from650

seven to eight processes.

Dense Data Transfers with Portals. Figure 11 presents the read and write band-

width when using either mailbox (baseline) or portal , while varying the number

of communicating processes. These results were obtained with the cargo bench-

mark. In general, we observed that both abstractions provide linear bandwidth655

scalability for both operations, with reads being more efficient than writes, ac-

cording to this metric. This observation is aligned with the previous conclusions

on latency scalability for passing around fixed-sized messages with mailboxes.

28

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

 0

10

20

30

40

50

60

70

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of Processes

B
an

dw
id

th
 M

B
/s

IKC Solution
● Mailbox−Only Read

Mailbox−Only Write
Nanvix Read
Nanvix Write

Figure 11: Portal bandwidth scalability for dense data transfers (cargo micro-benchmark).

Again, the hypervisor of the Kalray MPPA-256 processor is not an open-source

software, and it is not shipped with enough documentation/information to en-660

able us a full utilization of DMA engines. Therefore, our portal implementation

rely on polling to provide this operation. When contrasting the throughput per-

formance of the two abstractions for working with dense data transfers, however,

we spotted an important difference between them: portal achieved roughly 60

MB/s and 40 MB/S for read and write operations, respectively, as opposed to665

8 MB/s and 5 MB/s achieved by mailbox . The rationale for this lies on the fact

that portals are backed up by larger transfer buffers than mailboxes. Thanks to

this, in dense data transfers, fewer chunks are needed to carry out the transfer,

and thus the overall communication overhead that is required for flow control

is smoothed out. As a consequence, higher bandwidth is achieved.670

6.3. Realistic Use Case Experiments

So far, we analyzed the raw performance and scalability of our IKC facility.

In this section, we turn our focus to a more realistic assessment that exercises

important services and protocols in Nanvix. In these experiments, however, the

communication performance is subjected to interference of other OS compo-675

nents of the system that cannot be completely isolated, such as concurrency for

resources. Therefore, conclusions drew previously do not necessarily hold under

these circumstances. Again, our baseline is based solely on the mailbox abstrac-

29

tion to implement synchronization signals as well as fine- and coarse-grain data

transfers.680

Heartbeat. Figure 12a presents the time spent in communication in the heartbeat

benchmark. In this program, a N:1 and fine-grain communication pattern is

exercised. We observed that both abstractions yield to about 130 µs communi-

cation times, thus showing that a richer IKC facility does not negatively impact

the performance. This conclusion is further reinforced by energy consumption685

results (Figure 13a).

Page Cache Invalidation. Figure 12b presents the time spent in communication

in the pginval benchmark. In this program, a 1:N and fine-grain communica-

tion pattern is benchmarked. As in heartbeat, we observed that both ab-

stractions deliver similar performance for this communication pattern, thereby690

strengthening our previous conclusion. However, the communication time in

this protocol is about 10 orders of magnitude higher than in the other evaluated

protocols. Notwithstanding, this observation shows that communication may

have significant impacts on the quantitative performance of the OS. Finally,

energy consumption results show that there is no significant different between695

the two solutions (Figure 13b).

13
2

13
0

 0

 50

100

150

200

T
im

e
(u

s)

(a) heartbeat

21
.7

21
.9

 0

 5

10

15

20

25

30

T
im

e
(m

s)

(b) pginval

86
8

73
7

 0

 200

 400

 600

 800

1000

T
im

e
(u

s)

(c) lookup

33
25

19
7

100

101

102

103

104

105

T
im

e
(u

s)

(d) spawn

7.
9

4.
7

 0

 2

 4

 6

 8

10

T
im

e
(m

s)

IKC Solution

Baseline
Nanvix

(e) pgfetch

Figure 12: Communication time spent in several OS services of Nanvix.

30

93
0

88
1

 0

 200

 400

 600

 800

1000

1200

E
ne

rg
y

(u
J)

(a) heartbeat

14
8.

8
15

2.
8

 0

 50

100

150

200

E
ne

rg
y

(m
J)

(b) pginval

6.
1

4.
5

0

2

4

6

8

E
ne

rg
y

(m
J)

(c) lookup

28
37

8

13
51

100

101

102

103

104

105

106

E
ne

rg
y

(u
J)

(d) spawn

50
.2

31
.4

 0

10

20

30

40

50

60

E
ne

rg
y

(m
J)

IKC Solution

Baseline
Nanvix

(e) pgfetch

Figure 13: Energy spent during communication in several OS services of Nanvix.

Name Lookup. Figure 12c presents the communication time in the lookup

benchmark. In this program, 1:1 fine-grain communication pattern is exer-

cised. In contrast to the other two benchmarks that also rely on a mailbox (i.e.,

heartbeat and pginval), in this experiment we noted a performance differ-700

ence from our IKC solution and the baseline. Although it may be surprisingly

at first, the rationale for this is two-fold: (i) in this experiment there exists a

strong competition for the communication infrastructure, due to the concurrent

services that execute along with the name lookup; and (ii) our IKC facility en-

ables better concurrency support due to a more appropriate hardware resources705

usage. Recall that in the baseline solution, all types of communications are mul-

tiplexed on top of mailboxes. As a consequence, not all TX/RX buffers that are

available in the hardware are indeed used and thus communication contention

happens if too many processes and/or OS services concurrently use the com-

munication infrastructure. On the other hand, our IKC facility not only makes710

plain use of these buffers but also relies on both NoCs that are available to

carry out communication. In the end, due to this better concurrency support,

communication performance of this service is improved by 24.91%, while energy

consumption drops by 26.22% (Figure 13c).

Spawn. Figure 12d presents the communication time in the spawn benchmark,715

in which a N:N fine-grain communication pattern is exercised. Overall, we ob-

31

served an important performance gap between the baseline and our IKC facility,

roughly by a factor of 16× in time and 21× in energy consumption (Figure 13d).

Indeed, this OS service is backed up by synchronization signals and this obser-

vation is aligned to our previous performance scalability analysis of our sync720

abstraction. Thus, this result sustains another important hypothesis of our

research:

If we provide an additional communication abstraction that exposes syn-

chronization primitives to other OS subsystems, we may exploit hardware

support for these operations, and thus improve communication perfor-725

mance.

Page Fetch. Figure 12e presents the communication time in the pgfetch bench-

mark, in which a 1:1 dense communication pattern is assessed. Overall, our IKC

facility achieved about 1.65× shorter times and 1.59× smaller energy consump-

tion (Figure 13d) than the baseline. While the baseline solution relies only on730

mailboxes to carryout the same transfer, our IKC facility is backed up by a

hybrid approach that uses mailbox and portal . The former is used to exchange

operation headers in the protocol using hardware RX/TX registers, whereas the

latter is used to carry out the page transfer itself from the memory manager

to the faulting process by programming the DMA engine. Thus, this result735

sustains another important hypothesis of our research:

If we expose an additional communication abstraction that provides en-

hancement support to dense data transfers, we may significantly improve

the performance of OS subsystems that feature such requirement.

7. Related Work740

In this section, we present existing communication mechanisms that are

available for manycore platforms, contrasting them with our IKC facility. First,

we discuss about application-level communication libraries for manycores. Then,

32

we consider communication subsystems for OSes that target large SMP plat-

forms. Finally, we turn our focus to kernel-level communication abstractions745

that are provided by OSes of lightweight manycores.

When comes to communication in manycore processors, several works focus

on providing application-level solutions. On the one hand, there are vendor-

specific baremetal libraries that rely on particular features of the underly-

ing hardware to achieve high performance. For instance, Wijngaart [26] and750

Clauss [27] provide communication interfaces for the Intel Single-Cloud Com-

puter processor. Similarly, Kalray MPPA-256 features a communication library

that shares some similarity with POSIX [25] and a specific interface for one-sided

communications [18]. Finally, a particular communication API is provided to

developers that target the Adapteva Epiphany architecture [28]. On the other755

hand, there exist solutions based on well-known distributed programming in-

terfaces, such as the Unified Parallel C (UPC) port for the Intel Single-Cloud

Computer [29] and Tilera TILE64 [30] processors, the OpenSHMEM imple-

mentation for the Adapteva Epiphany processor [31], and an Message Passing

Interface (MPI) port for Kalray MPPA-256 [32] and Adapteva Epiphany [33].760

In contrast to both application-level approaches, our IKC facility focus on pro-

viding kernel-level abstractions for communication. This way, we are able to

provide communication multiplexing among several applications in a secure and

fair way. We see application-level communication libraries as a complement of

our work.765

Distributed OSes that target large SMP architectures, such as Barrelfish [11],

FOS [10] and HeliOS [21], ultimately rely on shared memory to enable com-

munication of subsystems. To this end, OS kernels book some range of the

underlying shared memory to setup a communication infrastructure. For in-

stance, Barrelfish provides a channel abstraction on top of a shared memory770

region that enables point-to-point cache-line-sized messaging between a single

writer and reader cores (i.e., 1:1 communication). In contrast, FOS uses shared

memory to expose a mailbox abstraction that supports transferring of larger

fixed-size messages between multiple writers and one reader core (i.e., N:1). Fi-

33

nally, HeliOS provides over shared memory a First-in First-Out (FIFO) queue775

abstraction that enables arbitrarily large 1:1 message passing. Overall, while

the communication infrastructure of these OSes provide efficient solutions to

SMP manycore processors, they are not designed to cope with challenges and

features of lightweight manycores. More precisely, these solutions do not take

into account the distributed memory architecture as well as the capabilities780

of rich NoCs to deal with multiple communication granularities (i.e., small,

medium and large transfers) and communication purposes (i.e., data transfers

and synchronization). As a consequence, they would bring sub-optimal system

performance to lightweight manycores.

On the other hand, distributed OSes for lightweight manycores are inher-785

ently designed to cope with a distributed memory architecture and rich NoCs.

Thus, they feature communication abstractions that are closer to ours. For

instance, MOSSCA [12] provides unidirectional channels (i.e., 1:1) to enable

communication between clusters. Channels have policies that guarantee prop-

erties and restrictions on the participating peers, such as flow control and fault790

tolerance. Furthermore, these channels may be used as building blocks to im-

plement more sophisticated and robust communication patterns. Conversely,

inter-cluster communication is enabled in M3 [13] through either one of two

abstractions: (i) message gates for exchanging fixed-size messages; or (ii) for

transferring arbitrary large amounts of data through a ring-buffer in the DRAM.795

Overall, our work contrasts with these two others as follows. In respect to the

communication module of MOSSCA, our IKC facility exposes abstractions for

transferring fixed-size messages (i.e., mailboxes) and arbitrarily-large data (i.e.,

portals), thereby enabling the underlying rich NoC to be better exploited. In

contrast to M3, our communication facility additionally provides a synchroniza-800

tion abstraction, thus enabling synchronization and data transfer to be decou-

pled and hence communication performance improved. Furthermore, our portal

abstraction (analogue to memory gates in M3) enables direct communication

between any pair of peers in the lightweight manycore, without the need of

temporarily storing data in a ring buffer in the DRAM. Finally, our facility is805

34

designed to efficiently support different communication characteristics of dis-

tributed OS (i.e., synchronization, as well as fine- and coarse-grain transfers).

Porting our IKC facility to other OSes requires a large amount of work

because each OS has its own particular aspects. We opted to implement it

in Nanvix, since we aimed at evaluating its performance in a commercially810

available baremetal lightweight manycore, and, to the best of our knowledge,

Nanvix is currently the only open-source distributed OS that runs on one of

these processors. In contrast, MOSSCA and M3 run on an in-house simulator

and a processor prototype implemented in a FPGA, respectively.

8. Conclusions815

Lightweight manycore processors achieve high performance and energy ef-

ficiency thanks to a selected set of architectural features, such as high count

of low-power cores, distributed memory architecture and rich NoCs [6, 8, 9].

Conversely, to address such hardware design, OSes for this emerging class of

processors embrace a distributed structure to achieve scalability while exposing820

richer abstractions and APIs to user-level software [10, 11]. In this approach,

subsystems of the OS are factored in a set of services that: (i) are deployed

across the cores of the processor; and (ii) collaboratively work with one another

to implement system functionalities.

To effectively enable this distributed structure, the OS features a communi-825

cation layer that provides communication primitives on top of the underlying

NoC. To this end, current distributed OSes for lightweight manycores encapsu-

late these primitives in a mailbox structure: an abstraction that enables fixed-

size messages to be transferred [12, 13].

Despite the fact that mailboxes enable a distributed OS design, we argue830

they are not enough for enabling efficient communication in these architectures.

First, the architectural features of the NoC may not be fully exploited with a

single abstraction. The rationale for this lies on the fact that right use of each

of these hardware resources depends on the semantics of the communication

35

and this information is unavailable at the communication layer. Second, the835

diversity in communication protocols across the different subsystems calls out

for supporting multiple abstractions, otherwise the implementation of protocols

is inefficient. For instance, some services require flow control while others do

not. Therefore, if the same abstraction is used for implementing both protocols,

overhead is imposed in the latter one even though it does not use this feature.840

Therefore, to overcome this problem, in this work we proposed a richer IKC

facility that exposes three communication abstractions to other subsystems of

the OS: (i) syncs, for enabling a process to signal and unlock another process

remotely; (ii) mailboxes, for sending fixed-size messages with low latency; and

(iii) portals, for handling dense data transfers with high bandwidth. These ab-845

stractions enable the NoC capabilities to be better exploited, as well as the

communication characteristics between different subsystems to be better ad-

dressed.

We implemented the proposed IKC facility in Nanvix, an open-source dis-

tributed OS that targets lightweight manycores [14]. Furthermore, we evaluated850

our solution using two sets of experimental benchmarks: (i) a micro-benchmark

suite to study the raw performance and scalability of our abstractions; and (ii)

a benchmark suite that exercises important communication protocols that are

applied in different subsystems of Nanvix. We carried out baremetal experi-

ments on Kalray MPPA-256, a NoC-based lightweight manycore processor that855

features a distributed memory architecture and integrates 288 cores in a single

chip. Overall, our results showed that our communication facility enables up

to 16.87× and 1.68× better performance than a mailbox -only solution, in syn-

chronization and dense data transfers, respectively. Additionally, Concerning

energy consumption our solution showed up to be up to 21× more efficient than860

the baseline.

This work is inserted into a larger scope, the joint research initiative be-

tween PUC Minas, UGA and UFSC that aims the design and implementation

of a POSIX-compliant OS for lightweight manycore processors. In this con-

text, Nanvix is an important research asset that effectively enables prototyping865

36

and benchmarking new ideas that concern OS construction for these emerging

architectures. As future works, we intend to:

(i) optimize communication protocols of existing OS services to better ex-

ploit the semantics of the new abstractions that we introduced, and thus

improve the overall performance of the system;870

(ii) design and implement a POSIX Inter-Process Communication (IPC) ser-

vice on top of the IKC facility to expose standard OS communicators,

such as pipes, named semaphores, message queues and sockets;

(iii) work on a MPI port on top of our IKC facility, to enable applications that

rely on this framework to be ported to Nanvix, and consequently to all875

lightweight manycores; and

(iv) evaluate our IKC facility running on a FPGA supported by Nanvix, to

spot potential codesign aspects and improve even further communication

between the subsystems of a distributed OS for lightweight manycores.

Finally, concerning the current implementation of our IKC facility on Kalray880

MPPA-256, we highlight that there is room for improvement as well. Due to

the lack of appropriate documentation, our implementation does not make use

of DMA engines that are available in the clusters of this processor, resulting

in sub-optimal performance for dense data transfers. However, we emphasize

that this limitation is not related to the abstractions proposed in this work,885

which were made to be platform-independent. If the required information on

how to effectively use DMA engines is available, one could easily enhance the

implementation by changing a small portion of its source code.

Acknowledgments

We thank CNRS, CNPq, FAPESC, FAPEMIG for supporting this research.890

This study was financed in part by the Coordenação de Aperfeiçoamento de

Pessoal de Nı́vel Superior - Brasil (CAPES) - Finance Code 001.

37

References

[1] E. Francesquini, M. Castro, P. H. Penna, F. Dupros, H. Freitas, P. Navaux,

J.-F. Méhaut, On the energy efficiency and performance of irregular ap-895

plication executions on multicore, numa and manycore platforms, Jour-

nal of Parallel and Distributed Computing (JPDC) 76 (C) (2015) 32–48.

doi:10.1016/j.jpdc.2014.11.002.

URL https://doi.org/10.1016/j.jpdc.2014.11.002

[2] B. Bohnenstiehl, A. Stillmaker, J. Pimentel, T. Andreas, B. Liu, A. Tran,900

E. Adeagbo, B. Baas, KiloCore: A 32-nm 1000-Processor Computational

Array , IEEE Journal of Solid-State Circuits (JSSC) 52 (4) (2017) 891–902.

doi:10.1109/JSSC.2016.2638459.

[3] D. Rossi, A. Pullini, I. Loi, M. Gautschi, F. K. Gurkaynak, A. Te-

man, J. Constantin, A. Burg, I. Miro-Panades, E. Beigne, F. Clermidy,905

P. Flatresse, L. Benini, Energy-Efficient Near-Threshold Parallel Com-

puting: The PULPv2 Cluster , IEEE Micro 37 (5) (2017) 20–31. doi:

10.1109/MM.2017.3711645.

URL http://ieeexplore.ieee.org/document/8065010/

[4] D. Melpignano, L. Benini, E. Flamand, B. Jego, T. Lepley, G. Haugou,910

F. Clermidy, D. Dutoit, Platform 2012, a many-core computing acceler-

ator for embedded socs, in: Design Automation Conference, DAC ‘12,

ACM Press, New York, USA, 2012, pp. 1137–1142. doi:10.1145/2228360.

2228568.

URL http://dl.acm.org/citation.cfm?doid=2228360.2228568915

[5] S. Davidson, S. Xie, C. Torng, K. Al-Hawai, A. Rovinski, T. Ajayi, L. Vega,

C. Zhao, R. Zhao, S. Dai, A. Amarnath, B. Veluri, P. Gao, A. Rao, G. Liu,

R. K. Gupta, Z. Zhang, R. Dreslinski, C. Batten, M. B. Taylor, The celerity

open-source 511-core risc-v tiered accelerator fabric: Fast architectures and

design methodologies for fast chips, IEEE Micro 38 (2) (2018) 30–41. doi:920

38

https://doi.org/10.1016/j.jpdc.2014.11.002
https://doi.org/10.1016/j.jpdc.2014.11.002
https://doi.org/10.1016/j.jpdc.2014.11.002
https://doi.org/10.1016/j.jpdc.2014.11.002
https://doi.org/10.1016/j.jpdc.2014.11.002
https://doi.org/10.1109/JSSC.2016.2638459
http://ieeexplore.ieee.org/document/8065010/
http://ieeexplore.ieee.org/document/8065010/
http://ieeexplore.ieee.org/document/8065010/
https://doi.org/10.1109/MM.2017.3711645
https://doi.org/10.1109/MM.2017.3711645
https://doi.org/10.1109/MM.2017.3711645
http://ieeexplore.ieee.org/document/8065010/
http://dl.acm.org/citation.cfm?doid=2228360.2228568
http://dl.acm.org/citation.cfm?doid=2228360.2228568
http://dl.acm.org/citation.cfm?doid=2228360.2228568
https://doi.org/10.1145/2228360.2228568
https://doi.org/10.1145/2228360.2228568
https://doi.org/10.1145/2228360.2228568
http://dl.acm.org/citation.cfm?doid=2228360.2228568
https://ieeexplore.ieee.org/document/8344478/
https://ieeexplore.ieee.org/document/8344478/
https://ieeexplore.ieee.org/document/8344478/
https://ieeexplore.ieee.org/document/8344478/
https://ieeexplore.ieee.org/document/8344478/
https://doi.org/10.1109/MM.2018.022071133
https://doi.org/10.1109/MM.2018.022071133
https://doi.org/10.1109/MM.2018.022071133

10.1109/MM.2018.022071133.

URL https://ieeexplore.ieee.org/document/8344478/

[6] B. D. de Dinechin, R. Ayrignac, P.-E. Beaucamps, P. Couvert, B. Ganne,

P. G. de Massas, F. F. Jacquet, S. Jones, N. M. Chaisemartin, F. Riss,

T. Strudel, A clustered manycore processor architecture for embedded and925

accelerated applications, in: IEEE High Performance Extreme Computing

Conference, HPEC ‘13, IEEE, Waltham, USA, 2013, pp. 1–6. doi:10.

1109/HPEC.2013.6670342.

URL http://ieeexplore.ieee.org/document/6670342/

[7] A. Olofsson, Epiphany-v: A 1024 processor 64-bit risc system-on-chip,930

ArXiv 1610.01832 (2016) 1–15.

URL https://arxiv.org/abs/1610.01832

[8] F. Zheng, H.-L. Li, H. Lv, F. Guo, X.-H. Xu, X.-H. Xie, Cooperative

computing techniques for a deeply fused and heterogeneous many-core

processor architecture, Journal of Computer Science and Technology 30 (1)935

(2015) 145–162. doi:10.1007/s11390-015-1510-9.

URL https://link.springer.com/article/10.1007/

s11390-015-1510-9

[9] H. Fu, J. Liao, J. Yang, L. Wang, Z. Song, X. Huang, C. Yang, W. Xue,

F. Liu, F. Qiao, W. Zhao, X. Yin, C. Hou, C. Zhang, W. Ge, J. Zhang,940

Y. Wang, C. Zhou, G. Yang, The sunway taihulight supercomputer: System

and applications, Science China Information Sciences 59 (7) (2016) 072001–

0720016. doi:10.1007/s11432-016-5588-7.

URL http://link.springer.com/10.1007/s11432-016-5588-7

[10] D. Wentzlaff, A. Agarwal, Factored operating systems (fos): The case for a945

scalable operating system for multicores, ACM SIGOPS Operating Systems

Review 43 (2) (2009) 76–85. doi:10.1145/1531793.1531805.

URL http://portal.acm.org/citation.cfm?doid=1531793.1531805

39

https://doi.org/10.1109/MM.2018.022071133
https://doi.org/10.1109/MM.2018.022071133
https://ieeexplore.ieee.org/document/8344478/
http://ieeexplore.ieee.org/document/6670342/
http://ieeexplore.ieee.org/document/6670342/
http://ieeexplore.ieee.org/document/6670342/
https://doi.org/10.1109/HPEC.2013.6670342
https://doi.org/10.1109/HPEC.2013.6670342
https://doi.org/10.1109/HPEC.2013.6670342
http://ieeexplore.ieee.org/document/6670342/
https://arxiv.org/abs/1610.01832
https://arxiv.org/abs/1610.01832
https://link.springer.com/article/10.1007/s11390-015-1510-9
https://link.springer.com/article/10.1007/s11390-015-1510-9
https://link.springer.com/article/10.1007/s11390-015-1510-9
https://link.springer.com/article/10.1007/s11390-015-1510-9
https://link.springer.com/article/10.1007/s11390-015-1510-9
https://doi.org/10.1007/s11390-015-1510-9
https://link.springer.com/article/10.1007/s11390-015-1510-9
https://link.springer.com/article/10.1007/s11390-015-1510-9
https://link.springer.com/article/10.1007/s11390-015-1510-9
http://link.springer.com/10.1007/s11432-016-5588-7
http://link.springer.com/10.1007/s11432-016-5588-7
http://link.springer.com/10.1007/s11432-016-5588-7
https://doi.org/10.1007/s11432-016-5588-7
http://link.springer.com/10.1007/s11432-016-5588-7
http://portal.acm.org/citation.cfm?doid=1531793.1531805
http://portal.acm.org/citation.cfm?doid=1531793.1531805
http://portal.acm.org/citation.cfm?doid=1531793.1531805
https://doi.org/10.1145/1531793.1531805
http://portal.acm.org/citation.cfm?doid=1531793.1531805

[11] A. Baumann, P. Barham, P.-E. Dagand, T. Harris, R. Isaacs, S. Peter,

T. Roscoe, A. Schüpbach, A. Singhania, The multikernel: A new os archi-950

tecture for scalable multicore systems, in: ACM SIGOPS Symposium on

Operating Systems Principles, SOSP ‘09, ACM, Big Sky, Montana, 2009,

pp. 29–44. doi:10.1145/1629575.1629579.

URL http://portal.acm.org/citation.cfm?doid=1629575.1629579

[12] F. Kluge, M. Gerdes, T. Ungerer, An operating system for safety-critical955

applications on manycore processors, in: International Symposium on

Object/Component/Service-Oriented Real-Time Distributed Computing,

ISORC ‘14, IEEE, Reno, Nevada, 2014, pp. 238–245. doi:10.1109/ISORC.

2014.30.

URL http://ieeexplore.ieee.org/document/6899155/960

[13] N. Asmussen, M. Völp, B. Nöthen, H. Härtig, G. Fettweis, M3: A

hardware/operating-system co-design to tame heterogeneous manycores,

in: International Conference on Architectural Support for Programming

Languages and Operating Systems, ASPLOS ‘16, ACM, Atlanta, Georgia,

2016, pp. 189–203. doi:10.1145/2872362.2872371.965

URL http://dl.acm.org/citation.cfm?doid=2954680.2872371

[14] P. H. Penna, J. V. Souto, D. F. Lima, M. Castro, F. Broquedis, H. Freitas,

J.-F. Méhaut, On the performance and isolation of asymmetric microkernel

design for lightweight manycores, in: Brazilian Symposium on Computing

Systems Engineering, SBESC ‘19, IEEE, Natal, Brazil, 2019, pp. 1–8. doi:970

10.1109/SBESC49506.2019.9046080.

URL https://ieeexplore.ieee.org/document/9046080

[15] A. Olofsson, T. Nordstrom, Z. Ul-Abdin, Kickstarting high-performance

energy-efficient manycore architectures with epiphany, in: Asilomar Con-

ference on Signals, Systems and Computers, Asilomar ‘14, IEEE, Pa-975

cific Grove, USA, 2014, pp. 1719–1726. arXiv:1412.5538, doi:10.1109/

40

http://portal.acm.org/citation.cfm?doid=1629575.1629579
http://portal.acm.org/citation.cfm?doid=1629575.1629579
http://portal.acm.org/citation.cfm?doid=1629575.1629579
https://doi.org/10.1145/1629575.1629579
http://portal.acm.org/citation.cfm?doid=1629575.1629579
http://ieeexplore.ieee.org/document/6899155/
http://ieeexplore.ieee.org/document/6899155/
http://ieeexplore.ieee.org/document/6899155/
https://doi.org/10.1109/ISORC.2014.30
https://doi.org/10.1109/ISORC.2014.30
https://doi.org/10.1109/ISORC.2014.30
http://ieeexplore.ieee.org/document/6899155/
http://dl.acm.org/citation.cfm?doid=2954680.2872371
http://dl.acm.org/citation.cfm?doid=2954680.2872371
http://dl.acm.org/citation.cfm?doid=2954680.2872371
https://doi.org/10.1145/2872362.2872371
http://dl.acm.org/citation.cfm?doid=2954680.2872371
https://ieeexplore.ieee.org/document/9046080
https://ieeexplore.ieee.org/document/9046080
https://ieeexplore.ieee.org/document/9046080
https://doi.org/10.1109/SBESC49506.2019.9046080
https://doi.org/10.1109/SBESC49506.2019.9046080
https://doi.org/10.1109/SBESC49506.2019.9046080
https://ieeexplore.ieee.org/document/9046080
http://ieeexplore.ieee.org/document/7094761/
http://ieeexplore.ieee.org/document/7094761/
http://ieeexplore.ieee.org/document/7094761/
http://arxiv.org/abs/1412.5538
https://doi.org/10.1109/ACSSC.2014.7094761
https://doi.org/10.1109/ACSSC.2014.7094761
https://doi.org/10.1109/ACSSC.2014.7094761

ACSSC.2014.7094761.

URL http://ieeexplore.ieee.org/document/7094761/

[16] M.-H. Haghbayan, A. Miele, A. M. Rahmani, P. Liljeberg, H. Tenhunen,

Performance/reliability-aware resource management for many-cores in dark980

silicon era, IEEE Transactions on Computers (TC) 66 (9) (2017) 1599–1612.

doi:10.1109/TC.2017.2691009.

URL http://ieeexplore.ieee.org/document/7892847/

[17] M. Castro, E. Francesquini, F. Dupros, H. Aochi, P. O. Navaux, J.-

F. Méhaut, Seismic wave propagation simulations on low-power and985

performance-centric manycores, Parallel Computing (PARCO) 54 (2016)

108–120. doi:10.1016/j.parco.2016.01.011.

URL https://linkinghub.elsevier.com/retrieve/pii/

S0167819116000417

[18] J. Hasco ët, B. D. de Dinechin, P. G. de Massas, M. Q. Ho, Asyn-990

chronous one-sided communications and synchronizations for a clustered

manycore processor, in: Symposium on Embedded Systems for Real-

Time Multimedia, ESTIMedia ‘17, ACM Press, Seoul, 2017, pp. 51–60.

doi:10.1145/3139315.3139318.

URL http://dl.acm.org/citation.cfm?doid=3139315.3139318995

[19] B. D. de Dinechin, Y. Durand, D. van Amstel, A. Ghiti, Guaranteed ser-

vices of the noc of a manycore processor, in: International Workshop on

Network on Chip Architectures, NoCArc ‘14, ACM Press, Cambridge, 2014,

pp. 11–16. doi:10.1145/2685342.2685344.

URL http://dl.acm.org/citation.cfm?doid=2685342.26853441000

[20] M. Souza, P. H. Penna, M. Queiroz, A. Pereira, L. F. Góes, H. Freitas,

M. Castro, P. Navaux, J.-F. Méhaut, Cap bench: A benchmark suite

for performance and energy evaluation of low-power many-core processors,

Concurrency and Computation: Practice and Experience (CCPE) 29 (4)

(2017) 1–18. doi:10.1002/cpe.3892.1005

41

https://doi.org/10.1109/ACSSC.2014.7094761
https://doi.org/10.1109/ACSSC.2014.7094761
http://ieeexplore.ieee.org/document/7094761/
http://ieeexplore.ieee.org/document/7892847/
http://ieeexplore.ieee.org/document/7892847/
http://ieeexplore.ieee.org/document/7892847/
https://doi.org/10.1109/TC.2017.2691009
http://ieeexplore.ieee.org/document/7892847/
https://linkinghub.elsevier.com/retrieve/pii/S0167819116000417
https://linkinghub.elsevier.com/retrieve/pii/S0167819116000417
https://linkinghub.elsevier.com/retrieve/pii/S0167819116000417
https://doi.org/10.1016/j.parco.2016.01.011
https://linkinghub.elsevier.com/retrieve/pii/S0167819116000417
https://linkinghub.elsevier.com/retrieve/pii/S0167819116000417
https://linkinghub.elsevier.com/retrieve/pii/S0167819116000417
http://dl.acm.org/citation.cfm?doid=3139315.3139318
http://dl.acm.org/citation.cfm?doid=3139315.3139318
http://dl.acm.org/citation.cfm?doid=3139315.3139318
http://dl.acm.org/citation.cfm?doid=3139315.3139318
http://dl.acm.org/citation.cfm?doid=3139315.3139318
https://doi.org/10.1145/3139315.3139318
http://dl.acm.org/citation.cfm?doid=3139315.3139318
http://dl.acm.org/citation.cfm?doid=2685342.2685344
http://dl.acm.org/citation.cfm?doid=2685342.2685344
http://dl.acm.org/citation.cfm?doid=2685342.2685344
https://doi.org/10.1145/2685342.2685344
http://dl.acm.org/citation.cfm?doid=2685342.2685344
https://doi.org/10.1002/cpe.3892

[21] E. B. Nightingale, O. Hodson, R. Mcllroy, C. Hawblitzel, G. Hunt, Helios:

Heterogeneous multiprocessing with satellite kernels, in: ACM SIGOPS

Symposium on Operating Systems Principles, SOSP ‘09, ACM Press, Big

Sky, Montana, 2009, pp. 221–234. doi:10.1145/1629575.1629597.

URL http://portal.acm.org/citation.cfm?doid=1629575.16295971010

[22] O. Villa, G. Palermo, C. Silvano, Efficiency and scalability of barrier

synchronization on noc based many-core architectures, in: International

Conference on Compilers, Architecture and Synthesis for Embedded Sys-

tems, CASES ‘08, ACM Press, Atlanta, USA, 2008, pp. 81–89. doi:

10.1145/1450095.1450110.1015

URL http://portal.acm.org/citation.cfm?doid=1450095.1450110

[23] S. Wallentowitz, A. Lankes, A. Zaib, T. Wild, A. Herkersdorf, A framework

for open tiled manycore system-on-chip, in: International Conference on

Field Programmable Logic and Applications, FPL ‘2012, IEEE, Oslo, 2012,

pp. 535–538. doi:10.1109/FPL.2012.6339273.1020

URL http://ieeexplore.ieee.org/document/6339273/

[24] P. H. Penna, D. Francis, J. Souto, The hardware abstraction layer of nanvix

for the kalray mppa-256 lightweight manycore processor, in: Conférence

d’Informatique en Parallélisme, Architecture et Système, Anglet, France,

2019, pp. 1–11.1025

[25] B. D. de Dinechin, P. G. de Massas, G. Lager, C. Léger, B. Orgogozo,

J. Reybert, T. Strudel, A distributed run-time environment for the kalray

mppa-256 integrated manycore processor, Procedia Computer Science

18 (2013 International Conference on Computational Science) (2013)

1654–1663. doi:10.1016/j.procs.2013.05.333.1030

URL https://www.sciencedirect.com/science/article/pii/

S1877050913004766?via%3Dihub

[26] R. F. van der Wijngaart, T. G. Mattson, W. Haas, Light-weight commu-

nications on intel’s single-chip cloud computer processor, SIGOPS Operat-

42

http://portal.acm.org/citation.cfm?doid=1629575.1629597
http://portal.acm.org/citation.cfm?doid=1629575.1629597
http://portal.acm.org/citation.cfm?doid=1629575.1629597
https://doi.org/10.1145/1629575.1629597
http://portal.acm.org/citation.cfm?doid=1629575.1629597
http://portal.acm.org/citation.cfm?doid=1450095.1450110
http://portal.acm.org/citation.cfm?doid=1450095.1450110
http://portal.acm.org/citation.cfm?doid=1450095.1450110
https://doi.org/10.1145/1450095.1450110
https://doi.org/10.1145/1450095.1450110
https://doi.org/10.1145/1450095.1450110
http://portal.acm.org/citation.cfm?doid=1450095.1450110
http://ieeexplore.ieee.org/document/6339273/
http://ieeexplore.ieee.org/document/6339273/
http://ieeexplore.ieee.org/document/6339273/
https://doi.org/10.1109/FPL.2012.6339273
http://ieeexplore.ieee.org/document/6339273/
https://www.sciencedirect.com/science/article/pii/S1877050913004766?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S1877050913004766?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S1877050913004766?via%3Dihub
https://doi.org/10.1016/j.procs.2013.05.333
https://www.sciencedirect.com/science/article/pii/S1877050913004766?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S1877050913004766?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S1877050913004766?via%3Dihub
https://doi.org/10.1145/1945023.1945033
https://doi.org/10.1145/1945023.1945033
https://doi.org/10.1145/1945023.1945033

ing Systems Review (OSR) 45 (1) (2011) 73–83. doi:10.1145/1945023.1035

1945033.

URL https://doi.org/10.1145/1945023.1945033

[27] C. Clauss, S. Lankes, P. Reble, T. Bemmerl, Evaluation and improvements

of programming models for the Intel SCC many-core processor, in: Interna-

tional Conference on High Performance Computing & Simulation (HPCS),1040

IEEE, 2011, pp. 525–532. doi:10.1109/HPCSim.2011.5999870.

URL http://ieeexplore.ieee.org/document/5999870/

[28] A. Varghese, B. Edwards, G. Mitra, A. P. Rendell, Programming the

adapteva epiphany 64-core network-on-chip coprocessor, in: International

Parallel and Distributed Processing Symposium Workshops (IPDPSW),1045

IPDPSW ‘14, IEEE, Phoenix, USA, 2014, pp. 984–992. doi:10.1109/

IPDPSW.2014.112.

URL http://ieeexplore.ieee.org/document/6969488/

[29] M. Gamell, I. Rodero, M. Parashar, R. Muralidhar, Exploring cross-

layer power management for PGAS applications on the SCC platform, in:1050

International Symposium on High-Performance Parallel and Distributed

Computing (HPDC), ACM Press, New York, USA, 2012, p. 235. doi:

10.1145/2287076.2287113.

URL http://dl.acm.org/citation.cfm?doid=2287076.2287113

[30] O. Serres, A. Anbar, S. Merchant, T. El-Ghazawi, Experiences with UPC1055

on TILE-64 processor, in: Aerospace Conference, IEEE, 2011, pp. 1–9.

doi:10.1109/AERO.2011.5747452.

URL http://ieeexplore.ieee.org/document/5747452/

[31] J. Ross, D. Richie, Implementing openshmem for the adapteva epiphany

risc array processor, Procedia Computer Science 80 (C) (2016) 2353–2356.1060

arXiv:arXiv:1604.04205, doi:10.1016/J.PROCS.2016.05.439.

URL http://www.sciencedirect.com/science/article/pii/

S1877050916309206

43

https://doi.org/10.1145/1945023.1945033
https://doi.org/10.1145/1945023.1945033
https://doi.org/10.1145/1945023.1945033
https://doi.org/10.1145/1945023.1945033
http://ieeexplore.ieee.org/document/5999870/
http://ieeexplore.ieee.org/document/5999870/
http://ieeexplore.ieee.org/document/5999870/
https://doi.org/10.1109/HPCSim.2011.5999870
http://ieeexplore.ieee.org/document/5999870/
http://ieeexplore.ieee.org/document/6969488/
http://ieeexplore.ieee.org/document/6969488/
http://ieeexplore.ieee.org/document/6969488/
https://doi.org/10.1109/IPDPSW.2014.112
https://doi.org/10.1109/IPDPSW.2014.112
https://doi.org/10.1109/IPDPSW.2014.112
http://ieeexplore.ieee.org/document/6969488/
http://dl.acm.org/citation.cfm?doid =2287076.2287113
http://dl.acm.org/citation.cfm?doid =2287076.2287113
http://dl.acm.org/citation.cfm?doid =2287076.2287113
https://doi.org/10.1145/2287076.2287113
https://doi.org/10.1145/2287076.2287113
https://doi.org/10.1145/2287076.2287113
http://dl.acm.org/citation.cfm?doid =2287076.2287113
http://ieeexplore.ieee.org/document/5747452/
http://ieeexplore.ieee.org/document/5747452/
http://ieeexplore.ieee.org/document/5747452/
https://doi.org/10.1109/AERO.2011.5747452
http://ieeexplore.ieee.org/document/5747452/
http://www.sciencedirect.com/science/article/pii/S1877050916309206
http://www.sciencedirect.com/science/article/pii/S1877050916309206
http://www.sciencedirect.com/science/article/pii/S1877050916309206
http://arxiv.org/abs/arXiv:1604.04205
https://doi.org/10.1016/J.PROCS.2016.05.439
http://www.sciencedirect.com/science/article/pii/S1877050916309206
http://www.sciencedirect.com/science/article/pii/S1877050916309206
http://www.sciencedirect.com/science/article/pii/S1877050916309206

[32] M. Q. Ho, B. Tourancheau, C. Obrecht, B. D. de Dinechin, J. Reybert,

MPI communication on MPPA many-core NoC: Design, modeling and1065

performance issues, in: International Conference on Parallel Computing,

Vol. 27 of ParCo ‘15, IOS Press, Edinburgh, UK, 2015, pp. 113–122.

doi:10.3233/978-1-61499-621-7-113.

URL https://doi.org/10.3233/978-1-61499-621-7-113

[33] D. Richie, J. Ross, J. Infantolino, A Distributed Shared Memory Model1070

and C++ Templated Meta-Programming Interface for the Epiphany

RISC Array Processor, Procedia Computer Science 108 (2017) 1093–1102.

doi:10.1016/J.PROCS.2017.05.221.

URL http://www.sciencedirect.com/science/article/pii/

S18770509173082931075

44

https://doi.org/10.3233/978-1-61499-621-7-113
https://doi.org/10.3233/978-1-61499-621-7-113
https://doi.org/10.3233/978-1-61499-621-7-113
https://doi.org/10.3233/978-1-61499-621-7-113
https://doi.org/10.3233/978-1-61499-621-7-113
http://www.sciencedirect.com/science/article/pii/S1877050917308293
http://www.sciencedirect.com/science/article/pii/S1877050917308293
http://www.sciencedirect.com/science/article/pii/S1877050917308293
http://www.sciencedirect.com/science/article/pii/S1877050917308293
http://www.sciencedirect.com/science/article/pii/S1877050917308293
https://doi.org/10.1016/J.PROCS.2017.05.221
http://www.sciencedirect.com/science/article/pii/S1877050917308293
http://www.sciencedirect.com/science/article/pii/S1877050917308293
http://www.sciencedirect.com/science/article/pii/S1877050917308293

	Introduction
	Background
	Lightweight Manycore Processors
	Distributed Operating Systems

	Kernel-Level Communication Facility
	Design Goals
	Syncs
	Mailboxes
	Portals
	Discussion

	Implementation
	Evaluation Methodology
	Experimental Programs
	Experimental Platform
	Experimental Design

	Experimental Results
	Raw Performance Analysis
	Raw Scalability Analysis
	Realistic Use Case Experiments

	Related Work
	Conclusions

