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System-on-Chip (SoC) based Field Programmable Gate Arrays (FPGAs) provide a hardware acceleration
technology that can be rapidly deployed and tuned, thus providing a flexible solution adaptable to specific
design requirements and to changing demands. In this paper, we present three SoC architecture designs
for speeding-up inference tasks based on machine learned ensembles of decision trees. We focus on
QuickScorer, the state-of-the-art algorithm for the efficient traversal of tree ensembles and present the
issues and the advantages related to its deployment on two SoC devices with different capacities. The
results of the experiments conducted using publicly available datasets show that the solution proposed is
very efficient and scalable. More importantly, it provides almost constant inference times, independently
of the number of trees in the model and the number of instances to score. This allows the SoC solution
deployed to be fine tuned on the basis of the accuracy and latency constraints of the application scenario
considered.
1. Introduction

System on Chip (SoC) based Field Programmable Gate Arrays
(FPGAs) has shown to be an efficient solution for improving the 
performance of applications due to their inherent parallelism. FP-
GAs are energy-efficient and provide high computing power due 
to the possibility of adapting the FPGA-based designs to a par-
ticular architecture. The SoC devices integrate a micro-controller, 
processors, DSPs, memory modules, oscillators, counters, timers, 
external interfaces, AD/DA, among other components. The SoC ar-
chitecture can improve the performance in applications requiring 
both high-performance computations, and a sequential, processor-
intensive functionality. Because of the complexity of chips, this 
technology can be programmed not only with VHDL [12] or Ver-
ilog [35], but also with higher level hardware description languages 
(HDL) such as SystemVerilog, SystemC, C/C++. Despite this possi-
bility, the design process of SoC implementations is demanding 
and includes requirements specification, software/hardware parti-
tioning (SW/HW co-design), hardware development and testing, 
software development and testing, system integration and testing.

* Corresponding author at: Universidad Nacional de San Luis, Argentina.
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During the last years, SoC computing power has been improved 
through a technology that allows the incorporation and seam-
less integration of heterogeneous resources. SoC-based FPGAs have 
been used in many research and development areas such as a 
control [4,24,36], power electronics [1,18,42,48], signal processing 
[37,44,45], image processing [9,10,14,28], virtualization [47] among 
others. Recently, SoC-based FPGAs have been used also for boosting 
the performance of Machine Learning (ML) applications. In many 
contexts, the widespread adoption of complex machine-learned 
models asks for novel efficient algorithmic solutions aimed at mak-
ing fast and scalable both the off-line training of these models and 
their on-line use. We focus our attention on additive ensembles of 
decision trees and we investigate their efficient deployment on SoC-
based FPGA architectures. These ML models, generated by boosting 
meta-algorithms that iteratively learn decision trees by incremen-
tally optimizing a given loss function, have been shown to be the 
most general and competitive solutions for several “difficult” in-
ference tasks such as ranking documents, items or posts in Web 
search engines, e-Commerce platforms, or online social networks, 
respectively. In these applications incoming rate of requests and 
quality-of-service expectations are very high thus the inference 
needs to be fast and must complete within small time budgets. 
All these requirements are very challenging to fulfill.
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In this paper, we focus on exploiting SoC characteristics to ef-
ficiently deploy QuickScorer (QS), the state-of-the-art algorithm 
for the traversal of large tree ensembles [7,22] constituting the 
most efficient solution for the deployment of complex ML mod-
els [11,39–41]. Web-scale search services, designed to support 
a peak request stream of many thousands of queries per sec-
ond, are deployed on cluster infrastructures including thousands 
of servers. Each server holds a portion of the data and the same 
partition is replicated on several servers to improve data avail-
ability, throughput and to support fault-tolerance. The results of 
each query are computed in parallel on all the data partitions and 
are then merged and ranked for high precision by means of the 
ML ranking model. Cost-effectiveness, fault tolerance and energy 
consumption considerations make larger clusters of commodity or 
mid-end servers to be preferred to comparable infrastructures built 
out of a smaller number of high-end servers [3]. Moreover, the CPU 
utilization of these servers is usually kept below 40% to support 
sudden peaks of queries and even an energy efficient server con-
sumes about half its full power when doing almost no work [2]. 
The cost and power/performance competitiveness of SoC makes 
this technology to be very attractive for this particular application, 
where the high cost and power consumption of GPUs make their 
adoption prohibitive [38].

To demonstrate the capabilities of SoC technologies in address-
ing the challenges listed above, we propose and explore three 
architecture designs of the QS with different port configurations, 
replication degrees, communication settings on two embedded SoC 
devices, the PYNQ-Z1 and the Zynq UltraScale+ MPSoC. The in-
vestigation of QS implementations on embedded SoC devices is 
challenging due to the limited processing and storage resources 
available in these devices and the large space for alternative de-
sign choices offered. Interestingly, we show that with our solution 
the execution time for the inference task is almost constant until 
we reach the saturation of the hardware resources available in the 
device, independently of the number of instances scored and the 
number of trees in the ML model. This characteristic permits to 
choose the best suited FPGA device on the basis of the latency or 
accuracy requirements of the specific deployment thus optimizing 
the cost performance ratio of the solution.

The remaining of this paper is organized as follows. In Sec-
tion 2 we review the related work, while in Section 3 we describe 
the QS algorithm. In Section 4 we present the architecture design 
to accelerate the QS algorithm on SoC-based FPGAs. In Section 5, 
we present the experimental setups and the experimental results, 
while Section 6 concludes the work.

2. Related work

Some previous work in the technical literature show that FPGAs
can be successfully used to accelerate different machine learning 
algorithms. Lin et al. [19] evaluate the trade-off between machine 
learning context switch time and design performance (area uti-
lization) on FPGAs. The authors present three different hardware 
designs applied to random forest classifiers.

The work presented by Narayanan et al. [31] implements on a 
FPGA device a decision tree classification algorithm. The authors 
report a speed-up of 5.58x achieved by reordering the computa-
tions and exploiting a bitmapped data structure. Miteran et al. [27]
present an automatic hardware implementation of decision rules. 
The authors validated their proposal on real cases showing that it 
is possible to find a good trade-off between the hardware imple-
mentation cost and the classification error.

Nagarajan et al. [29] present an approach to perform multi-
dimensional probability density functions estimation using Gaus-
sian kernels on FPGAs. The results show a speed-up of 20x. Tracy 
et al. [13] deploy the Random Forest machine learning algorithm 
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on an automata processor, which is a re-configurable co-processor 
accelerator. The implementation is based on a pipelined archi-
tecture that exhibits execution time linear with the number of 
features.

Neshatpour et al. [32] propose a heterogeneous architecture 
that integrates general-purpose CPUs with a dedicated FPGA to 
evaluate data mining and machine learning algorithms. The au-
thors report a speed-up of 2.72x. Van Essen et al. [43] propose 
an analysis of FPGAs, GPUs and multi-core CPUs for accelerating 
compact random forest classifiers. The authors conclude that FP-
GAs provide the solution with the highest performance but require 
a multi-chip/multi-board system to execute even forests of modest 
size.

The work in [20] presents a new and lightweight decision tree 
learning system based on FPGAs showing a speedup up to 1581x. 
Nakahara et al. [30] compare the performance of random forest 
models on FPGA, CPU and a GPU implementations. The FPGA-based 
solution achieves a speed-up of 10.7x compared to the GPU-based 
one, and a speed-up of 14.0x compared to the CPU-based im-
plementation, while also reducing the power consumption with 
respect to those approaches.

Owaida et al. [34] present a CPU-FPGA platform for tree en-
semble classifiers. The platform includes a software driver to 
manage the FPGAs memory resources. The authors showed that 
FPGAs features provide an advantage over CPU based solutions 
for applications with frequent random memory accesses. Later, 
Owaida et al. [33] analyzed three mapping strategies to imple-
ment large decision tree ensembles over a cluster of FPGAs with 
floating-point precision. The results achieved show a linear per-
formance improvement with the number of FPGA nodes being 
used.

In this paper, we focus on the exploitation of SoC parallelism 
on FPGA devices for QuickScorer (QS), the state-of-the-art algo-
rithm for performing fast inference with tree ensembles [7,22]. 
Previous contributions showed the performance advantages result-
ing from the exploitation of different levels of parallelism in QS. 
As depicted in Fig. 1, QS exploits a particular representation of the 
tree ensemble based entirely on linear arrays accessed with high 
locality. This characteristic permits a very fast traversal of the tree 
ensemble at inference time by dealing with features and peculiar-
ities of modern CPUs and memory hierarchies. Given the arrays 
representing the tree ensemble and a set of instances of feature 
vectors to score, both inter-instance and intra-instance paralleliza-
tion strategies have been effectively exploited to parallelize QS

on multicore/manycore platforms. Inter-instance parallelism is the 
most immediate, and takes advantage from the fact that several 
feature vectors can be scored independently and thus in paral-
lel. This strategy is the most effective in a multi-core scenario, 
where multiple threads, also exploiting SIMD co-processors, run 
in parallel to score multiple input instances [17,23]. The intra-
instance strategy partitions the scoring of a single feature vector 
into parallel subtasks, and takes advantage from the fact that, as 
discussed in the next Section, QS allows different features in the 
feature vectors to be processed in parallel accessing the read-
only representation of the ensemble. Indeed, in order to exploit 
massive and fine-grained parallelism of manycore GPU platforms 
both parallelism strategies can be combined as in [17]. Moreover, 
to better exploit the upper fast levels of GPU memory hierar-
chy, the ensemble of trees can be partitioned in blocks, while 
we orchestrate the access to lower levels of the memory to force 
memory coalescing. The resulting solution is able to achieve a 
speed-up of up to 102.6x over the sequential version of QS on pub-
lic learning-to-rank datasets when employing a NVIDIA GTX 1080 
GPU [17].

In this work, we investigate if the characteristics of QS that 
made possible the efficient exploitation of multicore/manycore 



Fig. 1. Data layout of the QS algorithm.
platforms, are relevant also for SoC implementations. We thus ad-
vance the state of the art for efficient traversal of ML tree en-
sembles by proposing different architectures for SoC-based FPGA 
versions of QS. We discuss the efficiency of these different designs 
and report on experiments conducted on public datasets show-
ing that our SoC-based FPGA implementations of QuickScorer are 
both efficient and scalable.

3. Background: the QUICKSCORER algorithm

A ML tree ensemble encompasses several binary decision trees 
as illustrated in the rightmost part of Fig. 1. The internal nodes 
of each tree of the ensemble are associated with a Boolean test 
over the value of a specific feature characterizing the input in-
stance to be scored/predicted. Each leaf node stores instead a value 
representing the contribution of the specific tree to the final pre-
diction.

Let us denote the ensemble with T = {T0, T1, . . . Tm}, and let 
� be the maximum number of leaves of each tree. Moreover, let x
be the vector of feature values representing an input instance. Let 
F be the feature set, and let |F | be the number of dimensions of 
feature vector x. We use f to refer to the f −th feature, with x[f]
storing the value of the feature. Moreover, let s(x) be the numeri-
cal score eventually computed for input vector x. Determining s(x)

requires the traversal of all the trees in the ensemble to devise all 
the tree contributions and to compute their sum. The goal of QS is 
making fast the traversal of T to compute s(xi) for a large batch 
of input instances xi , i = 0, . . . , n.

The traversal of a decision tree t performed by QS can be 
viewed as the process of converting a bitvector leafindexes[t]
of � bits, where all bits are initially set to 1 (Mask Initialization 
phase), to a final bitvector where the leftmost 1 identifies the exit 
leaf of the tree [22]. The bitvector is manipulated through a series 
of bit masking operations that use a set of pre-computed bitvectors
mask, still of � bits, each associated with an internal branching 
node of t (Mask Computation phase). To pre-compute these masks, 
we consider that the right branch is taken if the branching internal 
node is recognized as a false node, i.e., if its binary test fails. When-
ever a false node is identified, we annotate the set of unreachable 
leaves in leafindexes[t] through a logical AND (∧) with the 
corresponding mask bitvector. Therefore, the purpose of mask is 
to set to 0 all the bits of leafindexes[t] corresponding to the 
unreachable leaves of t , i.e., all the leaves that belongs to the left 
subtree not selected by the failed test of the branching node. The 
reader is invited to refer to [22] for a detailed explanation of the
QS algorithm.
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Algorithm 1: QuickScorer.
Input :

• x: input feature vector
• T : ensemble of binary decision trees, with

- thresholds: sorted sublists of thresholds, one sublist per feature
- tree_ids: tree’s ids, one per internal split node
- mask: node bitvectors, one per internal split node
- offsets: offsets of the blocks of triples
- leafindexes: result bitvectors of size �, one per each tree
- leafvalues: output values, one per each tree leaf

Output :
• Final score of x

1 QUICKSCORER(x,T ):
2 foreach t ∈ 0, 1, . . . , |T | − 1 do // Mask Initialization
3 leafindexes[t]← 11 . . .11

4 foreach f ∈ 0, 1, . . . , |F | − 1 do // Mask Computation
5 i ← offsets[ f ]
6 end ← offsets[ f + 1]
7 while x[ f ] > thresholds[i] do
8 t ← tree_ids[i]
9 leafindexes[t] ← leafindexes[t] ∧ mask[i]

10 i ← i + 1
11 if i ≥ end then
12 break

13 score ← 0
14 foreach t ∈ 0, 1, . . . , |T | − 1 do // Score Computation
15 j ← index of leftmost bit set to 1 of leafindexes[t]
16 l ← t · � + j
17 score ← score + leafvalues[l]

18 return score

Algorithm 1 illustrates the QS algorithm for the fast traversal of 
the ensemble. The algorithm restructures the data layout of an en-
semble of decision trees to leverage modern memory hierarchies 
and reduce the branch prediction errors to limit the control haz-
ards. In addition, QS accesses data structures with high locality, 
since the tree forest traversals, repeated for each input instance, 
are transformed into a scan of linear arrays (see the code in Algo-
rithm 1 and the leftmost part of Fig. 1). QS supports both general 
and oblivious [16] binary decision trees. The former are decision 
trees where the internal split nodes are independent of each other 
and as a consequence the trees can be unbalanced. The latter are 
a special kind of decision trees where all nodes at the same level 
test the same feature with the same threshold. As a consequence, 
oblivious trees are balanced.

To efficiently identify all the false nodes in the ensemble, QS

processes the branching nodes of all the trees feature by feature, 
taking advantage of the commutative and associative property 



Fig. 2. Diagram of the experimental platforms: PYNQ-Z1 (left) and UltraScale (right).
of the logical AND operand that allows to perform the mask-
ing operations for traversing each tree of the ensemble in arbi-
trary order. Specifically, for each feature f , it builds a list N f of 
triples (thresholds, mask, tree_ids), where thresholds is 
the test threshold of a branching node of tree t performing a test 
over the feature f of the input instance x, tree_ids is the id of 
the tree t that contains the branching node, where the id is used 
to identify the bitvector leafindexes to update and mask is the 
pre-computed mask that identifies the leaves of t that are unreach-
able when the associated test evaluates to false. The data structure 
layout is illustrated in Fig. 1. Hereinafter, we refer to the triples 
(thresholds, mask, tree_ids) and to the leafvalues as 
the model data structure. Note that the model data structure is pre-
computed off-line and accessed in read-only mode, as opposed to 
the leafindexes which are instance dependent and updated at 
runtime. N f is sorted in ascending order of thresholds. Hence, 
when processing N f sequentially, as soon as a test evaluates to 
true, i.e., x[ f ] ≤ thresholds, the remaining occurrences of N f
evaluate to true as well, and thus their evaluation can be safely 
skipped thus reducing the number of operations performed with 
respect to competitor solutions [22].

4. Accelerator design exploration

4.1. Architecture

We deploy the QuickScorer algorithm on two SoC devices with 
different capacities to evaluate how the hardware limitations of the 
SoCs affect the final model. We use a SoC instead a single FPGA 
because the former allows to faster deploy the algorit-hms than 
using an FPGA connected to a desktop CPU. We use a mid-level 
device named Xilinx ZynqTM SOC-based platform also known as 
PYNQ-Z1. It is composed of a Dual-core ARM-based CPU plus re-
configurable logic. The other device has higher capacities. It is the 
Zynq UltraScale+ MPSoC with a quad-core ARM CortexTM-A53 ap-
plications processor, dual-core Cortex-R5 real-time processor and 
Mali-400 MP2 graphics processing unit.

Fig. 2 (left) shows an illustrative diagram of the PYNQ-Z1 ex-
perimental platform, while Fig. 2 (right) refers to the UltraScale 
device. The platforms consist of a SoC-style integrated Processing 
System (PS) and a Programmable Logic (PL) block on a single die. 
The PS communicates with the IP block of the PL through the AXI-
4 Interface, which supports a subset of the AMBA AXI4 protocol 
designed for high-speed data streaming. The PS integrates ARM 
application processors (dual-core for the PYNQ-Z1 and quad-core 
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for the UltraScale), AMBA interconnect, internal memories, external 
memory interfaces, and peripherals including USB, Ethernet, SPI, 
SD/SDIO, I2C, CAN, UART, and GPIO. The PS runs independently of 
the PL and boots at power-up or reset. The PL has different compo-
nents like the Look Up Table (LUT), the Flip Flops (FF), the digital 
signal processor (DSP) and the block memory (BRAM) which are 
used to implement the Intellectual Property (IP) blocks. The Ultra-
Scale SoC has resources with larger capacity than the Pynq SoC 
(504K vs 13K programmable logic cells, 1728 vs 220 DSP slices, 
11 MB vs 630 KB of Block RAM). This comparison gives an idea of 
the hardware capabilities across the family of devices provided by 
Xilinx.

After selecting the SoC devices we have to map the architecture 
design to the chip. In general, the vectors are sent to the PL. Then, 
an IP block executes the QuickScorer and returns the results to the 
PS. There are two possibilities to manage the SoC. (1) The first one 
is to keep an operating system on the PS, to control the functions 
of the device. (2) Another possibility is to use C/C++ code avoid-
ing the overhead of an operating system, known as a “bare-metal” 
implementation. Additionally to these possibilities, we need to set 
how to communicate the PS, the PL and the DDR memory. Due to 
the large number of feature vectors to be processed, we store those 
vectors into the DDR memory of the devices. The most practical 
way to access DDR memory for this particular case is by instanti-
ating a DMA controller within the programmable logic, which will 
be controlled by the PS. In turn, the DMA block can communicate 
with the PS through various ports, among which are the GP, HP, 
and ACP ports.

In a regular DMA operation, the master block initiates the 
transaction of data, while the slave block responds to the trans-
action already started. The interconnection between the different 
blocks of the system is performed by the AXI-4 stream buses. To 
make this communication possible, the high-performance AXI slave 
ports of the Zynq are enabled. The AXI-Lite Interface allows the 
processor to communicate with the AXI DMA block to configure, 
initialize and monitor the data transfer. In other words, by us-
ing the AXI DMA block, data is transferred from one part of the 
system to another. Different combinations of the DMA, PS and IP 
blocks settings are described in the next section.

We used Vivado Design Suite 2019.1 to implement the QS al-
gorithm in the IP block. This tool allows the C++ version of QS

be directly converted into Register Transfer Level (RTL) code for 
hardware implementation. Such high level synthesis tools permit 
to remarkably reduce the time of design and, at the same time, to 
improve the design space exploration.



Fig. 3. Architecture design for the UltraScale device with a single DMA.
4.2. Design overview

In this section we discuss the three different architectures we 
designed to implement the QS algorithm on the PYNQ-Z1 and 
the UltraScale devices. The first one includes an instance of the 
QuickScorer IP block communicated via a DMA block with the 
PS. This architecture design allows to analyze the impact of the 
DMA block that controls the communication between the QS IP 
block and the PS. The second architecture design is intended to 
increase the performance of the algorithm by replicating the QS

IP blocks. Finally, the third architecture design has a Linux im-
age with support for Python on the PS and requires 2 DMAs to 
control a single IP block, since the Python functions for reading 
and writing by DMA require individual DMA blocks of each oper-
ation. This last architecture design aims to show how performance 
can be drastically affected when using high level development 
tools.

We recall from Section 3 that the ultimate goal of QS is making 
fast the traversal of a given tree ensemble T to compute the scores 
s(xi) for a large batch of feature vectors xi , i = 0, . . . , n.

Fig. 3 shows the first architecture design for the Zynq Ultra-
Scale+ MPSoC board composed of a single DMA and a single IP 
responsible for accelerating the QS algorithm. The DMA is respon-
sible to manage the communication between the IP block and the 
PS. The PS executes configuration tasks and enables the IP block. 
In other words, the PS is responsible of the resource management. 
The architecture also includes the Zynq processing system, reset 
system, and the interconnection blocks.

The AXI DMA IP block is responsible for the transfer data be-
tween the FPGA and the DDR memory. To perform this operation, 
AXI DMA has two channels: MM2S (memory-mapped to stream) 
and S2MM (stream to memory-mapped). In most applications, 
the High Performance (HP) ports are preferable to the Accelera-
tor Coherency Port (ACP) ports to perform the communication due 
the higher bandwidth, and to avoid the disturbance of contents 
of L2 cache memories [25,26]. Therefore, the architecture design 
presented in Fig. 3, enables the AXI High Performance Coherent 
(HP) port on the Zynq to perform a coherent transfer of the fea-
ture vectors xi from the FPGA device and the host memory. With 
hardware-managed I/O coherency it is possible to simplify the soft-
ware, improve the system performance, and reduce the power by 
sharing on-chip data from APU caches. To this end, two constants 
are used to enable the coherence transaction, the AxCACHE and 
AxPROT which must be set with the right values to enable cache 
snooping.

Fig. 4 shows the same architecture design for the PYNQ-Z1 
board. The scheme is similar to the configuration with a single 
DMA for the UltraScale showed in Fig. 3, but in this case it is not 
necessary to enable additional signals for HP ports. Notice that the 
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architecture design presented in Fig. 4 is also valid for ACP ports. 
The only difference is at the port enablement level.

The second architecture design is presented in Fig. 5 for the 
PYNQ-Z1. It includes an additional IP to implement a second in-
stance of the QS algorithm in order to perform the computation 
of scores s(xi) on disjoint subsets of feature vectors. A second 
DMA block is also included to perform the communication to/from 
the PS. This approach aims to evaluate the performance achieved 
by the QuickScorer when replicating its corresponding IP block. 
The ports HP0 and HP2 are enabled to transfer data, and for 
each IP block a DMA block is instantiated. We select the ports 
HP0 and HP2 because they share different buses to communi-
cate.

In the two previous architecture designs (Fig. 3, 4 and 5) the 
PS loads libraries to control different components and interfaces of 
the board, such as the DMA used for communications between the 
PS and the PL. That scheme is called bare-metal implementation, 
since there is no operating system running in the PS. In Fig. 6, 
we present a third architecture which provides a bootable Linux 
image allocated in the PS, with a running version of Python and 
other open-source libraries, which make possible to perform the 
control of the functions in the FPGA boards. This third architecture, 
deployed on both the PYNQ-Z1 and the UltraScale boards, includes 
two blocks of DMA supporting data exchanges. One DMA is used 
to communicate data from the PS to the PL and a second DMA to 
communicate in the opposite direction.

This scheme is intended for developers willing to work at a 
high level of abstraction, hiding the low-level configuration details 
that have to be taken into account for bare-metal code develop-
ment. The Python layer helps in fact developers to expedite the 
implementation of SoC solutions on FPGA boards and to easily cus-
tomize the hardware platform and the interfaces. Unfortunately, 
this high level of abstraction does not allow the developer to fine 
tune the implementation and introduces large overheads making 
the resulting deployment absolutely not competitive in term of ex-
ecution time with the previously discussed bare-metal solutions. 
Anyway, we discuss also this architecture as a further possibility 
to follow in the case the performance requirements are not strict.

4.3. Implementation details

High Level Syntheses (HLS) tools allow to create hardware from 
a high-level of abstraction, using directives to specify concurrency 
and pipelining opportunities. In this work we analyze the SoC 
based implementation of QuickScorer without re-coding tech-
niques, in order to estimate resource consumption and execution 
times. To this end, several directives are inserted in the C++ code 
such as the PIPELINE, INLINE, UNROLL and INTERFACE.



Fig. 4. Architecture design for the PYNQ-Z1 device with a single DMA.

Fig. 5. Architecture design for the PYNQ-Z1 with two IP blocks.
Algorithm 2: PIPELINE Directive.
1 scorerVanilla_init:
2 for (int g=0; g < F AC T O R; g + +) do
3 #pragma HLS PIPELINE
4 scorerVanilla(&inputVector[g× TOTAL_FEATURES],

&outputScorer[FACTOR]);

We use the PIPELINE directive to optimize the insertion (push) 
and extraction (pop) of data from the stream. We extract the fea-
ture vectors from the input stream removing the associated control 
logic. After the QuickScorer is executed, the final scores com-
puted for the feature vectors are packaged into an output stream 
adding the corresponding control signals. The PIPELINE directive is 
also used to speed-up the execution of the function admitting new 
inputs vectors. Algorithm 2 shows the use of the PIPELINE direc-
tive.

The FACTOR variable defines the number of vectors. TOTAL_FEA-
TURES represents the size of the vector, which is the total number 
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of features. Once the inputs vectors are stored into the on-chip 
memory, the scorerVanilla() function is executed to compute in a 
pipeline the final score for each input vector. When we call a func-
tion, a certain amount of clock cycle overhead is associated with 
the call. The INLINE directive can minimize the overhead associ-
ated with performing a function call. In this work, it is applied to 
the scoreVanilla() function that calls the scorer functionality.

When processing more than one input vector, the output val-
ues are stored into an array. In this case, the UNROLL directive is 
used to store the data into the final stream. This directive allows 
to improve the latency.

The INTERFACE directive is used to manage the inputs and out-
puts of the IP block through a port with a specific I/O protocol. In 
this work, we used axis for the input (query vector) and the output 
(scorer value), which implies that all ports are defined as an AXI4-
Stream interface. For control signals, we selected the s_axilite using 
the AXI4-Lite interface. Algorithm 3 shows how we implemented 
this directive.



Fig. 6. Architecture design for the PYNQ-Z1 with 2 DMAs and Python.
Algorithm 3: DIRECTIVES.
1 #pragma HLS INTERFACE s_axilite register port=return bundle=ctrl_bus
2 #pragma HLS INTERFACE axis off port=outputScorer
3 #pragma HLS INTERFACE axis off port=vectorInput

5. Experimental assessment

5.1. Experimental settings

We conduct experiments by using machine-learned ranking 
models based on ensembles of regression trees. These models are 
trained on a publicly available learning-to-rank dataset, namely 
MSLR-WEB10K1 [21]. The dataset consists of 10,000 queries and 
1,200,192 query-document pairs represented as vectors of 136
real-valued features. The query-document pairs are labeled with a 
relevance judgment ranging from 0 (irrelevant) to 4 (perfectly rel-
evant), assessing the degree at which a given document is relevant 
for the specific query. The dataset is split in training, validation 
and testing set according to a 60%-20%-20% scheme. Moreover, it is 
split into 5-fold, with the cross-validation technique (i.e., instances 
are rotated among the train/vali/test splits). In this work, since the 
objective is to evaluate the efficient traversal of tree ensembles and 
not the effectiveness and robustness of the trained model, we use 
only the first fold, namely MSLR-WEB10K-F1. Indeed, in terms of 
scoring time, the average inference time of a document in one fold 
is exactly the same of a document belonging to a different fold, 
and it is only related to the characteristics of the model (i.e., the 
number of trees and the shape of each tree).

We use training data from MSLR-WEB10K-F1 to train λ-MART 
[46] and Oblivious-λ-MART [16] models by optimizing NDCG@10 
(a well-known IR metric commonly used to assess the quality 
of a list of ranked items [15]). Both models generate additive 
ensembles of regression trees aiming at finding a scoring func-
tion that produce an ordering of documents as close as possible 
to the ideal ranking. The difference is that the former adopts 
an independent splitting criterion, i.e., each split node is chosen 

1 http://research .microsoft .com /en -us /projects /mslr/.
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independently from the others, while the latter train balanced 
trees, where, at each level, all the branching nodes test the same 
feature-threshold pair. However, it is important to highlight that 
the results of the paper can be also applied to analogous tree-
based models generated by different state-of-the-art learning al-
gorithms, e.g., GBRT [8]. The ranking models trained are the fol-
lowing:

• 100T_10L_NObl: an ensemble of 100 non-oblivious trees
with 10 leaves.

• 100T_8L_Obl: an ensemble of 100 oblivious trees with 8
leaves.

• 1000T_8L_Obl: an ensemble of 1,000 oblivious trees with 8
leaves.

To train these models we used QuickRank, an open-source 
C++11 framework implementing several state-of-the-art learning-
to-rank algorithms [5]. The models are trained on the training set 
of MSLR-WEB10K-F1, with the validation set used for early stop-
ping (i.e., a technique used for avoiding overfitting). We evaluate 
the performance achieved at inference time by the QS algorithm on 
the test set, with the three architecture designs presented in Sec-
tion 4.2 on the PYNQ-Z1 and the UltraScale running at 100 MHz 
and 150 MHz, with HP and ACP ports and with different num-
ber of input feature vectors. The performance measure used for all 
the tests is the latency in microseconds from the time when the 
feature vectors are sent from the PS to the PL, until all the score 
results are received back in the PS.

In the next section, we report on the execution times measured 
for a single execution of each test since there are no other appli-
cations running in the PS. The PL only hosts the logic related to 
the synthesized QS hardware, which minimizes the possibility of 
variance in the execution times. To validate this claim, we show in 
Table 1 the mean and standard deviation (σ ) measured for 10 ex-
ecutions with models 100T_10L_NObl and 100T_8L_Obl for a 
number of features vectors ranging from 1 to 128 on the PYNQ- Z1 
with bare-metal development when the board is set at 100 MHz. 
In all cases, we show that the value of σ is very small.

http://research.microsoft.com/en-us/projects/mslr/


Fig. 7. Total execution time (μs) as a function of the number of feature vectors scored using different CPU implementations of QuickScorer on the 100T_10L_NObl and
100T_8L_Obl models.
Table 1
Statistical analysis: Average execution time (in μs) and standard deviation (σ ).

100T_10L_NObl 100T_8L_Obl

Mean σ Mean σ

1 3.30 0.02 3.25 0.08
8 3.32 0.02 3.25 0.03
16 3.33 0.04 3.25 0.04
32 3.35 0.01 3.26 0.03
64 3.37 0.20 3.26 0.03
128 3.38 0.03 3.26 0.04

5.2. Results

In this section, we first present the results obtained by run-
ning the QuickScorer algorithm on an Intel Xeon CPU E5-2630 v3 
(2.40 GHz) with 16 hyper-threaded cores and 192 GB of RAM. We 
then present the results obtained when employing the PYNQ-Z1 
and UltraScale FPGA devices.

Fig. 7 reports the execution time (in μs) of different versions 
of QS required to process an increasing number of input feature 
vectors with models 100T_10L_NObl and 100T_8L_Obl. In de-
tails, we experiment the single-thread CPU version (QS) [7,22], a 
vectorized version that employs instruction-level parallelism using 
SSE and AVX instruction sets (vQS-SSE and vQS-AVX) to score 32
feature vectors in parallel [23], and a multi-threaded version that 
perform thread-level parallelism on top of the instruction level 
ones (vQS MT) [17]. In our experiments, vQS MT employs 8 threads 
each one running vQS-SSE and vQS-AVX on blocks of 32 fea-
ture vectors. For one input vector, QS on 100T_10L_NObl (non-
oblivious model) reports an execution time of 0.7 μs, while pro-
cessing 512 input vectors requires 445.5 μs. QS on 100T_8L_Obl
(oblivious model) reports instead faster executions times starting 
from 0.3 μs for one input vector and 168.9 μs for 512 input vec-
tors. As expected, we measured an execution time which increases 
linearly with the number of feature vectors scored although per-
turbations to this linearity are observed when the input vectors to 
score are a few. Results also show that instruction-level parallelism 
and thread-level parallelism help in reducing the total execution 
time. When instruction-level parallelism is employed, vQS-SSE and
vQS-AVX score 32 feature vectors in parallel on 128 and 256 regis-
ters, respectively. For one feature vector, vQS-SSE requires 0.26 μs
while vQS-AVX requires 0.25 μs. When increasing the number of 
vectors the difference between the two versions increases reveal-
ing a better performance for vQS-AVX. For 512 input vectors, vQS-

SSE requires 121.3 μs while vQS-AVX requires 98.4 μs showing a 
reduction in the execution time of vQS-AVX of about 19% with re-
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spect to vQS-SSE. The use of thread-level parallelism on top of the 
instruction-level one further reduces the execution time. For one 
feature vector, vQS MT with 8 threads requires 4.9 μs and 3.4 μs
when using SSE and AVX instruction sets, respectively. This result 
shows that, for a small number of vectors, the overhead introduced 
by the multi-threading framework (OpenMP [6]) significantly hurts 
the performance of the method. However, when increasing the 
number of vectors, e.g., 512, vQS MT requires 22.2 μs and 19 μs
when using SSE and AVX instruction sets, respectively, showing a 
total speedup on vQS-SSE and vQS-AVX of up to 5.4x, and on QS

of up to 23.4x.
Fig. 8 shows instead the results obtained with the SoC imple-

mentations on the PYNQ-Z1 and the UltraScale FPGA devices. As 
in the previous figure the x-axis in each plot shows the number 
of input feature vectors scored while we report in the y-axis the 
execution time in microseconds for the different implementations 
tested. Specifically, the curves in each plot refer to the execution 
times achieved with bare-metal development when the board is 
set at 100 MHz and 150 MHz using the ACP and the HP ports 
and architectures with a single IP (as illustrated in Fig. 4) or two 
IP blocks (see Fig. 5). The four plots refer to results obtained: with 
the non-oblivious model 100T_10L_NObl on the PYNQ-Z1 (Fig. 8
(a)) and on the UltraScale device (Fig. 8 (c)); with the oblivious 
model 100T_8L_Obl on the PYNQ-Z1 (Fig. 8 (b)) and the Ultra-
Scale device (Fig. 8 (d)).

With the PYNQ-Z1 device, the best results obtained with the 
oblivious model range from 2.72 μs for one input vector to 3.02 μs
for 240 input vectors. The best results obtained with the non-
oblivious model range instead from 2.41 μs for one input vector 
to 3.57 μs for 240 input vectors. With the more powerful Ultra-
Scale device, the best results obtained with the oblivious model 
range from 0.35 μs for one input vector to 0.4 μs for 1024 input 
vectors. The best results obtained with the non-oblivious model 
range from 0.36 μs for one input vector to 0.42 μs for 1024 input 
vectors.

The curves plotted in Fig. 8 shows that, as expected, with a 
higher clock rate the execution time is reduced. For the non-
oblivious model (100T_10L_NObl), execution times obtained 
with 150 MHz are in average 13% lower than the execution time 
reported with 100 MHz. For the oblivious model (100T_8L_Obl), 
the improvement achieved with 150 MHz is 17% in average. Re-
garding the execution times reported with HP and ACP ports, we 
can observe that the ACP port configuration allows us to obtain 
slightly lower execution times than the HP port configuration for 
the oblivious model and the PYNQ-Z1 device. However, the other 



Fig. 8. Execution times for the different FPGA configurations and the 100T_10L_NObl and 100T_8L_Obl tree ensembles. All cases running at 100 MHz and 150 MHz with
HP (one and two IP blocks) and ACP ports.
experiments show that both port configurations present very sim-
ilar performance.

Additionally, by looking at the curves labelled HP, 2 IP plot-
ted in Fig. 8 we can see that the architecture designed with two IP 
blocks almost doubles the execution time with respect to the cor-
responding architecture with a single IP block running at the same 
clock rate. This is because the architecture designed with two IP 
blocks requires additional logic for replicating the ML model and 
the DMA modules performing the communication between the PS 
and the IP blocks. The overhead due to the management of these 
additional DMA modules drastically affects the performance of the 
system making the solution with two IP blocks not competitive 
with the one using a single IP block. Moreover, the resources used 
for deploying the second QS IP block limit also the number of input 
vectors fitting in the BRAM of the device. We see from the plots 
that the curves reporting the execution times for the two IP de-
ployment are shorter than the ones for the single IP.2 Specifically, 
they end in correspondence of 128 or 512 input vectors for the 
PYNQ-Z1 and Ultrascale devices, respectively. Larger sets of feature 
vectors do not fit in the board memory and cannot be processed 
in a single batch. Conversely, the architectures with a single QS

IP block use less hardware resources because they do not require 
additional logic for the DMA modules and for replicating the ML 

2 Of course these curves start at x = 2, i.e., with a single vector assigned to each
of the two IP blocks.
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model: the plots reported in Fig. 8 show that the UltraScale and 
PYNQ-Z1 boards can fit in this case up to 1024 or 240 input vec-
tors before saturating the BRAM memory.

Anyway, the most important characteristic of the presented 
SoC-based FPGA architectures is evident when we compare the 
plot in Fig. 7 with any of the plots reported in Fig. 8. While on a 
traditional CPU the (sequential) execution time increases linearly 
with the number of vectors scored, the same does not happen 
for the FPGA deployment: we can see in fact from Fig. 8 that on 
SoC-based FPGA hardware the number of feature vectors scored 
does not impact significantly the execution time because the com-
putation required to process the input instances is performed in 
parallel inside the QS IP block(s). In other words, in order to pro-
cess more input instances we only need to increase -in the FPGA-
the number of accumulators and the logical components executing 
Algorithm 1 in parallel on all the vectors by accessing read-only a 
single shared ML model.

Of course, the number of input vectors scored impacts instead 
the use of resources. In Table 2 we report the percentage of uti-
lization of various resources of the PYNQ-Z1 device for processing 
the largest sets of input vectors tested. Specifically, from the ta-
ble we see that the QS algorithm in a single IP block saturates the 
BRAM with 240 input vectors (99.64%), while we almost saturate 
the BRAM (82.50%) of the same device with only 128 input vectors 
when two QS IP blocks are used. Thus, scoring on this device with 
the most efficient one-IP solution more that 240 feature vectors 



Fig. 9. Execution times obtained on the PYNQ-Z1 and UltraScale devices with the models 100T_8L_Obl and 1000T_8L_Obl, i.e., the ensembles with 100 and 1,000
oblivious trees.
Table 2
Resource utilization for the 100T_10L_NObl model with one (240 feature vectors)
and two IP blocks (64 feature vectors).

Resource Utilization (%)

1 IP - 240 vectors 2 IP - 128 vectors

LUT 12.10 33.79
LUTRAM 13.82 17.48
FF 7.37 20.31
BRAM 99.64 82.50
DSP 1.36 2.73

would require to partition the instances in batches of at most 240 
vectors and process these batches sequentially, one at the time.

Fig. 9 shows the execution times obtained on both the PYNQ-Z1 
and the UltraScale devices by the architecture with one single IP 
block with the models 100T_8L_Obl and 1000T_8L_Obl, i.e., 
the ensembles with 100 and 1,000 oblivious trees. The plot shows 
that the two curves reporting the execution times for models with
100 and 1,000 trees almost overlap. Thus, besides the number of 
input vectors processed, also the number of decision trees in the 
ensemble does not impact significantly the execution time of the
QS algorithm running on the FPGA device. For what memory and 
logic resources usage is concerned, the ML model is in fact much 
less demanding than the input vectors. The model with 100 trees 
occupies only 16 kB while the model with 1,000 trees requires 
about 164 kB. Conversely, to manage 1024 feature vectors we use 
32 bits × 136 f eatures × 1024 = 557 kB plus the memory for the 
ML model which is accessed by all the logic components and accu-
mulators used to compute the scores in parallel. Therefore, as far 
as the memory of the FPGA is not saturated, we can increase the 
model size or the number of input vectors without significantly 
affecting the execution times.

Finally, in Fig. 10 we report the execution time in microseconds 
obtained with the PYNQ-Z1 and the UltraScale devices when ex-
ecuting the Python-based QS version with the 100T_10L_NObl
and 100T_8L_Obl models. Python introduces a huge overhead 
due to the additional IP blocks used to implement the Python-
associated code into the FPGA (see Fig. 6). As discussed above, we 
report the results achieved with this architecture only to show that 
it can constitute a possible alternative when performance require-
ments are not strict and the time available for FPGA coding is very 
short. However, from the curves in Fig. 10, we see that the execu-
tion times for the Python version are about 4 order of magnitude 
higher that those obtained with the bare-metal implementations. 
Moreover, differently from the bare-metal cases the execution time 
10
with Python development increases as we increase the number of 
input vectors scored. It is thus apparent that at the cost of a more 
complex and time-consuming coding, the bare-metal development 
allows the execution time of the QS algorithm to be drastically re-
duced.

How SoC-based QS advances the state of the art. The previous ex-
periments show a very important characteristic of SoC-based FPGA 
bare-metal implementations of QS: the execution times measured 
for this solution are almost constant and independent of the num-
ber of feature vectors processed and the number of trees of the 
tree ensemble. This of course holds only if we do not saturate the 
resources of the specific FPGA device used. Such characteristic, that 
does not hold for the CPU versions of QS, is very interesting for 
capacity and hardware sizing planning since it gives engineers the 
possibility of choosing the most efficient and cost-effective FPGA 
device to use on the basis of the requirements of accuracy (de-
pending on the number of trees) and throughput (depending on 
the number of input instances processed in parallel) of the specific 
application at hand. This is of paramount importance for any large-
scale deployment of ML ensemble models subject to real-time or 
near real-time constraints.

6. Conclusions and future work

In this paper we presented and evaluated three SoC-based FPGA 
architecture designs to accelerate inference with ML models based 
on ensembles of decision trees. In particular, we focused on the
QuickScorer state-of-the-art algorithm for performing fast and 
accurate inference tasks by traversing large tree ensembles. The 
architecture designs were deployed on two embedded system-on-
chip, the PYNQ-Z1 and the Zynq UltraScale+ MPSoC. The first archi-
tectural design used a single IP block to deploy the QS algorithm 
and a single DMA to communicate between the PS and the PL. 
The second architecture uses two IP blocks to deploy two com-
plete instances of the algorithm. As a last design, we investigated 
also the use of Python for the FPGA algorithm development. We 
evaluated different configurations exploiting the ACP and HP ports 
and analysed the impact of the clock frequency on the execution 
time. The experimental results showed that the port configuration 
does not affect remarkably the performance of QS, while, as ex-
pected, a higher clock frequency reduces the execution times. All 
the tests performed clearly highlighted that the bare-metal imple-
mentation using a single QS IP block and a single DMA to commu-
nicate between the PS and the PL largely outperformed the other 



Fig. 10. Execution times obtained with the QS Python development on the PYNQ-Z1 and the UltraScale devices.
architectural designs while the use of Python introduce enormous 
and unacceptable overheads.

Interestingly, we showed that our bare-metal implementations 
achieve nearly constant execution times as we increase the num-
ber of feature vectors processed until the limits of the hardware 
are reached and the BRAM is saturated. Similarly, also the num-
ber of trees in the model impacts only slightly the inference time. 
We recall that scaling on both these dimensions is very important 
since in many applications the inference has to be performed on 
very large batches of items and larger the number of trees in the 
ensemble more accurate is in general the ML model [5]. A solu-
tion like the one investigated in this paper, which provides almost 
constant inference time if the saturation of the FPGA resources is 
not reached, can have a high impact on many application scenarios 
(e.g., Web or product search, social media ranking or recommenda-
tion, on-line advertisement, etc.) where engineers have very strict 
and contrasting requirements on latency, accuracy and hardware 
cost to satisfy.

As future work, we plan to optimize the representation used 
for the feature vectors in order to reduce their memory occupa-
tion and consequently increase the number of instances scored in 
parallel on low-cost FPGA devices. Moreover, we plan to investi-
gate the relations between SoC capacity and QS execution time to 
derive a general cost and performance model for fine-tuning FPGA-
accelerated inference tasks.
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