
Efficient traversal of decision tree ensembles with FPGAs

Romina Molina a,d,e, Fernando Loor a,b, Veronica Gil-Costa a,b,∗, Franco Maria Nardini c,
Raffaele Perego c, Salvatore Trani c

a Universidad Nacional de San Luis, Argentina
b National Commission of Sc. and Tech., Argentina
c ISTI-CNR, Pisa, Italy
d Università degli Studi di Trieste, Trieste, Italy
e The Abdus Salam International Centre for Theoretical Physics (ICTP), Trieste, Italy

a b s t r a c t

Keywords:
System on Chip
FPGA
Machine learning
Decision trees

System-on-Chip (SoC) based Field Programmable Gate Arrays (FPGAs) provide a hardware acceleration
technology that can be rapidly deployed and tuned, thus providing a flexible solution adaptable to specific
design requirements and to changing demands. In this paper, we present three SoC architecture designs
for speeding-up inference tasks based on machine learned ensembles of decision trees. We focus on
QuickScorer, the state-of-the-art algorithm for the efficient traversal of tree ensembles and present the
issues and the advantages related to its deployment on two SoC devices with different capacities. The
results of the experiments conducted using publicly available datasets show that the solution proposed is
very efficient and scalable. More importantly, it provides almost constant inference times, independently
of the number of trees in the model and the number of instances to score. This allows the SoC solution
deployed to be fine tuned on the basis of the accuracy and latency constraints of the application scenario
considered.
1. Introduction

System on Chip (SoC) based Field Programmable Gate Arrays
(FPGAs) has shown to be an efficient solution for improving the
performance of applications due to their inherent parallelism. FP-
GAs are energy-efficient and provide high computing power due
to the possibility of adapting the FPGA-based designs to a par-
ticular architecture. The SoC devices integrate a micro-controller,
processors, DSPs, memory modules, oscillators, counters, timers,
external interfaces, AD/DA, among other components. The SoC ar-
chitecture can improve the performance in applications requiring
both high-performance computations, and a sequential, processor-
intensive functionality. Because of the complexity of chips, this
technology can be programmed not only with VHDL [12] or Ver-
ilog [35], but also with higher level hardware description languages
(HDL) such as SystemVerilog, SystemC, C/C++. Despite this possi-
bility, the design process of SoC implementations is demanding
and includes requirements specification, software/hardware parti-
tioning (SW/HW co-design), hardware development and testing,
software development and testing, system integration and testing.

* Corresponding author at: Universidad Nacional de San Luis, Argentina.
E-mail address: gvcosta@email.unsl.edu.ar (V. Gil-Costa).
1

During the last years, SoC computing power has been improved
through a technology that allows the incorporation and seam-
less integration of heterogeneous resources. SoC-based FPGAs have
been used in many research and development areas such as a
control [4,24,36], power electronics [1,18,42,48], signal processing
[37,44,45], image processing [9,10,14,28], virtualization [47] among
others. Recently, SoC-based FPGAs have been used also for boosting
the performance of Machine Learning (ML) applications. In many
contexts, the widespread adoption of complex machine-learned
models asks for novel efficient algorithmic solutions aimed at mak-
ing fast and scalable both the off-line training of these models and
their on-line use. We focus our attention on additive ensembles of
decision trees and we investigate their efficient deployment on SoC-
based FPGA architectures. These ML models, generated by boosting
meta-algorithms that iteratively learn decision trees by incremen-
tally optimizing a given loss function, have been shown to be the
most general and competitive solutions for several “difficult” in-
ference tasks such as ranking documents, items or posts in Web
search engines, e-Commerce platforms, or online social networks,
respectively. In these applications incoming rate of requests and
quality-of-service expectations are very high thus the inference
needs to be fast and must complete within small time budgets.
All these requirements are very challenging to fulfill.

https://doi.org/10.1016/j.jpdc.2021.04.008
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2021.04.008&domain=pdf
mailto:gvcosta@email.unsl.edu.ar
https://doi.org/10.1016/j.jpdc.2021.04.008

In this paper, we focus on exploiting SoC characteristics to ef-
ficiently deploy QuickScorer (QS), the state-of-the-art algorithm
for the traversal of large tree ensembles [7,22] constituting the
most efficient solution for the deployment of complex ML mod-
els [11,39–41]. Web-scale search services, designed to support
a peak request stream of many thousands of queries per sec-
ond, are deployed on cluster infrastructures including thousands
of servers. Each server holds a portion of the data and the same
partition is replicated on several servers to improve data avail-
ability, throughput and to support fault-tolerance. The results of
each query are computed in parallel on all the data partitions and
are then merged and ranked for high precision by means of the
ML ranking model. Cost-effectiveness, fault tolerance and energy
consumption considerations make larger clusters of commodity or
mid-end servers to be preferred to comparable infrastructures built
out of a smaller number of high-end servers [3]. Moreover, the CPU
utilization of these servers is usually kept below 40% to support
sudden peaks of queries and even an energy efficient server con-
sumes about half its full power when doing almost no work [2].
The cost and power/performance competitiveness of SoC makes
this technology to be very attractive for this particular application,
where the high cost and power consumption of GPUs make their
adoption prohibitive [38].

To demonstrate the capabilities of SoC technologies in address-
ing the challenges listed above, we propose and explore three
architecture designs of the QS with different port configurations,
replication degrees, communication settings on two embedded SoC
devices, the PYNQ-Z1 and the Zynq UltraScale+ MPSoC. The in-
vestigation of QS implementations on embedded SoC devices is
challenging due to the limited processing and storage resources
available in these devices and the large space for alternative de-
sign choices offered. Interestingly, we show that with our solution
the execution time for the inference task is almost constant until
we reach the saturation of the hardware resources available in the
device, independently of the number of instances scored and the
number of trees in the ML model. This characteristic permits to
choose the best suited FPGA device on the basis of the latency or
accuracy requirements of the specific deployment thus optimizing
the cost performance ratio of the solution.

The remaining of this paper is organized as follows. In Sec-
tion 2 we review the related work, while in Section 3 we describe
the QS algorithm. In Section 4 we present the architecture design
to accelerate the QS algorithm on SoC-based FPGAs. In Section 5,
we present the experimental setups and the experimental results,
while Section 6 concludes the work.

2. Related work

Some previous work in the technical literature show that FPGAs
can be successfully used to accelerate different machine learning
algorithms. Lin et al. [19] evaluate the trade-off between machine
learning context switch time and design performance (area uti-
lization) on FPGAs. The authors present three different hardware
designs applied to random forest classifiers.

The work presented by Narayanan et al. [31] implements on a
FPGA device a decision tree classification algorithm. The authors
report a speed-up of 5.58x achieved by reordering the computa-
tions and exploiting a bitmapped data structure. Miteran et al. [27]
present an automatic hardware implementation of decision rules.
The authors validated their proposal on real cases showing that it
is possible to find a good trade-off between the hardware imple-
mentation cost and the classification error.

Nagarajan et al. [29] present an approach to perform multi-
dimensional probability density functions estimation using Gaus-
sian kernels on FPGAs. The results show a speed-up of 20x. Tracy
et al. [13] deploy the Random Forest machine learning algorithm
2

on an automata processor, which is a re-configurable co-processor
accelerator. The implementation is based on a pipelined archi-
tecture that exhibits execution time linear with the number of
features.

Neshatpour et al. [32] propose a heterogeneous architecture
that integrates general-purpose CPUs with a dedicated FPGA to
evaluate data mining and machine learning algorithms. The au-
thors report a speed-up of 2.72x. Van Essen et al. [43] propose
an analysis of FPGAs, GPUs and multi-core CPUs for accelerating
compact random forest classifiers. The authors conclude that FP-
GAs provide the solution with the highest performance but require
a multi-chip/multi-board system to execute even forests of modest
size.

The work in [20] presents a new and lightweight decision tree
learning system based on FPGAs showing a speedup up to 1581x.
Nakahara et al. [30] compare the performance of random forest
models on FPGA, CPU and a GPU implementations. The FPGA-based
solution achieves a speed-up of 10.7x compared to the GPU-based
one, and a speed-up of 14.0x compared to the CPU-based im-
plementation, while also reducing the power consumption with
respect to those approaches.

Owaida et al. [34] present a CPU-FPGA platform for tree en-
semble classifiers. The platform includes a software driver to
manage the FPGAs memory resources. The authors showed that
FPGAs features provide an advantage over CPU based solutions
for applications with frequent random memory accesses. Later,
Owaida et al. [33] analyzed three mapping strategies to imple-
ment large decision tree ensembles over a cluster of FPGAs with
floating-point precision. The results achieved show a linear per-
formance improvement with the number of FPGA nodes being
used.

In this paper, we focus on the exploitation of SoC parallelism
on FPGA devices for QuickScorer (QS), the state-of-the-art algo-
rithm for performing fast inference with tree ensembles [7,22].
Previous contributions showed the performance advantages result-
ing from the exploitation of different levels of parallelism in QS.
As depicted in Fig. 1, QS exploits a particular representation of the
tree ensemble based entirely on linear arrays accessed with high
locality. This characteristic permits a very fast traversal of the tree
ensemble at inference time by dealing with features and peculiar-
ities of modern CPUs and memory hierarchies. Given the arrays
representing the tree ensemble and a set of instances of feature
vectors to score, both inter-instance and intra-instance paralleliza-
tion strategies have been effectively exploited to parallelize QS

on multicore/manycore platforms. Inter-instance parallelism is the
most immediate, and takes advantage from the fact that several
feature vectors can be scored independently and thus in paral-
lel. This strategy is the most effective in a multi-core scenario,
where multiple threads, also exploiting SIMD co-processors, run
in parallel to score multiple input instances [17,23]. The intra-
instance strategy partitions the scoring of a single feature vector
into parallel subtasks, and takes advantage from the fact that, as
discussed in the next Section, QS allows different features in the
feature vectors to be processed in parallel accessing the read-
only representation of the ensemble. Indeed, in order to exploit
massive and fine-grained parallelism of manycore GPU platforms
both parallelism strategies can be combined as in [17]. Moreover,
to better exploit the upper fast levels of GPU memory hierar-
chy, the ensemble of trees can be partitioned in blocks, while
we orchestrate the access to lower levels of the memory to force
memory coalescing. The resulting solution is able to achieve a
speed-up of up to 102.6x over the sequential version of QS on pub-
lic learning-to-rank datasets when employing a NVIDIA GTX 1080
GPU [17].

In this work, we investigate if the characteristics of QS that
made possible the efficient exploitation of multicore/manycore

Fig. 1. Data layout of the QS algorithm.
platforms, are relevant also for SoC implementations. We thus ad-
vance the state of the art for efficient traversal of ML tree en-
sembles by proposing different architectures for SoC-based FPGA
versions of QS. We discuss the efficiency of these different designs
and report on experiments conducted on public datasets show-
ing that our SoC-based FPGA implementations of QuickScorer are
both efficient and scalable.

3. Background: the QUICKSCORER algorithm

A ML tree ensemble encompasses several binary decision trees
as illustrated in the rightmost part of Fig. 1. The internal nodes
of each tree of the ensemble are associated with a Boolean test
over the value of a specific feature characterizing the input in-
stance to be scored/predicted. Each leaf node stores instead a value
representing the contribution of the specific tree to the final pre-
diction.

Let us denote the ensemble with T = {T0, T1, . . . Tm}, and let
� be the maximum number of leaves of each tree. Moreover, let x
be the vector of feature values representing an input instance. Let
F be the feature set, and let |F | be the number of dimensions of
feature vector x. We use f to refer to the f −th feature, with x[f]
storing the value of the feature. Moreover, let s(x) be the numeri-
cal score eventually computed for input vector x. Determining s(x)

requires the traversal of all the trees in the ensemble to devise all
the tree contributions and to compute their sum. The goal of QS is
making fast the traversal of T to compute s(xi) for a large batch
of input instances xi , i = 0, . . . , n.

The traversal of a decision tree t performed by QS can be
viewed as the process of converting a bitvector leafindexes[t]
of � bits, where all bits are initially set to 1 (Mask Initialization
phase), to a final bitvector where the leftmost 1 identifies the exit
leaf of the tree [22]. The bitvector is manipulated through a series
of bit masking operations that use a set of pre-computed bitvectors
mask, still of � bits, each associated with an internal branching
node of t (Mask Computation phase). To pre-compute these masks,
we consider that the right branch is taken if the branching internal
node is recognized as a false node, i.e., if its binary test fails. When-
ever a false node is identified, we annotate the set of unreachable
leaves in leafindexes[t] through a logical AND (∧) with the
corresponding mask bitvector. Therefore, the purpose of mask is
to set to 0 all the bits of leafindexes[t] corresponding to the
unreachable leaves of t , i.e., all the leaves that belongs to the left
subtree not selected by the failed test of the branching node. The
reader is invited to refer to [22] for a detailed explanation of the
QS algorithm.
3

Algorithm 1: QuickScorer.
Input :

• x: input feature vector
• T : ensemble of binary decision trees, with

- thresholds: sorted sublists of thresholds, one sublist per feature
- tree_ids: tree’s ids, one per internal split node
- mask: node bitvectors, one per internal split node
- offsets: offsets of the blocks of triples
- leafindexes: result bitvectors of size �, one per each tree
- leafvalues: output values, one per each tree leaf

Output :
• Final score of x

1 QUICKSCORER(x,T):
2 foreach t ∈ 0, 1, . . . , |T | − 1 do // Mask Initialization
3 leafindexes[t]← 11 . . .11

4 foreach f ∈ 0, 1, . . . , |F | − 1 do // Mask Computation
5 i ← offsets[f]
6 end ← offsets[f + 1]
7 while x[f] > thresholds[i] do
8 t ← tree_ids[i]
9 leafindexes[t] ← leafindexes[t] ∧ mask[i]

10 i ← i + 1
11 if i ≥ end then
12 break

13 score ← 0
14 foreach t ∈ 0, 1, . . . , |T | − 1 do // Score Computation
15 j ← index of leftmost bit set to 1 of leafindexes[t]
16 l ← t · � + j
17 score ← score + leafvalues[l]

18 return score

Algorithm 1 illustrates the QS algorithm for the fast traversal of
the ensemble. The algorithm restructures the data layout of an en-
semble of decision trees to leverage modern memory hierarchies
and reduce the branch prediction errors to limit the control haz-
ards. In addition, QS accesses data structures with high locality,
since the tree forest traversals, repeated for each input instance,
are transformed into a scan of linear arrays (see the code in Algo-
rithm 1 and the leftmost part of Fig. 1). QS supports both general
and oblivious [16] binary decision trees. The former are decision
trees where the internal split nodes are independent of each other
and as a consequence the trees can be unbalanced. The latter are
a special kind of decision trees where all nodes at the same level
test the same feature with the same threshold. As a consequence,
oblivious trees are balanced.

To efficiently identify all the false nodes in the ensemble, QS

processes the branching nodes of all the trees feature by feature,
taking advantage of the commutative and associative property

Fig. 2. Diagram of the experimental platforms: PYNQ-Z1 (left) and UltraScale (right).
of the logical AND operand that allows to perform the mask-
ing operations for traversing each tree of the ensemble in arbi-
trary order. Specifically, for each feature f , it builds a list N f of
triples (thresholds, mask, tree_ids), where thresholds is
the test threshold of a branching node of tree t performing a test
over the feature f of the input instance x, tree_ids is the id of
the tree t that contains the branching node, where the id is used
to identify the bitvector leafindexes to update and mask is the
pre-computed mask that identifies the leaves of t that are unreach-
able when the associated test evaluates to false. The data structure
layout is illustrated in Fig. 1. Hereinafter, we refer to the triples
(thresholds, mask, tree_ids) and to the leafvalues as
the model data structure. Note that the model data structure is pre-
computed off-line and accessed in read-only mode, as opposed to
the leafindexes which are instance dependent and updated at
runtime. N f is sorted in ascending order of thresholds. Hence,
when processing N f sequentially, as soon as a test evaluates to
true, i.e., x[f] ≤ thresholds, the remaining occurrences of N f
evaluate to true as well, and thus their evaluation can be safely
skipped thus reducing the number of operations performed with
respect to competitor solutions [22].

4. Accelerator design exploration

4.1. Architecture

We deploy the QuickScorer algorithm on two SoC devices with
different capacities to evaluate how the hardware limitations of the
SoCs affect the final model. We use a SoC instead a single FPGA
because the former allows to faster deploy the algorit-hms than
using an FPGA connected to a desktop CPU. We use a mid-level
device named Xilinx ZynqTM SOC-based platform also known as
PYNQ-Z1. It is composed of a Dual-core ARM-based CPU plus re-
configurable logic. The other device has higher capacities. It is the
Zynq UltraScale+ MPSoC with a quad-core ARM CortexTM-A53 ap-
plications processor, dual-core Cortex-R5 real-time processor and
Mali-400 MP2 graphics processing unit.

Fig. 2 (left) shows an illustrative diagram of the PYNQ-Z1 ex-
perimental platform, while Fig. 2 (right) refers to the UltraScale
device. The platforms consist of a SoC-style integrated Processing
System (PS) and a Programmable Logic (PL) block on a single die.
The PS communicates with the IP block of the PL through the AXI-
4 Interface, which supports a subset of the AMBA AXI4 protocol
designed for high-speed data streaming. The PS integrates ARM
application processors (dual-core for the PYNQ-Z1 and quad-core
4

for the UltraScale), AMBA interconnect, internal memories, external
memory interfaces, and peripherals including USB, Ethernet, SPI,
SD/SDIO, I2C, CAN, UART, and GPIO. The PS runs independently of
the PL and boots at power-up or reset. The PL has different compo-
nents like the Look Up Table (LUT), the Flip Flops (FF), the digital
signal processor (DSP) and the block memory (BRAM) which are
used to implement the Intellectual Property (IP) blocks. The Ultra-
Scale SoC has resources with larger capacity than the Pynq SoC
(504K vs 13K programmable logic cells, 1728 vs 220 DSP slices,
11 MB vs 630 KB of Block RAM). This comparison gives an idea of
the hardware capabilities across the family of devices provided by
Xilinx.

After selecting the SoC devices we have to map the architecture
design to the chip. In general, the vectors are sent to the PL. Then,
an IP block executes the QuickScorer and returns the results to the
PS. There are two possibilities to manage the SoC. (1) The first one
is to keep an operating system on the PS, to control the functions
of the device. (2) Another possibility is to use C/C++ code avoid-
ing the overhead of an operating system, known as a “bare-metal”
implementation. Additionally to these possibilities, we need to set
how to communicate the PS, the PL and the DDR memory. Due to
the large number of feature vectors to be processed, we store those
vectors into the DDR memory of the devices. The most practical
way to access DDR memory for this particular case is by instanti-
ating a DMA controller within the programmable logic, which will
be controlled by the PS. In turn, the DMA block can communicate
with the PS through various ports, among which are the GP, HP,
and ACP ports.

In a regular DMA operation, the master block initiates the
transaction of data, while the slave block responds to the trans-
action already started. The interconnection between the different
blocks of the system is performed by the AXI-4 stream buses. To
make this communication possible, the high-performance AXI slave
ports of the Zynq are enabled. The AXI-Lite Interface allows the
processor to communicate with the AXI DMA block to configure,
initialize and monitor the data transfer. In other words, by us-
ing the AXI DMA block, data is transferred from one part of the
system to another. Different combinations of the DMA, PS and IP
blocks settings are described in the next section.

We used Vivado Design Suite 2019.1 to implement the QS al-
gorithm in the IP block. This tool allows the C++ version of QS

be directly converted into Register Transfer Level (RTL) code for
hardware implementation. Such high level synthesis tools permit
to remarkably reduce the time of design and, at the same time, to
improve the design space exploration.

Fig. 3. Architecture design for the UltraScale device with a single DMA.
4.2. Design overview

In this section we discuss the three different architectures we
designed to implement the QS algorithm on the PYNQ-Z1 and
the UltraScale devices. The first one includes an instance of the
QuickScorer IP block communicated via a DMA block with the
PS. This architecture design allows to analyze the impact of the
DMA block that controls the communication between the QS IP
block and the PS. The second architecture design is intended to
increase the performance of the algorithm by replicating the QS

IP blocks. Finally, the third architecture design has a Linux im-
age with support for Python on the PS and requires 2 DMAs to
control a single IP block, since the Python functions for reading
and writing by DMA require individual DMA blocks of each oper-
ation. This last architecture design aims to show how performance
can be drastically affected when using high level development
tools.

We recall from Section 3 that the ultimate goal of QS is making
fast the traversal of a given tree ensemble T to compute the scores
s(xi) for a large batch of feature vectors xi , i = 0, . . . , n.

Fig. 3 shows the first architecture design for the Zynq Ultra-
Scale+ MPSoC board composed of a single DMA and a single IP
responsible for accelerating the QS algorithm. The DMA is respon-
sible to manage the communication between the IP block and the
PS. The PS executes configuration tasks and enables the IP block.
In other words, the PS is responsible of the resource management.
The architecture also includes the Zynq processing system, reset
system, and the interconnection blocks.

The AXI DMA IP block is responsible for the transfer data be-
tween the FPGA and the DDR memory. To perform this operation,
AXI DMA has two channels: MM2S (memory-mapped to stream)
and S2MM (stream to memory-mapped). In most applications,
the High Performance (HP) ports are preferable to the Accelera-
tor Coherency Port (ACP) ports to perform the communication due
the higher bandwidth, and to avoid the disturbance of contents
of L2 cache memories [25,26]. Therefore, the architecture design
presented in Fig. 3, enables the AXI High Performance Coherent
(HP) port on the Zynq to perform a coherent transfer of the fea-
ture vectors xi from the FPGA device and the host memory. With
hardware-managed I/O coherency it is possible to simplify the soft-
ware, improve the system performance, and reduce the power by
sharing on-chip data from APU caches. To this end, two constants
are used to enable the coherence transaction, the AxCACHE and
AxPROT which must be set with the right values to enable cache
snooping.

Fig. 4 shows the same architecture design for the PYNQ-Z1
board. The scheme is similar to the configuration with a single
DMA for the UltraScale showed in Fig. 3, but in this case it is not
necessary to enable additional signals for HP ports. Notice that the
5

architecture design presented in Fig. 4 is also valid for ACP ports.
The only difference is at the port enablement level.

The second architecture design is presented in Fig. 5 for the
PYNQ-Z1. It includes an additional IP to implement a second in-
stance of the QS algorithm in order to perform the computation
of scores s(xi) on disjoint subsets of feature vectors. A second
DMA block is also included to perform the communication to/from
the PS. This approach aims to evaluate the performance achieved
by the QuickScorer when replicating its corresponding IP block.
The ports HP0 and HP2 are enabled to transfer data, and for
each IP block a DMA block is instantiated. We select the ports
HP0 and HP2 because they share different buses to communi-
cate.

In the two previous architecture designs (Fig. 3, 4 and 5) the
PS loads libraries to control different components and interfaces of
the board, such as the DMA used for communications between the
PS and the PL. That scheme is called bare-metal implementation,
since there is no operating system running in the PS. In Fig. 6,
we present a third architecture which provides a bootable Linux
image allocated in the PS, with a running version of Python and
other open-source libraries, which make possible to perform the
control of the functions in the FPGA boards. This third architecture,
deployed on both the PYNQ-Z1 and the UltraScale boards, includes
two blocks of DMA supporting data exchanges. One DMA is used
to communicate data from the PS to the PL and a second DMA to
communicate in the opposite direction.

This scheme is intended for developers willing to work at a
high level of abstraction, hiding the low-level configuration details
that have to be taken into account for bare-metal code develop-
ment. The Python layer helps in fact developers to expedite the
implementation of SoC solutions on FPGA boards and to easily cus-
tomize the hardware platform and the interfaces. Unfortunately,
this high level of abstraction does not allow the developer to fine
tune the implementation and introduces large overheads making
the resulting deployment absolutely not competitive in term of ex-
ecution time with the previously discussed bare-metal solutions.
Anyway, we discuss also this architecture as a further possibility
to follow in the case the performance requirements are not strict.

4.3. Implementation details

High Level Syntheses (HLS) tools allow to create hardware from
a high-level of abstraction, using directives to specify concurrency
and pipelining opportunities. In this work we analyze the SoC
based implementation of QuickScorer without re-coding tech-
niques, in order to estimate resource consumption and execution
times. To this end, several directives are inserted in the C++ code
such as the PIPELINE, INLINE, UNROLL and INTERFACE.

Fig. 4. Architecture design for the PYNQ-Z1 device with a single DMA.

Fig. 5. Architecture design for the PYNQ-Z1 with two IP blocks.
Algorithm 2: PIPELINE Directive.
1 scorerVanilla_init:
2 for (int g=0; g < F AC T O R; g + +) do
3 #pragma HLS PIPELINE
4 scorerVanilla(&inputVector[g× TOTAL_FEATURES],

&outputScorer[FACTOR]);

We use the PIPELINE directive to optimize the insertion (push)
and extraction (pop) of data from the stream. We extract the fea-
ture vectors from the input stream removing the associated control
logic. After the QuickScorer is executed, the final scores com-
puted for the feature vectors are packaged into an output stream
adding the corresponding control signals. The PIPELINE directive is
also used to speed-up the execution of the function admitting new
inputs vectors. Algorithm 2 shows the use of the PIPELINE direc-
tive.

The FACTOR variable defines the number of vectors. TOTAL_FEA-
TURES represents the size of the vector, which is the total number
6

of features. Once the inputs vectors are stored into the on-chip
memory, the scorerVanilla() function is executed to compute in a
pipeline the final score for each input vector. When we call a func-
tion, a certain amount of clock cycle overhead is associated with
the call. The INLINE directive can minimize the overhead associ-
ated with performing a function call. In this work, it is applied to
the scoreVanilla() function that calls the scorer functionality.

When processing more than one input vector, the output val-
ues are stored into an array. In this case, the UNROLL directive is
used to store the data into the final stream. This directive allows
to improve the latency.

The INTERFACE directive is used to manage the inputs and out-
puts of the IP block through a port with a specific I/O protocol. In
this work, we used axis for the input (query vector) and the output
(scorer value), which implies that all ports are defined as an AXI4-
Stream interface. For control signals, we selected the s_axilite using
the AXI4-Lite interface. Algorithm 3 shows how we implemented
this directive.

Fig. 6. Architecture design for the PYNQ-Z1 with 2 DMAs and Python.
Algorithm 3: DIRECTIVES.
1 #pragma HLS INTERFACE s_axilite register port=return bundle=ctrl_bus
2 #pragma HLS INTERFACE axis off port=outputScorer
3 #pragma HLS INTERFACE axis off port=vectorInput

5. Experimental assessment

5.1. Experimental settings

We conduct experiments by using machine-learned ranking
models based on ensembles of regression trees. These models are
trained on a publicly available learning-to-rank dataset, namely
MSLR-WEB10K1 [21]. The dataset consists of 10,000 queries and
1,200,192 query-document pairs represented as vectors of 136
real-valued features. The query-document pairs are labeled with a
relevance judgment ranging from 0 (irrelevant) to 4 (perfectly rel-
evant), assessing the degree at which a given document is relevant
for the specific query. The dataset is split in training, validation
and testing set according to a 60%-20%-20% scheme. Moreover, it is
split into 5-fold, with the cross-validation technique (i.e., instances
are rotated among the train/vali/test splits). In this work, since the
objective is to evaluate the efficient traversal of tree ensembles and
not the effectiveness and robustness of the trained model, we use
only the first fold, namely MSLR-WEB10K-F1. Indeed, in terms of
scoring time, the average inference time of a document in one fold
is exactly the same of a document belonging to a different fold,
and it is only related to the characteristics of the model (i.e., the
number of trees and the shape of each tree).

We use training data from MSLR-WEB10K-F1 to train λ-MART
[46] and Oblivious-λ-MART [16] models by optimizing NDCG@10
(a well-known IR metric commonly used to assess the quality
of a list of ranked items [15]). Both models generate additive
ensembles of regression trees aiming at finding a scoring func-
tion that produce an ordering of documents as close as possible
to the ideal ranking. The difference is that the former adopts
an independent splitting criterion, i.e., each split node is chosen

1 http://research .microsoft .com /en -us /projects /mslr/.
7

independently from the others, while the latter train balanced
trees, where, at each level, all the branching nodes test the same
feature-threshold pair. However, it is important to highlight that
the results of the paper can be also applied to analogous tree-
based models generated by different state-of-the-art learning al-
gorithms, e.g., GBRT [8]. The ranking models trained are the fol-
lowing:

• 100T_10L_NObl: an ensemble of 100 non-oblivious trees
with 10 leaves.

• 100T_8L_Obl: an ensemble of 100 oblivious trees with 8
leaves.

• 1000T_8L_Obl: an ensemble of 1,000 oblivious trees with 8
leaves.

To train these models we used QuickRank, an open-source
C++11 framework implementing several state-of-the-art learning-
to-rank algorithms [5]. The models are trained on the training set
of MSLR-WEB10K-F1, with the validation set used for early stop-
ping (i.e., a technique used for avoiding overfitting). We evaluate
the performance achieved at inference time by the QS algorithm on
the test set, with the three architecture designs presented in Sec-
tion 4.2 on the PYNQ-Z1 and the UltraScale running at 100 MHz
and 150 MHz, with HP and ACP ports and with different num-
ber of input feature vectors. The performance measure used for all
the tests is the latency in microseconds from the time when the
feature vectors are sent from the PS to the PL, until all the score
results are received back in the PS.

In the next section, we report on the execution times measured
for a single execution of each test since there are no other appli-
cations running in the PS. The PL only hosts the logic related to
the synthesized QS hardware, which minimizes the possibility of
variance in the execution times. To validate this claim, we show in
Table 1 the mean and standard deviation (σ) measured for 10 ex-
ecutions with models 100T_10L_NObl and 100T_8L_Obl for a
number of features vectors ranging from 1 to 128 on the PYNQ- Z1
with bare-metal development when the board is set at 100 MHz.
In all cases, we show that the value of σ is very small.

http://research.microsoft.com/en-us/projects/mslr/

Fig. 7. Total execution time (μs) as a function of the number of feature vectors scored using different CPU implementations of QuickScorer on the 100T_10L_NObl and
100T_8L_Obl models.
Table 1
Statistical analysis: Average execution time (in μs) and standard deviation (σ).

100T_10L_NObl 100T_8L_Obl

Mean σ Mean σ

1 3.30 0.02 3.25 0.08
8 3.32 0.02 3.25 0.03
16 3.33 0.04 3.25 0.04
32 3.35 0.01 3.26 0.03
64 3.37 0.20 3.26 0.03
128 3.38 0.03 3.26 0.04

5.2. Results

In this section, we first present the results obtained by run-
ning the QuickScorer algorithm on an Intel Xeon CPU E5-2630 v3
(2.40 GHz) with 16 hyper-threaded cores and 192 GB of RAM. We
then present the results obtained when employing the PYNQ-Z1
and UltraScale FPGA devices.

Fig. 7 reports the execution time (in μs) of different versions
of QS required to process an increasing number of input feature
vectors with models 100T_10L_NObl and 100T_8L_Obl. In de-
tails, we experiment the single-thread CPU version (QS) [7,22], a
vectorized version that employs instruction-level parallelism using
SSE and AVX instruction sets (vQS-SSE and vQS-AVX) to score 32
feature vectors in parallel [23], and a multi-threaded version that
perform thread-level parallelism on top of the instruction level
ones (vQS MT) [17]. In our experiments, vQS MT employs 8 threads
each one running vQS-SSE and vQS-AVX on blocks of 32 fea-
ture vectors. For one input vector, QS on 100T_10L_NObl (non-
oblivious model) reports an execution time of 0.7 μs, while pro-
cessing 512 input vectors requires 445.5 μs. QS on 100T_8L_Obl
(oblivious model) reports instead faster executions times starting
from 0.3 μs for one input vector and 168.9 μs for 512 input vec-
tors. As expected, we measured an execution time which increases
linearly with the number of feature vectors scored although per-
turbations to this linearity are observed when the input vectors to
score are a few. Results also show that instruction-level parallelism
and thread-level parallelism help in reducing the total execution
time. When instruction-level parallelism is employed, vQS-SSE and
vQS-AVX score 32 feature vectors in parallel on 128 and 256 regis-
ters, respectively. For one feature vector, vQS-SSE requires 0.26 μs
while vQS-AVX requires 0.25 μs. When increasing the number of
vectors the difference between the two versions increases reveal-
ing a better performance for vQS-AVX. For 512 input vectors, vQS-

SSE requires 121.3 μs while vQS-AVX requires 98.4 μs showing a
reduction in the execution time of vQS-AVX of about 19% with re-
8

spect to vQS-SSE. The use of thread-level parallelism on top of the
instruction-level one further reduces the execution time. For one
feature vector, vQS MT with 8 threads requires 4.9 μs and 3.4 μs
when using SSE and AVX instruction sets, respectively. This result
shows that, for a small number of vectors, the overhead introduced
by the multi-threading framework (OpenMP [6]) significantly hurts
the performance of the method. However, when increasing the
number of vectors, e.g., 512, vQS MT requires 22.2 μs and 19 μs
when using SSE and AVX instruction sets, respectively, showing a
total speedup on vQS-SSE and vQS-AVX of up to 5.4x, and on QS

of up to 23.4x.
Fig. 8 shows instead the results obtained with the SoC imple-

mentations on the PYNQ-Z1 and the UltraScale FPGA devices. As
in the previous figure the x-axis in each plot shows the number
of input feature vectors scored while we report in the y-axis the
execution time in microseconds for the different implementations
tested. Specifically, the curves in each plot refer to the execution
times achieved with bare-metal development when the board is
set at 100 MHz and 150 MHz using the ACP and the HP ports
and architectures with a single IP (as illustrated in Fig. 4) or two
IP blocks (see Fig. 5). The four plots refer to results obtained: with
the non-oblivious model 100T_10L_NObl on the PYNQ-Z1 (Fig. 8
(a)) and on the UltraScale device (Fig. 8 (c)); with the oblivious
model 100T_8L_Obl on the PYNQ-Z1 (Fig. 8 (b)) and the Ultra-
Scale device (Fig. 8 (d)).

With the PYNQ-Z1 device, the best results obtained with the
oblivious model range from 2.72 μs for one input vector to 3.02 μs
for 240 input vectors. The best results obtained with the non-
oblivious model range instead from 2.41 μs for one input vector
to 3.57 μs for 240 input vectors. With the more powerful Ultra-
Scale device, the best results obtained with the oblivious model
range from 0.35 μs for one input vector to 0.4 μs for 1024 input
vectors. The best results obtained with the non-oblivious model
range from 0.36 μs for one input vector to 0.42 μs for 1024 input
vectors.

The curves plotted in Fig. 8 shows that, as expected, with a
higher clock rate the execution time is reduced. For the non-
oblivious model (100T_10L_NObl), execution times obtained
with 150 MHz are in average 13% lower than the execution time
reported with 100 MHz. For the oblivious model (100T_8L_Obl),
the improvement achieved with 150 MHz is 17% in average. Re-
garding the execution times reported with HP and ACP ports, we
can observe that the ACP port configuration allows us to obtain
slightly lower execution times than the HP port configuration for
the oblivious model and the PYNQ-Z1 device. However, the other

Fig. 8. Execution times for the different FPGA configurations and the 100T_10L_NObl and 100T_8L_Obl tree ensembles. All cases running at 100 MHz and 150 MHz with
HP (one and two IP blocks) and ACP ports.
experiments show that both port configurations present very sim-
ilar performance.

Additionally, by looking at the curves labelled HP, 2 IP plot-
ted in Fig. 8 we can see that the architecture designed with two IP
blocks almost doubles the execution time with respect to the cor-
responding architecture with a single IP block running at the same
clock rate. This is because the architecture designed with two IP
blocks requires additional logic for replicating the ML model and
the DMA modules performing the communication between the PS
and the IP blocks. The overhead due to the management of these
additional DMA modules drastically affects the performance of the
system making the solution with two IP blocks not competitive
with the one using a single IP block. Moreover, the resources used
for deploying the second QS IP block limit also the number of input
vectors fitting in the BRAM of the device. We see from the plots
that the curves reporting the execution times for the two IP de-
ployment are shorter than the ones for the single IP.2 Specifically,
they end in correspondence of 128 or 512 input vectors for the
PYNQ-Z1 and Ultrascale devices, respectively. Larger sets of feature
vectors do not fit in the board memory and cannot be processed
in a single batch. Conversely, the architectures with a single QS

IP block use less hardware resources because they do not require
additional logic for the DMA modules and for replicating the ML

2 Of course these curves start at x = 2, i.e., with a single vector assigned to each
of the two IP blocks.
9

model: the plots reported in Fig. 8 show that the UltraScale and
PYNQ-Z1 boards can fit in this case up to 1024 or 240 input vec-
tors before saturating the BRAM memory.

Anyway, the most important characteristic of the presented
SoC-based FPGA architectures is evident when we compare the
plot in Fig. 7 with any of the plots reported in Fig. 8. While on a
traditional CPU the (sequential) execution time increases linearly
with the number of vectors scored, the same does not happen
for the FPGA deployment: we can see in fact from Fig. 8 that on
SoC-based FPGA hardware the number of feature vectors scored
does not impact significantly the execution time because the com-
putation required to process the input instances is performed in
parallel inside the QS IP block(s). In other words, in order to pro-
cess more input instances we only need to increase -in the FPGA-
the number of accumulators and the logical components executing
Algorithm 1 in parallel on all the vectors by accessing read-only a
single shared ML model.

Of course, the number of input vectors scored impacts instead
the use of resources. In Table 2 we report the percentage of uti-
lization of various resources of the PYNQ-Z1 device for processing
the largest sets of input vectors tested. Specifically, from the ta-
ble we see that the QS algorithm in a single IP block saturates the
BRAM with 240 input vectors (99.64%), while we almost saturate
the BRAM (82.50%) of the same device with only 128 input vectors
when two QS IP blocks are used. Thus, scoring on this device with
the most efficient one-IP solution more that 240 feature vectors

Fig. 9. Execution times obtained on the PYNQ-Z1 and UltraScale devices with the models 100T_8L_Obl and 1000T_8L_Obl, i.e., the ensembles with 100 and 1,000
oblivious trees.
Table 2
Resource utilization for the 100T_10L_NObl model with one (240 feature vectors)
and two IP blocks (64 feature vectors).

Resource Utilization (%)

1 IP - 240 vectors 2 IP - 128 vectors

LUT 12.10 33.79
LUTRAM 13.82 17.48
FF 7.37 20.31
BRAM 99.64 82.50
DSP 1.36 2.73

would require to partition the instances in batches of at most 240
vectors and process these batches sequentially, one at the time.

Fig. 9 shows the execution times obtained on both the PYNQ-Z1
and the UltraScale devices by the architecture with one single IP
block with the models 100T_8L_Obl and 1000T_8L_Obl, i.e.,
the ensembles with 100 and 1,000 oblivious trees. The plot shows
that the two curves reporting the execution times for models with
100 and 1,000 trees almost overlap. Thus, besides the number of
input vectors processed, also the number of decision trees in the
ensemble does not impact significantly the execution time of the
QS algorithm running on the FPGA device. For what memory and
logic resources usage is concerned, the ML model is in fact much
less demanding than the input vectors. The model with 100 trees
occupies only 16 kB while the model with 1,000 trees requires
about 164 kB. Conversely, to manage 1024 feature vectors we use
32 bits × 136 f eatures × 1024 = 557 kB plus the memory for the
ML model which is accessed by all the logic components and accu-
mulators used to compute the scores in parallel. Therefore, as far
as the memory of the FPGA is not saturated, we can increase the
model size or the number of input vectors without significantly
affecting the execution times.

Finally, in Fig. 10 we report the execution time in microseconds
obtained with the PYNQ-Z1 and the UltraScale devices when ex-
ecuting the Python-based QS version with the 100T_10L_NObl
and 100T_8L_Obl models. Python introduces a huge overhead
due to the additional IP blocks used to implement the Python-
associated code into the FPGA (see Fig. 6). As discussed above, we
report the results achieved with this architecture only to show that
it can constitute a possible alternative when performance require-
ments are not strict and the time available for FPGA coding is very
short. However, from the curves in Fig. 10, we see that the execu-
tion times for the Python version are about 4 order of magnitude
higher that those obtained with the bare-metal implementations.
Moreover, differently from the bare-metal cases the execution time
10
with Python development increases as we increase the number of
input vectors scored. It is thus apparent that at the cost of a more
complex and time-consuming coding, the bare-metal development
allows the execution time of the QS algorithm to be drastically re-
duced.

How SoC-based QS advances the state of the art. The previous ex-
periments show a very important characteristic of SoC-based FPGA
bare-metal implementations of QS: the execution times measured
for this solution are almost constant and independent of the num-
ber of feature vectors processed and the number of trees of the
tree ensemble. This of course holds only if we do not saturate the
resources of the specific FPGA device used. Such characteristic, that
does not hold for the CPU versions of QS, is very interesting for
capacity and hardware sizing planning since it gives engineers the
possibility of choosing the most efficient and cost-effective FPGA
device to use on the basis of the requirements of accuracy (de-
pending on the number of trees) and throughput (depending on
the number of input instances processed in parallel) of the specific
application at hand. This is of paramount importance for any large-
scale deployment of ML ensemble models subject to real-time or
near real-time constraints.

6. Conclusions and future work

In this paper we presented and evaluated three SoC-based FPGA
architecture designs to accelerate inference with ML models based
on ensembles of decision trees. In particular, we focused on the
QuickScorer state-of-the-art algorithm for performing fast and
accurate inference tasks by traversing large tree ensembles. The
architecture designs were deployed on two embedded system-on-
chip, the PYNQ-Z1 and the Zynq UltraScale+ MPSoC. The first archi-
tectural design used a single IP block to deploy the QS algorithm
and a single DMA to communicate between the PS and the PL.
The second architecture uses two IP blocks to deploy two com-
plete instances of the algorithm. As a last design, we investigated
also the use of Python for the FPGA algorithm development. We
evaluated different configurations exploiting the ACP and HP ports
and analysed the impact of the clock frequency on the execution
time. The experimental results showed that the port configuration
does not affect remarkably the performance of QS, while, as ex-
pected, a higher clock frequency reduces the execution times. All
the tests performed clearly highlighted that the bare-metal imple-
mentation using a single QS IP block and a single DMA to commu-
nicate between the PS and the PL largely outperformed the other

Fig. 10. Execution times obtained with the QS Python development on the PYNQ-Z1 and the UltraScale devices.
architectural designs while the use of Python introduce enormous
and unacceptable overheads.

Interestingly, we showed that our bare-metal implementations
achieve nearly constant execution times as we increase the num-
ber of feature vectors processed until the limits of the hardware
are reached and the BRAM is saturated. Similarly, also the num-
ber of trees in the model impacts only slightly the inference time.
We recall that scaling on both these dimensions is very important
since in many applications the inference has to be performed on
very large batches of items and larger the number of trees in the
ensemble more accurate is in general the ML model [5]. A solu-
tion like the one investigated in this paper, which provides almost
constant inference time if the saturation of the FPGA resources is
not reached, can have a high impact on many application scenarios
(e.g., Web or product search, social media ranking or recommenda-
tion, on-line advertisement, etc.) where engineers have very strict
and contrasting requirements on latency, accuracy and hardware
cost to satisfy.

As future work, we plan to optimize the representation used
for the feature vectors in order to reduce their memory occupa-
tion and consequently increase the number of instances scored in
parallel on low-cost FPGA devices. Moreover, we plan to investi-
gate the relations between SoC capacity and QS execution time to
derive a general cost and performance model for fine-tuning FPGA-
accelerated inference tasks.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

This work was partially supported by the project HAMLET: Hard-
ware Acceleration of Machine LEarning Tasks funded by CONICET (Ar-
gentina) and CNR (Italy) 2017–2018 collaboration program, by the
TEACHING project, funded by the EU Horizon 2020 Research and
Innovation program (Grant agreement ID: 871385), and by the OK-
INSAID project, funded by the Italian Ministry of Education and
Research (GA no. ARS01_00917).

References

[1] H. Bai, H. Luo, C. Liu, D. Paire, F. Gao, A device-level transient modeling ap-
proach for the fpga-based real-time simulation of power converters, IEEE Trans.
Power Electron. 35 (2) (2019) 1282–1292.
11
[2] L.A. Barroso, U. Hölzle, The case for energy-proportional computing, Computer
40 (12) (2007) 33–37.

[3] L.A. Barroso, J. Dean, U. Holzle, Web search for a planet: the Google cluster ar-
chitecture, IEEE MICRO 23 (2) (2003) 22–28, https://doi .org /10 .1109 /MM .2003 .
1196112.

[4] B. Behnam, M. Mansouryar, Modeling and simulation of a dc motor control
system with digital pid controller and encoder in fpga using Xilinx system gen-
erator, in: Instrumentation Control and Automation, 2011, pp. 104–108.

[5] G. Capannini, C. Lucchese, F.M. Nardini, S. Orlando, R. Perego, N. Tonellotto,
Quality versus efficiency in document scoring with learning-to-rank models,
Inf. Process. Manag. 52 (6) (2016) 1161–1177.

[6] L. Dagum, R. Menon, Openmp: an industry-standard api for shared-memory
programming, IEEE Comput. Sci. Eng. 5 (1) (1998) 46–55, https://doi .org /10 .
1109 /99 .660313.

[7] D. Dato, C. Lucchese, F.M. Nardini, S. Orlando, R. Perego, N. Tonellotto, R. Ven-
turini, Fast ranking with additive ensembles of oblivious and non-oblivious
regression trees, ACM Trans. Inf. Syst. 35 (2) (2016) 15:1–15:31.

[8] J.H. Friedman, Greedy function approximation: a gradient boosting machine,
Ann. Stat. (2001) 1189–1232.

[9] G. Georgis, G. Lentaris, D. Reisis, Acceleration techniques and evaluation on
multi-core cpu, gpu and fpga for image processing and super-resolution, J.
Real-Time Image Process. 16 (4) (2019) 1207–1234.

[10] V. Gil-Costa, R.S. Molina, R. Petrino, C.F.S. Paez, A.M. Printista, J.D.D. Gazzano,
Field-programmable gate array (FPGA) technologies for high performance in-
strumentation, in: IGI GLobal, 2004, pp. 138–170, Ch. Hardware Acceleration of
CBIR System with FPGA-Based Platform.

[11] X. He, J. Pan, O. Jin, T. Xu, B. Liu, T. Xu, Y. Shi, A. Atallah, R. Herbrich, S. Bowers,
J.Q. Candela, Practical lessons from predicting clicks on ads at Facebook, in:
Proc. 8th International Workshop on Data Mining for Online Advertising, 2014,
pp. 5:1–5:9.

[12] U. Heinkel, W. Glauert, M. Wahl, The VHDL Reference: A Practical Guide to
Computer-Aided Integrated Circuit Design (Including VHDL-AMS) with Other,
John Wiley & Sons, Inc., New York, NY, USA, 2000.

[13] T. Tracy II, Y. Fu, I. Roy, E. Jonas, P. Glendenning, Towards machine learning on
the automata processor, in: High Performance Computing, 2016, pp. 1–19.

[14] A.A. Ingle, V.G. Raut, Hardware software co-simulation of edge detection for
image processing system using delay block, in xsg, Res. Eng. Technol. 3 (4)
(2014) 549–553.

[15] K. Järvelin, J. Kekäläinen, Cumulated gain-based evaluation of ir techniques,
ACM Trans. Inf. Syst. 20 (4) (2002) 422–446.

[16] P. Langley, S. Sage, Oblivious decision trees and abstract cases, in: Working
Notes of the AAAI-94 Workshop on Case-Based Reasoning, Seattle, WA, 1994,
pp. 113–117.

[17] F. Lettich, C. Lucchese, F.M. Nardini, S. Orlando, R. Perego, N. Tonellotto, R. Ven-
turini, Parallel traversal of large ensembles of decision trees, IEEE Trans. Parallel
Distrib. Syst. 30 (9) (2019) 2075–2089.

[18] L. Li, C. Sau, T. Fanni, J. Li, T. Viitanen, F. Christophe, F. Palumbo, L. Raffo, H.
Huttunen, J. Takala, S.S. Bhattacharyya, An integrated hardware/software design
methodology for signal processing systems, J. Syst. Archit. 93 (2019) 1–19.

[19] X. Lin, R.S. Blanton, D.E. Thomas, Random forest architectures on fpga for mul-
tiple applications, in: Proceedings of the on Great Lakes Symposium on VLSI,
2017, pp. 415–418.

[20] Z. Lin, S. Sinha, W. Zhang, Towards efficient and scalable acceleration of on-
line decision tree learning on fpga, in: IEEE 27th Annual International Sym-
posium on Field-Programmable Custom Computing Machines (FCCM), 2019,
pp. 172–180.

[21] T.-Y. Liu, Learning to rank for information retrieval, Found. Trends Inf. Retr. 3 (3)
(2009) 225–331.

http://refhub.elsevier.com/S0743-7315(21)00091-5/bibEA192DF65374B0825F3367FDF0BBDE08s1
http://refhub.elsevier.com/S0743-7315(21)00091-5/bibEA192DF65374B0825F3367FDF0BBDE08s1
http://refhub.elsevier.com/S0743-7315(21)00091-5/bibEA192DF65374B0825F3367FDF0BBDE08s1
http://refhub.elsevier.com/S0743-7315(21)00091-5/bib761DA2D1573307877B0B9BA28FF606DAs1
http://refhub.elsevier.com/S0743-7315(21)00091-5/bib761DA2D1573307877B0B9BA28FF606DAs1
https://doi.org/10.1109/MM.2003.1196112
https://doi.org/10.1109/MM.2003.1196112
http://refhub.elsevier.com/S0743-7315(21)00091-5/bib7A08410A380662C43003C14622C12C08s1
http://refhub.elsevier.com/S0743-7315(21)00091-5/bib7A08410A380662C43003C14622C12C08s1
http://refhub.elsevier.com/S0743-7315(21)00091-5/bib7A08410A380662C43003C14622C12C08s1
http://refhub.elsevier.com/S0743-7315(21)00091-5/bib203AE84DAD09E77DE59EC3D5E7702C7Ds1
http://refhub.elsevier.com/S0743-7315(21)00091-5/bib203AE84DAD09E77DE59EC3D5E7702C7Ds1
http://refhub.elsevier.com/S0743-7315(21)00091-5/bib203AE84DAD09E77DE59EC3D5E7702C7Ds1
https://doi.org/10.1109/99.660313
https://doi.org/10.1109/99.660313
http://refhub.elsevier.com/S0743-7315(21)00091-5/bibF3A791668D2B1E0E32342B5DB32E2CD6s1
http://refhub.elsevier.com/S0743-7315(21)00091-5/bibF3A791668D2B1E0E32342B5DB32E2CD6s1
http://refhub.elsevier.com/S0743-7315(21)00091-5/bibF3A791668D2B1E0E32342B5DB32E2CD6s1
http://refhub.elsevier.com/S0743-7315(21)00091-5/bib4E0709A60A1A8E87497D1B98CE67B97As1
http://refhub.elsevier.com/S0743-7315(21)00091-5/bib4E0709A60A1A8E87497D1B98CE67B97As1
http://refhub.elsevier.com/S0743-7315(21)00091-5/bib5C6C8ED6F811C1ED9B463186BFCF953Bs1
http://refhub.elsevier.com/S0743-7315(21)00091-5/bib5C6C8ED6F811C1ED9B463186BFCF953Bs1
http://refhub.elsevier.com/S0743-7315(21)00091-5/bib5C6C8ED6F811C1ED9B463186BFCF953Bs1
http://refhub.elsevier.com/S0743-7315(21)00091-5/bib48D93F75BF936D3DCB1C744AF486A083s1
http://refhub.elsevier.com/S0743-7315(21)00091-5/bib48D93F75BF936D3DCB1C744AF486A083s1
http://refhub.elsevier.com/S0743-7315(21)00091-5/bib48D93F75BF936D3DCB1C744AF486A083s1
http://refhub.elsevier.com/S0743-7315(21)00091-5/bib48D93F75BF936D3DCB1C744AF486A083s1
http://refhub.elsevier.com/S0743-7315(21)00091-5/bib4B9DB3D9B493BFDC55B1C4F0328021B3s1
http://refhub.elsevier.com/S0743-7315(21)00091-5/bib4B9DB3D9B493BFDC55B1C4F0328021B3s1
http://refhub.elsevier.com/S0743-7315(21)00091-5/bib4B9DB3D9B493BFDC55B1C4F0328021B3s1
http://refhub.elsevier.com/S0743-7315(21)00091-5/bib4B9DB3D9B493BFDC55B1C4F0328021B3s1
http://refhub.elsevier.com/S0743-7315(21)00091-5/bibBAFCF444146C2D514DB500473731559Es1
http://refhub.elsevier.com/S0743-7315(21)00091-5/bibBAFCF444146C2D514DB500473731559Es1
http://refhub.elsevier.com/S0743-7315(21)00091-5/bibBAFCF444146C2D514DB500473731559Es1
http://refhub.elsevier.com/S0743-7315(21)00091-5/bib8BFA7A9E2D478F9C78459C9471ACCFD2s1
http://refhub.elsevier.com/S0743-7315(21)00091-5/bib8BFA7A9E2D478F9C78459C9471ACCFD2s1
http://refhub.elsevier.com/S0743-7315(21)00091-5/bib8AB9465F1EC424BACF673B5C9DA777FEs1
http://refhub.elsevier.com/S0743-7315(21)00091-5/bib8AB9465F1EC424BACF673B5C9DA777FEs1
http://refhub.elsevier.com/S0743-7315(21)00091-5/bib8AB9465F1EC424BACF673B5C9DA777FEs1
http://refhub.elsevier.com/S0743-7315(21)00091-5/bib41CFD724B8F4482C4AB1221E428B36EFs1
http://refhub.elsevier.com/S0743-7315(21)00091-5/bib41CFD724B8F4482C4AB1221E428B36EFs1
http://refhub.elsevier.com/S0743-7315(21)00091-5/bibE02C4DECA845F919DED9FFC82C97933Cs1
http://refhub.elsevier.com/S0743-7315(21)00091-5/bibE02C4DECA845F919DED9FFC82C97933Cs1
http://refhub.elsevier.com/S0743-7315(21)00091-5/bibE02C4DECA845F919DED9FFC82C97933Cs1
http://refhub.elsevier.com/S0743-7315(21)00091-5/bib51E43A459C0FB23D4054684EE3E22D03s1
http://refhub.elsevier.com/S0743-7315(21)00091-5/bib51E43A459C0FB23D4054684EE3E22D03s1
http://refhub.elsevier.com/S0743-7315(21)00091-5/bib51E43A459C0FB23D4054684EE3E22D03s1
http://refhub.elsevier.com/S0743-7315(21)00091-5/bib19DDFCC0D16720963022610FF0CA2A8Cs1
http://refhub.elsevier.com/S0743-7315(21)00091-5/bib19DDFCC0D16720963022610FF0CA2A8Cs1
http://refhub.elsevier.com/S0743-7315(21)00091-5/bib19DDFCC0D16720963022610FF0CA2A8Cs1
http://refhub.elsevier.com/S0743-7315(21)00091-5/bibAF8B0AB6B84BBC42023269FDD41CE369s1
http://refhub.elsevier.com/S0743-7315(21)00091-5/bibAF8B0AB6B84BBC42023269FDD41CE369s1
http://refhub.elsevier.com/S0743-7315(21)00091-5/bibAF8B0AB6B84BBC42023269FDD41CE369s1
http://refhub.elsevier.com/S0743-7315(21)00091-5/bib0358C76E19744402EA33B57CC386B7E9s1
http://refhub.elsevier.com/S0743-7315(21)00091-5/bib0358C76E19744402EA33B57CC386B7E9s1
http://refhub.elsevier.com/S0743-7315(21)00091-5/bib0358C76E19744402EA33B57CC386B7E9s1
http://refhub.elsevier.com/S0743-7315(21)00091-5/bib0358C76E19744402EA33B57CC386B7E9s1
http://refhub.elsevier.com/S0743-7315(21)00091-5/bib160EB6FE92208EFF1C9D83889D4634BDs1
http://refhub.elsevier.com/S0743-7315(21)00091-5/bib160EB6FE92208EFF1C9D83889D4634BDs1

[22] C. Lucchese, F.M. Nardini, S. Orlando, R. Perego, N. Tonellotto, R. Venturini,
Quickscorer: a fast algorithm to rank documents with additive ensembles of
regression trees, in: Proc. ACM SIGIR, 2015, pp. 73–82.

[23] C. Lucchese, F.M. Nardini, S. Orlando, R. Perego, N. Tonellotto, R. Venturini,
Exploiting CPU SIMD extensions to speed-up document scoring with tree en-
sembles, in: Proc. ACM SIGIR, 2016, pp. 833–836.

[24] S. Majumder, J.F. Dalsgaard Nielsen, T. Bak, A. la Cour-Harbo, Reliable flight
control system architecture for agile airborne platforms: an asymmetric multi-
processing approach, Aeronaut. J. 123 (1264) (2019) 840–862.

[25] S. Min, S. Huang, M. El-Hadedy, J. Xiong, D. Chen, W. Hwu, Analysis and opti-
mization of I/O cache coherency strategies for soc-fpga device, in: 29th Inter-
national Conference on Field Programmable Logic and Applications, FPL 2019,
Barcelona, Spain, September 8–12, 2019, 2019, pp. 301–306.

[26] S. Min, S. Huang, M. El-Hadedy, J. Xiong, D. Chen, W. Hwu, Analysis and op-
timization of I/O cache coherency strategies for soc-fpga device, CoRR, arXiv:
1908 .01261 [abs].

[27] J. Miteran, J. Matas, J. Dubois, E. Bourennane, Automatic fpga based implemen-
tation of classification tree, in: Symposium on Signals, Circuits and Systems
(SCS), 2004, pp. 189–192.

[28] A. Mohammed, E. Rachid, H. Laamari, High level fpga modeling for image pro-
cessing algorithms using Xilinx system generator, Comput. Sci. Telecommun.
5 (6) (2014) 1–8.

[29] K. Nagarajan, B. Holland, A.D. George, K.C. Slatton, H. Lam, Accelerating
machine-learning algorithms on fpgas using pattern-based decomposition, Sig-
nal Process. Syst. 62 (1) (2011) 43–63.

[30] H. Nakahara, A. Jinguji, T. Fujii, S. Sato, An acceleration of a random forest
classification using altera SDK for OpenCL, in: Proceedings of the International
Conference on Field-Programmable Technology, 2016, pp. 289–292.

[31] R. Narayanan, D. Honbo, G. Memik, A. Choudhary, J. Zambreno, Interactive
presentation: an fpga implementation of decision tree classification, in: Pro-
ceedings of the Conference on Design, Automation and Test in Europe, 2007,
pp. 189–194.

[32] K. Neshatpour, M. Malik, M.A. Ghodrat, A. Sasan, H. Homayoun, Energy-efficient
acceleration of big data analytics applications using fpgas, in: Proceedings of
the IEEE International Conference on Big Data (Big Data), 2015, pp. 115–123.

[33] M. Owaida, G. Alonso, Application partitioning on FPGA clusters: inference over
decision tree ensembles, in: International Conference on Field-Programmable
Logic and Applications, 2018, pp. 295–300.

[34] M. Owaida, H. Zhang, C. Zhang, G. Alonso, Scalable inference of decision tree
ensembles: flexible design for CPU-FPGA platforms, in: International Confer-
ence on Field Programmable Logic and Applications, 2017.

[35] S. Palnitkar, Verilog®Hdl: A Guide to Digital Design and Synthesis, second edi-
tion, Prentice Hall Press, Upper Saddle River, NJ, USA, 2003.

[36] J. Pérez Fernández, M. Alcázar Vargas, J.M. Velasco García, J.A. Cabrera Carrillo,
J.J. Castillo Aguilar, Low-cost fpga-based electronic control unit for vehicle con-
trol systems, Sensors 19 (8) (2019) 1834.

[37] B. Popa, M. Roman, R.L. Constantinescu, Fast Fourier processing and real-time
transformation system for a dynamic vibration signal, in: 20th International
Carpathian Control Conference (ICCC), 2019, pp. 1–6.

[38] M. Qasaimeh, K. Denolf, J. Lo, K. Vissers, J. Zambreno, P.H. Jones, Comparing
energy efficiency of cpu, gpu and fpga implementations for vision kernels,
in: 2019 IEEE International Conference on Embedded Software and Systems
(ICESS), 2019, pp. 1–8.

[39] I. Segalovich, Machine learning in search quality at Yandex, in: Presentation at
the Industry Track of the 33rd Annual ACM SIGIR Conference, 2010, https://
goo .gl /xUAq3r.

[40] A. Shchekalev, Using GPUs to accelerate learning to rank, https://goo .gl /seikPf,
2014.

[41] D. Sorokina, E. Cantu-Paz, Amazon search: the joy of ranking products, in: Proc.
ACM SIGIR, 2016, pp. 459–460.

[42] A. Thangavelu, M. Varghese, M. Vaidyan, Novel fpga based controller design
platform for dc-dc buck converter using hdl co-simulator and Xilinx system
generator, in: Instrumentation Control and Automation, 2012, pp. 270–274.

[43] B. Van Essen, C. Macaraeg, M. Gokhale, R. Prenger, Accelerating a random forest
classifier: multi-core, gp-gpu, or fpga?, in: IEEE 20th International Symposium
on Field-Programmable Custom Computing Machines, 2012, pp. 232–239.

[44] M. Vidal, R. Cruces, G. Zurita, Digital fir filter design for diagnosing problems in
gears and bearings using Xilinx’s system generator, in: 2014 IEEE ANDESCON,
2014, pp. 1–1.

[45] E.C. Vivas González, D.M. Rivera Pinzón, E.J. Gomez, Implementation and simu-
lation of iir digital filters in fpga using Matlab system generator, in: 2014 IEEE
5th Colombian Workshop on Circuits and Systems (CWCAS), 2014, pp. 1–5.

[46] Q. Wu, C.J. Burges, K.M. Svore, J. Gao, Adapting boosting for information re-
trieval measures, Inf. Retr. 13 (3) (2010) 254–270.

[47] T. Xia, Y. Tian, J.-C. Prevotet, F. Nouvel, Ker-one: a new hypervisor managing
fpga reconfigurable accelerators, J. Syst. Archit. 98 (2019) 453–467.

[48] J. Yuan, X. Guo, C. Wang, X. You, Fpga resource optimization method for
hardware in the loop real-time simulation of power converters, in: 2019

IEEE Applied Power Electronics Conference and Exposition (APEC), 2019,
pp. 2849–2854.

Romina S. Molina received her master’s degree
“Master in Computer Science” from Universidad Na-
cional de San Luis (UNSL) Argentina, in 2017, and
her bachelor’s degree “Electronic engineering with an
orientation in digital systems” from Universidad Na-
cional de San Luis (UNSL) Argentina, in 2010. Her
main research interests are digital signal processing,
digital control, high performance computing, system
retrieval, FPGA and SOC. She is a member of the in-

vestigation group “Visión artificial y control digital” at UNSL, a member
of the Multidisciplinary Laboratory, ICTP, Trieste a member of the Labo-
ratorio di Elaborazione Segnali e Immagini - IPL, Università degli studi di
Trieste. Currently she is realizing her PhD in Industrial and Information
Engineering, at Università degli studi di Trieste.

Fernando Loor received his degree in Electronic
Engineering (2016) at Universidad Nacional de San
Luis (UNSL), Argentina. He is a PhD. student in Com-
puter Science at UNSL. He holds a scholarship from
CONICET. He is also a professor assistant in the
courses of “Signals and Systems” and “Digital Sig-
nal Processing” at the UNSL. His email address is
floor @unsl .edu .ar.

Veronica Gil-Costa received her MSc (2006) and
PhD (2009) in Computer Science, both from Univer-
sidad Nacional de San Luis (UNSL), Argentina. She is a
former researcher at Yahoo! Labs Santiago hosted by
the University of Chile. She is currently an associate
professor at the University of San Luis and researcher
at the National Research Council (CONICET) of Ar-
gentina. Her email address is gvcosta @unsl .edu .ar.

Franco Maria Nardini (http://hpc .isti .cnr.it /~
nardini) is a researcher with the National Research
Council of Italy. His research interests focus on web
information retrieval, machine learning and data min-
ing. He authored more than 50 papers in peer re-
viewed international journals and conferences. In
2015, he received the ACM SIGIR 2015 Best Paper
Award.

Raffaele Perego (http://hpc .isti .cnr.it/~raffaele) is
a research director at ISTI-CNR, where he leads the
High Performance Computing Lab (http://hpc .isti .cnr.
it/). His main research interests include large-scale in-
formation systems, information retrieval, web mining
and artificial intelligence. He co-authored more than
170 papers on these topics published in journals and
proceedings of international conferences. He chaired
the ACM SIGIR conference in 2016 and the ECIR con-

ference in 2020.

Salvatore Trani is a researcher with the Italian Na-
tional Research Council. He received the Ph.D. in Com-
puter Science from the University of Pisa in 2017. His
research interests focus on Information Retrieval (IR),
Machine Learning (ML) and Semantic Enrichment. He
served as a program committee member of several
top-level conferences of IR and ML. He authored more
than 15 papers in peer-reviewed international jour-

nals, conferences and other venues.
12

http://refhub.elsevier.com/S0743-7315(21)00091-5/bibBA0FCA53270BD42FE6175C21B75CAEE5s1
http://refhub.elsevier.com/S0743-7315(21)00091-5/bibBA0FCA53270BD42FE6175C21B75CAEE5s1
http://refhub.elsevier.com/S0743-7315(21)00091-5/bibBA0FCA53270BD42FE6175C21B75CAEE5s1
http://refhub.elsevier.com/S0743-7315(21)00091-5/bib66F01EADC2C5EC9A7DCB02B249052F9Cs1
http://refhub.elsevier.com/S0743-7315(21)00091-5/bib66F01EADC2C5EC9A7DCB02B249052F9Cs1
http://refhub.elsevier.com/S0743-7315(21)00091-5/bib66F01EADC2C5EC9A7DCB02B249052F9Cs1
http://refhub.elsevier.com/S0743-7315(21)00091-5/bibE83877B78ADE63E7027A6DE9AD604A25s1
http://refhub.elsevier.com/S0743-7315(21)00091-5/bibE83877B78ADE63E7027A6DE9AD604A25s1
http://refhub.elsevier.com/S0743-7315(21)00091-5/bibE83877B78ADE63E7027A6DE9AD604A25s1
http://refhub.elsevier.com/S0743-7315(21)00091-5/bib70EADE47670FBC6A98008D645871A63Ds1
http://refhub.elsevier.com/S0743-7315(21)00091-5/bib70EADE47670FBC6A98008D645871A63Ds1
http://refhub.elsevier.com/S0743-7315(21)00091-5/bib70EADE47670FBC6A98008D645871A63Ds1
http://refhub.elsevier.com/S0743-7315(21)00091-5/bib70EADE47670FBC6A98008D645871A63Ds1
http://refhub.elsevier.com/S0743-7315(21)00091-5/bibE71DC858ADDC76FBEA190562E35FD65Bs1
http://refhub.elsevier.com/S0743-7315(21)00091-5/bibE71DC858ADDC76FBEA190562E35FD65Bs1
http://refhub.elsevier.com/S0743-7315(21)00091-5/bibE71DC858ADDC76FBEA190562E35FD65Bs1
http://refhub.elsevier.com/S0743-7315(21)00091-5/bib9227B6617F8CA9D638A8664B7D06C995s1
http://refhub.elsevier.com/S0743-7315(21)00091-5/bib9227B6617F8CA9D638A8664B7D06C995s1
http://refhub.elsevier.com/S0743-7315(21)00091-5/bib9227B6617F8CA9D638A8664B7D06C995s1
http://refhub.elsevier.com/S0743-7315(21)00091-5/bib3B85BA4DC665CA2AA38B16C0A6CC5DAFs1
http://refhub.elsevier.com/S0743-7315(21)00091-5/bib3B85BA4DC665CA2AA38B16C0A6CC5DAFs1
http://refhub.elsevier.com/S0743-7315(21)00091-5/bib3B85BA4DC665CA2AA38B16C0A6CC5DAFs1
http://refhub.elsevier.com/S0743-7315(21)00091-5/bibD8B7F98A7FD99FEBDF1953967D0F5044s1
http://refhub.elsevier.com/S0743-7315(21)00091-5/bibD8B7F98A7FD99FEBDF1953967D0F5044s1
http://refhub.elsevier.com/S0743-7315(21)00091-5/bibD8B7F98A7FD99FEBDF1953967D0F5044s1
http://refhub.elsevier.com/S0743-7315(21)00091-5/bib6514EC7FB9EEAC8B5789D02441463180s1
http://refhub.elsevier.com/S0743-7315(21)00091-5/bib6514EC7FB9EEAC8B5789D02441463180s1
http://refhub.elsevier.com/S0743-7315(21)00091-5/bib6514EC7FB9EEAC8B5789D02441463180s1
http://refhub.elsevier.com/S0743-7315(21)00091-5/bib4F45DCC4E8145E67524E8E7A95084C47s1
http://refhub.elsevier.com/S0743-7315(21)00091-5/bib4F45DCC4E8145E67524E8E7A95084C47s1
http://refhub.elsevier.com/S0743-7315(21)00091-5/bib4F45DCC4E8145E67524E8E7A95084C47s1
http://refhub.elsevier.com/S0743-7315(21)00091-5/bib4F45DCC4E8145E67524E8E7A95084C47s1
http://refhub.elsevier.com/S0743-7315(21)00091-5/bib4A69F40697985146B38DE28BE23D29B1s1
http://refhub.elsevier.com/S0743-7315(21)00091-5/bib4A69F40697985146B38DE28BE23D29B1s1
http://refhub.elsevier.com/S0743-7315(21)00091-5/bib4A69F40697985146B38DE28BE23D29B1s1
http://refhub.elsevier.com/S0743-7315(21)00091-5/bibC1FA775E48985831119CC2A5DDAC8E1Fs1
http://refhub.elsevier.com/S0743-7315(21)00091-5/bibC1FA775E48985831119CC2A5DDAC8E1Fs1
http://refhub.elsevier.com/S0743-7315(21)00091-5/bibC1FA775E48985831119CC2A5DDAC8E1Fs1
http://refhub.elsevier.com/S0743-7315(21)00091-5/bib5CE02EEFB91215039876296B10F1CEC0s1
http://refhub.elsevier.com/S0743-7315(21)00091-5/bib5CE02EEFB91215039876296B10F1CEC0s1
http://refhub.elsevier.com/S0743-7315(21)00091-5/bib5CE02EEFB91215039876296B10F1CEC0s1
http://refhub.elsevier.com/S0743-7315(21)00091-5/bibE6189651C736B82E19ECE52D9F96CB24s1
http://refhub.elsevier.com/S0743-7315(21)00091-5/bibE6189651C736B82E19ECE52D9F96CB24s1
http://refhub.elsevier.com/S0743-7315(21)00091-5/bib1E44634B0D22AF70B9D03328E2488F6Es1
http://refhub.elsevier.com/S0743-7315(21)00091-5/bib1E44634B0D22AF70B9D03328E2488F6Es1
http://refhub.elsevier.com/S0743-7315(21)00091-5/bib1E44634B0D22AF70B9D03328E2488F6Es1
http://refhub.elsevier.com/S0743-7315(21)00091-5/bib95A75CF6DCB3A5456E2ED72128C6C528s1
http://refhub.elsevier.com/S0743-7315(21)00091-5/bib95A75CF6DCB3A5456E2ED72128C6C528s1
http://refhub.elsevier.com/S0743-7315(21)00091-5/bib95A75CF6DCB3A5456E2ED72128C6C528s1
http://refhub.elsevier.com/S0743-7315(21)00091-5/bib3B373C4BA562B62C94AA85CCA0D5C0AEs1
http://refhub.elsevier.com/S0743-7315(21)00091-5/bib3B373C4BA562B62C94AA85CCA0D5C0AEs1
http://refhub.elsevier.com/S0743-7315(21)00091-5/bib3B373C4BA562B62C94AA85CCA0D5C0AEs1
http://refhub.elsevier.com/S0743-7315(21)00091-5/bib3B373C4BA562B62C94AA85CCA0D5C0AEs1
https://goo.gl/xUAq3r
https://goo.gl/xUAq3r
https://goo.gl/seikPf
http://refhub.elsevier.com/S0743-7315(21)00091-5/bib89B73E050DAF19A78EF11E3499149475s1
http://refhub.elsevier.com/S0743-7315(21)00091-5/bib89B73E050DAF19A78EF11E3499149475s1
http://refhub.elsevier.com/S0743-7315(21)00091-5/bib9160CE8C2B3D6AD5F9CE7CE7602FDE62s1
http://refhub.elsevier.com/S0743-7315(21)00091-5/bib9160CE8C2B3D6AD5F9CE7CE7602FDE62s1
http://refhub.elsevier.com/S0743-7315(21)00091-5/bib9160CE8C2B3D6AD5F9CE7CE7602FDE62s1
http://refhub.elsevier.com/S0743-7315(21)00091-5/bib301A98B9146859A6E7EE22AE4236ADA9s1
http://refhub.elsevier.com/S0743-7315(21)00091-5/bib301A98B9146859A6E7EE22AE4236ADA9s1
http://refhub.elsevier.com/S0743-7315(21)00091-5/bib301A98B9146859A6E7EE22AE4236ADA9s1
http://refhub.elsevier.com/S0743-7315(21)00091-5/bib9909A5FE292CD55C09E066121C393442s1
http://refhub.elsevier.com/S0743-7315(21)00091-5/bib9909A5FE292CD55C09E066121C393442s1
http://refhub.elsevier.com/S0743-7315(21)00091-5/bib9909A5FE292CD55C09E066121C393442s1
http://refhub.elsevier.com/S0743-7315(21)00091-5/bib2C2D8F2612D6A568C26BCDB9EAC74627s1
http://refhub.elsevier.com/S0743-7315(21)00091-5/bib2C2D8F2612D6A568C26BCDB9EAC74627s1
http://refhub.elsevier.com/S0743-7315(21)00091-5/bib2C2D8F2612D6A568C26BCDB9EAC74627s1
http://refhub.elsevier.com/S0743-7315(21)00091-5/bibBDEC66E9117F5FC08FCAB8DA2D62F8EBs1
http://refhub.elsevier.com/S0743-7315(21)00091-5/bibBDEC66E9117F5FC08FCAB8DA2D62F8EBs1
http://refhub.elsevier.com/S0743-7315(21)00091-5/bib5E5D36A56BA5574D6C519485AC0EFFD8s1
http://refhub.elsevier.com/S0743-7315(21)00091-5/bib5E5D36A56BA5574D6C519485AC0EFFD8s1
http://refhub.elsevier.com/S0743-7315(21)00091-5/bib7CD3D961C35C41412845BD746858BA5Fs1
http://refhub.elsevier.com/S0743-7315(21)00091-5/bib7CD3D961C35C41412845BD746858BA5Fs1
http://refhub.elsevier.com/S0743-7315(21)00091-5/bib7CD3D961C35C41412845BD746858BA5Fs1
http://refhub.elsevier.com/S0743-7315(21)00091-5/bib7CD3D961C35C41412845BD746858BA5Fs1
mailto:floor@unsl.edu.ar
mailto:gvcosta@unsl.edu.ar
http://hpc.isti.cnr.it/~nardini
http://hpc.isti.cnr.it/~nardini
http://hpc.isti.cnr.it/~raffaele
http://hpc.isti.cnr.it/~raffaele
http://hpc.isti.cnr.it/
http://hpc.isti.cnr.it/

	Efficient traversal of decision tree ensembles with FPGAs
	1 Introduction
	2 Related work
	3 Background: the QUICKSCORER algorithm
	4 Accelerator design exploration
	4.1 Architecture
	4.2 Design overview
	4.3 Implementation details

	5 Experimental assessment
	5.1 Experimental settings
	5.2 Results

	6 Conclusions and future work
	Declaration of competing interest
	Acknowledgments
	References

