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Abstract

Streaming applications come from various application fields such as physics, where data is continuously

generated and must be processed on the fly. Typical streaming applications have a series-parallel dependence

graph, and they are processed on a hierarchical failure-prone platform, as for instance in miniaturized

satellites. The goal is to minimize the energy consumed when processing each data set, while ensuring

real-time constraints in terms of processing time. Dynamic voltage and frequency scaling (DVFS) is used to

reduce the energy consumption, and we ensure a reliable execution by either executing a task at maximum

speed, or by triplicating it, so that the time to execute a data set without failure is bounded. We propose a

structure rule to partition the series-parallel applications and map the application onto the platform, and we

prove that the optimization problem is NP-complete. We design a dynamic-programming algorithm for the

special case of linear chains, which is optimal for a special class of schedules. Furthermore, this algorithm

provides an interesting heuristic and a building block for designing heuristics for the general case. The

heuristics are compared to a baseline solution, where each task is executed at maximum speed. Simulations

on realistic settings demonstrate the good performance of the proposed heuristics; in particular, significant

energy savings can be obtained.

1. Introduction

Streaming data is continuously generated from applications in high energy physics [1], astronomy [2] and

other scientific or industrial domains [3]. With the improvement of detector resolution, it is anticipated that

the data volume will dramatically increase. For instance, the advanced light-source facility could generate

1.9 PB data each year and at a rate of 20 GB/sec in the near future [4]. Such streaming applications, also

referred to as scientific workflows, are often represented as Directed Acyclic Graphs (DAGs). Indeed, the
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graph models the computation needs of tasks and dependencies among tasks [5]. Most of the workflows

corresponding to streaming applications exhibit a regular structure, such as linear chains, trees, fork-join

graphs, or general series-parallel graphs. For instance, most of the StreamIt benchmarks [6] are series-parallel

graphs. Hence, we focus in this work on series-parallel applications.

In this context, processing the data in real-time, so that a feedback with key information for decision

making can be obtained, usually requires a huge computing power. Hence, the use of large-scale hierarchical

platforms can help parallelize the processing of this streaming data in real time. The platform on which we

aim at executing such applications is a two-level platform, where cores are organized into computing blocks.

The challenge consists in mapping the application onto this hierarchical platform, so that each data set is

processed through each task without exceeding a given bound.

In order to succeed in finding such a mapping, a natural strategy consists in operating the platform at

the highest possible speed. This has the advantage of ensuring that the platform is reliable; even though a

few errors may strike the platform, a small percentage of failures is usually acceptable (we loose a very small

number of data sets). However, the drawback is that it leads to a high energy consumption, and this might

be critical for the target platform, as for instance satellites with a limited amount of energy.

Therefore, the objective is to minimize the energy consumption while ensuring a valid mapping (respecting

the bound on processing time). The energy consumption can indeed be reduced by using Dynamic Voltage

and Frequency Scaling (DVFS): by operating the cores at a lower frequency and voltage, we can reduce the

energy consumption required to complete a task. However, the use of lower voltages may result in an increased

arrival rate of transient faults [7, 8]. This is because modern processors used by streaming applications are

based on CMOS technology. Typically, a CMOS processor consists of billions of transistors, where one or

more transistors form one logic bit holding binary values of either 0 or 1. Due to physical phenomena such

as high energy cosmic particles or rays, the content of some logic bit can be flipped by mistake, resulting

in the notorious soft errors. Although checkpointing with rollback-recovery can mitigate the effects of soft

errors, the frequent utilization of such fault-tolerance mechanisms is time-consuming and not appropriate to

applications with real-time processing time constraints. Indeed, the unpredictable occurrences of soft errors

may result in severe temporal violations. Similar soft errors occur on Xilinx UltraScale and UltraScale+

devices using ARM Cortex-A53 processors, in particular in the field of miniaturized satellites [9, 10]. Indeed,

the use of radiation-hardened components is costly and difficult to implement, and it is necessary to protect

from such errors even with Error-Correcting Code (ECC) memory components [11]. In fact, it has been

shown that ECC only protects the integrity of the data stored in the SDRAMs and caches. Failures due to

space radiation may cause temporary or permanent failures of memory integrated circuits, regardless of the

memory technology used.
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In order to deal with such errors, we rather use the standard technique of task triplication: tasks that

are not executed at maximum speed, and hence subject to errors, are executed three times. Therefore,

errors can be detected and corrected with a majority voting. Triplication has a major advantage over task

duplication, which considers only two replicas: in task triplication, we do not need to recompute a task in

case of different outcomes of two replicas. This allows each task to have a constant processing time, which

is desirable for the steady-state scheduling of streaming applications. Recall that we take the standard

assumption that the reliability is high enough when tasks are executed at maximum speed. The target

optimization problem is therefore the following: the goal is to map a series-parallel streaming application

on a hierarchical computing platform, with the aim at minimizing the energy consumption, while respecting

constraints in terms of performance (the execution time should not exceed a prescribed bound), and of

reliability (each task should be either executed at maximum speed, or triplicated).

We summarize our major contributions below:

1. We propose a formal model for the multi-objective optimization problem. In particular, we introduce

a structure rule for simple and efficient mappings of series-parallel applications, we detail the reliability

and processing time constraints, and we explain how the energy consumption is computed.

2. We prove that the corresponding optimization problem, MinEnergy, is strongly NP-complete.

3. We design a dynamic programming approach for applications consisting in a simple linear chain of

streaming tasks, and prove the optimality of this approach for a particular class of schedules.

4. Building upon the dynamic programming algorithm, we design several mapping and scheduling heuris-

tics for the general case.

5. Extensive simulations on real applications with realistic settings show that our heuristics can achieve

energy savings without degradation of performance and reliability, as compared to running all tasks at

their maximum speed.

The rest of this paper is organized as follows. Related work is discussed in Section 2. Then, Section 3 for-

malizes both application and platform models and defines the MinEnergy optimization problem. Section 4

establishes the strong NP-completeness of MinEnergy. Section 5 presents a dynamic programming-based

solution for MinEnergy when dealing with linear chain applications, and Section 6 proposes heuristics for

general series-parallel graphs. Section 7 evaluates the proposed algorithms. Finally, Section 8 concludes the

paper and provides directions for future work.
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2. Related work

In recent years, the efficient parallel processing of streaming applications on hierarchical platforms has at-

tracted growing research interest. Considering the computation and communication costs of Directed Acyclic

Graphs (DAGs), Tang et al. [12] presented two heuristic strategies based on integer linear programming to re-

duce communication overhead and scheduling length. Flasskamp et al. [13] designed a performance estimator

embedded in the compiler to partition and map streaming applications. For a Multi-Processor System-on-

Chip (MPSoC) system consisting of a multi-core CPU and on-chip GPUs, Vilches et al. [14] introduced a

novel framework that can adaptively find the best mapping for multiple tasks to achieve better performance.

Under real-time requirements and mapping constraints, Onnebrink et al. [15] proposed a DVFS-based ef-

fective heuristic algorithm for heterogeneous MPSoC systems to optimize energy consumption. For a set

of periodic real-time tasks, Haque et al. [16] designed a static and dynamic two-stage algorithm to reduce

the concurrent execution of given task replicas and reduce energy consumption while meeting the given

reliability requirements. For heterogeneous real-time MPSoC systems, Zhou et al. [17] designed a two-stage

thermal-aware task allocation strategy to optimize energy consumption and peak temperature. Although

these works can effectively reduce energy consumption and improve performance, communication costs are

not taken into account.

Recently, a considerable number of researchers have focused on improving communication costs, which

is also a key factor in determining performance. Khandekar et al. [18] described an iterative algorithm that

partitions streaming application graphs to balance the load and minimize the communication costs. Yu

et al. [19] proposed a genetic algorithm to map a workflow onto utility grids to minimize execution time

under a given budget constraint. In [20], Huang et al. partitioned a task graph with cyclic dependencies

into parts, and mapped each part to a processor to achieve a balance between communication and workload.

Wieczorek et al. [21] evaluated the performance of three scheduling strategies for mapping scientific workflows

onto the grid, and the experimental results demonstrate that the HEFT algorithm is near-optimal for

balanced and unbalanced applications. For streaming applications in hierarchical MPSoC systems, Kelly

et al. [22] proposed a simulated annealing-based compiler to achieve better performance compared to the

most advanced partitioning algorithms. However, none of these studies consider both dependent tasks and

reliability requirements.

The optimization problem targeted in this paper is found for instance in the field of aboard satellites,

especially miniaturized satellites. Instead of using radiation-hardened components that can be costly and

without a prosperous software ecosystem, on-board computers use spatial redundancy of commercial off-the-

shelf processors to make the whole system fault-tolerant, powerful and energy-efficient. Fuchs et al. [9, 10]

investigated how to combine duplicating applications on independent cores, topological features, error correc-

tion coding and reconfiguration of MPSoC to achieve software-implemented fault-tolerance on a set of Xilinx
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UltraScale and UltraScale+ devices using ARM Cortex-A53 processors. Another example of application can

be found in [23], where the authors considered the reliability of avionic applications, based on redundancy

and partitioning principles of multi- or many-core processors. To validate the approach, they used a 256-core

commercially available processor as a test platform.

In this paper, we tackle the problem of streaming applications that would be executed on such failure-

prone hierarchical platforms, with the objective of minimizing the energy consumption under several con-

straints. To the best of our knowledge, this is the first attempt to address this problem.

3. Model

We first detail the application model in Section 3.1. We then describe the target computing platforms in

Section 3.2. The key to our approach is to partition the graph, while preserving its structure, as explained

in Section 3.3. Section 3.4 focuses on the errors and explains how the use of triplication helps dealing with

soft errors. The energy model is detailed in Section 3.5, and we introduce the target period (constraint on

execution time) in Section 3.6. Finally, we formalize the optimization problem in Section 3.7.

3.1. Applications

The application that is to be scheduled is a streaming application: it operates on a collection of data sets

that are executed in a pipelined fashion, as in typical workflow applications [24], for instance the StreamIt

benchmark [6]. The period of the application, which is the inverse of the throughput, corresponds to the

time interval between the arrival of two consecutive data sets. We assume that the period of the application

(or the throughput) is given by the application and must be enforced. This target period is denoted by Pt.

We consider applications represented as a series-parallel graph G = (V, E), or SPG, which is a very

common assumption for streaming applications. Several applications are even simpler and consist in a linear

chain of task. The nodes of the graph correspond to different application tasks, and they are denoted by Ti,

with 1 ≤ i ≤ n, where n = |V| is the size of the graph. For each precedence constraint in the application,

say from task Ti to task Tj , we have an edge Li,j ∈ E , and we say that Tj is a successor of Ti. Succ(i) is

the set of successors of Ti, hence j ∈ Succ(i) if and only if Li,j ∈ E . For 1 ≤ i ≤ n, wi is the computation

requirement of task Ti (in floating point operations), and for each Li,j ∈ E , with 1 ≤ i, j ≤ n, δi,j is the

volume of communication to be sent from Ti to Tj before Tj can start its computation.

An SPG is built from a sequence of compositions (parallel or series) of smaller-size SPGs, as illustrated

in Figure 1. The smallest SPG consists of two nodes connected by an edge. The first node is the source of

the SPG while the second is its sink. When composing two SPGs in series, we merge the sink of the first

SPG with the source of the second SPG. For a parallel composition, the two sources are merged, as well as

the two sinks. The source is also called a fork node, and the sink a join node.
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Data sets arrive at a prescribed rate Pt, i.e., a new data set enters the system every Pt time units, and

we must therefore be able to process at a throughput of at least 1
Pt
. We will further discuss how to compute

this processing rate in Section 3.6.

3.2. Platforms

The target computing platform consists of homogeneous cores, where each core can run at a different

speed, with a corresponding error rate and power consumption. We focus on the most widely used speed

model, the discrete model, where cores have a discrete number of predefined speeds, which correspond to

different voltages at which the core can be operating. Each core is operating at a constant speed; we assume

that we cannot change the speed of the core during the execution, but different cores may operate at different

speeds. The set of speeds is {smin = s1, s2, ..., sk = smax}.

The cores are organized by a hierarchical communication system: there are c blocks, with p computing

cores per block, hence a total of c× p cores. Within a block, the cores are tightly coupled by a low-latency

interconnect fabric. To have a system with hundreds of cores, blocks are connected by the next level network,

which contains the route-tables and network parity checking logic. Computation and communication can

hence process concurrently. The bandwidth between two cores in the same block (resp. in different blocks)

is denoted as β1 (resp. β2). Communication among cores in the same block is cheaper than that among

different blocks [25], i.e., β1 >> β2.

3.3. Graph partitioning and structure rule

In order to achieve load balance and save communication, the application is partitioned into several

connected parts. Tasks in a part are then allocated to the same core (and a core processes tasks from a

single part), hence there is no communication cost to pay between tasks in the same part.

For the ease of the communication pattern, since we consider series-parallel graphs (SPGs), we aim at

keeping the SPG structure when creating parts, hence the structure rule.

Definition 1 (Structure rule). A partition of the SPG follows the structure rule if and only if each part

consists either of (i) a single task, (ii) a subgraph that is itself an SPG, or (iii) several tasks or SP subgraphs

that share the same predecessor and successor (that is, a parallel composition of SP subgraphs).

T1 T2
δ1,2

SPG1: Simplest SPG

SPG2: Series composition of two SPG1s

T1 T2 T3

Parallel composition of two SPG2s,

in series with SPG1

T1

T3

T2

T4 T5

Figure 1: SPG examples.
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If we consider a simple linear chain with three tasks T1, T2, T3, that is, a series composition of these tasks,

to be mapped on two cores, this rule does not allow T1 and T3 to be mapped on the same core, while T2 is

on another core. Rather, we can either keep the three tasks on one core, or have two consecutive tasks on a

core and the third task on another core. For such linear chains, this is similar to interval mappings [24].

The rule for parallel compositions is slightly more intricate: consider for instance a simple fork-join with

source Tfork and sink Tjoin and inner tasks T1, . . . , Tk, as depicted on Fig. 2. Then, either all tasks of this

fork-join are in a same part, or Tfork and Tjoin must both be in different parts, and none of the inner tasks

T1, . . . , Tk can be in one of these two parts. However, several of them can be grouped in the same part, as

they share the same predecessor Tfork and the same successor Tjoin . For instance, T1 and T3 can be in the

same part, while all other tasks T2, T4, . . . Tk are in another part, as depicted in Fig. 2.

Tfork Tjoin

T1

T2

T3

T4
...

Tk

Figure 2: Fork-join graph and a partition following the structure rule.

A parallel composition of more complex subgraphs is depicted in Figure 3 between tasks T1 and T16.

In the proposed partition, two subgraphs of the parallel composition are grouped together (in the green

partition), which is allowed as they share the same predecessor T1 and successor T15. The other subgraph

of this parallel composition is split into two parts. One of them, including T2 and T3, is made of two tasks

sharing the same predecessor and successor, while the other one is a series-parallel subgraph. Note that, by

construction, each part of a partition following the structure rule has either a single source vertex and sink

vertex (i.e., in the cases (i) and (ii) of the definition), or it has a single predecessor and a single successor

(i.e., case (iii)).

T1

T10 T11 T12

T13 T14

T2

T3

T4

T8

T7

T6T5

T9

T15 T16

Figure 3: SPG partition following the structure rule.
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Notations. The set of task indices that are mapped onto a core v is denoted by Cv, and all these tasks

are executing at the same speed S(v). The set of indices of tasks that are mapped on a block d of cores is

denoted as ℓd. This set ℓd is the union of the Cv’s for all cores v in block d, i.e., ℓd = ∪v∈dCv.

The sets Sourcev (resp. Sinkv) represent the indices of the source vertices (resp. sink vertices) mapped

on core v. There is only one source and one sink, except for parallel SPGs mapped in a same part. We

define the set PredC v (resp. SuccC v), which contains the core indices on which there are tasks that send

outputs to tasks Ti, with i ∈ Sourcev (resp. receive inputs from tasks Ti with i ∈ Sinkv). By construction,

either there is only one source and one sink (i.e., |Sourcev| = |Sinkv| = 1), or there is only one predecessor

and successor task.

3.4. Soft errors and triplication

High performance computing platforms are subject to failures, and in particular transient errors caused

by radiation. We consider the use of DVFS (Dynamic Voltage and Frequency Scaling), hence it is possible

to decide at which speed a core is operating. However, a very small decrease of speed leads to an exponential

increase of failure rate [7, 8]. Indeed, radiation-induced transient failures follow a Poisson distribution, and

the fault rate is given by:

λ(s) = λ0e
d smax−s

smax−smin ,

where s ∈ [smin, smax] denotes the running speed, d is a constant that indicates the sensitivity to DVFS, and

λ0 is the average failure rate at speed smax. λ0 is usually very small, of the order of 10−5 per hour, and d is

usually set as 4 or 5 [26]. Therefore, we can assume that the application is reliable enough when running at

speed smax, and that there is no need of re-execution [27].

To save energy while having a reliable execution, we also propose a triplication of tasks: three copies

of the same task (or group of tasks) are run simultaneously, and a majority voting determines the correct

results. Such a scheme may fail only if two copies (among the three) fail simultaneously. For example, on

the processor used for the simulation (see Section 7), and when considering that the failure rate at maximum

speed is λ0 = 10−5 faults per hour, with d = 4, the failure rate at minimum speed is 5.46× 10−4 per hour.

As a result, the probability for at least two copies failing is: 3 × (5.46 × 10−4)2 = 8.94 × 10−7 failures per

hour, which is much smaller than the probability at maximum speed. We continue this example below to

show that, in some cases, triplication succeeds to reduce the energy consumption.

After a partition of tasks is done (following the structure rule), in order to have a reliable execution,

either we execute a whole part on a core at maximum speed without triplication (denoted by mi = 1 for

any task Ti in the part), or we triplicate the whole part on three different cores (denoted by mi = 3 for

any task Ti in the part). In the later case, the execution speed S(v) used by the three cores is set to the

minimum speed such that S(v)Pt ≥
∑

i∈Cv
wi, so as to minimize the energy cost while respecting the bound

on the period, Pt. We further enforce that these three cores must be in the same block, since they need to
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communicate, in particular to do the majority voting and decide which result is correct. Note that if a part

is triplicated, the majority voting occurs only for the last task of the part.

3.5. Energy

We follow a classical energy model, whose power estimation error in a case study is at most 9.4% on

average [15]. The energy consumption of executing a data item through all tasks is composed of both static

part and dynamic part: E = Es+Ed. The static component represents the idle leakage current consumption,

which is modeled as Es = Is × Vs × Pt × ca, where Is and Vs denote the leakage current and the minimum

possible voltage of a core, and ca denotes the actual number of cores used, since we assume that other cores

can be switched off. Since a data item arrives every Pt time units, the static energy is consumed during a

time Pt for each task, on each of the ca cores.

For a single execution of task Ti running at speed s(i), the dynamic component Ei
d is related to the

operating frequency and voltage, Ei
d = Cs3(i) × wi

s(i) = Cwis
2(i), in which C denotes the switching capaci-

tance. The supply voltage is scaled in almost linear fashion with the processing frequency [16]. After taking

triplication into consideration, the energy cost of the whole application on one data item is as follows:

E = IsVsPtca + C
∑

1≤i≤n

miwis
2(i),

where mi = 3 if Ti is triplicated, otherwise mi = 1. Following up with the previous example, we show that

triplicating a task may cost less energy than running it at the maximum speed. We use the values from

Section 7: smin and smax are 1GHz and 2.5GHz respectively, the static power is 0.02W, and C = 1. Assume

that the task’s computational requirement is 1.2 GFLOP and the period is 1.2 second (hence, the task can

be executed at speed smin within the target period of 1.2 second). The energy needed for triplicating the

task at speed smin is 3× (0.02+ 1.2× 12) = 3.66W , while running the task only once at speed smax requires

an energy of 0.02 + 1.2× 2.52 = 7.52W .

The energy cost of the communication cannot be neglected in our model. Within a block, communications

among processor cores are done through remote memory accesses. Communications between two cores of

different blocks are done through routers on the NoC. For a simple transfer of data on edge Li,j , the energy

cost can be represented by Ec(Li,j) = αi,jδi,j , where αi,j is the energy cost for a unit of data sending. This

cost αi,j depends on where tasks are located: if tasks Ti and Tj are allocated onto the same core, then

αi,j = 0; αi,j = α1 > 0 if tasks are allocated onto two cores of the same block; otherwise αi,j = α2, and

α1 < α2, see [28] for details.

Meanwhile, we need to consider the influence of triplication. Given Lij ∈ E such that αi,j ̸= 0, i.e., Ti

and Tj are mapped on different cores, the energy cost also depends on whether Ti and Tj are triplicated or

not. First, if Ti is triplicated, it does a majority voting before the communication occurs: two outputs from

two different cores need to be sent to a core in the same block, hence the energy cost is (mi−1)α1δi,j (hence
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this cost is null if mi = 1). Next, the communication between Ti and Tj must be done one or three times,

depending on whether Tj is triplicated or not, with a cost mjαi,jδi,j .

In total, the energy cost of the whole application on one data set is:

E = IsVsPtca + C
∑

1≤i≤n

miwis
2(i) +

∑
Li,j∈E|αi,j ̸=0

((mi − 1)α1δi,j +mjαi,jδi,j).

3.6. Timing definition and constraints

The actual time spent by tasks mapped on core v is:

T (v) = max
(∑

i∈Cv
wi

S(v)
+ (mi − 1)

∑
j∈Sinkv

∑
k∈Succ(j)

δj,k
β1

,

max
u∈SuccCv

∑
j∈Sinkv,k∈Sourceu

δj,k
βv,u

,

max
u∈PredCv

∑
j∈Sinku,k∈Sourcev

δj,k
βu,v

)
,

where βu,v = βv,u, since communication channels are symmetrical. Also, βu,v = β1 if u and v are on the

same block, otherwise βu,v = β2. If tasks in Cv are triplicated, then mi = 3, otherwise mi = 1.

The first term in the maximum is the execution time plus the time required for majority voting if tasks

are triplicated. In this case, two copies of all outputs from task Tj , with j ∈ Sinkv, need to be sent to a

core in the same block, since they are sent to the same place. The communication is sequentially executed

to avoid potential contention, thus the time needed is twice the time of a single transfer (mi − 1 = 2 in this

case). The second and third terms are the time needed to send and receive datasets.

The throughput of the application G is therefore constrained by the maximum time taken on a processor,

corresponding to the period of the mapping, and expressed as:

T (G) = max
1≤v≤c×p

T (v).

In order for the mapping to be valid, this period has to be smaller than or equal to the target period:

T (G) ≤ Pt.

3.7. Optimization problem

The objective is to minimize the expected energy consumption per dataset of the whole workflow, while

ensuring a reliable execution of the application. Hence, each task should either be executed at maximum

speed, or triplicated. The goal is therefore to decide which tasks to group in a same part, and then, for

each part, whether it is triplicated or not, on which core (or cores if triplicated) it is executed, and at which

speed. More formally, the problem is defined as follows:

Definition 2. (MinEnergy) Given a series-parallel graph composed of n tasks, a computing platform com-

posed of c blocks, each equipped with p homogeneous processor cores that can be operated with a speed within
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set S, an intra-block (resp. inter-block) communication bandwidth β1 (resp. β2, with β1 >> β2), and a

target period Pt, the goal is to partition the graph and decide, for each part, whether to triplicate it or not,

on which core(s) and at which speed it is executed, so that the total expected energy consumption is mini-

mized. There are two constraints: the actual period T (G) should not exceed the period bound Pt (to ensure

required performance), and each task is either executed at maximum speed or it is triplicated (to ensure

reliable execution).

4. Problem complexity

Similarly to existing partitioning problems, the MinEnergy optimization problem unsurprisingly turns

out to be NP-complete. We consider the decision version of MinEnergy, i.e., with a bound on the total

expected energy consumption. Then, we establish its NP-completeness as follows:

Theorem 1. The decision version of the MinEnergy problem is strongly NP-complete.

Proof. First, note that given a mapping of the tasks on the processors, it is possible to verify in polynomial

time that (i) each partition follows the structure rule, (ii) the constraint on the execution time is satisfied,

and (iii) the required energy of the mapping does not exceed the bound. Hence, the problem is in NP.

To prove the NP-hardness of the problem, we perform a reduction from 3-Partition, which is known to

be NP-complete in the strong sense [29]. We consider the following instance I1 of the 3-Partition problem:

let {a1, . . . , a3m} be 3m integers, and B be the integer such that
∑3m

i=1 ai = mB. We consider the variant

of the problem, also NP-complete, where ∀i, B/4 < ai < B/2. To solve I1, we need to answer the following

question: does there exist a partition of the ai’s in m subsets S1, . . . , Sm, each containing exactly 3 elements,

such that, for each Sk,
∑

i∈Sk
ai = B? We build the following instance I2 of MinEnergy: we consider a

fork-join graph as depicted in Figure 2, where wfork = wjoin = B, and wi = ai. The data carried by edges

are assumed of negligible size, and thus δi,j = 0 for all i, j ∈ E . We consider a platform with c = 1 block of

p = m + 2 processors, with a set of possible speeds reduced to a single one: smin = smax = 1. The target

period is Pt = B. Since we consider the decision version of MinEnergy, we set a bound on the energy:

E ≤ Is × Vs(m+ 2)B + C(m+ 2)B.

Assume first that there exists a solution to I1, i.e., that there are m subsets Sk of 3 elements with∑
i∈Sk

ai = B. In this case, we build the following mapping as a solution for I2: Tfork and Tjoin are each

mapped on a dedicated processor, while for each 1 ≤ k ≤ m, the three tasks Ti with i ∈ Sk are mapped on

a same processor (no triplication is used). Overall, the mapping uses m+ 2 processors. We verify that the

computation load of each processor is B, which ensures that both the period bound and the energy bound

are met. This mapping is similar to the one depicted in Figure 2 (with three tasks per part except for the

source and sink tasks), and therefore, it follows the structure rule.
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Reciprocally, assume that there exists a solution to problem I2, i.e., a mapping of tasks that respects

all bounds as well as the structure rule. We notice that the total computation load of (m + 2)B has to be

perfectly balanced on the m+2 available processors to reach the period bound B, and that no triplication is

possible. Hence, Tfork and Tjoin (each of computational weight B) must be mapped to dedicated processors,

while m processors are available to compute the Ti’s. Since wi > B/4, each processor can accommodate

at most 3 tasks. For each of these m processors P1, . . . , Pm, let Sk be the set of the indices of the 3 tasks

mapped on Pk. Thanks to the period bound, we know that
∑

i∈Sk
ai ≤ B. Finally, since

∑3m
i=1 ai = mB, we

have
∑

i∈Sk
ai = B. Hence, the subsets Sk (1 ≤ k ≤ m) provide a solution to I1. □

Since the problem is NP-complete, we first address the easier problem of linear chain applications in

Section 5, before designing heuristics for the general case in Section 6.

5. Dynamic programming on a linear chain

If the application is in the form of a linear chain, we propose a dynamic programming algorithm to solve

MinEnergy. According to the structure rule, the linear chain needs to be partitioned into sub-chains, each

of them being assigned to one or three distinct cores, depending whether the sub-chain is triplicated or not.

We further consider a contiguous allocation, where all cores from a same block are assigned to connected

sub-chains (forming together a larger chain).

We first describe the dynamic programming algorithm in Section 5.1. Next, we show through some

examples in Section 5.2 that it might not be optimal in some cases, since we focus on contiguous allocation.

However, we prove optimality of the dynamic programming algorithm for a special class of mappings, called

monotonic mappings, as shown in Section 5.3.

5.1. Dynamic programming (DP) formulation

Assume that we have c∗ ≤ c available blocks, where c∗ − 1 blocks are fully available (p cores available),

while the last block has p∗ ≤ p cores available. We recursively express the minimum energy cost of scheduling

tasks T1 to Ti onto these available cores, denoted as E(i, c∗, p∗). Either all the tasks form a single part, or

we create a part with tasks Tj+1, . . . , Ti and recursively partition the first j tasks.

Hence, E(n, c, p) is the minimum energy cost of scheduling all tasks, when all blocks and all cores are
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available. The recursion can be formulated as:

E(i, c∗, p∗) = min
{
Em(1, i, c∗, p∗),

Et(1, i, c
∗, p∗),

min
1≤j<i

{
E(j, c∗, p∗ − 1) + Ec(j, α1, β1, 1) + Em(j + 1, i, c∗, p∗),

E(j, c∗ − 1, p) + Ec(j, α2, β2, 1) + Em(j + 1, i, c∗, p∗),

E(j, c∗, p∗ − 3) + Ec(j, α1, β1, 3) + Et(j + 1, i, c∗, p∗),

E(j, c∗ − 1, p) + Ec(j, α2, β2, 3) + Et(j + 1, i, c∗, p∗)
}}

,

(1)

where Em(i, j, c∗, p∗) (resp. Et(i, j, c
∗, p∗)) is the energy cost of executing tasks between Ti and Tj included,

at the maximum speed (resp. triplicating the tasks) if there are c∗ blocks of cores available, the last one

having p∗ cores available. Hence, the two first lines represent the cases where all remaining tasks are mapped

as a single part, at maximum speed or triplicated. The third line aims at creating a part with tasks Tj+1

to Ti, and recursively mapping the j first tasks.

Ec(j, α, β,m) denotes the energy cost of transferring data of size δj,j+1 if Tj and Tj+1 are in different

parts: α is the energy cost of transferring a unit of data, and β is the bandwidth (these values depend on

whether tasks are in a same block or not), and m indicates whether task Tj+1 is triplicated (we pay the

communication either three times, or only once).

In the recursive formula E(i, c∗, p∗), we consider all possible situations: either the subchain T1, . . . , Ti is

mapped in a same part, at maximum speed or triplicated (two first lines), or we cut the chain after Tj . In

this case, tasks Tj+1, . . . , Tj are in a same part, triplicated or not, and we consider whether they are in the

same block as Tj or in a different block, hence resulting in four different cases.

It remains to express Em, Et, and Ec. For Em, we compute the energy cost as described in Section 3.5:

Em(i, j, c∗, p∗) =


+∞ if

∑
i≤k≤j wk > Ptsmax

or p∗ < 1 or c∗ < 1,

IsVsPt + Cs2max

∑
i≤k≤j wk otherwise.

(2)

Note that the energy cost is infinite if the period bound is not respected, or if there is no available core

(c∗ < 1 or p∗ < 1).

The expression of Et relies on ss, the minimum speed among speeds at which the execution time of tasks

between Ti and Tj is not larger than Pt (see Section 3.4). We add the energy cost of the majority voting

within the same block (2α1δj,j+1), see Section 3.5. The energy cost is infinite if there are less than three

cores available, or no block left, or if the period bound cannot be matched:
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Et(i, j, c
∗, p∗) =


+∞ if

∑
i≤k≤j wk > Ptsmax

or p∗ < 3 or c∗ < 1,

3(IsVsPt + Cs2s
∑

i≤k≤j wk) + 2α1δj,j+1 otherwise.

(3)

Finally, for Ec, the energy cost is infinite if the communication time is larger than the period, otherwise

it is computed as indicated in Section 3.5:

Ec(j, α, β,m) =

+∞ if δj,j+1 > βPt,

mαδj,j+1 otherwise.

(4)

5.2. Examples where DP is not optimal

In this section, we provide an example to show that the method proposed above is not optimal, because

of the contiguous assignment of blocks. Consider a platform with c = 2 blocks, each with p = 4 cores. Each

core can run at a speed in set S = {1, 2, 4}, with the corresponding operating voltage in set V = {1, 2, 4}.

The characteristics of on-chip communications are given by α1 = 1, α2 = 2 (energy cost) and β1 = 2, β2 = 1

(bandwidth). The static energy cost of a core of a period is 1Pt (i.e., IsVs = 1), and the constant C is set

to 1. The application is a linear chain with four tasks, the task weights of T1 to T4 are {4, 4, 1, 1} respectively,

and the sizes of all edges are 0.1. The period bound is Pt = 1.

The optimal partition and mapping, as shown in Fig. 4a, is creating one part per task (a communication

is done between each task). The first two tasks are running at the maximum speed and are mapped onto

two different blocks, each on a core. The third and fourth tasks are triplicated, they both run at speed 1

and are mapped onto two different blocks, each task on three cores. T2 and T3 are mapped onto the same

block. Then, the energy cost is 137.1 (energy costs of running tasks are 64.1, 64.1, 3.9, 3.9 for T1 to T4, and

communication energy costs are 0.2, 0.3, 0.6 between tasks).

T1 T4

T4T4

T1 T2 T3 T4

T2 T3

T3 T3

(a) The optimal mapping.

T1 T2

T1 T2 T3 T4

T3 T4

T4 T4

(b) Mapping returned by DP.

Figure 4: Example where DP is not optimal. Red tasks are executed at the maximum speed, while green tasks are triplicated
and run at speed ss.
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The optimal partition and mapping proposed above is not a contiguous allocation, and hence it will not

be considered by the dynamic programming algorithm. Indeed, since the triplication of T4 uses 3 cores, if T3

is triplicated as well, it has to move to another block, and the core available in the block with T4 will never

be used. Hence, there is no core left for T1 (indeed, T2 and T1 cannot be in a same part without exceeding

the period bound). The minimum energy cost by the dynamic algorithm is 148.4, which is larger than 137.1.

As shown in Fig. 4b, it is obtained by having T1 and T2 in the first block, T3 and T4 in the second block,

and by triplicating T4 only.

There are even cases where no contiguous allocation is possible, and hence the dynamic programming

algorithm fails at finding a valid mapping. Consider for instance a linear chain application with eight tasks,

all having weight 4, edges between T2 and T3, T6 and T7 have size 1, other edges have size 2. Other

configurations are the same as before. Each task should be mapped onto a different core and operated at

maximum speed. Tasks between T3 and T6 (both included) should be mapped onto the same block, otherwise

the communication time between them will exceed the period. Hence, the dynamic programming algorithm

cannot find a solution.

5.3. Condition for optimality

We first define a special class of mappings: if the indices of blocks where tasks are mapped are monoton-

ically increasing with the task indices (tasks T1, . . . , Tn), the mapping is said to be monotonic:

Definition 3 (Monotonic mapping). In a monotonic mapping, for any tasks Ti and Tj with 1 ≤ i < j ≤ n,

and blocks d and f such that i ∈ ℓd and j ∈ ℓf , then d ≤ f .

We prove that the dynamic programming algorithm (computing E(n, c, p)) returns an optimal monotonic

mapping, even though there might be a better non-monotonic mapping as highlighted in Section 5.2.

Lemma 1. The previous dynamic program returns a mapping whose energy cost is minimal among mono-

tonic mappings.

Proof. We prove that for any i, c∗, p∗ with 1 ≤ i ≤ n, 0 ≤ c∗ ≤ c, 0 ≤ p∗ ≤ p, E(i, c∗, p∗) finds a mapping

whose energy cost is minimal among monotonic mappings. In particular, E(n, c, p) hence returns an optimal

monotonic mapping. The proof is done by induction.

We first prove that for an application composed of a single task T1, the solution given by the formula

is optimal. We have E(1, c∗, p∗) = min(Em(1, 1, c∗, p∗), Et(1, 1, c
∗, p∗)), hence the solution returned is the

minimum between the energy cost of running T1 at the maximum speed, and that of triplicating T1 at

speed ss. Since cores and blocks are homogeneous, the mapping can be done on any core for the same

energy, and we consider all possibilities hence obtain the optimal mapping.
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Next, we assume that for applications that have at most k tasks, k ≤ i−1, E(k, c∗, p∗) returns an optimal

monotonic solution (for any c∗ ≤ c and p∗ ≤ p). Then, we need to prove that E(i, c∗, p∗) is optimal among

monotonic mappings for applications that have i tasks with c∗ block, and p∗ cores available on the last block.

We consider an optimal monotonic mappingMopt. If there is a single part in this optimal mapping (i.e., all

tasks are mapped on a single core or on three cores), then the solution either triplicates this part, or executes it

at maximum speed, which corresponds to the two first lines of the DP, and hence E(i, c∗, p∗) ≤ Eopt, proving

the optimality of DP.

Otherwise, we assume that the last edge separating tasks mapped on different cores is Lj,j+1 (with

1 ≤ j ≤ i − 1). Therefore, tasks from Tj+1 to Ti form a part that is mapped on one or three cores. The

energy cost of this mapping is Eopt. We assume that task Tj is assigned to block ct (ct ≤ c∗), and tasks

T1, . . . , Tj use pt cores on this block. The energy cost of tasks T1, . . . , Tj in Mopt is denoted by Eleft , and by

induction, since the mapping returned by E(j, ct, pt) is optimal, we have Eleft ≥ E(j, ct, pt).

Since the mapping is monotonic, in Mopt, tasks Tj+1 to Ti can use only a block with index higher than

or equal to ct. We then consider the different ways these tasks can be mapped.

• If Tj+1 to Ti are running at the maximum speed on a core of block ct, assuming p − pt ≥ 1 (or

p∗ − pt ≥ 1 if ct = c∗), then the energy cost of this part is Em(j + 1, i, c∗, p∗). The communication

energy cost between Tj and Tj+1 is Ec(α1, β1, δj,j+1, 1). In total, the energy cost of the application is

Eleft + Ec(α1, β1, δj,j+1, 1) + Em(j + 1, i, c∗, p∗).

• If Tj+1 to Ti are running at the maximum speed on a core of a block cr, with ct < cr ≤ c∗, then the

energy cost of this part is Em(j + 1, i, c∗, p∗). This can happen if ct < c∗, and if cr = c∗, we also must

have p∗ ≥ 1 (at least one core available on a block to the right of ct). In this case, the communication

energy cost between Tj and Tj+1 is Ec(α2, β2, δj,j+1, 1). In total, the energy cost of the application is

Eleft + Ec(α2, β2, δj,j+1, 1) + Em(j + 1, i, c∗, p∗).

• If tasks Tj+1, . . . , Ti are triplicated on block ct (if there are at least three cores available), we obtain

similarly a total energy cost Eleft + Ec(α1, β1, δj,j+1, 3) + Et(j + 1, i, c∗, p∗).

• If tasks Tj+1, . . . , Ti are triplicated on block cr, with ct < cr ≤ c∗, with at least three cores available

on this block, then we have Eleft + Ec(α2, β2, δj,j+1, 3) + Et(j + 1, i, c∗, p∗).

These are the only possibilities for mapping tasks Tj+1, . . . , Ti, hence the optimal solution consists of one

of the four cases above. These cases are exactly the ones considered in the DP formulation, and DP selects

the choice with minimum total energy. Furthermore, recall that by induction, Eleft ≥ E(j, ct, pt). Finally,

since cores and blocks are homogeneous, DP will return a mapping that does not use more energy than the

optimal one. □
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6. Heuristics for series-parallel graphs

For general series-parallel graphs, we first propose a naive baseline heuristic in Section 6.1, which will

be used to evaluate the performance of the proposed sophisticated heuristics. The other heuristics use a

two-step approach to map the SPG onto the platform. The first step is to partition the graph into parts, and

the second step consists in mapping these parts onto the computing resources. In Sections 6.2 and 6.3, we

propose two heuristics that focus on partitioning the graph into parts, and select the most energy efficient

way of execution (maximum speed vs triplication), while the baseline heuristic executes all tasks at maximum

speed. The mapping heuristic is described in Section 6.4.

6.1. Baseline heuristic – MaxS

We first outline a baseline heuristic, MaxS, that will serve as a basis for comparison. Each task is

executed at the maximum speed smax, and then tasks are greedily mapped to cores. A set L stores a depth-

first traversal of G. At each step, we pop up the first node from L and map it onto current core v until the

total workload on v,
∑

i∈Cv
wi, is larger than Ptsmax. To respect the structure rule, if the node is a fork, we

map the whole fork-join onto the current core, otherwise if the workload is already too large, we map the

fork onto the current core, and its successors onto other cores. We first use all cores of the current block

before using cores of the next block.

Algorithm 3 describes this heuristic; it is calling the procedures from Algorithms 1 and 2. We start from

the last core p on the last block c, and move to the next core on the same block if it has any, otherwise we

move to the core p on block c− 1.

Algorithm 1 NextCore(c∗, p∗)

1: if p∗ > 1 then
2: p∗ ← p∗ − 1;
3: else if c∗ > 1 then
4: c∗ ← c∗ − 1, p∗ ← p;
5: else
6: return < 0, 0, ∅ >;
7: end if
8: return < c∗, p∗, ∅ >;

Algorithm 2 MapNodesOn(Ti, Tj , c, v)

1: for all nodes Tk from Ti to Tj do
2: set mk ← 1;
3: put Tk into Cv;
4: map Tk onto block c and core v;
5: end for
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Algorithm 3 MaxS(G, c, p, Pt)

1: L← a depth-first traversal of G;
2: b← c; v ← p; Cv ← ∅; Tmapped ← L[1];
3: while L is not empty do
4: Ti ← pop up the first element of L;
5: if Cv ̸= ∅ then
6: if Ti is not a successor of Tmapped or Tmapped is a fork then
7: < b, v, Cv >← NextCore(b, v, Cv);
8: if b < 1 then return fail;
9: end if

10: end if
11: if Ti is a fork node then
12: w ← sum of weight of all nodes of fork-join of Ti;
13: if w +

∑
j∈Cv

wj > Ptsmax then
14: if wi +

∑
j∈Cv

wj > Ptsmax then
15: < b, v, Cv >← NextCore(b, v);
16: if b < 1 then return fail;
17: end if
18: MapNodesOn(Ti, Ti, b, v);
19: Tmapped ← Ti;
20: else
21: Tj ← join of fork-join of Ti;
22: MapNodesOn(Ti, Tj , b, v);
23: Tmapped ← Tj ;
24: remove nodes of fork-join of Ti from L;
25: end if
26: else
27: if Ti is a join node then
28: < b, v, Cv >← NextCore(b, v);
29: end if
30: if wi +

∑
j∈Cv

wj > Ptsmax then
31: < b, v, Cv >← NextCore(b, v);
32: end if
33: if b < 1 then return fail;
34: MapNodesOn(Ti, Ti, b, v);
35: Tmapped ← Ti;
36: end if
37: end while
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6.2. Partitioning heuristic – GroupCell

Heuristic GroupCell partitions the graph in a bottom-up way. It first breaks all edges, except (i) edges

with a large communication cost, which cannot be done within the period, i.e., such that δi,j ≥ β1Pt; and

(ii) all edges in a parallel composition when one of the fork’s output edges or join’s input edges is too large.

Indeed, according to the structure rule, edges inside this parallel composition should not be broken. For each

resulting part, the most energy-efficient choice between running at maximum speed or triplicating is selected.

Parts stored in vector Vmaxs are those that are supposed to run at the maximum speed, while others that are

supposed to be triplicated are in Vtrip. For two neighbor parts, if they are both in Vmaxs, merging them will

save the communication cost. We hence merge parts in Vmaxs if they are neighbors and if the merged part

fits within the period bound. In this process, we respect the structure rule, i.e., the resulting part should be

either an SPG or a combination of parallel branches (see Section 3.3 for details). If the number of processors

requested for the whole graph then exceeds the capacity, we merge parts in Vtrip, starting with the one with

largest input edge weight. This heuristic is described in Algorithm 4.

Algorithm 4 GroupCell(G, c, p, Pt)

1: parts ← break all edges except the one whose δi,j > β1Pt;
2: Vmaxs ← parts in parts for which running at the maximum speed costs less energy than triplication;
3: Vtrip ← parts\Vmaxs;
4: sort Vmaxs by an non-increasing order of input edge size;
5: for i = 1 to i = |Vmaxs| do
6: if part Vmaxs[i]’s predecessor is also in Vmaxs then
7: if sum of weight of Vmaxs[i] and its predecessor ≤ Ptsmax then
8: restore the broken edge between Vmaxs[i] and its predecessor;
9: replace Vmaxs[i] by the combination of Vmaxs[i] and its predecessor;

10: end if
11: end if
12: end for
13: sort Vtrip by an non-increasing order of input edge size;
14: while |Vmaxs|+ 3|Vtrip| > cp do
15: part ← pop up the first element of Vtrip;
16: merge part into its predecessor;
17: end while
18: for all part in Vtrip do
19: move it into Vmaxs if running at the maximum speed costs less energy;
20: end for
21: for all tasks Ti in Vmaxs do
22: set mi = 1;
23: end for
24: for all tasks Ti in Vtrip do
25: set mi = 3;
26: end for
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6.3. Partitioning heuristic – BreakFJ-DP

This second partitioning heuristic builds upon the dynamic programming algorithm that was designed

for linear chains. It partitions the graph in a top-down way. First, BreakFJ-DP breaks all input edges of

join nodes and output edges of fork nodes so that resulting parts are either linear chains or single nodes.

Dynamic programming algorithm from Section 5 is then called on each of them with the same number of

cores and blocks given as BreakFJ-DP.

Note that on a linear chain application, BreakFJ-DP is similar to calling the dynamic programming

algorithm on the whole chain, except that mapping the parts to the cores is not done in the dynamic program

but in a second step, using the mapping heuristic. This heuristic is detailed in Algorithm 5.

Algorithm 5 BreakFJ-DP(G, c, p, Pt)

1: set L← all fork and join nodes of G;
2: Parts ← break output edges of fork and input edges of join in L;
3: C ← ∅; /*edges broken*/
4: repeat
5: part ← pop up the first element of Parts;
6: < i, j >← source node and sink node of part ;
7: < E,Ccur >← DP(i, j, c, p);
8: if E == +∞ then
9: return failure;

10: end if
11: C ← C ∪ Ccur;
12: until Parts is empty

6.4. Mapping heuristic

Once a partition has been returned by GroupCell or BreakFJ-DP, one still needs to map the parts

onto the cores. The mapping heuristic first maps parts that need to communicate a large amount of data onto

a same block, whenever possible. In a second step, the remaining parts are mapped to the cores following

the topology of the graph: a depth-first traversal of the parts is created, and parts are mapped in this order

to the available cores. If available cores on the current block are not enough for mapping the current part,

then starting using cores from a new block. Some parts may be merged into its predecessor or its parallel

part when there are no available cores.

MapRank is the mapping heuristic that considers mapping first parts that are connected by edges of

size δi,j > β2Pt. A part may have more than one large edge, so parts connected by these edges should all be

mapped onto the same block. They are represented as vectors of set L in the first for loop of MapRank.

Parts in the same vector should be mapped onto a same block. If the number of processors needed by

a group exceeds the capacity p, we select the part with the smallest computation weight and execute it

at the maximum speed on one processor. This process is repeated until the requirement fits the capacity.

According to their demand, parts are sequentially assigned to processors |Sets[bcur]|, |Sets[bcur]|+ 1 and so
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Algorithm 6 MapRank(G, C)

1: bcur ← c; L← ∅;
2: construct quotient graph Q by breaking edges in C;
3: initialize Sets with c empty vectors;
4: C ′ ← edges of Q whose δi,j > β2Pt;
5: for i = 1 to i = |C ′| do
6: < Tp, Ts >← nodes connected by edge C ′[i];
7: if Tp is in L but not Ts then
8: push Ts into the same vector as Tp;
9: end if

10: if Ts is in L but not Tp then
11: push Tp into the same vector as Ts;
12: end if
13: if neither Tp nor Ts is in L then
14: initialize a vector with them, push it into L;
15: end if
16: end for
17: while L ̸= ∅ do
18: vec← pop up the first vector of L;
19: nbr ←

∑
i∈vec mi; /*cores requested*/

20: if nbr > p then
21: sort vec by an non-decreasing order of weight;
22: idx← 1;
23: while nbr > p do
24: set the node vec[idx] to run on only one core;
25: idx← idx+ 1; recaculate nbr;
26: if idx > |vec| then return failure;
27: end while
28: end if
29: if p - |Sets[bcur]| < nbr then bcur ← bcur − 1;
30: for i = 1 to i = |vec| do
31: if node vec[i] needs 3 processors then
32: push it into vector Sets[bcur] three times;
33: else
34: push it into vector Sets[bcur];
35: end if
36: end for
37: end while
38: MapTopology(Q,Sets);
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on. MapTopology is called afterwards to map the remaining parts in a sequential order. The MapRank

algorithm is detailed in Algorithm 6.

InMapTopology (see Algorithm 7), a part is at first mapped onto the same block as its first predecessor,

if it is possible. Otherwise, it is mapped onto the block with the closest index that has enough cores. If the

input edge is too large to communicate between two blocks, and current block does not have enough cores,

MapTopology first tries to move some parts already mapped onto the current block to the next block,

and then continues the mapping from the next block. If it fails, MapTopology then merges linear chains

already mapped from the smallest size until there is enough space.

Algorithm 7 MapTopology(Q,Sets)

1: L← a depth-first traversal of Q;
2: repeat
3: Ti ← pop up L; b← c;
4: if Ti has not been mapped yet then
5: if Ti has a predecessor then
6: bcur ← which block the first predecessor of Ti mapped onto;
7: end if
8: if p− |Sets[b]| < mi and the size of first input edge is larger than β2Pt then
9: h← the index such that all input edges of Sets[b][h] are not larger than β2Pt;

10: if h exists and b > 1 then
11: move elements between Sets[b][h] and the end of Sets[b] to Sets[b− 1];
12: b = b− 1;
13: else
14: while p− |Sets[b]| > mi do
15: partj ← the smallest part of Sets[b] who has only one predecessor that is not a fork;
16: merge partj to its predecessor and remove partj from Sets[b];
17: end while
18: end if
19: end if
20: while p− Sets[b] ≥ mi and b > 1 do
21: b = b− 1;
22: end while
23: if mi == 3 and p− |Sets[b]| ≥ 3 then
24: put parti into Sets[b] three times;
25: else
26: put parti into Sets[b];
27: end if
28: end if
29: until L is empty
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7. Experimental evaluation of the heuristics

In this section, we evaluate all proposed algorithms through extensive simulations on real applications.

For reproducibility purposes, the code is available at github.com/gouchangjiang/Stream HPC.

7.1. Simulation setup

We use a benchmark proposed in [6] for testing the StreamIt compiler. It collects a wide spectrum

of applications from various representative domains, such as video processing, audio processing and signal

processing. The stream graphs are mostly parametrized, i.e., graphs with different lengths and shapes can

be obtained by varying the parameters. Here, 44 applications are selected, in which 10 of them are linear

chains, and the list of applications with their main parameters is available in Table 1.

We base the platform parameters on the characteristics of the ARM’s Cortex-A15 Processor [30, 31]: the

possible core frequencies (GHz) are {smin = 1, 1.4, 1.5, 1.8, 2, 2.5 = smax}, and the idle power of each core

is 0.02W. The Cortex-A15 is a multi-core processor, which can have up to 4 blocks, and each block has

up to 4 cores. Numerous SoCs from mobile products, such as Samsung Exynos series, HiSilicon K3V3 and

Texas Instruments Sitara feature Cortex-A15 cores [32]. Some other Cortex-A series processors can have

up to 8 cores per block, and according to the target applications, a SoC can have several (different) ARM

processors. Furthermore, some SoCs for multimedia or avionic applications on embedded systems can have

up to 16 × 16 cores: 16 blocks, each with up to 16 cores [33], or a combination of 2 blocks, each with 32

cores [34]. Hence, we consider in this section a computing system that has up to 4 blocks, with up to 64

cores in each block. To simulate applications with various communication to computation ratios (CCRs),

we choose three values of β1, leading to a CCR (defined as the total time spent on communications over the

total time spent on computations) of 10−4, 10−3, or 10−2, while β2 = β1/16. We do not set the units of

the edge sizes in Table 1 and bandwidth since we focus on the CCR. The parameters α1 and α2 are set to

0.05W and 0.2W respectively. Finally, the switching capacitance C is set to 1.

For each application, we set the period bound Pt = a+ κ(b− a). The value of a is set to the minimum

time spent on a task or a data transfer at speed β1 (a = max(wi/smax,min(δi,j/β1))), which corresponds to

a very tight period bound. On the contrary, b is set to the maximum time needed to process all tasks on a

core at the minimum speed or a data transfer at speed β2 (b = max(
∑

1≤i≤n wi/smin, δi,j/β2), corresponding

to a very loose period bound. We set κ to values from 0.1 to 0.9, with an increment of 0.1. Note that it may

happen that an application cannot meet the period bound, for instance if an edge between two tasks and

the sum of computation cost of these tasks both cannot fit within Pt. In that case, all heuristics will fail to

produce an appropriate mapping. Results on the number of such failures are depicted in Section 7.2.2. For

the other results, we select a subset of applications on which all considered heuristics succeed to produce a

mapping, and we plot the average result of the heuristics on this common subset.
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Name Nb
Nodes

Nb
Edges

Max
De-
gree

Max Node
Weight

Min
Node
Weight

Max
Edge
Size

Min
Edge
Size

Chain

B10cholesky 80 95 2 9088 8 136 1
B11CP 22 38 17 272 96 257 1
B13DCT 66 80 2 240 12 16 2
B13GPP 214 313 32 36771 3 1344 1
B14DCT2D 86 108 4 128 12 16 2
B15DCT2D 24 38 8 4864 384 64 8
B16DES 197 229 2 1024 192 96 32
B19FFT 13 13 1 2464 632 128 128 T
B20FFT 283 469 32 4035 4 128 4
B22FFT 50 62 2 448 192 2 1
B25FMRadio 43 54 6 1434 8 60 1
B27fliterbank 85 100 8 11312 6 64 1
B280211a 132 177 12 44928 6 1728 1
B36IDCT 97 128 8 128 12 8 1
B37IDCT2D 110 140 4 128 12 8 1
B38IDCT2D 24 38 8 4864 384 8 1
B39IDCT2D 4 4 1 1576 1104 1 1 T
B3audiobeam 20 34 15 140 22 15 1
B40IDCT2D 22 36 8 138 138 8 1
B41insertionsort 6 6 1 745 96 1 1 T
B44lattice 46 55 2 29 6 2 1
B45matrixmult 43 63 9 27648 72 468 12
B46matrixmult 54 93 12 3528 72 2592 9
B47mergesort 31 38 2 208 96 16 2
B49mp3 180 295 32 414144 96 9216 16
B4autocar 12 19 8 579 48 32 1
B50MPD 165 211 32 3274750 259 140 0
B53OFDM 16 19 4 181500 24 3300 0
B54oversampler 10 10 1 11360 11 16 1 T
B56Radar 53 67 12 5076 332 12 0
B57radixsort 13 13 1 208 96 1 1 T
B58ratecovert 5 5 1 19836 32 2 0 T
B5bitonicsort 6 6 1 265 96 16 16 T
B60raytracer2 5 5 1 473 8 1 1 T
B61SAR 44 45 2 6541490000 3 167316 1
B63serpent 234 267 2 3336 68 256 4
B64TDE 29 29 1 36960 12840 1920 1080 T
B65targetdetect 12 15 4 3306 8 4 1
B66vectadd 6 7 2 10 6 2 1
B67vocoder 116 151 15 9105 6 60 1
B6bitonicsort 170 240 8 126 14 16 2
B7bitonicsort 152 201 8 128 6 16 1
B8bubblesort 18 18 1 23 6 1 1 T
B9channelvocoder57 73 16 65055 251 1 0

Table 1: Parameters of the streaming applications. The unit of nodes’ weight is GFLOP.
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7.2. Simulation results

We first plot the number of cores that are used by the heuristics. Next, we report the percentages of

failure cases of the heuristics, i.e., cases where heuristics do not succeed to find a valid solution, because

some constraints could not be respected. We then present the key results, which are the energy costs of the

heuristics as a function of the parameters. Finally, we report the execution time of the heuristics.

7.2.1. Minimum number of cores requested by the heuristics

After removing the cases where a heuristic does not find a valid solution, given a number of blocks and

cores, Fig. 5 shows the minimum number of cores on a block requested by each heuristic, with various number

of blocks provided, where κ is set to 0.5, which corresponds to a median value. This provides information

whether some heuristics need more cores than others to be able to provide a valid solution.
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Figure 5: Number of cores requested by each block with different CCRs and number of blocks provided.
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On linear chains, as shown in Fig. 5a, dynamic programming (denoted as DP), MaxS as well as

BreakFJ-DP have the same performance, they require the least number of cores, one core for all cases.

GroupCell requires on average 2.51 times more cores than DP.

On general SPGs, as shown in Fig. 5b, BreakFJ-DP uses far more cores than GroupCell and MaxS.

For instance, with CCR=10−3, BreakFJ-DP uses 39 times more cores than GroupCell on average.

GroupCell requests 2 cores on average. Similarly as for linear chains, MaxS requests only one core in all

cases.

7.2.2. Failure cases

We report percentage of failure cases in Figures 6 and 7. Recall that, in total, there are 34 general SPGs

and 10 linear chains. On linear chains (Fig. 6), GroupCell fails far more than the other heuristics, in

particular with few cores per blocks, cheap communication costs, or a loose period bound. However, the

other heuristics have very few failure cases. MaxS, BreakFJ-DP and DP never fail, except in some cases

where the period bound is very tight (κ = 0.1), with two blocks and two or more cores per block.

The percentages of failure cases on general SPGs are shown in Fig. 7. BreakFJ-DP is the heuristic

that fails the most, since it requests more cores. When communications are not so expensive (CCR=10−4

or 10−3), the percentage of failure cases of BreakFJ-DP is around 69% with 16 cores per block, and it

decreases to 47% with 32 cores, and then to 21% with 64 cores. The same happens for the other heuristics:

if there are more cores on a block, the heuristics fail on fewer applications. Even with a tight communication

bandwidth (CCR=10−2) and a tight period bound (κ ≤ 0.2), less than 50% of the applications fail when

using GroupCell. Here again, MaxS has very few failure cases.

Note that a failure means that the heuristic does not succeed in finding a mapping of the application

such that all constraints are respected. One should then consider increasing the platform bandwidth if the

application has high communication requirements, or relaxing the bound on the period.

7.2.3. Energy cost

Figures 8 and 9 depict the energy cost as a function of κ, where a smaller κ represents a tighter period,

with different number of blocks and cores given. The value κ = 0.5 represents a median period bound

between the tightest one a and the loosest one b.

We first focus on linear chains, see Fig. 8. Recall that there are ten linear chain applications, and we

consider a platform with two blocks. BreakFJ-DP and DP always return the same result. We do not

consider two cores per block, since there were too many failures (see Figure 6a). When there are four cores

per block (Fig. 8a), all 10 applications are included. BreakFJ-DP (resp. GroupCell) reduces the energy

cost by 42% (resp. 28%) average compared to MaxS, and around 52% (resp. 49%) when communications

are expensive. As expected, the algorithm building on the dynamic programming formulation produces very

good results, even though it restricts to contiguous mappings. With more cores (8 cores per block, see
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(a) Linear chains. 2 blocks, each with 2 cores provided. BreakFJ-DP and DP are covered by MaxS.
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(b) Linear chains. 2 blocks, each with 4 cores provided. BreakFJ-DP and DP are covered by MaxS.
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(c) Linear chains. 2 blocks, each with 8 cores provided. BreakFJ-DP and DP are covered by MaxS.

Figure 6: Percentage of failure cases on linear chains as a function of κ.
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(a) General SPGs. 4 blocks, each with 16 cores provided.
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(b) General SPGs. 4 blocks, each with 32 cores provided.
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(c) General SPGs. 4 blocks, each with 64 cores provided.

Figure 7: Percentage of failure cases on general SPGs as a function of κ.
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(a) BreakFJ-DP and DP give the same results, hence only DP is visible, 2 blocks, each with 4 cores provided.
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(b) BreakFJ-DP and DP give the same results, hence only DP is visible, 2 blocks, each with 8 cores provided.

Figure 8: Energy consumption on linear chains relative to MaxS as a function of the period bound tightness κ.

Fig. 8b), the ranking of heuristics is the same. BreakFJ-DP and GroupCell reduce the energy cost by

49% and 32% respectively on average compared to MaxS. For CCR=10−3 and 10−2, eight applications are

included. However, note that when CCR=10−4, the results only include one application out of ten. Indeed,

for these applications, GroupCell creates five parts to be triplicated (hence requesting a total of 15 cores,

less than the total of 2× 8 = 16 cores), but does not account for the fact that only 4 parts can be triplicated

on the platform. Indeed, recall that triplication cannot be shared between two blocks. Hence, surprisingly,

GroupCell has more failures than with fewer cores, where less parts are generated.

The gains are also very impressive for general SPGs, see Fig. 9. We now consider a platform with four

blocks. With 64 cores per block (Fig. 9c), both heuristics save more than 41% of energy cost in all settings,

with BreakFJ-DP being slightly better by at least 2.4% in most cases. 23, 21, and 20 applications (out of
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(b) 4 blocks, each with 32 cores provided.
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(c) 4 blocks, each with 64 cores provided.

Figure 9: Energy consumption on general SPGs relative to MaxS as a function of the period bound tightness κ.
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the 34 applications that are not chains) are included for CCR = 10−4, 10−3, and 10−2 respectively, since at

least one heuristic does not return a valid mapping on other applications. With 32 cores per block (Fig. 9b),

BreakFJ-DP and GroupCell still outweigh MaxS by around 50% when CCR=10−4. BreakFJ-DP is

still slightly better than GroupCell. 11, 9, and 11 applications are included when CCR=10−4, 10−3, and

10−2 respectively. We observe the same trend for the setting with 16 cores per block (Fig. 9a). 7, 7, and 6

applications are included when CCR=10−4, 10−3, and 10−2 respectively.

7.2.4. Execution time

The average execution time of all heuristics is shown in Fig. 10 as a function of the number of cores
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Figure 10: Average scheduling time on 27 cases (9 period bounds and 3 different CCRs).
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on each block. The time is an average on 27 running cases: for a given graph, we run each heuristic for a

combination setting of 9 period bound options and 3 CCRs. The time cost is of the order of 10−4 (resp.

10−3) seconds for chains (resp. general SPGs), which is obviously very fast. MaxS is the fastest heuristic,

then followed by GroupCell, and DP or BreakFJ-DP is the slowest one. On linear chains, the execution

time of DP increases with the number of cores as the search space is increasing. Running all experiments

takes less than one minute.

8. Conclusion

We have addressed the problem of mapping streaming SPG applications onto a hierarchical two-level

platform, with the goal of minimizing the energy consumption, while ensuring performance (a period bound

should not be exceeded) and a reliable execution (each task should either be executed at maximum speed

or triplicated). We have formalized the problem and proven its NP-completeness, and provided practical

solutions building upon a dynamic programming algorithm, which returns the optimal contiguous mapping

for a linear chain. Heuristics are proposed for general SPGs, and theBreakFJ-DP heuristic that builds upon

the DP algorithm provides significant savings in terms of energy consumption, with more than 47% savings

overall. When the period bound is not too tight, it achieves 68% savings on average over all experiments.

However, this heuristic may fail with limited number of cores per blocks. In this case, the GroupCell

heuristic is a promising alternative, with only a slightly greater energy consumption for a reduced number

of cores used.

As future work, we plan to further study the dynamic programming algorithm, to determine whether

it is an approximation algorithm. Indeed, even though it is not optimal in the general case, it works well

in practice and it would be interesting to provide a guarantee on its performance. On the practical side,

we plan to propose a variant of GroupCell to avoid cases where no mapping can be found, because too

many parts should be triplicated and cores may not be used. We should hence be able to design a more

robust heuristic, building on the ideas proposed in the present work. Other promising research directions

would be to extend the study to general applications, rather than series-parallel graphs, and consider general

mappings instead of the structure rule. While it might be difficult to derive theoretical results for these

extensions, some efficient heuristics could be designed and analyzed. An experimental validation on a real

platform would also be very insightful.
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