
Constructing Sylvester-Type Resultant Matrices

using the Dixon Formulation ∗

Arthur Chtcherba Deepak Kapur

Department of Computer Science
University of New Mexico
Albuquerque, NM 87131

e-mail: {artas,kapur}@cs.unm.edu

August 23, 2002

Abstract

A new method for constructing Sylvester-type resultant matrices for multivariate elimination is pro-
posed. Unlike sparse resultant constructions discussed recently in the literature or the Macaulay resultant
construction, the proposed method does not explicitly use the support of a polynomial system in the
construction. Instead, a multiplier set for each polynomial is obtained from the Dixon formulation using
an arbitrary term for the construction. As shown in [KS96], the generalized Dixon resultant formulation
implicitly exploits the sparse structure of the polynomial system. As a result, the proposed construction
for Sylvester-type resultant matrices is sparse in the sense that the matrix size is determined by the
support structure of the polynomial system, instead of the total degree of the polynomial system.

The proposed construction is a generalization of a related construction proposed by the authors in
which the monomial 1 is used [CK00b]. It is shown that any monomial (inside or outside the support of
a polynomial in the polynomial system) can be used instead insofar as that monomial does not vanish on
any of the common zeros of the polynomial system. For generic unmixed polynomial systems (in which
every polynomial in the polynomial system has the same support, i.e., the same set of terms), it is shown
that the choice of a monomial does not affect the matrix size insofar as it is in the support.

The main advantage of the proposed construction is for mixed polynomial systems. Supports of a
mixed polynomial system can be translated so as to have a maximal overlap, and a term is selected
from the overlapped subset of translated supports. Determining an appropriate translation vector for
each support and a term from overlapped support can be formulated as an optimization problem. It
is shown that under certain conditions on the supports of polynomials in a mixed polynomial system,
a monomial can be selected leading to a Dixon multiplier matrix of the smallest size, thus implying
that the projection operator computed using the proposed construction is either the resultant or has an
extraneous factor of minimal degree.

The proposed construction is compared theoretically and empirically, on a number of examples, with
other methods for generating Sylvester-type resultant matrices.

KEYWORDS: Resultant, Dixon Method, Bezoutians, Sylvester-type matrices, Dialytic Method, Multiplier
Matrices, BKK Bound, Support

1 Introduction

Resultant matrices based on the Dixon formulation have turned out to be quite efficient in practice for
simultaneously eliminating many variables on a variety of examples from different application domains;
for details and comparison with other resultant formulations and elimination methods, see [KS95, CK02b]
and http://www.cs.unm.edu/∼artas. Necessary conditions can be derived on parameters in a problem
formulation under which the associated polynomial system has a solution.

∗This research is supported in part by NSF grant nos. CCR-0203051, CDA-9503064, and a grant from the Computer Science
Research Institute at Sandia National Labs.

1

2

Sylvester-type multiplier matrices based on the Dixon formulation are introduced using a general con-
struction which turns out to be effective especially for mixed polynomial systems. This construction gen-
eralizes a construction discussed in our previous work [CK00b]. Multiplier sets for each polynomial in a
given polynomial system are computed, generating a matrix whose determinant (or the determinant of a
maximal minor) includes the resultant. Unlike other Sylvester-type matrix constructions which explicitly
use the support of a polynomial system, the proposed construction uses the support only implicitly insofar
as the Dixon formulation implicitly exploits the sparse support structure of a polynomial system as proved
in [KS96]. The proposed construction for Sylvester-type resultant matrices is thus sparse in the sense that
the matrix size is determined by the support structure of the polynomial system, instead of the total degree
of the polynomial system.

It is shown that an arbitrary monomial can be used to do the proposed construction; the only requirement
is that the monomial does not vanish on any of the common zeros of the polynomial system. For the generic
unmixed case (in which each polynomial in the polynomial system has the same support, i.e., the same set of
terms), this construction is shown to be optimal if the monomial used is from the support of the polynomial
system. To be precise, given a generic unmixed polynomial system, if the Dixon formulation produces a
Dixon matrix whose determinant is the resultant, then the Sylvester-type multiplier matrices (henceforth,
called the Dixon multiplier matrices) based on the proposed construction also have the resultant as their
determinants. In case the Dixon matrix is such that the determinant of the maximal minor has an extraneous
factor besides the resultant, the Dixon multiplier matrix does not have an extraneous factor of higher degree.
Thus, no additional extraneous factor is contributed to the result by the proposed construction.

For mixed polynomial systems, the proposed construction works especially well. Conditions are identified
on the supports of the polynomials in a mixed polynomial system which enable the selection of a term
producing a Dixon multiplier matrix of the smallest size. The projection operator computed from this
matrix is either the resultant or has an extraneous factor of minimal degree. Heuristics are developed for
selecting an appropriate monomial for the construction in case of mixed polynomial systems which do not
satisfy such conditions. Supports are first translated so that they have maximal overlap, providing a large
choice of possible terms to be used for generating multiplier sets. Determining translation and selecting a
term from the translated supports are formulated as an optimization problem.

The main advantage of using the Dixon multiplier matrices over the associated Dixon matrices is (i)
in the mixed case, the Dixon multiplier matrices can have resultants as their determinants, whereas the
Dixon matrices often have determinants which includes along with the resultants, extraneous factors; (ii)
if the determinant of a Dixon multiplier matrix has an extraneous factor with the resultant, the degree of
the extraneous factor is lower than the degree of the extraneous factor appearing in the determinant of the
Dixon matrix; (iii) the Dixon multiplier matrices can be stored and computed more efficiently, given that
the entries are either zero or the coefficients of the monomials in the polynomials; this is in contrast to the
entries of the Dixon matrices which are determinants in the coefficients.

The next section discusses preliminaries and background – the concept of a multivariate resultant of a
polynomial system, the support of a polynomial, the degree of the resultant as determined by the bound
developed in a series of papers by Kouchnirenko, Bernstein and Khovanski (also popularly known as the
BKK bound), based on the mixed volume of the Newton polytopes of the supports of the polynomials
in a polynomial system, Sylvester-type resultant matrices. Section 3 is a review of the generalized Dixon
formulation; the Dixon polynomial and Dixon matrix are defined; using the Cauchy-Binet expansion of
determinants, the Dixon polynomial and its support are related to the support of the polynomials in the
polynomial system.

Section 4 gives the construction for Sylvester-type resultant matrices using the Dixon formulation. The-
orem 4.1 serves as the basis of this construction. As the reader would notice, this construction uses an
arbitrary monomial, instead of a construction in [CK00b] where the particular monomial 1 was used; the
only requirement on the selected monomial is that it should not vanish on any of the common zeros of the
polynomial system. In the case a Dixon multiplier matrix is not exact, i.e., its determinant is a nontrivial
multiple of the resultant, it is shown how a maximal minor of the matrix can be used for computing the
projection operator. It is also proved that whenever the Dixon matrix obtained from the generalized Dixon
formulation can be used to compute the resultant exactly (up to a sign), the Dixon multiplier matrix can
also be used to compute the resultant exactly.

Section 5 discusses how an appropriate monomial can be chosen for the construction so as to minimize the
Dixon multiplier matrix for a given polynomial system and consequently, the degree of the extraneous factor.
For unmixed polynomial systems, it is shown that choosing any monomial in the support will lead to the

3

Dixon multiplier matrices of the same size. The heuristic for selecting a monomial for constructing the Dixon
multiplier matrix is especially effective in the case of mixed systems. It is shown that monomials common
to all the polynomials in a given polynomial system are good candidates for the construction. Supports
of polynomials of a polynomial system can be translated so as to maximize the overlap among them. An
example is discussed illustrating why translation of the supports of the polynomials in a polynomial system
is crucial for getting Dixon multiplier matrices of smaller size.

The construction is compared theoretically and empirically with other methods for generating sparse
resultant matrices, including the subdivision method [CE00] and the incremental method [EC95].

Section 7 discusses an application of the Dixon multiplier construction to multi-graded systems. It is
proved that the proposed construction generates exact matrices for families of generic unmixed systems
including multi-graded systems, without any a priori knowledge about the structure of such polynomial
systems.

2 Multivariate Resultant of a Polynomial System

Consider a system of polynomial equations F = {f0, . . . , fd},

f0 =
∑

α∈A0

c0,αxα, f1 =
∑

α∈A1

c1,αxα, · · · , fd =
∑

α∈Ad

cd,αxα,

and for each i = 0, . . . , d, Ai ⊂ Nd and ki = |Ai| − 1, xα = (xα1
1 xα2

2 · · ·xαd

d) where (ci,α) are parameters. We
will denote by A = 〈A0, . . . ,Ad〉, the support of the polynomial system F .

The goal is to derive condition on parameters (ci,α) so that the polynomial system F = 0 has a solution.
One can view this problem as the elimination of variables from the polynomial system. Elimination theory
tells that such a condition exists for a large family of polynomial systems, and is called the resultant of the
polynomial system. Since the number of equations is more than the number of variables, in general, for
arbitrary values of ci,α, the polynomial system F does not have any solution. The resultant of the above
polynomial system can be defined as follows [EM99]. Let

WV =
{

(c,x) ∈ Pk0 × · · · × Pkd × V | fi(c,x) = 0 for all i = 0, 1, . . . , d
}

,

where c = 〈c0,α0 , . . . , c0,αk0
, . . . , cd,α0 , . . . , cd,αkd

〉, and V is a projective subvariety of dim d. WV is an
algebraic set, or a projective variety. Consider the following projections of this variety:

π1 : WV → Pk0 × Pk1 · · · × Pkd ,

π2 : WV → V,

π1(WV) is the set of all values of the parameters such that the above system of polynomial equations has
a solution. Since WV is a projective variety, any projection of it is also a projective variety (see [Sha94]).
Therefore, there exists a set of polynomials defining π1(WV). If there is only one such polynomial, then
π1(WV) is a hypersurface, and its defining equation is called the resultant. If V is d dimensional, then for
generic coefficients, any d equations have a finite number of solutions; consequently π1(WV) is a hypersurface
(see [EM99] and [BEM00]).

Definition 2.1 If variety π1(WV) is a hypersurface, then its defining equation will be called the resultant of
{f0, f1, . . . , fd} over V , denoted as ResV (f0, . . . , fd).

In the above definition, the resultant is dependent on the choice of the variety V . Different resultant
construction methods do not define explicitly the variety V , and we assume it to be the projective closure
of some affine set.

The variety π1(WV) is a hypersurface whenever V is d dimensional; for generic values of the coefficients,
any d equations have a finite number of solutions (see discussion in [EM99] and [BEM00]).

The degree of the resultant is determined by the number of roots the polynomial system has in a given
variety V . For simplicity, in this article, we will assume that V is a projective closure of (C∗)d or toric
variety1. Results of [BEM00] extend these notions to projective closures of affine open spaces, which can be
parameterized, hence giving much more general applicability of the method.

1The set (C∗)d is d-dimensional set where coordinates cannot have zero values, that is C∗ = C− {0}.

4

2.1 Support and Degree of the Resultant

The convex hull of the support of a polynomial f is called its Newton polytope, and will be denoted as N (f).
One can relate the Newton polytopes of a polynomial system to the number of its roots.

Definition 2.2 ([GKZ94],[CLO98]) The mixed volume function µ(Q1, . . . ,Qd), where Qi is a convex hull,
is a unique function which is multilinear with respect to Minkowski sum and scaling, and is defined to have
the multilinear property

µ(Q1, . . . , aQk + bQ′k, . . . ,Qd) = aµ(Q1, . . . ,Qk, . . . ,Qd) + b µ(Q1, . . . ,Q′k, . . . ,Qd);

to ensure uniqueness, µ(Q, . . . ,Q) = d!Vol(Q), where Vol(Q) is the Euclidean volume of the polytope Q.

Theorem 2.1 (BKK Bound) Given a polynomial system {f1, . . . , fd} in d variables {x1, . . . , xd} with the
support 〈A1, . . . ,Ad〉, the number of roots in (C∗)d, counting multiplicities, of the polynomial system is either
infinite or ≤ µ (A1, . . . ,Ad); furthermore, the inequality becomes equality when the coefficients of polynomials
in the system satisfy genericity requirements.

Since we are interested in overconstrained polynomial systems, usually consisting of d+1 polynomials in
d variables, the BKK bound also tells us the degree of the resultant.

In the resultant, the degree of the coefficients of f0 is equal to the number of common roots the rest
of polynomials have. It is possible to choose any fi and the resultant expression can be expressed by
substituting in fi the common roots of the remaining polynomial system, [PS93]. This implies that the
degree of the coefficients of fi in the resultant equals the number of roots of the remaining set of polynomials.
We denote the BKK bound of a d + 1 polynomial system by 〈b0, b1, . . . , bd〉 as well as B, where bi =
µ(A0, . . . ,Ai−1,Ai+1, . . . ,Ad) and B =

∑d
i=0 bi.

2.2 Resultant Matrices

One way to compute the resultant of a given polynomial system is to construct a matrix with a property
that whenever the polynomial system has a solution, such a matrix has a deficient rank, thereby implying
that determinant of any maximal minor is a multiple of the resultant. The BKK bound imposes a lower
bound on the size of such a matrix.

A simple way to construct a resultant matrix is to use the dialytic method, i.e., multiply each polynomial
with a finite set of monomials, and rewrite the resulting system in the matrix form. We call such a matrix
the multiplier matrix. This alone, however, does not guarantee that a matrix so constructed is a resultant
matrix.

Definition 2.3 Given a set of polynomials {f1, . . . , fk} in variables x1, . . . , xd and finite monomials sets
X1, . . . , Xk, where Xi = { xα | α ∈ Nd }, denote by Xifi = { xαfi | xα ∈ Xi}. The matrix representing the
polynomial system Xifi for all i = 1, . . . , k, can be written as

X1f1

X2f2

...
Xkfk

 = M ×X = 0,

where XT =
(
xβ1 , . . . ,xβl

)
such that xβ ∈ X if there exist i such that xβ = xαxγ where xα ∈ Xi and

xγ ∈ fi. Such matrices will be called as the multiplier matrices.

If a given multiplier matrix is non-singular, and its corresponding polynomial system has a solution
which does not make X identically zero, then its determinant is a multiple of the resultant. Furthermore,
the requirement on the matrix to be non-singular (or even square) can be relaxed, as long as it can be shown
that its rank becomes deficient whenever there exist a solution; in such cases, the multiple of the resultant
can be extracted from a maximal minor of this matrix.

Note that such matrices are usually quite sparse: matrix entries are either zero or coefficients of the
polynomials in the original system. Good examples of resultant multiplier matrices are Sylvester [Syl53] for

5

the univariate case, and Macaulay [Mac16] as well Newton sparse matrices of [CE00] for the multivariate
case; they all differ only in the selection of multiplier sets Xi.

If the BKK bound of a given polynomial system is 〈b0, b1, . . . , bd〉, then |Xi| ≥ bi. The matrix size must
be at least B (the sum of all the bi’s) for it to be a candidate for the resultant matrix of the polynomial
system.

In the following sections, we show how the Dixon formulation can be used to construct multiplier matrices
for the multivariate case. We first give a brief overview of the Dixon formulation, define the concepts of the
Dixon polynomial and the Dixon matrix of a given polynomial system. Expressing the Dixon polynomial
using the Cauchy-Binet expansion of determinants of a matrix turns out to be useful for illustrating the
dependence of the construction on the support of a given polynomial system.

3 The Dixon Matrix

In [Dix08], Dixon generalized Bezout-Cayley’s construction for computing resultant of two univariate poly-
nomials to the bivariate case. In [KSY94], Kapur, Saxena and Yang further generalized this construction to
the general multivariate case; the concepts of a Dixon polynomial and a Dixon matrix were introduced as
well. Below, the generalized multivariate Dixon formulation for simultaneously eliminating many variables
from a polynomial system and computing its resultant is reviewed. More details can be found in [KS95].

In contrast to multiplier matrices, the Dixon matrix is dense since its entries are determinants of the
coefficients of the polynomials in the original polynomial system. It has the advantage of being an order
of magnitude smaller in comparison to a multiplier matrix, which is important as the computation of the
determinant of a matrix with symbolic entries is sensitive to its size, see table 2 in section 6. The Dixon
matrix is constructed through the computation of the Dixon polynomial, which is expressed in matrix form.

Let πi(xα) = xα1
1 · · ·xαi

i x
αi+1
i+1 · · ·xαd

d , where i ∈ {0, . . . , d}, and xi’s are new variables; π0(xα) = xα. πi

is extended to polynomials in a natural way as: πi(f(x1, . . . , xd)) = f(x1, . . . , xi, xi+1, . . . , xd).

Definition 3.1 Given a polynomial system F = {f0, f1, . . . , fd}, where F ⊂ Q[c][x1, . . . , xd], define its
Dixon polynomial as

θ(f0, . . . , fd) =
d∏

i=1

1
xi − xi

∣∣∣∣∣∣∣∣∣

π0(f0) π0(f1) · · · π0(fd)
π1(f0) π1(f1) · · · π1(fd)

...
...

. . .
...

πd(f0) πd(f1) · · · πd(fd)

∣∣∣∣∣∣∣∣∣
.

Hence θ(f0, f1, . . . , fd) ∈ Q[c][x1, . . . , xd, x1, . . . , xd], where x1, x2, . . . , xd are new variables.

The order in which original variables in x are replaced by new variables in x is significant in the sense
that the Dixon polynomial computed using two different variable orderings may be different.

Definition 3.2 A Dixon polynomial θ(f0, . . . , fd) can be written in bilinear form as

θ(f0, f1, . . . , fd) = X Θ XT ,

where X = (xβ1 , . . . ,xβk) and X = (xα1 , . . . ,xαl) are row vectors. The k × l matrix Θ is called the Dixon
matrix.

Each entry in Θ is a polynomial in the coefficients of the original polynomials in F ; moreover its degree in
the coefficients of any given polynomial is at most 1. Therefore, the projection operator computed using the
Dixon formulation can be of at most of degree |X| in the coefficients of any single polynomial.

We will relate the support of a given polynomial system A = 〈A0, . . . ,Ad〉 to the support of its Dixon
polynomial.

3.1 Relating Size of the Dixon Matrix to Support of Polynomial System

Given a collection of supports, it is often useful to construct a support which contains a single point from
each support in the collection. A special notation is introduced for this purpose.

6

Definition 3.3 Given a polynomial system support A = 〈A0, . . . ,Ad〉, let σ = 〈σ0, σ1, . . . , σd〉 such that σi ∈
Ai for i = 0, . . . , d. Denote this relation as σ ∈∈ A; clearly {σ0, σ1, . . . , σd} ⊂ Nd; abusing the notation, σ is
also treated a simplex.

Using the above notation, we can express the support of the Dixon polynomial in terms of a sum of smaller
Dixon polynomials.

Theorem 3.1 [CK00a] Let F = {f0, f1, . . . , fd} be a polynomial system and let A = 〈A0, . . . ,Ad〉 be the
support of F . Then

θ(f0, f1, . . . , fd) =
∑

σ∈∈A
σ(c) σ(x) =

∑

σ∈∈A
θσ,

where θσ = σ(c) σ(x) and

σ(c) =

∣∣∣∣∣∣∣∣∣

c0,σ0 c0,σ1 · · · c0,σd

c1,σ0 c1,σ1 · · · c1,σd

...
...

. . .
...

cd,σ0 cd,σ1 · · · cd,σd

∣∣∣∣∣∣∣∣∣
and σ(x) =

d∏

i=1

1
xi − xi

∣∣∣∣∣∣∣∣∣

π0(xασ0) π0(xασ1) · · · π0(xασd)
π1(xασ0) π1(xασ1) · · · π1(xασd)

...
...

. . .
...

πd(xασ0) πd(xασ1) · · · πd(xασd)

∣∣∣∣∣∣∣∣∣
.

Proof: Let Ă =
⋃d

i=0Ai and Ă = {a1, . . . , an}. Let ci,aj be the coefficient of monomial xaj in polynomial fi

for aj ∈ Ă, if monomial xaj does not appear in fi then ci,aj
= 0. Consider

θ(f0, . . . , fd) =
d∏

i=1

1
xi − xi

∣∣∣∣∣∣∣∣∣

π0(f0) π0(f1) · · · π0(fd)
π1(f0) π1(f1) · · · π1(fd)

...
...

. . .
...

πd(f0) πd(f1) · · · πd(fd)

∣∣∣∣∣∣∣∣∣

=
d∏

i=1

1
xi − xi

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

n∑
i=1

c0,aiπ0(xai)
n∑

i=1

c1,aiπ0(xai) · · ·
n∑

i=1

cd,aiπ0(xai)
n∑

i=1

c0,aiπ1(xai)
n∑

i=1

c1,aiπ1(xai) · · ·
n∑

i=1

cd,aiπ1(xai)

...
...

. . .
...

n∑
i=1

c0,aiπd(xai)
n∑

i=1

c1,aiπd(xai) · · ·
n∑

i=1

cd,aiπd(xai)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=
d∏

i=1

1
xi − xi

det (M × C) ,

where

M =

π0(xa1) π0(xa2) · · · π0(xan−1) π0(xan)
π1(xa1) π1(xa2) · · · π1(xan−1) π1(xan)

...
...

. . .
...

...
πd(xa1) πd(xa2) · · · πd(xan−1) πd(xan)

 and C =

c0,a1 c1,a1 · · · cd,a1

c0,a2 c1,a2 · · · cd,a2

...
...

. . .
...

c0,an−1 c1,an−1 · · · cd,an−1

c0,an c1,an · · · cd,an

.

Using the Cauchy-Binet expansion [AW92] for the determinant of a product of matrices, we can expand the
above determinant into sum of product of determinants

det (M × C) =
∑

1≤i0<···<id≤d+1

det(Mi0,...,id
) det(Ci0,...,id

),

where Mi0,...,id
is (d+1)× (d+1) submatrix of M containing columns i0, i1, . . . , id and Ci0,...,id

is a (d+1)×
(d+1) submatrix of C containing rows i0, i1, . . . , id. For multi-index {i0, i1, . . . , id}, let σ = 〈ai0 , ai1 , . . . , aid

〉,
then,

σ(c) = det(Ci0,...,id
) and σ(x) =

d∏

i=1

1
xi − xi

det(Mi0,...,id
).

7

Note that the order of σj ’s in σ = 〈σ0, σ1, . . . , σd〉 does not change the product σ(c)σ(x).
Below we show that it suffices to have the sum to be over all σ ∈∈ A where σj = aij

∈ Aj for j = 0, . . . , d.
Given an arbitrary σ, it is impossible to rearrange σ = 〈σ0, σ1, . . . , σd〉 so that each σj ∈ Aj for j =

0, . . . , d, then it is easy to see that σ(c) = 0. Assume that for all rearrangements of σi’s in σ, there is some
σi /∈ Ai. That means that the entry in the column corresponding to σi and in the row i (on the diagonal)
of the matrix of σ(c) is zero. Rearranging σi’s in σ amounts to permuting columns of σ(c). Since it is
impossible to rearrange σ so that σi ∈ Ai, it is impossible to rearrange columns of σ(c) so that diagonal
does not have zero. Consequently, the determinant of σ(c) is zero. Hence the expansion

θ(f0, . . . , fd) =
∑

σ∈∈A
σ(c) σ(x)

is a reduced version of the Cauchy-Binet expansion. 2

The above identity shows that if generic coefficients are assumed in the polynomial system, then the
support of the Dixon polynomial depends entirely on the support of the polynomial system, as σ(c) would
not vanish or cancel each other. To emphasize the dependence of θ on A, the above identity can also be
written as θA =

∑
σ∈∈A θσ.

We define the support of the Dixon polynomial as:

∆A = {α | xα ∈ θ(f0, . . . , fd) } , 2

where A = 〈A0, . . . ,Ad〉 and Ai is the support of fi. Let

∆A =
{

β | xβ ∈ θ(f0, . . . , fd)
}

.

For the generic case, using the reduced Cauchy-Binet formula,

∆A =
⋃

σ∈∈A
∆σ, where ∆σ = {α | xα ∈ θσ} ,

because of genericity, θσ does not cancel any part of θτ for any σ, τ ∈∈ A and σ 6= τ .
One of the properties of σ(x), we will use, is that

∆σ = {α | xα ∈ θσ |xi=1} ,

that is, substituting xi = 1 for i = 1, . . . , d, does not change the support of the Dixon polynomial. This can
be seen by noting that given a monomial in the expansion of the determinant of σ(x) in terms of variables
x1, . . . , xd, its coefficient in terms of variables x1, . . . , xd can be uniquely identified. This is because each
monomial in θσ is of the same degree in terms of variables xi, xi. Hence, substituting xi = 1 will not cancel
any monomials; if there was cancellation, it should happen without making any substitution.

4 Dixon Multiplier Matrix

We define a Dixon multiplier matrix which is related to the Dixon matrix in the same way as Sylvester
matrix is related to Bezout ’s. In fact the first relationship generalizes the second. This formulation also
generalizes some of the earlier results which first appeared in [CK00b].

4.1 Construction

Let m be a monomial in variables {x1, x2, . . . , xd}. For abbreviation, let

θ = θ(f0, f1, . . . , fd), and also θi(m) = θ(f0, . . . , fi−1,m, fi+1, . . . , fd).

Recall that in [CK00b], θi = θi(1) = θ(f0, . . . , fi−1, 1, fi+1, . . . , fd).

2By abuse of notation, for some polynomial f , by xα ∈ f we mean that xα appears in (the simplified form of) f with a
non-zero coefficient, i.e. α is in the support of f .

8

Theorem 4.1

m θ(f0, . . . , fd) =
d∑

i=0

fi θi(m).

Proof: Let ai,j and qj for i = 0, . . . , d and j = 1, . . . d be arbitrary. In general, the following sum of
determinants is zero, that is,

d∑

i=0

fi

∣∣∣∣∣∣∣∣∣

f0 . . . fi−1 0 fi+1 . . . fd

a0,1 . . . ai−1,1 q1 ai+1,1 . . . ad,1

...
. . .

...
...

...
. . .

...
a0,d . . . ai−1,d qd ai+1,d . . . ad,d

∣∣∣∣∣∣∣∣∣

=
d∑

i=0

fi

d∑

j=1

(−1)i+jqj

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f0 . . . fi−1 fi+1 . . . fd

a0,1 . . . ai−1,1 ai+1,1 . . . ad,1

...
. . .

...
...

. . .
...

a0,j−1 . . . ai−1,j−1 ai+1,j−1 . . . ad,j−1

a0,j+1 . . . ai−1,j+1 ai+1,j+1 . . . ad,j+1

...
. . .

...
...

. . .
...

a0,d . . . ai−1,d ai+1,d . . . ad,d

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=
d∑

j=1

(−1)jqj

d∑

i=0

(−1)ifi

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f0 . . . fi−1 fi+1 . . . fd

a0,1 . . . ai−1,1 ai+1,1 . . . ad,1

...
. . .

...
...

. . .
...

a0,j−1 . . . ai−1,j−1 ai+1,j−1 . . . ad,j−1

a0,j+1 . . . ai−1,j+1 ai+1,j+1 . . . ad,j+1

...
. . .

...
...

. . .
...

a0,d . . . ai−1,d ai+1,d . . . ad,d

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=
d∑

j=1

(−1)jqj

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f0 . . . fi−1 fi fi+1 . . . fd

f0 . . . fi−1 fi fi+1 . . . fd

a0,1 . . . ai−1,1 ai,1 ai+1,1 . . . ad,1

...
. . .

...
...

...
. . .

...
a0,j−1 . . . ai−1,j−1 ai,j−1 ai+1,j−1 . . . ad,j−1

a0,j+1 . . . ai−1,j+1 ai,j+1 ai+1,j+1 . . . ad,j+1

...
. . .

...
...

...
. . .

...
a0,d . . . ai−1,d a0,i ai+1,d . . . ad,d

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0,

(1)

as every determinant in the last sum has the same first two rows.
From the above relation, we can see that

m θ(f0, . . . , fd) = m

d∏

i=1

1
xi − xi

∣∣∣∣∣∣∣∣∣

π0(f0) π0(f1) . . . π0(fd)
π1(f0) π1(f1) . . . π1(fd)

...
...

. . .
...

πd(f0) πd(f1) . . . πd(fd)

∣∣∣∣∣∣∣∣∣

=
d∏

i=1

1
xi − xi

∣∣∣∣∣∣∣∣∣

mπ0(f0) mπ0(f0) . . . mπ0(fd)
π1(f0) π1(f1) . . . π1(fd)

...
...

. . .
...

πd(f0) πd(f1) . . . πd(fd)

∣∣∣∣∣∣∣∣∣

=
d∏

i=1

1
xi − xi

d∑

i=0

fi

∣∣∣∣∣∣∣∣∣

π0(f0) . . . π0(fi−1) m π0(fi+1) . . . π0(fd)
π1(f0) . . . π1(fi−1) 0 π1(fi+1) . . . π1(fd)

...
. . .

...
...

...
. . .

...
πd(f0) . . . πd(fi−1) 0 πd(fi+1) . . . πd(fd)

∣∣∣∣∣∣∣∣∣

9

=
d∏

i=1

1
xi − xi

d∑

i=0

fi

∣∣∣∣∣∣∣∣∣

π0(f0) . . . π0(fi−1) m π0(fi+1) . . . π0(fd)
π1(f0) . . . π1(fi−1) 0 π1(fi+1) . . . π1(fd)

...
. . .

...
...

...
. . .

...
πd(f0) . . . πd(fi−1) 0 πd(fi+1) . . . πd(fd)

∣∣∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣∣∣

π0(f0) . . . π0(fi−1) 0 π0(fi+1) . . . π0(fd)
π1(f0) . . . π1(fi−1) q1 π1(fi+1) . . . π1(fd)

...
. . .

...
...

...
. . .

...
πd(f0) . . . πd(fi−1) qd πd(fi+1) . . . πd(fd)

∣∣∣∣∣∣∣∣∣

=
d∏

i=1

1
xi − xi

d∑

i=0

fi

∣∣∣∣∣∣∣∣∣

π0(f0) . . . π0(fi−1) m π0(fi+1) . . . π0(fd)
π1(f0) . . . π1(fi−1) q1 π1(fi+1) . . . π1(fd)

...
. . .

...
...

...
. . .

...
πd(f0) . . . πd(fi−1) qd πd(fi+1) . . . πd(fd)

∣∣∣∣∣∣∣∣∣
,

where the last equality is obtained by adding in the sum of equation (1) using multilinearity of determinants.
Since qi can be anything, we choose qi = πi(m), and since m = π0(m), we have

m θ(f0, . . . , fd) =
d∑

i=0

fi

d∏

i=1

1
xi − xi

∣∣∣∣∣∣∣∣∣

π0(f0) . . . π0(fi−1) π0(m) π0(fi+1) . . . π0(fd)
π1(f0) . . . π1(fi−1) π1(m) π1(fi+1) . . . π1(fd)

...
. . .

...
...

...
. . .

...
πd(f0) . . . πd(fi−1) πd(m) πd(fi+1) . . . πd(fd)

∣∣∣∣∣∣∣∣∣

=
d∑

i=0

fi θ(f0, . . . , fi−1,m, fi+1, . . . , fd) =
d∑

i=0

fi θi(m).

2

In the case where m = 1, the above identity was already used in [CK00b] as well [CM96] to show that
the Dixon polynomial is in the ideal of original polynomial system. As we shall see later, using a general
monomial m enables us to build smaller Dixon multiplier matrices as there is a choice in selecting the
monomial m.

In bilinear form,
θi(m) = Xi Θi(m) Xi,

where Θi(m) is the Dixon matrix of { f0, . . . , fi−1,m, fi+1, . . . , fd }. Expressing θi(m) in term of Θi(m)
matrix, we have

θi(m) fi = (Xi Θi(m)Xi) fi = (XiΘi(m))(Xifi).

Thus, we can construct a multiplier matrix by using monomial multipliers Xi for fi.

M × Y =

X0f0

X1f0

...
Xdfd

 .

Using the above notation, we can rewrite the formula for the Dixon polynomial,

m θ(f0, . . . , fd) = X Θ m X

=
d∑

i=0

θi(m) fi =
d∑

i=0

Xi Θi(m) (Xifi)

= Y (Θ0(m) : Θ1(m) : · · · : Θd(m))

X0f0

X1f1

...
Xdfd

= Y (T ×M) Y = Y Θ′ Y,

10

where Y =
⋃d

i=0 Xi and Θ′ = T ×M . Therefore,

X Θ m X = Y Θ′ Y.

Note that mX ⊆ Y , and X ⊆ Y ; therefore, Θ and Θ′ are the same matrices except for Θ′ having some extra
zero rows and columns.

Corollary 4.1.1 Given a polynomial system F = {f0, . . . , fd}, its Dixon matrix can be factored as a product
of two matrices one of which is a multiplier matrix. That is

Θ = T ×M,

where M is the Dixon multiplier matrix of the polynomial system F .

4.2 Univariate case: Sylvester and Dixon Multiplier

Let

f0 = a0 + a1x + a2x
2 + · · ·+ am−1x

m−1 + amxm,

f1 = b0 + b1x + b2x
2 + · · ·+ bn−1x

n−1 + bnxn.

For the polynomial system {f0, f1} ⊂ C[x], the Dixon formulation is better known as Bezoutian after Bezout
who gave this construction for univariate polynomials. Here in the expression Θ = T ×M , we will note that
M is the well known Sylvester matrix and Θ is the Bezout Matrix. The Sylvester matrix for {f0, f1} is given
by

M =

n

a0 a1 · · · am

a0 a1 · · · am

.
a0 a1 · · · am

m

b0 b1 · · · bn

b0 b1 · · · bn

.
b0 b1 · · · bn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

and T = (Θ0 : Θ1) where θ0 = θ(1, f1) = X0Θ0X0 and θ1 = θ(f0, 1) = X1Θ1X1. For instance,

θ(1, f1) =
1

x− x

∣∣∣∣
1 f1(x)
1 f1(x)

∣∣∣∣ =
f1(x)− f1(x)

x− x
= b1S1 + b2S2 + · · ·+ bnSn,

where Sk =
∑k

i=1 xi−1xk−i.
Note that X0 = {1, x, . . . , xn−1} and X1 = {1, x, . . . , xm−1} as in the Sylvester matrix construction.

From this, it can be seen that Θ0 matrix is n× n, and hence, similarly Θ1 will be m×m, and the matrix T
is of size max{m, n} × (n + m). For the univariate case we can write down the matrix T as

T =

am

bn am am−1

bn bn−1

...
...

bn · · · b3 b2 am · · · a3 a2

bn bn−1 · · · b2 b1 am am−1 · · · a2 a1

.

It can be seen from the above construction that when m > n, det(Θ), the determinant of the Dixon matrix,
has the extra factor of am−n

m , which comes from the matrix T . This can be verified using the Cauchy-Binet
formula for the determinant of a product of non-square matrices [AW92].

11

4.3 Example: Bivariate Case

Let

f0 = a00+ a01y + a10x+ a11xy + a02y
2+ a20x

2,

f1 = b00 + b01y + b10x + b11xy + b02y
2 + b20x

2,

f2 = c00 + c01y + c10x + c11xy + c02y
2 + c20x

2.

In the expression Θ = T ×M , matrices T and M can be split up into 3 blocks

T =

 Θ0 Θ1 Θ2

 , M =

X0f0

X1f1

X2f2

.

Since in the unmixed case, X0 = X1 = X2 = {y2, xy, x, y, 1}, the structure of M is simple to see: it has 15
rows and 14 columns. Also, the monomial structure of θi is the same for i = 0, 1, 2, and hence, matrices Θi

have the same layout. We illustrate the matrix Θ0; the other matrices are similar.

Θ0 =

0 0 0 0 |02.20|
0 0 0 0 |20.11|
0 0 |20.02| |11.02| |10.02|
0 0 |20.11| |20.02| |10.11|+|20.01|

|20.02| |11.02| |20.01| |10.02|+|11.01| |10.01|

, where |ij.kl| =
∣∣∣∣

bij bkl

cij ckl

∣∣∣∣ .

The above relationship between the Dixon multiplier matrices and the Dixon matrices has also been
studied in [Zha00] for the bivariate bidegree case. The construction discussed above is general in the sense
that it works for any number of variables and any degree. For the bivariate bi-degree case, the above
construction reduces to the construction given in [Zha00].

4.4 Maximal Minors

It was proved in [KSY94] that under certain conditions, any maximal minor of the Dixon matrix is a
projection operator (i.e., the nontrivial multiple of the resultant). [BEM00] has derived that any maximal
minor of the Dixon matrix is a projection operator of a certain variety which is the projective closure of
the associated parameterized affine set. These results immediately apply to the Dixon multiplier matrix,
establishing that it is a resultant matrix.

Consider the following “specialization” map φ such that given a polynomial f =
∑

α cαxα,

φ(f) =
∑
α

φ (cα)xα and φ(cα) ∈ C, so that f ∈ C[x].

Theorem 4.2 [KS96],[BEM00] The determinant of a maximal minor of the Dixon matrix Θ of a polynomial
system F is a projection operator, that is

det (minormax (Θ)) = e ResV (F),

where ResV (F) is the resultant of the polynomial system F over the associated variety V 3, that is, φ(F) ≡ 0
has a solution v ∈ V if and only if φ(ResV) = 0.

3The variety in question is not defined explicitly; one can use [KSY94] or [BEM00] to define such varieties. In general, the
associated variety is some projective closure of an affine set.

12

In general, the choice of variety is not clear, but it usually “contains” an open subset of the affine space;
hence the resultant is a necessary and sufficient condition for polynomial system to have a solution in that
open subset.

The next theorem shows that the resultant is a factor in the projection operators computed from the Dixon
multiplier matrix using maximal minor construction. Note that in the construction of a Dixon multiplier
matrix, we must assume that for a map φ such that φ(F) ≡ 0 has a solution in the respective variety, the
monomial m used to construct the Dixon multiplier matrix does not vanish for that solution. If the variety
being considered is the projective closure of (C∗)d,4 any monomial m chosen for the construction satisfies
this condition.

Theorem 4.3 Given the Dixon matrix Θ of a polynomial system F = {f0, . . . , fd}, if

Q = det
(
minormax (Θ)

)
, where Q = eQ ResV ,

then for the Dixon multiplier matrix M of F ,

L = det
(
minormax (M)

)
, where L = eL ResV .

Proof: By Corollary 4.1.1, there exists a matrix T such that

Θ = T ×M.

Let k = rank(Θ) and let C1, . . . , Ck be linearly independent columns of Θ. Consequently, the corresponding
columns Li1 , . . . , Lik

of M , such that Cj = T × Lij , are also linearly independent.
Let φ be a specialization of coefficients of the given polynomial system such that rank(φ(Θ)) is deficient,

then φ(Q) = 0. Note that φ(F) has a solution in V if and only if φ(ResV) = 0.
Since rank(φ(Θ)) < k, it follows that φ(C1), . . . , φ(Ck) are linearly dependent, which implies that

rank(φ(T)) < rank(T) or φ(Li1), . . . , φ(Lik
) are linearly dependent.

Since the above is true for any k×k maximal minor of Θ, it follows that either (i) φ(T) has deficient rank or
(ii) every corresponding k×k minor of φ(M) has rank smaller than k implying that rank(φ(M)) < rank(M).
Therefore,

rank(φ(Θ)) < rank(Θ) =⇒ rank(φ(T)) < rank(T) or rank(φ(M)) < rank(M).

If GΘ = gcd(det
(
minormax (Θ)

)
), GT = gcd(det

(
minormax (T)

)
) and GM = gcd(det

(
minormax (M)

)
),

then
ResV | GΘ and GΘ | GT GM =⇒ ResV | GT GM .

To see that ResV does not divide GT , note that generically, for an n-degree unmixed polynomial systems
([KS96, Sax97]),

degfi
GT < degfi

GΘ = degfi
ResV ,

where degfi
stands for the degree (in terms of generic coefficients of polynomial fi) of the original polynomial

system. Therefore, it must be that case that ResV divides GM . 2

Another advantage of the Dixon multiplier matrix is that the choice of a monomial m used to construct
it influences not only the variety in question, and hence the particular resultant being computed, but also
the size of the matrix itself. In practical cases, one might choose m so as to generate the smallest possible
matrix and still have the condition for the existence of a solution in the variety under consideration.

This suggests that the projection operator extracted from the corresponding Dixon matrix typically con-
tains more extraneous ”information”. The variety over which the resultant is included in such a projection
operator can be bigger. Further, the gcd of all maximal minors of T appears as a factor in the projection
operator of the Dixon matrix.

4C∗ is C− {0}.

13

4.4.1 Example

Consider a mixed bivariate system,

f0 = a10x + a20x
2 + a12xy2,

f1 = b01y + b02y
2 + b21x

2y,

f2 = u1x + u2y + u0.

The mixed volume of the above polynomial system is 〈2, 2, 4〉 = 8, (see section 2.1). Hence, generically the
degree of the toric resultant (capturing toric solutions (C∗)d) is 8.

Moreover, there are other parts to the resultant over the affine space. When x = 0, f0 becomes identically
0, and

f1 = b01y + b02y
2,

f2 = u2y + u0.

The resultant in that case is Resx=0 = u0b02 − u2b01.
Similarly, when y = 0, f1 becomes identically 0, and

f0 = a10x + a20x
2,

f2 = u1x + u0.

The resultant in this case is Resy=0 = u0a20 − u1a10. Therefore, the affine bounds are 〈3, 3, 7〉 = 13. The
degree of the resultant is Res x=0

y=0 or = 〈1, 1, 3〉. This is added to the degree of the toric resultant, which is:

ResT = u4
2b01a

2
20b21 + u4

2b
2
21a

2
10 − u3

2b21b02a
2
20u0 + u3

2b21b02a20u1a10 − 2u2
2b01b21u

2
1a12a10

+ 4u2
2b01b21u1a20a12u0 + 2u2

2b
2
21u

2
0a12a10 + u2b02u

3
1a12a20b01 + 4u2b21u

2
1u0a10b02a12

− 3u2b21u1a20b02a12u
2
0 + u4

1a
2
12b

2
01 + 2b21u

2
0a

2
12u

2
1b01 + b2

02a12u
4
1a10 + b2

21u
4
0a

2
12

− b2
02a12u

3
1a20u0.

The resultant over the affine space is

ResA = u0 Resx=0 Resy=0 ResT .

In contrast, the projection operator obtained from the 7× 7 Dixon matrix is

det(Θ) = b02 a20 b3
21 a3

12 u0 Resx=0 Resy=0 ResT .

If a Dixon multiplier matrix is constructed using the term m = 1 in the construction, then

det(M) = b21 u0 Resx=0 Resy=0 ResT .

But if y, for instance, is used to construct the Dixon multiplier matrix is chosen, then

det(M) = b21 Resx=0 ResT .

It appears that in a generic mixed case, extraneous factors can be minimized by using the Dixon multiplier
matrix.

For toric solutions in (C∗)d, it suffices to choose any m for constructing the Dixon multiplier matrix.
Selection of m can be formulated as an optimization problem as discussed below so that the Dixon multiplier
matrix is of the smallest size. This way, the degree of a projection operator and hence the degree of the
extraneous factor in it can be minimized.

5 Minimizing the Degree of Extraneous Factors

For computing a resultant over a toric variety, the supports of a given polynomial system can be translated
so as to construct smaller Dixon as well as Dixon multiplier matrices. This is evident from the following
example for the bivariate case.

14

Example: Consider the following polynomial system:

f0 = a00 + a10x + a01y,

f1 = b02y
2 + b20x

2 + b31x
3y,

f2 = c00 + c12xy2 + c21x
2y.

This generic polynomial system has the 2-fold mixed volume of 〈8, 3, 4〉 = 15;
hence, the optimal multiplier matrix is 15 × 15, containing 8 rows from poly-
nomial f0, 3 rows from f1 and 4 rows from f2. Figure 1 shows the overlaid
supports of these polynomials.

Figure 1: Mixed example.

To construct the Dixon multiplier matrix, if we choose m = xαxyαy = 1, i.e. α = (0, 0) and consider the
original polynomial system {f0, f1, f2}, then

|X0| = 9, |X1| = 4, |X2| = 5,

and the Dixon multiplier matrix has 18 rows. In fact, for the polynomial system {f0, f1, f2}, the best choice
for α is from {(0, 0), (0, 1), (1, 0)}, each one producing a 18 × 18 Dixon multiplier matrix. In other words,
an extraneous factor of at least degree 3 is generated using the Dixon multiplier matrix no matter what
multiplier monomial is used if supports are not translated.

On the other hand, if we consider {x2yf0, f1, xf2} and let α ∈ {(2, 1), (2, 2), (3, 1)},

|X0| = 8, |X1| = 3, |X2| = 4,

and the resulting Dixon multiplier matrix has 15 rows, i.e., the matrix is optimal. Figure 2 shows the
translated supports. This example also illustrates that it is possible to get exact resultant matrices if
supports are translated even when untranslated supports have a nonempty intersection.

The Dixon matrix for the above polynomial system is of size 9 × 9; its size is the same as though the
system was unmixed with the support of the polynomial system being the union of individual supports of
the polynomials. For the translated polynomial system, however, the Dixon matrix is of size 8× 8. In both
cases, there are extraneous factors of degree 12 and 9, respectively.

In fact, it will be shown (section 5.1.1) that for generic mixed bivariate polynomial systems, the size
of the Dixon matrix is at least max(|X0|, |X1|, |X2|) when a monomial is appropriately chosen to do its
construction.

As illustrated by the above example, the Dixon multiplier matrix as
well as the Dixon matrix are sensitive to the translation of the supports
of the polynomials in the polynomial system. Since the mixed volume of
supports is invariant under translation, most resultant methods in which
matrices are constructed using supports are also invariant with respect
to translation of supports. Methods based on mixed volume compute
resultants over toric variety and hence are insensitive to such translations
of the supports of polynomials.

Since the Dixon multiplier matrix is sensitive to the choice of α
(whereas the Dixon matrix is not), it is possible to further optimize the
size of the Dixon multiplier matrix by properly selecting the multiplier
monomial, along with an appropriate translation of the supports of the
polynomial system.

Figure 2: Translated example.

To formalize the above discussion, let α ∈ Nd; consider a translation t = 〈t0, t1, t2, . . . , td〉 where ti ∈ Nd,
to translate the support of a given polynomial system. The resulting translated support is A+ t =
〈A0 + t0,A1 + t1, · · · ,Ad + td〉.

Choosing an appropriate m and t for mixed polynomial systems can be formulated as an optimization
problem in which the size of the support of each θi(m) and hence, the size of the multiplier set for each fi

is minimized.
One can either optimize the size of the Dixon matrix or alternatively, the size of the Dixon multiplier

matrix can be optimized. In other words, we can consider the following two problems:

(i) for the Dixon matrix construction, the size of the Dixon polynomial |∆A+t| is minimized.

15

(ii) for the Dixon multiplier matrix, where Φi(α, t) = |∆〈A0+t0,...,Ai−1+ti−1,{α},Ai+1+ti+1,...,Ad+td〉|, the sum

Φ(α, t) =
d∑

i=0

Φi(α, t),

i.e., the number of rows is minimized

In the case of (i), a heuristic for choosing such translation vectors t is described in [CK02a]. For minimizing
the size of Dixon multiplier matrices, a slightly modified method is needed as the objective is to minimize
the sizes of θi(m), i.e., Φi(α, t) for each i (which also involves choosing m). Since Φi(α, t) represents the
number of rows corresponding to the polynomial xti fi in the Dixon multiplier matrix, the goal is to find α
and t = 〈t0, t1, . . . , td〉 such that Φ(α, t) is minimized, that is, the size of the entire Dixon multiplier matrix
is minimized so as to minimize the degree of the extraneous factor.

Below, we make some observations and prove properties which are helpful in selecting α and t.

5.1 Multiplier Sets using the Dixon Method

The multipliers used in the construction of a Dixon multiplier matrix are related to the monomials of the
Dixon polynomial, which also label the columns of the Dixon matrix. For a given polynomial fi, its multiplier
set generated using a term α is obtained from θi(f0, · · · , fi−1, α, fi+1, · · · , fd). The support of the polynomial
system for which θi(f0, · · · , fi−1, α, fi+1, · · · , fd) is the Dixon polynomial, is 〈A0, . . . ,Ai−1, {α},Ai+1, . . . ,Ad〉.
This support is denoted by A(i, α).

Proposition 5.1 Given a support A = 〈A0, . . . ,Ad〉 of a polynomial system F , for any α ∈ Nd,

∆A ⊆
d⋃

i=0

∆A(i,α).

Proof: Note that ∆A(i,α) is the support of θi(xα). Since xα θ(f0, . . . , fd) =
∑d

i=0 fi θi(xα); we can conclude
that

∆A ⊆
d⋃

i=0

∆A(i,α),

since no fi has terms in variables xi.
As stated earlier, the Dixon polynomial depends on the variable order used in its construction. Let

∆〈x1,x2,...,xd〉
A stand for the support of the Dixon polynomial constructed using the variable order 〈x1, x2, . . . , xd〉,

i.e., x1 is first replaced by x1, followed by x2 and so on. Therefore,

∆
〈xd,...,x1〉
A ⊆

d⋃

i=0

∆
〈xd,...,x1〉
A(i,α) .

However, ∆
〈xd,...,x1〉
A = ∆〈x1,...,xd〉

A , as can be seen from Definition 3.1 of θ. Substituting this into the previous
equation, the statement of the proposition is proved. 2

The above proposition establishes that the support of the Dixon polynomial is contained in the union of
the Dixon multiplier sets. It is shown below that the converse holds if the term chosen for the construction
of the Dixon multipliers appears in all the polynomials of a given polynomial set.

Theorem 5.1 Given A = 〈A0, . . . ,Ad〉 as defined above, consider an α ∈ ⋂d
i=0Ai. Then,

∆A =
d⋃

i=0

∆A(i,α).

Proof: Using Proposition 5.1, it suffices to show that

d⋃

i=0

∆A(i,α) ⊆ ∆A.

16

Note that
∆A =

⋃

σ∈∈A
∆σ and ∆A(i,α) =

⋃

σ∈∈A(i,α)

∆σ,

and for every σ ∈∈ A(i, α), σ ∈∈ A. Hence the statement of the theorem follows. 2

In particular, for an unmixed A, where Ai = Aj for all i, j ∈ {0, . . . , d},
∆A = ∆A(i,α) for any α ∈ Ai, and i ∈ {0, . . . , d}.

The above property shows that the columns of the Dixon matrix are exactly the monomial multipliers of the
Dixon multiplier matrix. That is

X ⊆
d⋃

i=0

Xi

in the construction of a Dixon multiplier matrix, and equality holds whenever the chosen monomial m is
in the support of all polynomials of an unmixed polynomial system. The above property is independent of
choice of the m = xα in A, indicating a tight relationship between the Dixon matrix and the associated
Dixon multiplier matrix.

5.1.1 Size of the Dixon Multiplier Matrix

Using Theorem 5.1, we can prove an observation made earlier that the size of a Dixon matrix is at least as
big as the size of the largest multiplier set of the corresponding Dixon multiplier matrices.

Theorem 5.2 For a generic polynomial system F , the size of the Dixon matrix is at least as big as the size
of the largest multiplier set for the Dixon multiplier matrices, i.e.,

Size(Θ) ≥ d
max
i=0

Φi(α) when α ∈
d⋂

i=0

Ai.

A direct consequence of the above theorem is:

Corollary 5.2.1 Consider a polynomial system with support A = 〈A0, . . . ,Ad〉 and let α ∈ ∩d
i=0Ai. Then,

(d + 1) Size(Θ) ≥ Size(Mα),

where Mα is the Dixon multiplier matrix constructed using α, and the above relation becomes an equality in
the unmixed case, that is when Ai = Aj for all 1 ≤ i 6= j ≤ d.

Proof: The number of multipliers for a polynomial fi used in the construction of a Dixon multiplier matrix
is Φi(α), and in unmixed case Φi(α) = Φj(α), for all i, j. The number of rows of Mα is the sum of sizes of
the multiplier sets for each polynomial, i.e. Φ(α) = (d + 1)Φi(α) and also

∆A =
d⋃

i=0

∆A(i,α) and therefore |∆A(i,α)| = Φi(α) ≤ |∆A| = Size(Θ).

By Theorem 5.1. It follows that Mα is at most d + 1 times bigger than Θ, where equality happens in the
unmixed case. 2

Using the above propositions, we have one of the key results of this paper.

Theorem 5.3 Given a generic, unmixed polynomial system F and a monomial m in F , then if the Dixon
matrix is exact, the Dixon multiplier matrix built using monomial m is also exact.

Proof: Since the Dixon matrix is exact, its size Size(Θ) equals to the degree the coefficients of fi appearing
in the resultant, which by Theorem 5.1, is the size of multiplier set for each polynomial fi in the polynomial
system F . Hence the coefficients of fi will appear at most of the same degree Size(Θ), in the projection
operator of the Dixon multiplier matrix. But this is precisely their degree in the resultant, therefore the
projection operator extracted from the Dixon multiplier matrix is precisely the resultant, that is, Mα is
exact. 2

In all generic cases, the ratio between the sizes of two matrices is at most d + 1; therefore, the Dixon
multiplier matrices are as good as Dixon matrices in unmixed cases, in terms of extraneous factors and
usually better in mixed cases as well.

17

5.2 Choosing Monomial for Constructing Multiplier Sets

From the last two subsections, we can make the following observations to design a heuristic to choose α and
t to minimize Φ(α, t).

1. Let Qt =
⋃d

j=0 (tj + Aj); consider the support Pt = 〈Qt, . . . ,Qt〉 of an unmixed polynomial system.
Then, by Theorem 5.1,

d⋃

i=0

∆[A+t](i,α) ⊆ ∆Pt
and therefore for all i, Φi(α, t) ≤ |∆Pt

|.

Since it is difficult to minimize the size of ∆[A+t](i,α), which is Φi(α, t), we will minimize |∆Pt |, that
is, we will use a method to choose t for minimizing the size of the Dixon matrix.

• Let Qi
t =

⋃i
j=0 (tj +Aj), and let Pi

t = 〈Qi
t, . . . ,Qi

t〉; find ti+1 such that the ∆Pi+1
t

is minimal.

• The procedure for finding ti+1 is iterative and like a gradient ascent (hill climbing) method.
Starting with i = 0, set the initial guess to be t′i+1 = (0, . . . , 0), and compute the size of ∆Pi+1

t
.

Then, select a neighboring point of t′i+1 and compute the size of the resulting set ∆Pi+1
t′

. If the
set is smaller, select the neighboring point. Stop when all neighboring points result in support
hulls of bigger size.

2. Once t is fixed by using the above procedure to minimize |∆Pt
|, search for a monomial with exponent

α for constructing the Dixon multiplier matrix such that

α ∈ SupportHull
d⋃

j=0
j 6=i

(tj +Aj), for maximal number of indices i = 0, . . . , d,

where SupportHull is defined below.

Definition 5.1 Given k ∈ Zd
2 and points p, q ∈ Nd define

p ≤
k

q if
{

pj ≤ qj if kj = 1,
pj ≥ qj if kj = 0.

The support hull can be defined to be the set of points which are “inside” the hull.

Definition 5.2 Given a support P ⊂ Nd, definite its support hull to be

SupportHull(P) = { p | ∀ k ∈ Zd
2, ∃ q ∈ P, such that p ≤

k
q }.

The support hull of a given support is similar to the associated convex hull; whereas the later is defined in
terms of the shortest Euclidean distance, the support hull is defined using the Manhattan distance. (For a
complete description, see [CK02a].)
Example: Consider a highly mixed polynomial system (see figure 3):

f0 = a20x
2 + a40x

4 + a56x
5y6 + a96x

9y6,

f1 = b30x
3 + b27x

2y7 + b59x
5y9 + b69x

6y9,

f2 = c04y
4 + c29x

2y9 + c88x
8y8.

The above procedure is illustrated in some detail on this example. The
objective is to translate the supports so that they overlap the most. A1

is fixed; we try to adjust A0. At the start-point (t0 = (0, 0)), ∆P1
t

is
obtained which results in an unmixed system whose Dixon matrix is of size
80 columns. Using that as the starting point, we do local search in all four
directions, and pick the one with the least matrix size: 74. We repeat the
procedure as illustrated below, finally leading to the case when t0 = (−1, 3)
and the Dixon matrix size is 65. At this point, all four directions lead to
matrices of larger size, which is the stopping criterion.

A0

A1

A2

Figure 3: Mixed example.

18

72
↑

67 ←
¤
£

¡
¢65 → 71

⇑
69 ← 68 → 74

⇑
71 ← 71 77

⇑ ↑
74 ← 74 ⇐

¤
£

¡
¢80 → 88

↓ ↓
84 90

Now that t0 and t1 are fixed (in the above case they are (−1, 3) and (0, 0)),
t2 is found in the same way. Starting with the initial value for which the
Dixon matrix is of size 97, we eventually get the Dixon matrix of size 82
at t2 = (2, 0) as shown below. Therefore we get t2 = (2, 0). Figure 5 shows
the final arrangement of the supports.

A1

A0

Figure 4: Adjusted A0.

102 88 86
↑ ↑ ↑

110 ←
¤
£

¡
¢97 ⇒ 84 ⇒

¤
£

¡
¢82 → 88

↓ ↓ ↓
98 86 85

For a proper choice of α (see figure 6, where Φ(α, t) =
∑d

i=0 Φi(α, t)
is shown), Φi(α, t) ≤ 82. We should note that the optimal choice
(obtained by exhaustive search) for the Dixon multiplier matrix is
t = 〈(−1, 3), (0, 0), (3, 0)〉. In the above example, originally the Dixon
matrix (without translating supports) has 109 columns; after trans-
lation, it has only 82 columns. The Dixon multiplier matrix for the
original supports is 91 + 95 + 89 = 275 rows; after the above transla-
tion, the number of rows is 77+53+65 = 195. The optimal translation
leads to a Dixon multiplier matrix with 75 + 53 + 65 = 193 rows.

A1

A0

A2

Figure 5: Adjusted A2.

Note that BKK bound of the above system is
〈75, 51, 63〉, putting the lower bound of 189 on the size
of any dialytic resultant matrix. By trying to optimize the
size of the matrix, the degree (and as a consequence the
size) of the extraneous factors has been brought down. In
this example, it is 〈2, 2, 2〉, where ith entry in the tuple
denotes the degree of extraneous factor in terms of coeffi-
cients of fi. Note that in this example, α is chosen from
the support hull intersection; in general, good choices for
α are always from the support hull as the Dixon matrix
construction is invariant under the presence of monomials
whose exponent is support hull interior (see [CK02a]).

In general, to find a translation vector t = 〈t0, . . . , td〉
using the above procedure, one possibility is to search for
each ti in the range so that there is some overlap between
Qi−1

t and ti+Ai. If the maximum degree of the polynomial
system is k, then the distance from optimal ti and the
initial guess will be in the order k. Hence the cost of finding
translation vector t is

O(d k) Cost(|∆Pi
t
|).

209

209

226

243

260

277

296

315

334

353

198

200

215

230

245

260

277

295

313

331

197

199

211

223

235

247

261

277

293

309

196

198

207

216

225

234

245

259

273

287

195

197

203

209

215

221

229

241

253

265

195

196

199

202

205

208

213

223

233

243

197

196

195

195

195

195

197

205

213

221

206

202

198

197

196

195

198

208

218

228

222

215

208

204

200

196

199

211

223

2350

2

4

6

8

2 4 6 8 10

Figure 6: Φ(α, t) for different choices
of α ∈ Z2 and fixed t.

In the next section we will derive the complexity of constructing a Dixon matrix, a Dixon multiplier
matrix as well as Cost(|∆Pi

t
|).

19

6 Complexity & Empirical Results

Proposition 6.1 Given a polynomial system F = {f0, . . . , fd} with support 〈A0, . . . ,Ad〉, let n = |⋃d
i=0Ai|,

the complexity of constructing the Dixon multiplier matrix Mα for fixed α ∈ Nd is

TDM = O

(
n! d2(d + 1)

(n− d)!

)
= O(d3nd).

Proof: Assume (in the worst case) that each support has n points; therefore, each θi has the same structure,
except for different permutation of columns. Hence, the total complexity is bounded from above by (d + 1)
times the complexity of expanding single θi, w.l.o.g. assume θ0.

θ0 = θ(xα, f1, . . . , fd) =
d∏

i=0

1
xi − xi

∑

σ∈∈〈{α},A1,...,Ad〉

∣∣∣∣∣∣∣∣∣∣∣

1 0 0 · · · 0
c1,σ0 c1,σ1 c1,σ2 · · · c1,σd

c2,σ0 c2,σ1 c2,σ2 · · · c2,σd

...
...

...
. . .

...
cd,σ0 cd,σ1 cd,σ2 · · · cd,σd

∣∣∣∣∣∣∣∣∣∣∣

×

∣∣∣∣∣∣∣∣∣∣∣

π0(xα) π0(x)σ1 π0(x)σ2 · · · π0(x)σd

π1(xα) π1(x)σ1 π1(x)σ2 · · · π1(x)σd

π2(xα) π2(x)σ1 π2(x)σ2 · · · π2(x)σd

...
...

...
. . .

...
πd(xα) πd(x)σ1 πd(x)σ2 · · · πd(x)σd

∣∣∣∣∣∣∣∣∣∣∣

,

where σi ∈ Ai, for i ∈ {1, . . . , d} and σi 6= σj for i 6= j. Hence there are
(
n
d

)
terms in this sum, where we need

to expand 2 determinants of size (d + 1). In the worst case, it will take 2(d + 1)! time. It is not necessary
to carry out division by xi − xi, as the resulting monomials can be easily deduced. This is analogous to the
Sylvester matrix construction, where given the degrees of the polynomials, any entry in the matrix can be
deduced in constant time; in the second determinant, operations have to be done on exponent vectors, and
hence, have the complexity of d. 2

If we take into account the search for optimizing translation vector t, and constructing monomial with
exponent α, then total complexity is

O(d4knd),

where k is the range of search for the translation vector t, which is bounded by maximum degree of all
polynomials.

Note that the subdivision and incremental methods have, respectively, complexities as

TS = O

(
Size(M)d9.5n6.5 log2 k log2 1

εlεδ

)
and TI = O∗ (

e3dn5.5(deg Res)3
)

+ O∗ (
d7.5n2d+5.5

)
,

where k is the maximum degree of polynomials in the system, εl is the probability of failure to pick generic
lifting vector, and εδ is the probability of perturbation failure [CE00]. In the above formula, Size(M) =
Ω(deg Res) and deg Res = Ω(nd). With these crude lower bounds for the size of the resultant matrix and
the degree of the resultant itself, we can compare the methods.

TS

TDM
= O

(
d5.5n6.5 log

1
εlεδ

)
and

TI

TDM
= O

(
e3dn5.5deg Res2

)
+ O

(
d3.5nd+5.5

)
.

The experimental results below confirm that the Dixon based dialytic method is an order of magnitude
faster than the subdivision and incremental algorithms as well as more successful in constructing smaller
matrices (the main bottleneck); further more, it can be optimized to construct even smaller matrices if one
is willing to spend more time in searching for the appropriate α and t.

Column Dixon Mult shows the size and construction time when t = 〈0, . . . ,0〉 and α = 0. Column DM
optimized shows results when t and α are searched using the above heuristic. Entry containing unmix is not
filled since the example is unmixed for which no optimization is needed.

The implementation of the incremental method [EC95] is in C, where as other algorithms are implemented
in Maple. The implementation of the subdivision algorithm used is downloaded from I. Emiris’s web site.
The optimization algorithm is implemented very crudely, without taking advantage of appropriate data
structures. All operations are done on lists; hence, timings deteriorate fast with the number of variables.

20

Nr. Problem
Incremental Subdivision Dixon Mult DM optimized
Size Time Size Time Size Time Size Time

1. Pappus theorem (6d) - - 20 7.00 17 0.44 - -

2. Max Volume of tetrahedron (4d) 107 5.75 137 186.83 60 0.36 60 1508.21

3. Side Bisector (2d) 33 0.08 33 7.58 40 0.09 30 3.90

4. Conformal anal. Cyclic molecules (3d) 112 4.14 119 140.96 84 3.39 unmix -

5. Kissing Circles Theorem (5d) - - 239 624.62 208 2.39 - -

6. Implicitization of strophoid (2d) 12 0.12 11 3.56 10 0.22 13 13.85

7. Random unmixed, (2d)-21 Unmixed 395 63.77 384 881.26 308 5.76 unmix -

8. Random mixed, (3d) 4 simlexes 461 46.50 480 1950.58 494 21.08 452 251.88

9. Random mixed, (2d)-mixed 301 19.06 296 371.70 306 4.45 261 46.44

10. Random mixed, (4d)-simplexes ≤ 3 745 188.52 663 4738.70 579 43.36 419 46301.62

Table 1: Performance comparison of Dixon multiplier matrices with Subdivision and Incremental

The advantages of optimizing vectors t and α are greater when the input system is more and more mixed.
Since the method for finding t and α is based on a heuristic, it is not guaranteed to produce optimal values.
In example 6, for instance, the original values from the Dixon multiplier algorithm already give an optimal
matrix; the heuristic on the other hand gives a worse value. This is mainly due to the fact that optimization
is done assuming generic coefficients.

The above heuristic is expensive in time (see example 10). Table 2 shows the correlation between the
time taken to interpolate a determinant and the size of a matrix. As can be seen, the size of the resultant
matrix is a major bottleneck in the determinant computation.

Dialytic Interpolation Rate
Matrix Size Time (sec) (Evaluations/sec)

15 1.37 3300
22 12.25 1100
29 52.30 600
36 173.40 290
44 1099.80 150
52 3530.91 87

Table 2: Interpolation timings with 9 parameters

7 Multi-graded Polynomial Systems: Exact Cases

In this section we show how the construction for Dixon Multiplier resultant matrices generates exact matrices
in certain cases (including generic unmixed multi-graded systems), without any a priori knowledge about
the structure of such polynomial systems.

Below we consider only unmixed polynomial systems with supports 〈A0, . . . ,Ad〉, where Ai = Aj . For
clarity, we will drop the index and denote by A, the support of each polynomial, i.e. A = Ai for all
i ∈ {0, . . . , d}.

One of the operations on supports which was considered in [CK00a], is the direct sum on supports.

Definition 7.1 Given two supports P ⊂ Nk and Q ⊂ Nl, define the direct sum of P and Q:

P ⊕Q = { (p1, . . . , pl, q1, . . . , qk) | p = (p1, . . . , pl) ∈ P and q = (q1, . . . , qk) ∈ Q}.

A polynomial is called homogeneous if all monomials appearing in the polynomial have the same
degree. In terms of the support A, a polynomial is homogeneous of degree n if for α = (α1, . . . , αd) ∈ A,
α1 + · · ·+ αd = n. Any polynomial can be homogenized by introducing an extra variable. In a sense, each
polynomial has a homogeneous and non-homogeneous version.

21

Definition 7.2 A polynomial with support A is called multihomogeneous of type (l1, l2, . . . , lr; k1, k2, . . . , kr)
for some integers li, kj and r if A ⊆ Q1⊕· · ·⊕Qr, and Qi ⊂ Nli is the support of a homogeneous polynomial
of degree ki, for i = 1, . . . , r.

By abuse of notation, we will call a polynomial multihomogenous of certain type if it can be homogenized
into one. Note that the same polynomial can be multihomogenized in number of different ways. For example,
the polynomial

f = c1x + c2y + c3

can be homogenized into

f = c1x + c2y + c3z or f = c1xt + c2ys + c3st

where the first is of type (2; 1) in terms of variables x, y with the homogenizing variable z and the second is
of type (1, 1; 1, 1) in terms of variables x,y, and the homogenizing variables s and t, respectively. Note that
in the first case, all monomials of degree 1 are present, whereas in the second case, the monomial xy could
have been included with the resulting polynomial being still of type (1, 1; 1, 1).

Proposition 7.1 Given a unmixed generic polynomial system with polynomial support A ⊆ P ⊕ Q, where
P ⊂ Nk and Q ⊂ Nl, then

∆A ⊆ ∆P ⊕
(Q+ · · ·+Q︸ ︷︷ ︸

k

+∆Q
)
.

Proof: A polynomial with support A has two blocks of variables– one corresponding to P, {x1, . . . , xk} and
other corresponding to Q, {y1, . . . , yl}. Obviously, the polynomial is in variables {x1, . . . , xk, y1, . . . , yl}. The
matrix for computing the Dixon polynomial can be split according to P and Q.

θ(f0, . . . , fd) =

(
k∏

i=1

1
xi − xi

l∏

i=1

1
yi − yi

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

π0(f0) π0(f1) · · · π0(fd)
...

...
. . .

...
πk−1(f0) πk−1(f1) · · · πk−1(fd)
πk(f0) πk(f1) · · · πk(fd)

...
...

. . .
...

πk+l−1(f0) πk+l−1(f1) · · · πk+l−1(fd)
πk+l(f0) πk+l(f1) · · · πk+l(fd)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Let J = {0, . . . , k + l}; for a subset a = {a1, . . . , ak} ⊂ J of size k; let â be such that a ∪ â = J , i.e. |â| = l.
Using the Laplace formula for the determinant, the above expression can be expanded in terms of of the
determinants of minors coming from each block as

θ(f0, . . . , fd) =
∑

a⊂J

(±1)

k∏

i=1

1
xi − xi

∣∣∣∣∣∣∣

π0(fa1) π0(fa2) · · · π0(fak
)

...
...

. . .
...

πk−1(fa1) πk−1(fa2) · · · πk−1(fak
)

∣∣∣∣∣∣∣

×

l∏

i=1

1
yi − yi

∣∣∣∣∣∣∣∣∣

πk(fba1) πk(fba2) · · · πk(fbal
)

...
...

. . .
...

πk+l−1(fba1) πk+l−1(fba2) · · · πk+l−1(fbal
)

πk+l(fba1) πk+l(fba2) · · · πk+l(fbal
)

∣∣∣∣∣∣∣∣∣

 .

The support of the first determinant in the above expression in terms of variables {x1, . . . , xd} is contained
in ∆P . Also it is not hard to see that the support of the first determinant in terms of variables {y1, . . . , yd}
is contained in Q+ · · ·+Q︸ ︷︷ ︸

k

. Hence the support of the first determinant is contained in

∆P ⊕
(Q+ · · ·+Q︸ ︷︷ ︸

k

)
.

22

The support of the second determinant in terms of variables {y1, . . . , yl} is exactly ∆Q. (Note that the
second determinant does not contain any variables from {x1, . . . , xd}.) Combining these, we get that

∆A ⊆ ∆P ⊕
(Q+ · · ·+Q︸ ︷︷ ︸

k

+∆Q
)
.

2

We consider a subclass of multihomogeneous polynomials, called multigraded polynomials.

Definition 7.3 A multihomogeneous polynomial of type (l1, l2, . . . , lr; k1, k2, . . . , kr) is called multigraded
if for each i = 1, . . . , r, either li = 1 or ki = 1.

A multigraded polynomial system F of type (l1, l2, . . . , lr; k1, k2, . . . , kr) is an unmixed system of d + 1
generic multigraded polynomials in d variables, where

∑r
i=1 li = d. We prove below that the Dixon multiplier

matrix for a multigraded system is square, and its determinant is the resultant of F .

Proposition 7.2 Let F be a multigraded polynomial system of type (l; k), then

∆A = { p = (p1, . . . , pl) | p1 + · · ·+ pl ≤ k − 1 }.

Proof: If l = 1, then the support of the Dixon polynomial corresponds to the monomials {1, x, x2, . . . , xk−1}
used in constructing the Bezout matrix. If k = 1, then F is a linear system of equations. The Dixon
polynomial in that case contains a constant term, obtained by expanding the corresponding determinant
and performing division by xi − xi. 2

Proposition 7.3 Let A be the support of a multihomogeneous polynomial of type (l; k). For an integer
n > 0, Q = A+ · · ·+A︸ ︷︷ ︸

n

is the support of a multihomogeneous polynomial of type (l; nk), that is

Q = { p = (p1, . . . , pl) | p1 + · · ·+ pl ≤ nk } and |Q| =
(

nk + l

l

)
.

Proof: Since A = { p = (p1, . . . , pl) | p1 + · · · + pl ≤ k }, the sum of A, n times, contains all points up to
nk, which is the support of a multihomogeneous polynomial of type (l;nk). The number of points in the
support is |Q| = (

nk+l
l

)
. 2

From the last two propositions, we have:

Proposition 7.4 Let F be a multigraded polynomial system of type (l; k) with support A. Then

A+ · · ·+A︸ ︷︷ ︸
n

+∆A = { p = (p1, . . . , pl) | p1 + · · ·+ pl ≤ nk + k − 1 }.

Definition 7.4 Given a partition of variables (l1, . . . , lr), let

(m1, . . . , mr) =

(p1,1, . . . , p1,l1 , p2,1, . . . , p2,l2 , . . . , pr,1, . . . , pr,lr) |

li∑

j=1

pi,j ≤ mi, i = 1, . . . , r

 .

The r-tuple (m1, . . . , mr) is called a multi-index.

It is easy to see that

|(m1, . . . , mr)| =
r∏

i=1

(
mi + li

li

)
.

Proposition 7.5 Given a multigraded polynomial system F = {f0, . . . , fd} of type (l1, l2, . . . , lr; k1, k2, . . . , kr),

∆A ⊆ (m1,m2, . . . ,mr), where mi = ki − 1 + ki

i−1∑

j=1

lj .

23

Proof: This directly follows from the previous two propositions. 2

Let M0 be the Dixon multiplier matrix constructed from a multigraded polynomial system F using
monomial x0 = 1. Since for the unmixed case, ∆A(i,0) = ∆A,

#rows(M0) ≤ (
1 +

r∑

i=1

li
)|(m1,m2, . . . ,mr)| =

(
1 +

r∑

i=1

li

)
r∏

i=1

(
mi + li

li

)
= (d + 1)

r∏

i=1

(
mi + li

li

)
,

given that d =
∑r

i=1 li.

Proposition 7.6 Let X = (m1, . . . , mr) and f be a multihomogenous polynomial of type (l1, l2, . . . , lr; k1, k2, . . . , kr)
with support P. Then, X + P = (m1 + k1, . . . , mr + kr).

Thus, the number of columns in M0 is at most

|(m1 + k1,m2 + k2, . . . ,mr + kr)| =
r∏

i=1

(
mi + ki + li

li

)
.

The degree of the resultant Res of F is determined by the mixed volumes of the system (see [SZ94]), and
is given by

deg Res = (d + 1) MixVol(Sx(F)) = (d + 1) d!Vol(Sx(F)) = (d + 1) d!
r∏

i=1

kli
i

li!
.

Proposition 7.7 For a multigraded system F , let mi = ki − 1 + ki

∑i−1
j=1 lj.

(i) The determinant of a maximal minor of M0 is a projection operator, which has total degree bigger or
equal than of the resultant Res, i.e.,

(d + 1)
r∏

i=1

(
mi + li

li

)
≥ #rows(M0) ≥ deg Res, and

r∏

i=1

(
mi + ki + li

li

)
≥ #cols(M0) ≥ deg Res,

(ii) the number of rows in M0 is equal to the (total) degree of the resultant Res, i.e.,

(d + 1)
r∏

i=1

(
mi + li

li

)
= (d + 1) d!

r∏

i=1

kli
i

li!
, and

(iii) the number of columns in M0 is equal to the number of rows in M0, hence the matrix M0 is square,
i.e.,

(d + 1)
r∏

i=1

(
mi + li

li

)
=

r∏

i=1

(
mi + ki + li

li

)
.

Proof: (i) This is a consequence of a property of the Dixon matrix [KSY94, Sax97, BEM00] that the deter-
minant of its maximal minor contains a toric resultant. By Theorem 4.3, the Dixon multiplier matrix M0

has that property as well.

For (ii), we have from (i) that

(d + 1)
r∏

i=1

(
mi + li

li

)
≥ #rows(MF) ≥ deg Res = (d + 1) d!

r∏

i=1

kli
i

li!
.

Below we show that for multigraded systems (i.e., for each i, ki = 1 or li = 1), the lower and upper bounds
on the number of rows in M0 coincide. Consider

hi =

(
mi+li

li

)

kli
i /li!

=

(
tiki

li

)

kli
i /li!

∣∣∣∣∣
ki=1 or li=1

=
ti!

ti−1!
,

24

where ti =
∑i

j=1 lj . Thus,
∏r

i=1 hi = tr! = d!, proving (ii).

For (iii), for multigraded systems (i.e., for each i, ki = 1 or li = 1), consider

gi =

(
mi+ki+li

li

)
(
mi+li

li

) =

(
(ti+1)ki

li

)
(
tiki

li

)
∣∣∣∣∣
ki=1 or li=1

=
ti + 1

ti−1 + 1
.

The product
∏r

i=1 gi = tr + 1 = l1 + · · ·+ lr + 1 = d + 1, and hence, (iii) follows. 2

For a multigraded polynomial system F , the Dixon multiplier matrix is thus square, and its size is exactly
the degree of the resultant of F . From the fact that the Dixon multiplier matrix of a polynomial system F
contains a multiple of its resultant, it follows that the determinant of this matrix gives exactly the resultant.
We thus have:

Theorem 7.1 Given an unmixed generic multigraded system F , the determinant of its Dixon multiplier
matrix is exactly the resultant of F . Moreover, depending on the order of variable blocks, there exist r! such
Sylvester-type matrices.

In [SZ94] it has been shown that for multigraded systems of type (l1, l2, . . . , lr; k1, k2, . . . , kr), the multi-
index (m1, . . . , mr), where mi = (ki − 1)li + ki

∑i−1
j=1 lj , constitutes the multiplier sets for constructing

a square Sylvester-type resultant matrix whose determinant is nonzero for generic coefficients. For generic
multigraded systems, the multiplier set used for each polynomial in the Dixon multiplier matrix construction
is precisely the same as the multi-index in [SZ94].

The Dixon multiplier construction not only results in exact Sylvester-type resultant matrices for generic
unmixed multigraded systems but for a much wider class of polynomial systems, without any prior knowledge
about the structure of the polynomial systems. This is in contrast to the construction proposed in [SZ94]
which only applies for unmixed generic multigraded systems.

8 Conclusions

For multivariate polynomial systems, a new algorithm for constructing Sylvester-type matrices, called the
Dixon multiplier matrices, is introduced based on the Dixon formulation, for simultaneously eliminating many
variables. The resulting matrices are sparse i.e., their size is determined by the supports of the polynomials
in a polynomial system. However, unlike other algorithms for constructing sparse resultant matrices which
explicitly use the support structure of the polynomial system in the construction, the proposed algorithm
exploits the sparse structure only implicitly, just like the generalized Dixon matrix construction.

The algorithm uses an arbitrary term to construct the multiplier sets for each polynomial in the poly-
nomial system. In the unmixed case, it is shown that the Dixon multiplier matrices are of the smallest size
if the term used in the construction is from the support. The size of a Dixon multiplier matrix puts an
upper bound on the degree of the projection operator that can be extracted from it, thus also determining
an upper bound on the degree of the extraneous factor, in case the projection operator is not exactly the
resultant. Consequently, the degree of extraneous factors can be minimized by minimizing the size of the
associated Dixon multiplier matrices. It is also shown that it does not matter what term is picked from the
support for unmixed cases.

It is also shown that for generic multigraded polynomial systems, the Dixon multiplier matrices con-
structed using the proposed method are exact in the sense that their determinant is the resultant of the
polynomial system.

In the mixed case, however, the choice of a term for construction becomes crucial. It is shown that if a
term is selected from a nonempty intersection of the supports of the polynomials in a polynomial system,
then the resulting Dixon multiplier matrices are smaller. Since translation of supports does not affect the
size of the Dixon multiplier matrices, translating supports so as to maximize the overlap among translated
supports and selecting a term from this overlap can be formulated as an optimization problem.

The new method is compared theoretically and empirically with other methods for generating Sylvester-
type resultant matrices, including subdivision and incremental algorithms for constructing sparse resultants
proposed in [CE00]. These results theoretically confirm the practical advantages of the Dixon resultant
formulation, which have been observed in a number of applications.

25

References

[AW92] W.A. Adkins and S.H. Weintraub. Algebra, An Approach via Module Theory. Springer-Verlag,
New York, 1992.

[BEM00] Laurent Buse, Mohamed Elkadi, and Bernar Mourrain. Generalized resultants over unirational
algebraic varieties. J. Symbolic Computation, 29:515–526, 2000.

[CE00] J.F. Canny and I.Z. Emiris. A subdivision based algorithm for the sparse resultant. J. ACM, 2000.

[CK00a] A. D. Chtcherba and D. Kapur. Conditions for Exact Resultants using the Dixon formulation.
ISSAC00, pages 62–70, 2000.

[CK00b] A. D. Chtcherba and D. Kapur. Extracting Sparse Resultant Matrices from the Dixon Resultant
Formultation. Proc. of 7th Rhine Workshop (RCWA’00), pages 167–182, 2000.

[CK02a] A. D. Chtcherba and D. Kapur. On Relationship between the Dixon-based Resultant Construction
and the Supports of Polynomial Systems. Technical Report To appear, Computer Science Dept.,
Univ. of New Mexico, Albuquerque, New Mexico, USA, 2002.

[CK02b] A. D. Chtcherba and D. Kapur. Resultants for Unmixed Bivariate Polynomial Systems using the
Dixon formulation. Submited to JSC, May 2002.

[CLO98] D. Cox, J. Little, and D. O’Shea. Using Algebraic Geometry. Springer-Verlag, New York, first
edition, 1998.

[CM96] J.P. Cardinal and B. Mourrain. Algebraic approach of residues and applications. In J. Renegar,
M. Shub, and S. Smale, editors, AMS-SIAM Summer Seminar on Math. of Numerical Analysis,
Lectures in Applied Mathematics, volume 32, pages 189–210. Am. Math. Soc. Press, 1996.

[Dix08] A.L. Dixon. The eliminant of three quantics in two independent variables. Proc. London Mathe-
matical Society, 6:468–478, 1908.

[EC95] I.Z. Emiris and J.F. Canny. Efficient incremental algorithms for the sparse resultant and the mixed
volume. J. Symbolic Computation, 20(2):117–149, August 1995.

[EM99] Ioannis Z. Emiris and Bernard Mourrain. Matrices in elimination theory. Journal of Symbolic
Computation, 28(1–2):3–43, 1999.

[GKZ94] I.M. Gelfand, M.M. Kapranov, and A.V. Zelevinsky. Discriminants, Resultants and Multidimen-
sional Determinants. Birkhauser, Boston, first edition, 1994.

[KS95] D. Kapur and T. Saxena. Comparison of various multivariate resultants. In ACM ISSAC 95,
Montreal, Canada, July 1995.

[KS96] D. Kapur and T. Saxena. Sparsity considerations in the Dixon resultant formulation. In Proc.
ACM Symposium on Theory of Computing, Philadelphia, May 1996.

[KSY94] D. Kapur, T. Saxena, and L. Yang. Algebraic and geometric reasoning using the Dixon resultants.
In ACM ISSAC 94, pages 99–107, Oxford, England, July 1994.

[Mac16] F.S. Macaulay. The algebric theory of modular systems. Cambridge Tracts in Math. and Math.
Phys., 19, 1916.

[PS93] P.Pedersen and B. Sturmfels. Product formulas for resultants and chow forms. Math. Zeitschrift,
214:377–396, 1993.

[Sax97] T. Saxena. Efficient variable elimination using resultants. PhD thesis, Department of Computer
Science, State Univeristy of New York, Albany, NY, 1997.

[Sha94] I.R. Shafarevich. Basic Algebraic Geometry. Spring-Verlag, New-York, second edition, 1994.

26

[Syl53] J.J Sylvester. On a theory of syzygetic relations of two rational integral functions, comprising an
application to the theory of sturm’s functions, and that of the greatest algebraic common measure.
Philosophical Trans., 143:407–548, 1853.

[SZ94] B. Sturmfels and A. Zelevinski. Multigraded resultants of sylvester type. Journal of Algebra,
163:115–127, 1994.

[Zha00] M. Zhang. Topics in Resultants and Implicitization. PhD thesis, Rice University, Dept. of Com-
puter Science, May 2000.

