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A NEW FAMILY OF RATIONAL SURFACES IN P4

HANS-CHRISTIAN GRAF V. BOTHMER, CORD ERDENBERGER,
AND KATHARINA LUDWIG

Abstract. We describe a new method of constructing rational surfaces
with given invariants in P4 and present a family of degree 11 rational
surfaces of sectional genus 11 with 2 six-secants that we found with this
method.

1. Introduction

In 1989 Ellingsrud and Peskine showed that the degree of non-general type
surfaces in P4 is bounded [EP89]. Since then their degree bound has been
sharpened by various authors, most recently by Decker and Schreyer [DS00]
to 52. On the other hand one has tried to construct and classify non-general
type surfaces in P4. [DES93] lists the 51 families of such surfaces known
at that time of which 18 are rational. Since then [Sch96] has found 4 more
families, 3 of them parameterizing rational surfaces. Five more families of
non-rational, non-general type surfaces were found by [ADH+97], [ADS98]
and [AR02]. Recently Abo announced the existence of a family of degree 12
rational surfaces in P4. Non-general type surfaces are classified up to degree
10 (see [DS00] for an overview and references), the largest known degree of
a non-general type surface in P4 is 15. Rational surfaces are only known up
to degree 12.

In this paper we describe a new method for finding rational surfaces in P4

and present a new family of rational degree 11 surfaces in P4 which we found
with this method.

Our method is partly based on an idea of Schreyer [Sch96] who explicitly
constructed surfaces in P4 over small fields using computer algebra programs
and provided a method of lifting these surfaces to characteristic 0. There
he used the observation that modules with special syzygies are much more
common over small fields than over characteristic 0 to find those modules
by a random search. Here we use a random search over F2 to find linear
systems with special configurations of basepoints on P2.

We construct one of our new surfaces over F2 in Section 2. In Section 3 we
prove that this surface lies in a family that is also defined in characteristic
zero. Finally we explain our search-algorithm in Section 4.
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2. The surface

Let us first fix some notation. We work over the fields F2, F214 and F25

which we realize as

F214 = F2[t]/(t
14 + t13 + t11 + t10 + t8 + t6 + t4 + t+ 1)

and F25 = F2[t]/(t
5 + t3 + t2 + t+ 1).

Over these fields we consider the points

P = (0 : 0 : 1) ∈ P2(F2)

Q = (t11898, t137, 1) ∈ P2(F214)

R = (t6 : t15 : 1) ∈ P2(F25).

Lemma 2.1. The orbits of Q and R under the Frobenius-endomorphism

are of degree 14 and 5 respectively. We denote the corresponding points by

Q1, . . . , Q14 and R1, . . . , R5.

Proof. The orbits of Q and R are defined by the kernels of

F2[x, y, z] → F214 [x, y, z]/IQ

and

F2[x, y, z] → F25 [x, y, z]/IR

where IQ and IR are the ideals of Q and R respectively. Using Script 5.1
one can calculate these kernels and check that the degrees of their vanishing
sets are 14 and 5. �

Proposition 2.2. Let L be the class of a line in P2. Then

|9L− 3P − 2Q1 − · · · − 2Q14 −R1 − · · · −R5| = P4

and this linear system has only the assigned base points.

Proof. Using Script 5.1 we intersect the ideal of 3P , the ideal of the orbit of
2Q and the ideal of the orbit of R. We check that the intersection contains
exactly 5 independent 9-tics whose baselocus is of degree 1 ·6+14 ·3+5 ·1 =
53. �

Proposition 2.3. Let S be the blowup of P2 in P,Q1, . . . , Q14, R1, . . . , R5

and E1, . . . , E20 be the corresponding exceptional divisors. Then the linear

system
∣

∣

∣

∣

∣

9L− 3E1 −

15
∑

i=2

2Ei −

20
∑

i=16

Ei

∣

∣

∣

∣

∣

is very ample and embeds S ⊂ P4 as a smooth surface of degree 11 and

sectional genus 11.
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Proof. In Script 5.1 we define a morphism

F2[x0, . . . , x4] → F2[x, y, z]

using the 5 independent 9-tics found. The kernel of this map is the ideal of
S ⊂ P4. We then calculate that S has degree 11, and sectional genus 11 and
finally check smoothness by the Jacobi criterion. �

Proposition 2.4. S ⊂ P4 has two 6-secants. In particular S can not lie in

one of the known families.

Proof. Every 6-secant of S must be contained in all quintics that contain
S. The final lines of Script 5.1 calculate that the vanishing locus (IS)≤5

contains S and two lines, which turn out to be 6-secants. The known families
of rational surfaces of degree 11 and sectional genus 11 have 0, 1 or infinitely
many 6-secants [DES93]. �

3. Lifting to characteristic zero

In this section we denote schemes defined over specZ with a subscript Z and
their fibers over points of specZ with subscripts Fp or Q.

Proposition 3.1 (Schreyer [Sch96]). Consider a smooth projective variety

XZ ⊂ PN
Z

over specZ, a map

φ : F → G

between vector bundles of rank f and g on XZ, the determinantal subvariety

YZ ⊂ XZ where φ has rank k, and a Fp-rational point y ∈ YFp.

If the tangent space TYFp ,y
of YFp in y is a linear subspace of codimension

(f − k)(g − k) in TXFp ,y
then y lies on an irreducible component ZZ of YZ

that has nonempty fibers over an open subscheme of specZ.

Proof. Since YFp is determinantal, the codimension of YFp in XFp is at most
c = (f − k)(g − k). The condition on the tangent space ensures that YFp

is smooth of this codimension in y, or equivalently YFp is of dimension d =
dimXFp−c in y. Let now ZZ be a component of YZ that contains y. Since YZ

is determinantal in XZ each component of YZ has also at most codimension
c [Eis95, Ex 10.9, p. 246]. Since dimXZ = dimXFp + 1 the dimension of
ZZ is at least d + 1. ZFp contains y and is therefore of dimension at most
d. Hence ZZ can not be contained in the fiber YFp and has nonempty fibers
over an open subscheme of specZ. �

On P2
Z
we have the map

τk : H
0(OP2

Z

(a)) → OP2
Z

(a)⊕ 3OP2
Z

(a− 1)⊕ · · · ⊕

(

k + 2

2

)

OP2
Z

(a− k)

that associates to each polynomial of degree a the coefficients of its taylor
expansion up to degree k.

Lemma 3.2. If a > k then the image of τk is a vector bundle Fk of rank
(

k+2
2

)

over specZ.
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Proof. In each point we consider an affine 2-dimensional neighborhood where
we can choose the

(

k+2
2

)

coefficients of the affine taylor expansion indepen-
dently. This shows that the image has at least this rank everywhere. That
this is also the maximal rank follows from the Euler relation. �

Remark 3.3. Notice that the morphism H0(OP2
Z

(a)) →
(

k+2
2

)

OP2
Z

(a − k)

is not surjective in characteristics that divide a. One really has to consider
the whole taylor expansion.

Set now XZ = Hilb1,Z×Hilb14,Z×Hilb5,Z where Hilbk,Z denotes the Hilbert
scheme of k points in P2

Z
over specZ, and let

YZ = {(p, q, r) |h0(9L− 3p− 2q − 1r) ≥ 5} ⊂ XZ

be the subset where the linear system of ninetics with triplepoint in p, dou-
blepoints in q and single basepoints in r is at least of projective dimension
4.

Proposition 3.4. There exist vector bundles F and G of ranks 55 and 53
respectively on XZ and a morphism

φ : F ⊗OXZ
→ G

such that the determinantal locus where φ has rank 50 is supported on YZ.

Proof. On the cartesian product

Hilbd,Z ×P2
Z

π2
//

π1

��

P2
Z

Hilbd,Z

we have the morphisms

π∗
2τk : H

0(OP2
Z

(9)) ⊗OHilbd,Z ×P2
Z

→ π∗
2Fk.

Let now Pd ⊂ Hilbd,Z×P2
Z
be the universal set of points. Then Pd is a flat

family of degree d over Hilbd,Z and

Gk := (π1)∗((π
∗
2Fk)|Pd

)

is a vector bundle of rank d
(

k+2
2

)

over Hilbd,Z. On

XZ = Hilb1,Z×Hilb14,Z ×Hilb5,Z

the induced map

φ : H0(OP2
Z

(9)) ⊗OXZ

τ2⊕τ1⊕τ0−−−−−−→ σ∗
1G2 ⊕ σ∗

14G1 ⊕ σ∗
5G0

has the desired properties, where σd denotes the projection to Hilbd,Z. �

Theorem 3.5. There exists a family of smooth rational surfaces in P4
C
with

d = 11, π = 11, K2 = −11 and two 6-secants.
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Proof. By determining the infinitesimal deformations of our 20 points
P,Q1, . . . , Q14, R1, . . . , R5 in P2

F2
we can check with a Macaulay calculation

that

y := (P, {Q1, . . . , Q14}, {R1, . . . , R5}) ∈ YF2
⊂ XF2

satisfies the conditions of Proposition 3.1. A script performing these cal-
culations can be obtained from our webpage [vBEL]. We therefore have a
component ZZ of YZ that contains our configuration of basepoints. Since
the conditions

(1) the points of p, q and r are distinct
(2) h0(9L− 3p − 2q − 1r) = 5
(3) the linear system |9L− 3p − 2q − 1r| has no further basepoints
(4) the image of the corresponding rational map φ : P2 → P4 is a smooth

surface S
(5) S has two 6-secants

are all open on ZZ and y is a point on this component that satisfies all
conditions, they must hold on a nonempty open subset of ZZ. Since ZZ is
irreducible and has nonzero fibers over the generic point, we obtain smooth
surfaces in characteristic zero. The invariants can be calculated from the
multiplicities of the baselocus using the following proposition. �

Proposition 3.6. Let S = P2
C
(p1, . . . , pl) be the blowup of P2

C
in l distinct

points. We denote by E1, . . . , El the corresponding exceptional divisors and

by L the pullback of a general line in P2
C
to S. If |aL−

∑l
i=1 biEi| is a very

ample linear system of dimension 4 for suitable a and bi, then S ⊂ P4
C
is a

rational surface of degree

d = a2 −

l
∑

i=1

b2i

and sectional genus

π =

(

a− 1

2

)

−

l
∑

i=1

(

bi
2

)

.

The self-intersection of the canonical divisor of S is K2 = 9− l.

Proof. Set H = aL−
∑l

i=1 biEi. Then

d = H2 = (aL−

l
∑

i=1

biEi)
2 = a2 −

l
∑

i=1

b2i

since L2 = 1, L · Ei = 0 and Ei · Ej = −δij . The canonical divisor of S

is K = −3L +
∑l

i=1Ei, so K2 = 9 − l. The sectional genus of S can be
calculated by adjunction:

π =
1

2
H(K +H) + 1 =

(

a− 1

2

)

−
l

∑

i=1

(

bi
2

)

.

�
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4. The search

In this section we will describe our search-algorithm. We first need to find
suitable linear systems for given invariants. For that we make the following
observation which is a direct consequence of Proposition 3.6:

Corollary 4.1. In the situation of Proposition 3.6 we set βj = #{i | bi = j}.
The invariants of S are then linear forms in the βj ’s:

d = a2 −
∑

j

βjj
2

π =

(

a− 1

2

)

−
∑

j

βj

(

j

2

)

K2 = 9−
∑

j

βj .

For given d, π, K2 and a the linear system above has only finitely many
integer solutions. One can find these solutions by integer programming. We
have used an algorithm from [CLO98, Chapter 8].

Example 4.2. For d = 11, π = 11, K2 = −11 and a = 9 the only solution
is β3 = 1, β2 = 14 and β1 = 5.

For a given set of βj ’s we have chosen random points in P2 over F
2
βj , checked

if their orbit under the Frobenius endomorphism had degree βj ; checked

whether the corresponding linear system |aL−
∑l

i=1 biEi| was 4-dimensional;
calculated the image of the corresponding map to P4 and checked whether
this image was a smooth rational surface. The script we used is available on
our web page [vBEL].

Example d π speciality trials surfaces rate log rate
B1.7 5 2 0 1000 871 87,1% -0,2
B1.8 6 3 0 1000 311 31,1% -1,7
B1.9 7 4 0 1000 188 18,8% -2,4
B1.10 8 5 0 1000 312 31,2% -1,7
B1.11 8 6 1 10000 184 1,84% -5,8
B1.12 9 6 0 10000 2173 21,73% -2,2
B1.13 9 7 1 100000 446 0,446% -7,8
B1.14 10 8 1 1000000 0 0,0000% −∞
B1.15 10 9 2 1000000 42 0,0042% -14,5
B1.16 10 9 2 1000000 267 0,0267% -11,9
B1.17 11 11 3 10000000 0 0,00000% −∞
B1.18 11 11 3 10000000 5 0,00005% -20,9
B1.19 11 11 3 10000000 0 0,00000% −∞
New 11 11 3 2000000 21 0,00105% -16,5

Figure 1. Results of random searches using our script. The
numbering of the examples is as in [DES93].
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Figure 2. The difficulty of finding a surface grows exponen-
tially with the speciality.

For comparison we also tried to reconstruct the rational surfaces of [DES93]
using the basepoint multiplicities provided there. Our results are collected
in Figure 1 and Figure 2. Notice that the number of trials needed to find
an example grows exponentially with the speciality as expected. From this
we expect that surfaces of speciality 4 can be found in approximately 500
Million trials. Using our program this would take about 500 weeks on a 2
GHz machine.

Remark 4.3. Notice that our approach can only find linear systems where
the points in each group of constant multiplicity are in uniform position.

Remark 4.4. Another way of constructing random groups of points is via
syzygies and the Theorem of Hilbert-Birch. We have also tried this, but
found the above approach more effective.

5. Appendix

Here we provide a script for the computer algebra program Macaulay 2
[GS] that does the calculations needed in Section 2. The script can also be
obtained from our webpage [vBEL].

Script 5.1.

-- construct a surface over F_2 using frobenius orbits

-- define coordinate ring of P^2 over F_2

F2 = GF(2)

S2 = F2[x,y,z]
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-- define coordinate ring of P^2 over F_2^14 and F_2^5

St = F2[x,y,z,t]

use St; I14 = ideal(t^14+t^13+t^11+t^10+t^8+t^6+t^4+t+1); S14 = St/I14

use St; I5 = ideal(t^5+t^3+t^2+t+1); S5 = St/I5

-- the points

use S2; P = matrix{{0_S2, 0_S2, 1_S2}}

use S14;Q = matrix{{t^11898, t^137, 1_S14}}

use S5; R = matrix{{t^6, t^15, 1_S5}}

-- their ideals

IP = ideal ((vars S2)*syz P)

IQ = ideal ((vars S14)_{0..2}*syz Q)

IR = ideal ((vars S5)_{0..2}*syz R)

-- their orbits

f14 = map(S14/IQ,S2); Qorbit = ker f14

degree Qorbit -- degree = 14

f5 = map(S5/IR,S2); Rorbit = ker f5

degree Rorbit -- degree = 5

-- ideal of 3P

P3 = IP^3;

-- orbit of 2Q

f14square = map(S14/IQ^2,S2); Q2orbit = ker f14square;

-- ideal of 3P + 2Qorbit + 1Rorbit

I = intersect(P3,Q2orbit,Rorbit);

-- extract 9-tics

H = super basis(9,I)

rank source H -- affine dimension = 5

-- count basepoints (with multiplicities)

degree ideal H -- degree = 53

-- construct map to P^4

T = F2[x0,x1,x2,x3,x4]

fH = map(S2,T,H);

-- calculate the ideal of the image

Isurface = ker fH;

-- check invariants

betti res coker gens Isurface

codim Isurface -- codim = 2

degree Isurface -- degree = 11

genera Isurface -- genera = {0,11,10}
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-- check smoothness

J = jacobian Isurface;

mJ = minors(2,J) + Isurface;

codim mJ -- codim = 5

-- count 6-secants

-- ideal of 1 quartic and 5 quintics

Iquintics = ideal (mingens Isurface)_{0..5};

-- calculate the extra components where these vanish

secants = Iquintics : Isurface;

codim secants -- codim = 3

degree secants -- degree = 2

secantlist = decompose secants -- two components

-- check number of intersections

degree (Isurface+secantlist#0) -- degree = 6

codim (Isurface+secantlist#0) -- codim = 4

degree (Isurface+secantlist#1) -- degree = 6

codim (Isurface+secantlist#1) -- codim = 4
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