# Subresultants and Generic Monomial Bases 

Carlos D'Andrea ${ }^{\text {a }}$ Gabriela Jeronimo ${ }^{\text {b }}$<br>${ }^{\text {a }}$ Miller Institute for Basic Research in Science and Department of Mathematics University of California, Berkeley CA 94720-3840, USA.<br>cdandrea@math.berkeley.edu<br>${ }^{\mathrm{b}}$ Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Ciudad Universitaria, Pabellón I, 1428 Buenos Aires, Argentina. jeronimo@dm.uba.ar


#### Abstract

Given $n$ polynomials in $n$ variables of respective degrees $d_{1}, \ldots, d_{n}$, and a set of monomials of cardinality $d_{1} \ldots d_{n}$, we give an explicit subresultant-based polynomial expression in the coefficients of the input polynomials whose non-vanishing is a necessary and sufficient condition for this set of monomials to be a basis of the ring of polynomials in $n$ variables modulo the ideal generated by the system of polynomials. This approach allows us to clarify the algorithms for the Bézout construction of the resultant.


Key words: Multivariate resultants, multivariate subresultants, determinant of complexes, monomial bases.

## 1 Introduction

Consider a system of $n$ polynomials in $n$ variables with coefficients in a field $\mathbb{K}, f_{1}\left(x_{1}, \ldots, x_{n}\right), \ldots, f_{n}\left(x_{1}, \ldots, x_{n}\right)$, with respective degrees $d_{1}, \ldots, d_{n}$. Generically, this system has $\mathbf{d}:=d_{1} \cdot d_{2} \ldots d_{n}$ roots in the algebraic closure of $\mathbb{K}$. This is the very well-known Bézout formula which appeared in Bézout (1779) (see Cox et al. (1996) for a modern treatment of this).

One can say something more about what "generic" means above: let $V\left(f_{1}, \ldots, f_{n}\right) \subset$ $\overline{\mathbb{K}}^{n}$ be the set of common zeros of the polynomials $f_{1}, \ldots, f_{n}$, and set

$$
f_{i}:=\sum_{j=0}^{d_{i}} f_{i j}, \quad i=1, \ldots, n
$$

where $f_{i j}$ is the homogeneous component of $f_{i}$ of degree $j$. Then, it turns out that $V\left(f_{1}, \ldots, f_{n}\right)$ is a finite set and its cardinality (counting multiplicities) is d if and only if the system of homogeneous equations

$$
\begin{equation*}
f_{1 d_{1}}=0, f_{2 d_{2}}=0, \ldots, f_{n d_{n}}=0 \tag{1}
\end{equation*}
$$

has no solution in projective space $\mathbb{P}^{n-1}$-see (Cox et al., 1998, Ch. 3, Thm. 5.5) for a proof of this result and also (Cox et al., 1998, Ch. 4, Definition 2.1) for the definition of multiplicity of a zero of a polynomial system.

From a more algebraic point of view, if we set $I:=\left(f_{1}, \ldots, f_{n}\right)$ for the ideal generated by the $f_{i}$ 's in $\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$, the fact that $V(I) \subset \overline{\mathbb{K}}^{n}$ has d points counted with multiplicity means that the $\mathbb{K}$-algebra $\mathcal{A}:=\mathbb{K}\left[x_{1}, \ldots, x_{n}\right] / I$ is a $\mathbb{K}$-vector space of dimension $\mathbf{d}$. As $\mathcal{A}$ is generated by the set of (the images in $\mathcal{A}$ of) all monomials in $\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$, one can always find a basis of monomials for $\mathcal{A}$ (finite or not).

In this paper, we will focus our attention on the following problem: given a set $\mathbb{M}$ of $\mathbf{d}$ monomials, how can we decide if they are a basis of $\mathcal{A}$ or not?

We could use Gröbner bases for solving this problem, but we would like our answer to be a function on the input set $\mathbb{M}$ only, and not depending on an extra monomial ordering and other intermediate steps that are needed in Gröbner bases algorithms.

One of the main results of this paper is a polynomial expression in the coefficients of $f_{1}, \ldots, f_{n}$ which vanishes if and only if the set $\mathbb{M}$ fails to be a basis of $\mathcal{A}$. The expression we get can be described in terms of resultants and subresultants of homogeneous polynomials obtained from the input system, which is the algebraic counterpart of this problem in the homogeneous case (see Cox et al., 1998; Chardin, 1995; Szanto, 2002).

The problem of deciding whether a given set of monomials $\mathbb{M}$ is a basis of $\mathcal{A}$ or not is important in elimination theory due to the fact that algorithms for computing resultants, Bézout identities, reduction modulo an ideal and explicit versions of the Shape Lemma can be reduced to linear algebra computations in the quotient ring, avoiding the use of Gröbner bases, if one succeeds in finding such a basis $\mathbb{M}$.

Bézout (1779) was the first to work following this approach, which was extended by Macaulay (1902), who answered this question in the case $\mathbb{M}=$ $\left\{x_{1}^{\alpha_{1}} \ldots x_{n}^{\alpha_{n}}, 0 \leq \alpha_{i} \leq d_{i}-1\right\}$ by means of a polynomial expression in the coefficients of the input polynomials (see also Macaulay, 1916). Our results, when applied to Macaulay's case, recover his original formulation.

In this direction, some results were obtained by Chardin (1994b), provided
that all the $f_{i}$ 's are generic and homogeneous. If the input system is generic and sparse, a generalization of the case we are dealing with here, partial results were obtained by Emiris \& Rege (1994) and Pedersen \& Sturmfels (1996) for $\mathbb{M}$ 's constructed by means of regular triangulations of polytopes.

A different approach based on recursive linear algebra is provided in Bikker \& Uteshev (1999) for specific $\mathbb{M}$. In Section 7, we will compare our results with those obtained in this article.

The paper is organized as follows: some preliminary results are stated in Section 2. In Section 3, we recall the definition and basic properties of multivariate subresultants, as introduced in Chardin (1995). We relate subresultants with our problem in Section 4, associating with any given set $\mathbb{M}$ a polynomial whose non vanishing is equivalent to the fact that $\mathbb{M}$ is a basis of $\mathcal{A}$. In Section 5 , we show that, for certain $\mathbb{M}$ 's, this polynomial expression depends only on the coefficients of $f_{1 d_{1}}, \ldots, f_{n d_{n}}$, and moreover, it can be decomposed into factors. Then, we give in Section 6 some rational expressions for generalized Vandermonde determinants. These results, along with those presented in Section 5 , allow us a better understanding of the recursive algorithm proposed in Bikker \& Uteshev (1999). Finally, we conclude by comparing our results with those obtained in Bikker \& Uteshev (1999) in Section 7.

## 2 Preliminary Results

Let $\operatorname{Res}_{d_{1} \ldots d_{n}}(\cdot)$ be the homogeneous resultant operator, as defined in Macaulav (1902); van der Waerden (1950); Cox et al. (1998). We recall the following well-known result (see Cox et al., 1998, for a proof):

Proposition 2.1 The system (1) has a nontrivial solution in $\overline{\mathbb{K}}^{n}$ if and only if $\operatorname{Res}_{d_{1}, \ldots, d_{n}}\left(f_{1 d_{1}}, \ldots, f_{n d_{n}}\right)=0$.

Remark 2.2 This proposition, together with our previous remarks about the quotient ring $\mathcal{A}$, gives a proof for the Choice Conjecture stated in Bikker 83 Uteshev (1999): The condition $\operatorname{Res}_{d_{1}, \ldots, d_{n}}\left(f_{1 d_{1}}, \ldots, f_{n d_{n}}\right) \neq 0$ is necessary and sufficient for the existence of a set $\mathbb{M}$ of $\mathbf{d}$ monomials which is a basis of $\mathcal{A}$ (and hence, any polynomial can be reduced with respect to this set). Of course, the hard problem is to find such an $\mathbb{M}$ !

Let $\mathbb{K}$ be a field, $f_{1}, \ldots, f_{n} \in \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ and

$$
\mathbb{M}:=\left\{m_{1}, \ldots, m_{\mathbf{d}}\right\} \subset \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]
$$

be a set of $\mathbf{d}$ monomials. Set $\rho:=d_{1}+\cdots+d_{n}-n$, and

$$
\delta:=\delta(\mathbb{M})=\max \left\{\operatorname{deg}\left(m_{i}\right), i=1, \ldots, \mathbf{d}\right\} .
$$

Let $x_{0}$ be a new variable. For every polynomial $p\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ we define

$$
p^{0}\left(x_{0}, x_{1}, \ldots, x_{n}\right):=x_{0}^{\operatorname{deg}(p)} p\left(\frac{x_{1}}{x_{0}}, \ldots, \frac{x_{n}}{x_{0}}\right),
$$

i.e. $p^{0}$ is the homogenization of $p$ with a new variable $x_{0}$, and for every $t \geq \delta$, we set

$$
\mathbb{M}_{t}:=\left\{m x_{0}^{t-\operatorname{deg}(m)}, m \in \mathbb{M}\right\}
$$

Let $\mathcal{A}_{0}$ be the quotient ring $\mathbb{K}\left[x_{0}, \ldots, x_{n}\right] /\left(f_{1}^{0}, \ldots, f_{n}^{0}\right)$. It is a graded ring of the form $\mathcal{A}_{0}=\bigoplus_{i=0}^{\infty} \mathcal{A}_{0 i}$.

Set $H_{\left(d_{1}, \ldots, d_{n}\right)}(\tau)$ for the coefficients of the power series

$$
\begin{equation*}
\sum_{\tau=0}^{\infty} H_{\left(d_{1}, \ldots, d_{n}\right)}(\tau) T^{\tau}=\frac{\prod_{j=1}^{n}\left(1-T^{d_{j}}\right)}{(1-T)^{n+1}} \tag{2}
\end{equation*}
$$

It turns out that $H_{\left(d_{1}, \ldots, d_{n}\right)}$ is the Hilbert function of $\mathbb{K}\left[x_{0}, x_{1}, \ldots, x_{n}\right] / J$ when $J$ is an ideal generated by a regular sequence of $n$ homogeneous polynomials of degrees $d_{1}, \ldots, d_{n}$, that is, $H_{\left(d_{1}, \ldots, d_{n}\right)}(\tau)$ is the dimension as a $\mathbb{K}$-vector space of the piece of degree $\tau$ in $\mathbb{K}\left[x_{0}, x_{1}, \ldots, x_{n}\right] / J$; see Macaulay (1902); Chardin (1995).

Remark 2.3 From the right-hand side of Identity (2), it is easy to check that $H_{\left(d_{1}, \ldots, d_{n}\right)}(\tau)<\mathbf{d}$ if $\tau<\rho$, and $H_{\left(d_{1}, \ldots, d_{n}\right)}(\tau)=\mathbf{d}$ if $\tau \geq \rho$.

If $\operatorname{Res}_{d_{1}, \ldots, d_{n}}\left(f_{1 d_{1}}, \ldots, f_{n d_{n}}\right) \neq 0$ holds, Proposition 2.1 implies that the family of polynomials $f_{1}^{0}, \ldots, f_{n}^{0}$, $x_{0}$ has no common roots in projective space and so, $\operatorname{Res}_{d_{1}, \ldots, d_{n}, 1}\left(f_{1}^{0}, \ldots, f_{n}^{0}, x_{0}\right) \neq 0$. But this implies that $f_{1}^{0}, \ldots, f_{n}^{0}, x_{0}$ is a regular sequence in $\mathbb{K}\left[x_{0}, \ldots, x_{n}\right]$ and, in particular, $f_{1}^{0}, \ldots, f_{n}^{0}$ is also a regular sequence in that ring. Therefore, $\operatorname{dim} \mathcal{A}_{0 \tau}=H_{\left(d_{1}, \ldots, d_{n}\right)}(\tau)$.

The next proposition shows a relationship between a monomial basis of the affine $\operatorname{ring} \mathcal{A}$ and bases of certain graded parts of the ring $\mathcal{A}_{0}$. This will allow us to state the condition for an arbitrary set $\mathbb{M}$ to be a basis of $\mathcal{A}$.

Proposition 2.4 If $\operatorname{Res}_{d_{1}, \ldots, d_{n}}\left(f_{1 d_{1}}, \ldots, f_{n d_{n}}\right) \neq 0$, then the following conditions are equivalent:
(1) $\mathbb{M}$ is a basis of $\mathcal{A}$ as a $\mathbb{K}$-vector space.
(2) There exists $t_{0} \geq \max \{\delta, \rho\}$ such that $\mathbb{M}_{t_{0}}$ is a basis of $\mathcal{A}_{0 t_{0}}$ as a $\mathbb{K}$-vector space.
(3) For every $t \geq \max \{\delta, \rho\}, \mathbb{M}_{t}$ is a basis of $\mathcal{A}_{0 t}$ as a $\mathbb{K}$-vector space.

Remark 2.5 We will see in Corollary 2.6 that a necessary condition for $\mathbb{M}$ to be a basis of $\mathcal{A}$ is that $\delta \geq \rho$. Therefore, in the statement of Proposition 2.4 we can replace $\max \{\delta, \rho\}$ with $\delta$.

Now we will prove Proposition 2.4.
Proof. Recall that the assumption $\operatorname{Res}_{d_{1}, \ldots, d_{n}}\left(f_{1 d_{1}}, \ldots, f_{n d_{n}}\right) \neq 0$ implies that $f_{1}^{0}, \ldots, f_{n}^{0}$ is a regular sequence in $\mathbb{K}\left[x_{0}, \ldots, x_{n}\right]$.
$(1) \Longrightarrow(3)$ Let $t \geq \max \{\delta, \rho\}$ and consider a linear combination of vectors in $\mathbb{M}_{t}$ which lies in the ideal $\left(f_{1}^{0}, \ldots, f_{n}^{0}\right)$ :

$$
\begin{equation*}
\sum_{i=1}^{\mathrm{d}} \lambda_{i} m_{i} x_{0}^{t-\operatorname{deg}\left(m_{i}\right)}=\sum_{j=1}^{n} A_{j}\left(x_{0}, \ldots, x_{n}\right) f_{j}^{0} \tag{3}
\end{equation*}
$$

Setting $x_{0}=1$ we get a linear combination of elements in $\mathbb{M}$ which lies in $I$. So, if $\mathbb{M}$ is linearly independent, we get that $\mathbb{M}_{t}$ is linearly independent. As $t \geq \rho$ and $f_{1}^{0}, \ldots, f_{n}^{0}$ is a regular sequence, the dimension of $\mathcal{A}_{0 t}$ is $\mathbf{d}$ and therefore, we conclude that $\mathbb{M}_{t}$ is a basis of $\mathcal{A}_{0 t}$.
$(3) \Longrightarrow(1)$ Consider a linear combination of $\mathbb{M}$ as follows:

$$
\sum_{i=1}^{\mathbf{d}} \lambda_{i} m_{i}=\sum_{j=1}^{n} a_{j}\left(x_{1}, \ldots, x_{n}\right) f_{j} .
$$

Let $t_{0}:=\max \left\{\delta, \rho, \operatorname{deg}\left(a_{j} f_{j}\right), j=1, \ldots, n\right\}$. Homogenizing the linear combination up to degree $t_{0}$, we have an equality like (3) with $t_{0}$ instead of $t$. As $\mathbb{M}_{t_{0}}$ is linearly independent, it turns out that $\lambda_{i}=0$ for $i=1, \ldots, \mathbf{d}$. Then, $\mathbb{M}$ is a linearly independent set. Taking into account that $\operatorname{dim}(\mathcal{A})=\mathbf{d}$ it follows that it is a basis of $\mathcal{A}$.
$(3) \Longrightarrow(2)$ Obvious.
$(2) \Longrightarrow(3)$ Consider the following exact complex of vector spaces:

$$
0 \rightarrow \operatorname{ker} \phi_{t} \rightarrow \mathcal{A}_{0 t} \xrightarrow{\phi_{t}} \mathcal{A}_{0(t+1)} \rightarrow\left(\mathbb{K}\left[x_{0}, \ldots, x_{n}\right] /\left(x_{0}, f_{1}^{0}, \ldots, f_{n}^{0}\right)\right)_{t+1} \rightarrow 0
$$

where $\phi_{t}(m)=x_{0} . m$. As $\operatorname{Res}_{1, d_{1}, \ldots, d_{n}}\left(x_{0}, f_{1}^{0}, \ldots, f_{n}^{0}\right) \neq 0$, it turns out that $\left(\mathbb{K}\left[x_{0}, \ldots, x_{n}\right] /\left(x_{0}, f_{1}^{0}, \ldots, f_{n}^{0}\right)\right)_{t+1}=0$ if $t \geq \rho$. In addition, for $t \geq \rho$, we have that $\operatorname{dim}\left(\mathcal{A}_{0 t}\right)=\operatorname{dim}\left(\mathcal{A}_{0(t+1)}\right)$. So, $\phi_{t}$ is an isomorphism if $t \geq \max \{\rho, \delta\}$, and furthermore, $\phi_{t}\left(\mathbb{M}_{t}\right)=\mathbb{M}_{t+1}$. Then, $\mathbb{M}_{t_{0}}$ is a basis of $\mathcal{A}_{0 t_{0}}$ for some $t_{0} \geq$ $\max \{\delta, \rho\}$ if and only if $\mathbb{M}_{t}$ is a basis of $\mathcal{A}_{0 t}$ for every $t \geq \max \{\delta, \rho\}$.

The following result, which follows immediately from the proof of Proposition 2.4, gives us a lower bound of the maximal degree one may expect from a monomial basis of $\mathcal{A}$.

Corollary 2.6 If $\mathbb{M}$ is a basis of $\mathcal{A}$, then $\delta(\mathbb{M}) \geq \rho$.
Proof. Let $t<\rho$, and suppose that $\mathbb{M}$ is a basis of $\mathcal{A}$ with $\delta=t$. Proceeding as in the proof of $(1) \Longrightarrow(3)$ in Proposition 2.4 , it follows that $\mathbb{M}_{t}$ is linearly independent in $\mathcal{A}_{0 t}$. But, from Remark 2.3, we have that $\operatorname{dim}\left(\mathcal{A}_{0 t}\right)<\mathbf{d}$ if $t<\rho$, which is a contradiction.

Example 2.7 Let $f_{1}, f_{2}, f_{3}$ be generic polynomials of degree two in $\mathbb{K}\left[x_{1}, x_{2}, x_{3}\right]$. In this case, $\mathbf{d}=2.2 .2=8$. It is well-known that

$$
\mathbb{M}:=\left\{1, x_{1}, x_{2}, x_{3}, x_{1} x_{2}, x_{1} x_{3}, x_{2} x_{3}, x_{1} x_{2} x_{3}\right\}
$$

is generically a basis of $\mathcal{A}$ (see for instance Macaulav (1902)). Observe that $\delta=3=\rho$ in this case. On the other hand, Corollary 2.6 implies that there are no eight monomials linearly independent in the set

$$
\left\{1, x_{1}, x_{2}, x_{3}, x_{1}^{2}, x_{2}^{2}, x_{3}^{2}, x_{1} x_{2}, x_{1} x_{3}, x_{2} x_{3}\right\}
$$

This can be explained as follows: As $f_{1}^{0}, f_{2}^{0}, f_{3}^{0}$ is a regular sequence, they must be linearly independent. So, the dimension of the $\mathbb{K}$-vector space they generate is 3 and hence, the dimension of $\mathcal{A}_{02}$ is $10-3=7$.

## 3 Subresultants by Means of Koszul Complexes

In this section we recall the theory of multivariate subresultants for homogeneous polynomials as formulated in Chardin (1995); see also Demazure (1984).

First, we are going to introduce the crucial notion involved in the definition of subresultants.

### 3.1 The Determinant of an Exact Complex of Vector Spaces

Let $K$ be a field and let $\mathbf{C}$ be an exact complex of finitely generated $K$-vector spaces $F_{i}=K^{B_{i}}$, with bases $B_{i}$, of the form

$$
\mathbf{C}: 0 \rightarrow F_{n} \xrightarrow{\partial_{n}} F_{n-1} \xrightarrow{\partial_{n-1}} \cdots \xrightarrow{\partial_{2}} F_{1} \xrightarrow{\partial_{1}} F_{0} \rightarrow 0 .
$$

Then, there exists a decomposition of the $K$-vector spaces $F_{i}$ which enables us to associate with the complex $\mathbf{C}$ an element $\Delta \in K$. This element $\Delta$ is called
the determinant of the complex (see Gel'fand et al., 1994, Appendix A). In order to obtain the decomposition, we can proceed as in Demazure (1984); Chardin (1995); Gel'fand et al. (1994):

## Ascending Decomposition

- Set $I_{1}:=B_{0}$ and $V_{1}:=K^{I_{1}}$.
- Since $\partial_{1}$ is onto, there exists a non-zero maximal minor of the matrix of $\partial_{1}$. Choose such a non-zero minor, and set $I_{1}^{\prime}$ for the subset of $B_{1}$ corresponding to the elements indexing the columns of the chosen submatrix and $I_{2}:=$ $B_{1}-I_{1}^{\prime}$. Then, if $V_{1}^{\prime}:=K^{I_{1}^{\prime}}$ and $V_{2}:=K^{I_{2}}$, we have $F_{1}=V_{2} \oplus V_{1}^{\prime}$, and $\left.\partial_{1}\right|_{V_{1}^{\prime}}: V_{1}^{\prime} \rightarrow V_{1}$ is an isomorphism.
- For $i \geq 2$, consider $\partial_{i}^{*}:=\pi_{i-1} \circ \partial_{i}: F_{i} \rightarrow V_{i}$, where $\pi_{i-1}$ is the projection from $F_{i-1}$ to $V_{i}$. The map $\partial_{i}^{*}$ is onto, due to the exactness of $\mathbf{C}$ and the chosen decomposition of $F_{i-1}$. Then, we can choose a non-zero maximal minor of the matrix of $\partial_{i}^{*}$ and consider the subset $I_{i}^{\prime}$ of $B_{i}$ indexing the columns of the chosen submatrix and $I_{i+1}:=B_{i}-I_{i}^{\prime}$. Setting $V_{i}^{\prime}:=K^{I_{i}^{\prime}}$ and $V_{i+1}:=K^{I_{i+1}}$ we obtain a decomposition $F_{i}=V_{i+1} \oplus V_{i}^{\prime}$ such that the restriction $\left.\partial_{i}^{*}\right|_{V_{i}^{\prime}}: V_{i}^{\prime} \rightarrow V_{i}$ is an isomorphism.
- In the last step, we obtain a square matrix for $\partial_{n}^{*}$, due to the fact that $\sum_{i=0}^{n} \operatorname{dim}\left(F_{i}\right)=0$.

For every $1 \leq i \leq n$, let $\phi_{i}:=\left.\partial_{i}^{*}\right|_{V_{i}^{\prime}}: V_{i}^{\prime} \rightarrow V_{i}$. The determinant of the complex C (relative to the bases $B_{i}$ ) is defined to be

$$
\Delta:=\prod_{i=0}^{n-1} \operatorname{det}\left(\phi_{i+1}\right)^{(-1)^{i}}
$$

We remark that $\Delta$ is (up to a sign) independent of the choices made to perform the decomposition.

A second procedure to obtain a decomposition of a complex which also enables us to compute its determinant, is the following:

## Descending Decomposition

- Set $I_{n}:=B_{n}$ and $V_{n}:=K^{I_{n}}$.
- Since $\partial_{n}$ is into, there exists a non-zero maximal minor of the matrix of $\partial_{n}$. Choose such a minor and define $I_{n-1} \subset B_{n-1}$ to be the subset of elements of $B_{n-1}$ indexing the rows not involved in this minor and $I_{n}^{\prime}:=B_{n-1}-I_{n-1}$. Then we have a decomposition $F_{n-1}=V_{n}^{\prime} \oplus V_{n-1}$, where $V_{n}^{\prime}:=K^{I_{n}^{\prime}}$ and $V_{n-1}:=K^{I_{n-1}}$.
- Note that, for $i \geq 1$, the previous construction for $i-1$ implies that $\operatorname{Im}\left(\partial_{n-i+1}\right) \cap V_{n-i}=0$, and therefore $\operatorname{Ker}\left(\partial_{n-i}\right) \cap V_{n-i}=0$, that is, the restriction of $\partial_{n-i}$ to $V_{n-i}$ is into. Then we can iterate the process and
choose a maximal non-zero minor of the matrix of $\left.\partial_{n-i}\right|_{V_{n-i}}$, and define $I_{n-i}^{\prime}$ to be the subset of $B_{n-i-1}$ indexing the rows of the chosen submatrix and $I_{n-i-1}$ to be its complement in $B_{n-i-1}$. We obtain a decomposition $F_{n-i-1}:=V_{n-i}^{\prime} \oplus V_{n-i-1}$, where $V_{n-i}^{\prime}:=K^{I_{n-i}^{\prime}}$ and $V_{n-i-1}:=K^{I_{n-i-1}}$.
- In the last step a square matrix is obtained, due to the exactness of the complex.

As before, for every $1 \leq i \leq n$, we define $\phi_{i}:=\left.\partial_{i}^{*}\right|_{V_{i}}: V_{i} \rightarrow V_{i}^{\prime}$. It turns out that (Gel'fand et al., 1994; Chardin, 1995) the determinant of $\mathbf{C}$ relative to the bases $B_{i}$ can also be computed as

$$
\Delta:=\prod_{i=0}^{n-1} \operatorname{det}\left(\phi_{i+1}\right)^{(-1)^{i}}
$$

### 3.2 Subresultants

Multivariate subresultants are defined as determinants of generically exact Koszul complexes. Let $s \leq n+1$ and let $P_{1}, \ldots, P_{s}$ be generic homogeneous polynomials in $n+1$ variables $x_{0}, \ldots, x_{n}$ of respective degrees $d_{1}, \ldots, d_{s}$ :

$$
P_{i}\left(x_{0}, \ldots, x_{n}\right):=\sum_{|\alpha|=d_{i}} c_{i, \alpha} x^{\alpha}, \quad i=1, \ldots, s
$$

where the $c_{i, \alpha}$ 's are new variables.
In this case, $K$ is the field of fractions of $A:=\mathbb{Z}\left[c_{i, \alpha},|\alpha|=d_{i}, i=1, \ldots, s\right]$. Set $R:=A\left[x_{0}, x_{1}, \ldots, x_{n}\right]$.

Let $\mathfrak{M}_{t}$ be the set of all monomials of degree $t$ in the variables $x_{0}, \ldots, x_{n}$, and let $S$ be a family of $H_{d_{1}, \ldots, d_{s}}(t)$ monomials in $\mathfrak{M}_{t}$. With this data we can construct a complex $\mathbf{C}=\mathbf{C}_{t}^{s}$ which is obtained by modifying the degree $t$ part of the Koszul complex associated with $P_{1}, \ldots, P_{s}$ as follows:

$$
0 \rightarrow\left(\wedge^{s} R^{s}\right)_{t} \xrightarrow{\partial_{s}}\left(\wedge^{s-1} R^{s}\right)_{t} \xrightarrow{\partial_{s-1}} \cdots \xrightarrow{\partial_{2}}\left(\wedge^{1} R^{s}\right)_{t} \xrightarrow{\varphi} A\left\langle\mathfrak{M}_{t} \backslash S\right\rangle \rightarrow 0
$$

equipped with the bases $B_{k}:=\bigcup_{1 \leq i_{1}<\cdots<i_{k} \leq s} \bigcup_{X^{\alpha} \in \mathbb{M}_{t-d_{i_{1}}-\cdots-d_{i_{k}}}} X^{\alpha} e_{i_{1}} \wedge \cdots \wedge e_{i_{k}}$.
If this complex is generically exact (i.e. $\mathbf{C} \otimes K$ is exact as a complex of $K$-vector spaces), then the subresultant of $S$ with respect to the polynomials $P_{1}, \ldots, P_{s}$, which will be denoted with $\Delta_{S}^{t}$, is defined to be the determinant of $\mathbf{C} \otimes K$ with respect to the monomial bases; otherwise we set $\Delta_{S}^{t}:=0$. As we have $H_{i}\left(\mathbf{C}_{t}^{s}\right)=0$ for $i>0$ (Jouanolou, 1980; Chardin, 1995), it turns out that $\Delta_{S}^{t}$ is a polynomial in the coefficients of the $P_{i}$ 's which satisfies the following property (Chardin, 1995, Theorem 2): Let $\mathbf{k}$ be any field, and $\tilde{P}_{i} \in \mathbf{k}\left[x_{0}, \ldots, x_{n}\right]_{d_{i}}, i=$
$1, \ldots, s$. Then

$$
\Delta_{S}^{t}\left(\tilde{P}_{1}, \ldots, \tilde{P}_{s}\right) \neq 0 \Longleftrightarrow J_{t}+\mathbf{k}\langle S\rangle=\mathbf{k}\left[x_{0}, \ldots, x_{n}\right]_{t}
$$

where $J_{t}$ is the degree $t$ part of the ideal generated by the $\tilde{P}_{i}$ 's.

## 4 Monomial Bases and Subresultants

In this section, we will relate our problem with multivariate subresultants.

We set $s=n$, and let $P_{1}, \ldots, P_{n}$ be the homogeneous polynomials $f_{1}^{0}, \ldots, f_{n}^{0}$ defined above. The following may be regarded as the main result of this section.

Theorem 4.1 Let $\mathbb{M} \subset \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ be a set of $\mathbf{d}$ monomials, and set $t:=$ $\delta(M)$. Let $\Delta_{\mathbb{M}_{t}}^{t}$ be the subresultant of $\mathbb{M}_{t}$ with respect to $f_{1}^{0}, \ldots, f_{n}^{0}$. Then, $\mathbb{M}$ is a basis of $\mathcal{A}$ if and only if

$$
\begin{equation*}
P_{\mathbb{M}, d_{1}, \ldots, d_{n}}:=\operatorname{Res}_{d_{1}, \ldots, d_{n}}\left(f_{1 d_{1}}, \ldots, f_{n d_{n}}\right) \Delta_{\mathbb{M}_{t}}^{t} \neq 0 \tag{4}
\end{equation*}
$$

Proof. If $\mathbb{M}$ is a basis of $\mathcal{A}$, the family $f_{1}, \ldots, f_{n}$ has all its zeros in $\overline{\mathbb{K}}^{n}$, and therefore, $\operatorname{Res}_{d_{1}, \ldots, d_{n}}\left(f_{1 d_{1}}, \ldots, f_{n d_{n}}\right) \neq 0$. In addition, from Corollary 2.6 and Proposition 2.4 it follows that $\mathbb{M}_{t}$ is a basis of $\mathcal{A}_{0 t}$, which implies that $\Delta_{\mathbb{M}_{t}}^{t} \neq 0$.

In order to prove the converse, we can apply Proposition 2.4 , as $\operatorname{Res}_{d_{1}, \ldots, d_{n}}\left(f_{1 d_{1}}, \ldots, f_{n d_{n}}\right) \neq$ 0 . The condition $\Delta_{\mathbb{M}_{t}}^{t} \neq 0$ implies that $\mathbb{M}_{t}$ is a basis of $\mathcal{A}_{0 t}$ and then, we conclude that $\mathbb{M}$ is a basis of $\mathcal{A}$.

Example 4.2 For $i=1,2,3$, let $f_{i}:=\sum_{|\alpha| \leq 2} c_{i, \alpha} x^{\alpha}$ be generic polynomials of degree two in $\mathbb{K}\left[x_{1}, x_{2}, x_{3}\right]$, and let $\mathbb{M}$ be as in example 2.7. The subresultant $\Delta_{\mathbb{M}_{3}}^{3}$ can be computed as the product of the determinants of the following two matrices:

$$
\left(\begin{array}{lll}
c_{1,2,0,0} & c_{1,0,2,0} & c_{1,0,0,2} \\
c_{2,2,0,0} & c_{2,0,2,0} & c_{2,0,0,2} \\
c_{3,2,0,0} & c_{3,0,2,0} & c_{3,0,0,2}
\end{array}\right)
$$

and

$$
\left(\begin{array}{ccccccccc}
c_{1,2,0,0} & 0 & 0 & c_{1,1,1,0} & c_{1,1,0,1} & 0 & c_{1,0,0,2} & 0 & c_{1,0,1,1} \\
0 & c_{1,0,2,0} & 0 & c_{1,2,0,0} & 0 & c_{1,0,1,1} & 0 & c_{1,0,0,2} & c_{1,1,1,0} \\
0 & 0 & c_{1,0,0,2} & 0 & c_{1,2,0,0} & c_{1,0,2,0} & c_{1,1,0,1} & c_{1,0,1,1} & 0 \\
c_{2,2,0,0} & 0 & 0 & c_{2,1,1,0} & c_{2,1,0,1} & 0 & c_{2,0,0,2} & 0 & c_{2,0,1,1} \\
0 & c_{2,0,2,0} & 0 & c_{2,2,0,0} & 0 & c_{2,0,1,1} & 0 & c_{2,0,0,2} & c_{2,1,1,0} \\
0 & 0 & c_{2,0,0,2} & 0 & c_{2,2,0,0} & c_{2,0,2,0} & c_{2,1,0,1} & c_{2,0,1,1} & 0 \\
c_{3,2,0,0} & 0 & 0 & c_{3,1,1,0} & c_{3,1,0,1} & 0 & c_{3,0,0,2} & 0 & c_{3,0,1,1} \\
0 & c_{3,0,2,0} & 0 & c_{3,2,0,0} & 0 & c_{3,0,1,1} & 0 & c_{3,0,0,2} & c_{3,1,1,0} \\
0 & 0 & c_{3,0,0,2} & 0 & c_{3,2,0,0} & c_{3,0,2,0} & c_{3,1,0,1} & c_{3,0,1,1} & 0
\end{array}\right) .
$$

For a proof of this fact, see Theorem 5.2 below.

## 5 Factorization of Subresultants

For several sets $\mathbb{M}$, the polynomial $P_{\mathbb{M}, d_{1}, \ldots, d_{n}}$ defined in (4) depends only on the coefficients of $f_{1 d_{1}} \ldots, f_{n d_{n}}$ and factorizes as a product of more than two terms. For instance, Macaulay (1902) showed that one can decide whether

$$
\begin{equation*}
\mathbb{M}^{0}:=\left\{x_{1}^{\alpha_{1}} \ldots x_{n}^{\alpha_{n}}, 0 \leq \alpha_{i} \leq d_{i}-1\right\} \tag{5}
\end{equation*}
$$

is a basis of $\mathcal{A}$ by applying linear algebra on the coefficients of the highest terms of $f_{1}, \ldots, f_{n}$ (see also Bikker \& Uteshev, 1999). The same has been done by Bikker \& Uteshev (1999) with

$$
\begin{equation*}
\mathbb{M}^{1}:=\left\{x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}}, 0 \leq \alpha_{1}<d_{1}, 0 \leq \alpha_{2} \leq d_{1}+d_{2}-2 \alpha_{1}-2\right\}, \tag{6}
\end{equation*}
$$

and with

$$
\begin{aligned}
\left\{x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} x_{3}^{\alpha_{3}}, 0 \leq \alpha_{1}<d_{1}, 0\right. & \leq \alpha_{2}<\min \left(d_{1}, d_{2}, 2\left(d_{1}-\alpha_{1}\right)-1\right) \\
0 & \left.\leq \alpha_{3}<d_{1}+d_{2}+d_{3}-2\left(\alpha_{1}+\alpha_{2}+1\right)\right\}
\end{aligned}
$$

for $n=2$ and $n=3$ respectively. This is not always the case, as the following cautionary example shows.

Example 5.1 Consider $n=3$. Set $d_{1}=d_{2}=d_{3}=2$ and write $f_{i}:=$ $\sum_{|\alpha| \leq 2} c_{i, \alpha} x^{\alpha}$ for $i=1,2,3$. Take

$$
\mathbb{M}:=\left\{x_{1}^{3}, x_{1}, x_{2}, x_{3}, x_{1} x_{2}, x_{1} x_{3}, x_{2} x_{3}, x_{1} x_{2} x_{3}\right\}
$$

Then, $\Delta_{\mathbb{M}_{3}}^{3}$ is the determinant of the following matrix:

$$
\left(\begin{array}{cccccccccccc}
c_{1,0,0,0} & 0 & 0 & 0 & c_{2,0,0,0} & 0 & 0 & 0 & c_{3,0,0,0} & 0 & 0 & 0 \\
0 & 0 & c_{1,0,2,0} & 0 & 0 & 0 & c_{2,0,2,0} & 0 & 0 & 0 & c_{3,0,2,0} & 0 \\
0 & 0 & 0 & c_{1,0,0,2} & 0 & 0 & 0 & c_{2,0,0,2} & 0 & 0 & 0 & c_{3,0,0,2} \\
c_{1,2,0,0} & c_{1,1,0,0} & 0 & 0 & c_{2,2,0,0} & c_{2,1,0,0} 0 & 0 & 0 & c_{3,2,0,0} & c_{3,1,0,0} & 0 & 0 \\
c_{1,0,2,0} & 0 & c_{1,0,1,0} & 0 & c_{2,0,2,0} & 0 & c_{2,0,1,0} & 0 & c_{3,0,2,0} & 0 & c_{3,0,1,0} & 0 \\
c_{1,0,0,2} & 0 & 0 & c_{1,0,0,1} & c_{2,0,0,2} & 0 & 0 & c_{2,0,0,1} & c_{3,0,0,2} & 0 & 0 & c_{3,0,0,1} \\
0 & c_{1,1,1,0} & c_{1,2,2,0,0} & 0 & 0 & c_{2,1,1,0} & c_{2,2,0,0} & 0 & 0 & c_{3,1,1,0} & c_{3,2,0,0} & 0 \\
0 & c_{1,1,0,1} & 0 & c_{1,2,0,0} & 0 & c_{2,1,0,1} & 0 & c_{2,2,2,0} & 0 & c_{3,1,0,1} & 0 & c_{3,2,0,0} \\
0 & c_{1,0,2,0} & c_{1,1,1,0} & 0 & 0 & c_{2,0,2,0} & c_{2,1,1,0} & 0 & 0 & c_{3,0,2,0} & c_{3,1,1,0} & 0 \\
0 & c_{1,0,0,2} & 0 & c_{1,1,0,1} & 0 & c_{2,0,0,0} & 0 & c_{2,1,0,1} & 0 & c_{3,0,0,2} & 0 & c_{3,1,0,1} \\
0 & 0 & c_{1,0,0,2} & c_{1,0,1,1} & 0 & 0 & c_{2,0,0,2} & c_{2,0,1,1} & 0 & 0 & c_{3,0,0,2} & c_{3,0,1,1} \\
0 & 0 & c_{1,0,1,1,1} & c_{1,0,2,0} & 0 & 0 & c_{2,0,1,1} & c_{2,0,2,0} & 0 & 0 & c_{3,0,1,1} & c_{3,0,2,0}
\end{array}\right) .
$$

With the aid of Maple we have computed this determinant, which is an irreducible polynomial depending on all the variables $c_{i, \alpha}$.

Set

$$
\begin{equation*}
\sum_{\tau=0}^{\infty} h_{\left(d_{1}, \ldots, d_{n}\right)}(\tau) T^{\tau}=\frac{\prod_{j=1}^{n}\left(1-T^{d_{j}}\right)}{(1-T)^{n}} \tag{7}
\end{equation*}
$$

It turns out that $h_{d_{1}, \ldots, d_{n}}$ is the Hilbert function of the ideal generated by a regular sequence of $n$ homogeneous polynomials in $n$ variables of degrees $d_{1}, \ldots, d_{n}$ respectively.

The following is the main result of this section:
Theorem 5.2 Let $P_{\mathbb{M}, d_{1}, \ldots, d_{n}}$ be the polynomial defined in (4). Then, if $P_{\mathbb{M}, d_{1}, \ldots, d_{n}}$ is not identically zero, the following conditions are equivalent:

- $P_{\mathbb{M}, d_{1}, \ldots, d_{n}}$ depends only on the coefficients of $f_{1 d_{1}}, \ldots, f_{n d_{n}}$.
- For every $t=0,1, \ldots, \rho$, the cardinality of $\mathbb{M} \cap \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]_{t}$ equals $h_{\left(d_{1}, \ldots, d_{n}\right)}(t)$.

If any of the above conditions hold, we have the following factorization:

$$
\begin{equation*}
\Delta_{\mathbb{M}_{\delta}}^{\delta}=\prod_{t=\min \left\{d_{i}\right\}}^{\rho} D_{\mathbb{M} \cap \mathbb{K}\left[x_{1}, \ldots, x_{n}\right] t}^{t} \tag{8}
\end{equation*}
$$

where $D_{S}^{t}$ denotes the subresultant in $n$ variables of $S$ with respect to $f_{1 d_{1}}, \ldots, f_{n d_{n}}$.
Proof. If $P_{\mathbb{M}, d_{1}, \ldots, d_{n}}$ depends only on the coefficients of $f_{1 d_{1}}, \ldots, f_{n d_{n}}$, we can set to zero all the coefficients of $f_{1}, \ldots, f_{n}$ not appearing in these leading forms and work with this family of homogeneous polynomials instead of $f_{1}, \ldots, f_{n}$. As $P_{\mathbb{M}, d_{1}, \ldots, d_{n}}$ is not identically zero, we have that $\Delta_{\mathbb{M}_{\delta}}^{\delta}$ is not identically zero
either and this implies that $\mathbb{M}$ is a basis of the homogeneous quotient ring $\mathbb{K}\left[x_{1}, \ldots, x_{n}\right] /\left(f_{1 d_{1}}, \ldots, f_{n d_{n}}\right)$. As the family $f_{1 d_{1}}, \ldots, f_{n d_{n}}$ is a regular sequence in $\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$, it turns out that $\#\left(\mathbb{M} \cap \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]_{t}\right)=h_{\left(d_{1}, \ldots, d_{n}\right)}(t)$ for any $t=0, \ldots, \rho$, and we are done.

In order to prove the other implication, we will work with generic homogeneous polynomials. For each $i=1, \ldots, n$ and $\alpha \in \mathbb{N}_{0}^{n}$ with $|\alpha| \leq d_{i}$, introduce a variable $c_{i, \alpha}$. Set

$$
\begin{equation*}
f_{i}\left(x_{1}, \ldots, x_{n}\right):=\sum_{|\alpha| \leq d_{i}} c_{i, \alpha} x^{\alpha}, i=1, \ldots, n . \tag{9}
\end{equation*}
$$

We shall work in the field $\mathbb{K}:=\mathbb{Q}\left(c_{i, \alpha}\right)$. In this situation we have that $\operatorname{Res}_{d_{1}, \ldots, d_{n}}\left(f_{1 d_{1}}, \ldots, f_{n d_{n}}\right) \neq 0$ (see for instance Cox et al. (1998)) and, due to the universal property of subresultants (Chardin, 1995), if $P_{\mathbb{M}, d_{1}, \ldots, d_{n}} \neq 0$ for a given family of polynomials in any field, then it will not be zero for the generic family (9).

As before, set $f_{i}^{0}$ for the homogenization of the polynomial $f_{i}$ in $\mathbb{K}\left[x_{0}, \ldots, x_{n}\right]$. Consider the following $\mathbb{K}$-linear map:

$$
\begin{align*}
\phi^{\rho}: S_{\rho-d_{1}}^{1} \oplus \cdots \oplus S_{\rho-d_{n}}^{n} & \rightarrow \quad S_{\rho}  \tag{10}\\
\left(p_{1}, \ldots, p_{n}\right) & \mapsto \sum_{i=1}^{n} p_{i} f_{i}^{0},
\end{align*}
$$

where $S_{\rho}:=\mathbb{K}\left[x_{0}, x_{1}, \ldots, x_{n}\right]_{\rho}$, and for each $i=1, \ldots, n$,

$$
S_{\rho-d_{i}}^{i}:=\left\langle x_{0}^{\alpha_{0}} \ldots x_{n}^{\alpha_{n}}, \sum_{j=0}^{n} \alpha_{j}=\rho-d_{i}, \alpha_{1}<d_{1}, \ldots, \alpha_{i-1}<d_{i-1}\right\rangle
$$

Let $M$ be the matrix obtained from the matrix of $\phi^{\rho}$ in the monomial bases by deleting the columns ${ }^{1}$ indexed by the points in $\mathbb{M}$ and let $M^{\prime}$ be the matrix obtained in the same way but using the set

$$
\begin{equation*}
S:=\left\{x_{0}^{\alpha_{0}} \ldots x_{n}^{\alpha_{n}},|\alpha|=\rho, \alpha_{i}<d_{i}, i=1, \ldots, n\right\} \tag{11}
\end{equation*}
$$

instead of $\mathbb{M}$. It is well-known that $\operatorname{det}\left(M^{\prime}\right) \neq 0$ (Macaulay, 1902; Chardin, 1995).

As the subresultant of $S$ with respect to $f_{1}^{0}, \ldots, f_{n}^{0}$ is the determinant of $\mathbf{C}_{t}^{S}$, it turns out that $\operatorname{det}\left(M^{\prime}\right)$ may be regarded as a non-zero maximal minor in the last morphism of the complex whose determinant is $\Delta_{S}^{\rho}$.

Starting with this maximal minor and using the ascending decomposition of the Koszul complex, it turns out that there exists an element $\mathcal{E} \in \mathbb{K}$, which is

[^0]actually a polynomial in the $c_{i, \alpha}$, such that $\operatorname{det}\left(M^{\prime}\right)=\mathcal{E} \Delta_{S}^{\rho}$. As $\operatorname{det}\left(M^{\prime}\right) \neq 0$, then $\mathcal{E} \neq 0$.

This $\mathcal{E}$ is a product of complementary minors in $\mathbf{C}_{t}^{S}$. Starting now with these minors from the left and applying the descending decomposition of the Koszul complex, one can see that, as in Chardin (1995), $\operatorname{det}(M)=\mathcal{E} \Delta_{\mathbb{M}}^{\rho}$, as the complex whose determinant is $\Delta_{\mathbb{M}}^{\rho}$ is the same as the one whose determinant is $\Delta_{S}^{\rho}$ except in the last map.

Set $\mathbb{M}(t):=\mathbb{M} \cap \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]_{t}, t=0,1, \ldots, \rho$, and suppose w.l.o.g. that $d_{1} \leq$ $d_{i}, i=2, \ldots, n$. As $\# \mathbb{M}(t)=h_{d_{1}, \ldots, d_{n}}(t)$, proceeding as in Macaulay (1902), it follows that -ordering appropriately its rows and columns- the matrix $M$ has the following block structure:

$$
\left(\begin{array}{cccc}
M_{\rho} & * & * & *  \tag{12}\\
0 & M_{\rho-1} & * & * \\
0 & 0 & \ddots & * \\
0 & 0 & \ldots & M_{d_{1}}
\end{array}\right)
$$

where $M_{t}$ is the square matrix obtained by deleting the columns indexed by the monomials in $\mathbb{M}(t)$ in the matrix of the $\mathbb{K}$-linear map:

$$
\begin{aligned}
\phi_{t}: S_{t-d_{1}}^{1 *} \oplus \cdots \oplus S_{t-d_{n}}^{n *} & \rightarrow \quad S_{t}^{*} \\
\left(p_{1}, \ldots, p_{n}\right) & \mapsto \sum_{i=1}^{n} p_{i} f_{i d_{i}} .
\end{aligned}
$$

Here $S_{t}^{*}:=\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]_{t}$, and for each $i=1, \ldots, n$,

$$
S_{t-d_{i}}^{i *}:=\left\langle x_{1}^{\alpha_{1}} \ldots x_{n}^{\alpha_{n}}, \sum_{k=1}^{n} \alpha_{k}=t-d_{i}, \alpha_{1}<d_{1}, \ldots, \alpha_{i-1}<d_{i-1}\right\rangle
$$

Then, we have that $\operatorname{det}(M)=\prod_{t=d_{1}}^{\rho} \operatorname{det}\left(M_{t}\right)$, which shows that $\operatorname{det}(M)$ depends only on the coefficients of $f_{i d_{i}}, i=1, \ldots, n$. Furthermore, $\operatorname{det}\left(M_{t}\right)=$ $\mathcal{E}_{t} D_{\mathbb{M} \cap \mathbb{K}\left[x_{1}, \ldots, x_{n}\right] t}^{t}$ for $t=0, \ldots, \rho$, and the extraneous factor $\mathcal{E}$ has also a block structure compatible with the one given in (12), that is, $\mathcal{E}=\prod_{t=d_{1}}^{\rho} \mathcal{E}_{t}$; see Macaulav (1902); Chardin (1994a). This completes the proof of the theorem.

Corollary 5.3 If $P_{\mathbb{M}, d_{1}, \ldots, d_{n}}$ is not identically zero and depends only on the coefficients of $f_{1 d_{1}}, \ldots, f_{n d_{n}}$, then $\delta(\mathbb{M})=\rho$.

## 6 Simple Roots and Generalized Vandermonde Determinants

In this section, we will study a result by Macaulay (1902) concerning the structure of a generalized Vandermonde determinant associated with the monomial set $\mathbb{M}^{0}$ and, with the aid of subresultants, we will extend it to arbitrary sets of monomials with cardinality $\mathbf{d}$. This will make apparent the relationship between the non-vanishing of the generalized Vandermonde determinant associated with a set of monomials $\mathbb{M}$ and the fact that $\mathbb{M}$ is a basis of the quotient algebra $\mathcal{A}$ in the case of a polynomial system with simple roots.

We will work in the generic field $\mathbb{K}=\mathbb{Q}\left(c_{i, \alpha}\right)$, and with the family (9). Let $V\left(f_{1}, \ldots, f_{n}\right)=\left\{\xi_{1}, \ldots, \xi_{\mathbf{d}}\right\} \subset \overline{\mathbb{K}}^{n}$, and set $\mathbb{M}^{0}=\left\{m_{1}, \ldots, m_{\mathbf{d}}\right\}$ (recall that $\mathbb{M}^{0}$ was defined in (5)). Let $M_{0}$ be the $\mathbf{d} \times \mathbf{d}$ matrix whose rows (resp. columns) are indexed by the elements of $V\left(f_{1}, \ldots, f_{n}\right)\left(\right.$ resp. $\left.\mathbb{M}^{0}\right)$, such that the element indexed by $\left(\xi_{i}, m_{j}\right)$ is the evaluation of $m_{j}$ at $\xi_{i}$, that is, $M_{0}:=\left(m_{j}\left(\xi_{i}\right)\right)_{1 \leq i, j \leq n}$.

In Macaulay, 1902, Section 10), it is proven that

$$
\begin{equation*}
\operatorname{det}\left(M_{0}\right)^{2}=\mathbf{c} \mathcal{J} \frac{\left(\Delta_{\mathbb{M}_{\rho}^{0}}^{\rho}\right)^{2}}{\operatorname{Res}_{\left(d_{1}, \ldots, d_{n}\right)}\left(f_{1 d_{1}}, \ldots, f_{n d_{n}}\right)^{\rho+1}} \tag{13}
\end{equation*}
$$

where $\mathcal{J}:=\prod_{i=1}^{\mathrm{d}} J\left(\xi_{i}\right)$ (here $J:=\operatorname{det}\left(\partial f_{i} / \partial x_{j}\right)_{1 \leq i, j \leq n}$ is the Jacobian of the sequence $f_{1}, \ldots, f_{n}$ ), and $\mathbf{c} \in \mathbb{Q}$ is a numerical constant depending only on $n$ and the degrees $d_{1}, \ldots, d_{n}$.

The constant $\mathbf{c}$ in (13) has an explicit expression in terms of $d_{1}, \ldots, d_{n}$ :

## Lemma 6.1

$$
\mathbf{c}=(-1)^{E_{n}\left(d_{1}, \ldots, d_{n}\right)}
$$

where

$$
E_{n}\left(d_{1}, \ldots, d_{n}\right):=\sum_{j=1}^{n} d_{1} \ldots d_{j-1} \frac{\left(d_{j}-1\right) d_{j}}{2} d_{j+1} \ldots d_{n}
$$

Proof. First, observe that a system $f_{1}, \ldots, f_{n}$ having the property that $f_{i d_{i}}=$ $x_{i}^{d_{i}}$ for $i=1, \ldots, n$, verifies $\operatorname{Res}\left(d_{1}, \ldots, d_{n}\right)\left(f_{1 d_{1}}, \ldots, f_{n d_{n}}\right)=1$ and $\left(\Delta_{\mathbb{M}_{\rho}^{\rho}}^{\rho}\right)^{2}=1$, as both polynomials depend only on the coefficients of $f_{1 d_{1}}, \ldots, f_{n d_{n}}$ (see Theorem 5.2 above). Therefore, the numerical factor $\mathbf{c}$ can be obtained from identity (13) by specializing the coefficients of $f_{i}$ in such a way that $f_{i d_{i}}=x_{i}^{d_{i}}, i=$ $1 \ldots, n$. If this is the case, we get

$$
\begin{equation*}
\mathbf{c}=\frac{\operatorname{det}\left(M_{0}\right)^{2}}{\mathcal{J}} \tag{14}
\end{equation*}
$$

The theorem will be proved by induction on $n$.

First, we fix some notation. We denote by $c_{n}\left(d_{1}, \ldots, d_{n}\right)$ the numerical factor associated with $n$ and degrees $d_{1}, \ldots, d_{n}$. If $f_{1}, \ldots, f_{n}$ is a system of polynomials in $n$ variables of degrees $d_{1}, \ldots, d_{n}$, we denote by $\mathcal{M}_{n}\left(f_{1}, \ldots, f_{n}\right)$ the matrix $M_{0}$ associated with the system $f_{1}, \ldots, f_{n}$ and the set $\mathbb{M}^{0}$, and we set $\mathcal{J}_{n}\left(f_{1}, \ldots, f_{n}\right):=\prod_{i=1}^{\mathbf{d}} J\left(\xi_{i}\right)$.

For $n=1$, set $d_{1}=d$ for a positive integer and let $f_{1}:=x_{1}^{d}-1$. We have that $V\left(f_{1}\right)=\left\{\xi_{1}, \ldots, \xi_{d}\right\}$ is the set of $d$ th roots of unity. The matrix $M_{0}$ is the Vandermonde matrix associated with the roots of $f_{1}$ and so, $\operatorname{det}\left(M_{0}\right)^{2}=$ $\operatorname{disc}\left(f_{1}\right)=(-1)^{d-1+\frac{d(d-1)}{2}} d^{d}$. In addition, $\mathcal{J}=(-1)^{d-1} d^{d}$. Then we conclude from identity (14) that

$$
c_{1}(d)=(-1)^{\frac{d(d-1)}{2}} .
$$

Assume now that the formula holds for systems of $n$ polynomials in $n$ variables and consider $n+1$ polynomials in $n+1$ variables.

- For degrees $d_{1}, \ldots, d_{n}, 1$ : Set $f_{i}:=x_{i}^{d_{i}}-1$ for $i=1, \ldots, n$, and $f_{n+1}:=x_{n+1}$. We have

$$
V\left(f_{1}, \ldots, f_{n+1}\right)=\left\{\left(\eta_{1}, \ldots, \eta_{n}, 0\right): \eta_{i}^{d_{i}}=1,1 \leq i \leq n\right\}
$$

and so, it is straightforward to check that

$$
\begin{aligned}
\mathcal{M}_{n+1}\left(f_{1}, \ldots, f_{n}, f_{n+1}\right) & =\mathcal{M}_{n}\left(x_{1}^{d_{1}}-1, \ldots, x_{n}^{d_{n}}-1\right) \\
\mathcal{J}_{n+1}\left(f_{1}, \ldots, f_{n}, f_{n+1}\right) & =\mathcal{J}_{n}\left(x_{1}^{d_{1}}-1, \ldots, x_{n}^{d_{n}}-1\right)
\end{aligned}
$$

Identity (14) implies

$$
c_{n+1}\left(d_{1}, \ldots, d_{n}, 1\right)=c_{n}\left(d_{1}, \ldots, d_{n}\right)
$$

and the formula holds.

- For degrees $d_{1}, \ldots, d_{n}, d_{n+1}+1$ : Set $f_{i}:=x_{i}^{d_{i}}-1$ for $1 \leq i \leq n$, and $f_{n+1}:=x_{n+1}^{d_{n+1}+1}-x_{n+1}$. Then, $V\left(f_{1}, \ldots, f_{n+1}\right)=V_{1} \cup V_{2}$, where $V_{1}=V\left(x_{1}^{d_{1}}-\right.$ $\left.1, \ldots, x_{n}^{d_{n}}-1\right) \times\{0\}$ and $V_{2}=V\left(x_{1}^{d_{1}}-1, \ldots, x_{n}^{d_{n}}-1\right) \times\left\{\eta \in \overline{\mathbb{K}}: \eta^{d_{n+1}}=1\right\}$. Arranging the monomials in $\mathbb{M}^{0}$ so that those which do not depend on the variable $x_{n+1}$ come first and the roots of the system so that those in $V_{1}$ come first, it follows that $\mathcal{M}_{n+1}\left(f_{1}, \ldots, f_{n+1}\right)$ has the following block structure:

$$
\left(\begin{array}{cc}
\mathcal{M}_{n}\left(x_{1}^{d_{1}}-1, \ldots, x_{n}^{d_{n}}-1\right) & 0 \\
* & \mathcal{M}_{n+1}^{\prime}\left(x_{1}^{d_{1}}-1, \ldots, x_{n}^{d_{n}}-1, x_{n+1}^{d_{n+1}}-1\right)
\end{array}\right)
$$

where $\mathcal{M}_{n+1}^{\prime}\left(x_{1}^{d_{1}}-1, \ldots, x_{n}^{d_{n}}-1, x_{n+1}^{d_{n+1}}-1\right)$ is a matrix differing from $\mathcal{M}_{n+1}\left(x_{1}^{d_{1}}-\right.$ $\left.1, \ldots, x_{n}^{d_{n}}-1, x_{n+1}^{d_{n+1}}-1\right)$ only in a factor by a $d_{n+1}$ th root of unity in each row.

Moreover, each root of unity appears in exactly $d_{1} \ldots d_{n}$ rows. Taking into account that the product of all the $d_{n+1}$ th roots of unity equals $(-1)^{d_{n+1}-1}$, it follows that $\left(\operatorname{det} \mathcal{M}_{n+1}\left(f_{1}, \ldots, f_{n+1}\right)\right)^{2}$ equals the product
$\left(\operatorname{det} \mathcal{M}_{n}\left(x_{1}^{d_{1}}-1, \ldots, x_{n}^{d_{n}}-1\right)\right)^{2}\left(\operatorname{det} \mathcal{M}_{n+1}\left(x_{1}^{d_{1}}-1, \ldots, x_{n}^{d_{n}}-1, x_{n+1}^{d_{n+1}}-1\right)\right)^{2}$.
On the other hand, the Jacobian of the polynomial system $f_{1}, \ldots, f_{n}, f_{n+1}$ is $J=d_{1} x_{1}^{d_{1}-1} \ldots d_{n} x_{n}^{d_{n}-1}\left(\left(d_{n+1}+1\right) x_{n+1}^{d_{n+1}}-1\right)$ and then, for every $\xi \in V_{1}$, $J(\xi)=(-1) J\left(x_{1}^{d_{1}}-1, \ldots, x_{n}^{d_{n}}-1\right)(\xi)$ and, for every $\xi \in V_{2}, J(\xi)=\xi_{n+1} J\left(x_{1}^{d_{1}}-\right.$ $\left.1, \ldots, x_{n+1}^{d_{n+1}}-1\right)(\xi)$. Then, it follows easily that

$$
\begin{gathered}
\prod_{\xi \in V_{1}} J(\xi)=(-1)^{d_{1} \ldots d_{n}} \mathcal{J}_{n}\left(x_{1}^{d_{1}}-1, \ldots, x_{n}^{d_{n}}-1\right), \\
\prod_{\xi \in V_{2}} J(\xi)=(-1)^{d_{1} \ldots d_{n}\left(d_{n+1}-1\right)} \mathcal{J}_{n+1}\left(x_{1}^{d_{1}}-1, \ldots, x_{n}^{d_{n}}-1, x_{n+1}^{d_{n+1}}-1\right)
\end{gathered}
$$

and so, $\mathcal{J}_{n+1}\left(f_{1}, \ldots, f_{n+1}\right)$ equals

$$
(-1)^{d_{1} \ldots d_{n} d_{n+1}} \mathcal{J}_{n}\left(x_{1}^{d_{1}}-1, \ldots, x_{n}^{d_{n}}-1\right) \mathcal{J}_{n+1}\left(x_{1}^{d_{1}}-1, \ldots, x_{n}^{d_{n}}-1, x_{n+1}^{d_{n+1}}-1\right) .
$$

From the expressions for $\mathcal{M}_{n+1}$ and $\mathcal{J}_{n+1}$, we deduce:

$$
c_{n+1}\left(d_{1}, \ldots, d_{n}, d_{n+1}+1\right)=(-1)^{d_{1} \ldots d_{n} d_{n+1}} c_{n}\left(d_{1}, \ldots, d_{n}\right) c_{n+1}\left(d_{1}, \ldots, d_{n}, d_{n+1}\right)
$$

Thus, the inductive assumption implies that $c_{n+1}\left(d_{1}, \ldots, d_{n}, d_{n+1}+1\right)= \pm 1$. More precisely, the exponent $E_{n+1}\left(d_{1}, \ldots, d_{n}, d_{n+1}+1\right)$ giving the sign equals

$$
\begin{gathered}
d_{1} \ldots d_{n} d_{n+1}+E_{n}\left(d_{1}, \ldots, d_{n}\right)+E_{n+1}\left(d_{1}, \ldots, d_{n}, d_{n+1}\right)= \\
=\sum_{j=1}^{n+1} d_{1} \ldots d_{j-1} \frac{\left(d_{j}-1\right) d_{j}}{2} d_{j+1} \ldots d_{n} d_{n+1} .
\end{gathered}
$$

Let $\mathbb{M}$ be any set of monomials of cardinality $\mathbf{d}$, and let $M:=M(\mathbb{M})$ be the matrix defined as $M_{0}$ but with the columns indexed by the elements of $\mathbb{M}$. The main result of this section is an expression similar to (13) for $M$ :

## Theorem 6.2

$$
\operatorname{det}(M(\mathbb{M}))^{2}= \pm \mathcal{J} \frac{\left(\Delta_{\mathbb{M}_{\delta}}^{\delta}\right)^{2}}{\operatorname{Res}_{\left(d_{1}, \ldots, d_{n}\right)}\left(f_{1 d_{1}}, \ldots, f_{n d_{n}}\right)^{2 \delta-\rho+1}}
$$

The following result will be needed in the proof of Theorem 6.2.

Lemma 6.3 For any $t \geq \delta=\delta(\mathbb{M})$,

$$
\Delta_{\mathbb{M}_{t}}^{t}=\Delta_{\mathbb{M}_{\delta}}^{\delta} \operatorname{Res}_{\left(d_{1}, \ldots, d_{n}\right)}\left(f_{1 d_{1}}, \ldots, f_{n d_{n}}\right)^{t-\delta}
$$

Proof. It is enough to prove the result for $t=\delta+1$ and $\delta \geq \rho$ (otherwise, both subresultants are identically zero and the claim holds).

Consider the morphisms for computing $\Delta_{\mathbb{M}_{\delta}}^{\delta}$ and $\Delta_{\mathbb{M}_{\delta+1}}^{\delta+1}$ as in (10):

$$
\begin{array}{rlc}
S_{\delta-d_{1}}^{1} \oplus \cdots \oplus S_{\delta-d_{n}}^{n} & \xrightarrow{\phi^{\delta}} & S_{\delta} \\
& &  \tag{15}\\
S_{\delta+1-d_{1}}^{1} \oplus \cdots \oplus S_{\delta+1-d_{n}}^{n} \xrightarrow{\phi^{\delta+1}} S_{\delta+1},
\end{array}
$$

where the vertical maps are multiplication by $x_{0}$. It is straightforward to check that the diagram (15) commutes. For $i=\delta, \delta+1$, let $M^{i}$ be the matrix of $\phi^{i}$ where we have deleted the columns indexed by those $m \in \mathbb{M}_{i}$. If we order the rows and columns of $M^{\delta+1}$ in such a way that the monomials having degree zero in $x_{0}$ come first, it is easy to see that this matrix has the following structure:

$$
\left(\begin{array}{cc}
M_{\delta+1} & * \\
0 & M^{\delta}
\end{array}\right)
$$

where $M_{\delta+1}$ has been defined in the proof of Theorem 5.2.
As $\delta+1>\rho$, there exists a polynomial $\mathcal{E}_{1} \in \mathbb{Q}\left[c_{i, \alpha}\right]$ such that $\operatorname{det}\left(M_{\delta+1}\right)=$ $\operatorname{Res}_{\left(d_{1}, \ldots, d_{n}\right)}\left(f_{1 d_{1}}, \ldots, f_{n d_{n}}\right) \mathcal{E}_{1}$ (Macaulav, 1902). Besides, there are also elements $\mathcal{E}_{2}$ and $\mathcal{E}$ such that $\operatorname{det}\left(M^{\delta}\right)=\Delta_{\mathbb{M}_{\delta}}^{\delta} \mathcal{E}_{2}$ and $\operatorname{det}\left(M^{\delta+1}\right)=\Delta_{\mathbb{M}_{\delta+1}}^{\delta+1} \mathcal{E}$. As in the proof of Theorem 5.2, we use the block structure of the extraneous factor $\mathcal{E}$ (Macaulay, 1902; Chardin, 1994a), and it turns out that $\mathcal{E}=\mathcal{E}_{1} \mathcal{E}_{2}$.

Proof of Theorem 6.2. Let $\delta=\delta(\mathbb{M})$. If $\Delta_{\mathbb{M}_{\delta}}^{\delta}=0$, it follows that the same holds for $\operatorname{det}(M(\mathbb{M}))$.

If this is not the case, consider the following complex of $\overline{\mathbb{K}}$-vector spaces:

$$
\begin{equation*}
0 \rightarrow S_{\delta-d_{1}}^{1} \oplus \cdots \oplus S_{\delta-d_{n}}^{n} \xrightarrow{\phi} S_{\delta} \xrightarrow{\psi} \overline{\mathbb{K}}^{\mathrm{d}} \rightarrow 0 \tag{16}
\end{equation*}
$$

where $S_{\delta}:=\overline{\mathbb{K}}\left[x_{0}, x_{1}, \ldots, x_{n}\right]_{\delta}$ and, as before,

$$
\begin{aligned}
& S_{\delta-d_{i}}^{i}:=\left\langle x_{0}^{\alpha_{0}} \ldots x_{n}^{\alpha_{n}}, \sum_{j=0}^{n} \alpha_{j}=\delta-d_{i}, \alpha_{1}<d_{1}, \ldots, \alpha_{i-1}<d_{i-1}\right\rangle_{\overline{\mathbb{K}}} \\
& \phi\left(p_{1}, \ldots, p_{n}\right):=\sum_{i=1}^{n} p_{i} f_{i}^{0} \\
& \psi(p(x)):=\left(p\left(1, \xi_{1}\right), \ldots, p\left(1, \xi_{\mathbf{d}}\right)\right) .
\end{aligned}
$$

It is easy to see that the complex (16) is exact. If $\mathbb{M}^{\prime}$ is another set of $\mathbf{d}$ elements such that $\delta\left(\mathbb{M}^{\prime}\right) \leq \delta(\mathbb{M})$ and $\operatorname{det}\left(M\left(\mathbb{M}^{\prime}\right)\right) \neq 0$, we denote with $D\left(\mathbb{M}_{\delta}^{\prime}\right)$ (resp. $D\left(\mathbb{M}_{\delta}\right)$ ) the determinant of the matrix of $\phi$ in the monomial bases where we have deleted the columns indexed by those monomials lying in $\mathbb{M}_{\delta}^{\prime}\left(\right.$ resp. $\left.\mathbb{M}_{\delta}\right)$. Then, considering the determinant of the complex (16), we have the following:

$$
\frac{D\left(\mathbb{M}_{\delta}\right)}{\operatorname{det}(M(\mathbb{M}))}= \pm \frac{D\left(\mathbb{M}_{\delta}^{\prime}\right)}{\operatorname{det}\left(M\left(\mathbb{M}^{\prime}\right)\right)}
$$

As in the proof of Theorem 5.2, it turns out that $D\left(\mathbb{M}_{\delta}^{\prime}\right)=\mathcal{E} \Delta_{\mathbb{M}_{\delta}^{\prime}}^{\delta}$ and $D\left(\mathbb{M}_{\delta}\right)=$ $\mathcal{E} \Delta_{\mathbb{M}_{\delta}}^{\delta}$, with the same extraneous factor $\mathcal{E}$. Therefore

$$
\frac{\Delta_{\mathbb{M}_{\delta}}^{\delta}}{\operatorname{det}(M(\mathbb{M}))}= \pm \frac{\Delta_{\mathbb{M}_{\delta}^{\prime}}^{\delta}}{\operatorname{det}\left(M\left(\mathbb{M}^{\prime}\right)\right)}
$$

Taking as $\mathbb{M}^{\prime}$ the set $\mathbb{M}^{0}$, it follows that

$$
\left(\frac{\Delta_{\mathbb{M}_{\delta}}^{\delta}}{\operatorname{det}(M(\mathbb{M}))}\right)^{2}=\left(\frac{\Delta_{\mathbb{M}_{\delta}^{0}}^{\delta}}{\operatorname{det}\left(M_{0}\right)}\right)^{2}=\left(\frac{\Delta_{\mathbb{M}_{\rho}^{0}}^{\rho} \operatorname{Res}_{\left(d_{1}, \ldots, d_{n}\right)}\left(f_{1 d_{1}}, \ldots, f_{n d_{n}}\right)^{\delta-\rho}}{\operatorname{det}\left(M_{0}\right)}\right)^{2}
$$

where the last equality holds for Lemma 6.3.
Now, the claim is an immediate consequence of identity (13) and Lemma 6.1.

## 7 An Overview of the Bézout Construction of the Resultant

In this section we will compare several results obtained by Bikker \& Uteshev (1999) with ours. This will allow us to clarify the Bézout construction of the resultant.

In (Bikker \& Uteshev, 1999, Section 4), the matrix $M_{0}$ defined at the beginning of Section 6 is introduced (it is denoted as $V$ ) and the structure of $\operatorname{det}\left(M_{0}\right)^{2}$ is studied. Following Macaulay (1902), it is stated that

$$
\operatorname{det}\left(M_{0}\right)^{2}=\Upsilon \mathcal{J}
$$

where $\mathcal{J}$ is as defined in Section 6 of this paper. Furthermore, it is claimed that $\Upsilon$ is a rational function in the coefficients of the leading forms of the polynomials $f_{1}, \ldots, f_{n}$ whose numerator is a product of $\rho$ polynomials in these coefficients.

In our notation, identity (13) and Lemma 6.1 imply that

$$
\Upsilon= \pm \frac{\left(\Delta_{\mathbb{M}_{\rho}^{0}}^{\rho}\right)^{2}}{\operatorname{Res}_{\left(d_{1}, \ldots, d_{n}\right)}\left(f_{1 d_{1}}, \ldots, f_{n d_{n}}\right)^{\rho+1}}
$$

Moreover, the fact stated in Bikker \& Uteshev (1999) about the factorization of the numerator of $\Upsilon$ is Theorem 5.2 of the present paper applied to $\mathbb{M}^{0}$ (see also Macaulay, 1902, Section 10). Finally, let us observe that the irreducible factors of the numerator and the denominator of $\Upsilon$ and of the polynomial $P_{\mathbb{M}^{0}, d_{1}, \ldots, d_{n}}$ defined in Theorem 4.1 are the same and, therefore, due to our main result we have that $\Upsilon \neq 0$ if and only if $\mathbb{M}^{0}$ is a basis of $\mathcal{A}$.

Also, the structure of $\operatorname{det}\left(M\left(\mathbb{M}^{1}\right)\right)^{2}$ is studied in (Bikker \& Uteshev, 1999, Theorem 5.1) in the bivariate case (see the definition of $\mathbb{M}^{1}$ in (6)). We point out a mistake in formula (5.30) of Bikker \& Uteshev (1999), which is incorrect if the degrees of the input polynomials are different. This follows straightforwardly due to the fact that $\operatorname{det}\left(M\left(\mathbb{M}^{1}\right)\right)^{2}$ has degree zero in the coefficients of $f_{1}, \ldots, f_{n}$, and if $n=2$, then $\mathcal{J}$ has degree $2 d_{1} d_{2}$ in these coefficients and the $k$ th classical subresultant has degree $d_{1}+d_{2}-2 k, k=1, \ldots, \min \left(d_{1}, d_{2}\right)$. If $d_{1}<d_{2}$, it turns out that the $k$ th classical subresultant is the multivariate subresultant of $\mathbb{M}_{\rho-k+1}^{1}$ with respect to $f_{1 d_{1}}, f_{2 d_{2}}$ if $1 \leq k \leq d_{1}-1$ (Chardin, 1995). It remains to compute the multivariate subresultant of $\mathbb{M}_{t}^{1}$ for those degrees $t$ such that $d_{1} \leq t<d_{2}$. This is easily seen to be equal to $c_{1,\left(d_{1}, 0\right)}^{t+1-d_{1}}$. Hence, we have the following

## Proposition 7.1

$$
\Upsilon=\mathbf{c} \frac{\left(\mathcal{R}_{1} \ldots \mathcal{R}_{d_{1}-1}\right)^{2} c_{1,\left(d_{1}, 0\right)}^{\left(d_{2}-d_{1}\right)\left(d_{2}-d_{1}+1\right)}}{\left.\operatorname{Res}_{\left(d_{1}, d_{2}\right)}\right)\left(f_{1 d_{1}}, f_{2 d_{2}}\right)^{\rho+1}}
$$

where $\mathcal{R}_{i}$ is the classical $i$-subresultant and $\mathbf{c}$ is the constant of Lemma 6.1.
Concerning the reducibility problem (that is, given a family of polynomials $f_{1}, \ldots, f_{n}$ with respective degrees $d_{1}, \ldots, d_{n}$ and a set of monomials $\mathbb{M}$ with cardinality $\mathbf{d}=d_{1} \ldots d_{n}$, decide whether every polynomial is a linear combination of $\mathbb{M}$ when reduced modulo the ideal $\left(f_{1}, \ldots, f_{n}\right)$ ), in Section 5 of Bikker \& Uteshev (1999), a reduction algorithm with respect to $\mathbb{M}^{0}$ and $\mathbb{M}^{1}$ is presented by solving a succession of linear systems whose coefficients depend rationally on the leading forms of the input polynomials. One can easily check that the matrices of these linear systems can be regarded as subresultant matrices. Indeed, in (Bikker \& Uteshev, 1999, Theorem 5.1), reduction modulo $\mathbb{M}^{1}$ is completely characterized in terms of the classical subresultants if $n=2$.

In (Bikker \& Uteshev, 1999, Theorem 5.2) it is claimed that, for three polynomials of equal degree $d$, it is sufficient for reducibility that $2 d-1$ determinants
are non-zero. However, as a result of Theorem 5.2, we get that $2 d-2$ conditions suffice. This can be verified following the approach by Bikker \& Uteshev (1999) in detail: it turns out that the linear systems they consider have determinants which are rational functions involving subresultants, and that the condition arising in the last system in their algorithm is redundant. Also, in (Bikker \& Uteshev, 1999, Theorem 5.3) it is shown that the first $d$ conditions of the $2 d-1$ needed in their reduction algorithm can be rewritten in terms of the nested minors of the Macaulay matrix of the initial forms of the polynomials. This follows straightforwardly in our framework, due to the structure of the Macaulay matrix given in (12) and the fact that, for $d \leq t \leq 2 d-1$, $\operatorname{det}\left(M_{t}\right)=D_{\mathbb{M} \cap \mathbb{K}\left[x_{1}, \ldots, x_{n}\right] t}^{t}$, i.e. there are no extraneous factors (Macaulay, 1902).

Similar remarks can be made about the general approach they present in (Bikker \& Uteshev, 1999, Section 5.3.).

Finally, we will answer negatively the Rank Conjecture posted in Bikker \& Uteshev, 1999, Section 4). Let $f_{1}, \ldots, f_{n}$ be polynomials such that $\mathbb{M}^{0}$ is a basis of $\mathcal{A}$. Let $g \in \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$, and let us denote with $\mathcal{B}$ the matrix of the following linear map in the basis $\mathbb{M}^{0}$ :

$$
\begin{align*}
\mathcal{A} & \rightarrow \quad \mathcal{A}  \tag{17}\\
p(x) & \mapsto p(x) g(x) .
\end{align*}
$$

It is a well-known fact (see Cox et al., 1998; Bikker \& Uteshev, 1999) that if $V(g) \cap V\left(f_{1}, \ldots, f_{n}\right)=\emptyset$, then the determinant of $\mathcal{B}$ equals the dense resultant of the family $f_{1}, \ldots, f_{n}, g$ up to a constant. Suppose now that $V(g) \cap$ $V\left(f_{1}, \ldots, f_{n}\right)=\left\{p_{1}, \ldots, p_{s}\right\}$, and for each $i=1, \ldots, s$, we denote with $l_{i}$ the minimum between the multiplicity of $p_{i}$ as a zero of $V\left(f_{1}, \ldots, f_{n}\right)$ and the multiplicity of $p_{i}$ as a zero of $g$. The Rank Conjecture asserts that the rank of $\mathcal{B}$ should be equal to $\mathbf{d}-\sum_{i=1}^{s} l_{i}$.

This conjecture is not true in general. For instance, we can take $f_{1}, \ldots, f_{n}$ homogeneous polynomials of respective degrees $d_{1}, \ldots, d_{n}$ such that the specialization of $P_{\mathbb{M}^{0}, d_{1}, \ldots, d_{n}}$ in the coefficients of this family is not identically zero. This implies that the only zero of the affine variety $V\left(f_{1}, \ldots, f_{n}\right)$ is the zero vector with multiplicity $\mathbf{d}$. Moreover, $\mathbb{M}^{0}$ is a basis of $\mathcal{A}$, which is a graded ring of finite dimension with $\mathcal{A}_{t}=0$ for $t>\rho$. Let $g$ be any homogeneous polynomial of degree $d$. According to the Rank Conjecture, the kernel of $\mathcal{B}$ should have dimension equal to $\min \{\mathbf{d}, d\}$, which is true if $d=0$ or $d>\mathbf{d}$, but not in general. A straightforward computation shows that $\mathcal{A}_{t} \subset \operatorname{ker}(\mathcal{B})$ if $t>\rho-d$, so

$$
\operatorname{dim}(\operatorname{ker}(\mathcal{B})) \geq \sum_{j=\rho-d+1}^{\rho} h_{\left(d_{1}, \ldots, d_{n}\right)}(j)
$$

and this number may be greater than $d$. For instance, if $d=2, d_{i}>3$, we
have that

$$
h_{\left(d_{1}, \ldots, d_{n}\right)}(\rho-1)+h_{\left(d_{1}, \ldots, d_{n}\right)}(\rho)=n+1,
$$

which is greater than 2 unless $n=1$.

## Acknowledgements

We are grateful to P. Bikker and A. Yu. Uteshev for providing us updated versions of their joint work, to Laurent Busé for helpful comments on a preliminar version of this paper, and to the anonymous referees for their useful suggestions.

The first author was supported by the Miller Institute for Basic Research in Science, in the form of a Miller Research Fellowship (2002-2005). The second author was partially supported by CONICET, grant PIP 2461 (2000-2002), and Universidad de Buenos Aires, grant X198 (2001-2003).

## References

Bézout, É., 1779. Théorie générale des équations algébriques. Ph.-D. Pierres: Paris.
Bikker, P., Uteshev, A. Yu., 1999. On the Bézout construction of the resultant. J. Symb. Comput. 28, No.1-2, 45-88.

Chardin, M., 1994a. Formules à la Macaulay pour les sous-résultants en plusieurs variables. C. R. Acad. Sci. Paris Sér. I Math. 319, no. 5, 433436.

Chardin, M., 1994b. Sur l'indépendance linéaire de certains monômes modulo des polynômes génériques. C. R. Acad. Sci. Paris Sér. I Math. 319, no. 10, 1033-1036.
Chardin, M., 1995. Multivariate subresultants. J. Pure Appl. Algebra 101, No.2, 129-138.
Cox, D., Little, J., O'Shea, D., 1996. Ideals, varieties, and algorithms. An introduction to computational algebraic geometry and commutative algebra. Undergraduate Texts in Mathematics. New York, NY: Springer. xiii.
Cox, D., Little, J., O'Shea, D., 1998. Using algebraic geometry. Graduate Texts in Mathematics, 185. Springer-Verlag, New York.
Demazure, M., 1984. Une définition constructive du résultant. Notes Informelles de Calcul Formel 2, prépublication du Centre de Mathématiques de lÉcole Polytechnique.
Emiris, I. Z., Rege, A., 1994. Monomial bases and polynomial system solving. In Proceedings of International Symposium on Symbolic and Algebraic Computation, Oxford, 114-122. ACM: New York.

Gel'fand, I. M., Kapranov, M. M., Zelevinsky, A. V., 1994. Discriminants, resultants, and multidimensional determinants. Mathematics: Theory \& Applications. Birkhäuser Boston, Inc., Boston, MA.
Jouanolou, J. P., 1980. Idéaux résultants. Adv. in Math. 37, no. 3, 212-238.
Macaulay, F., 1902. Some formulae in elimination. Proc. London Math. Soc. 133, 3-27.
Macaulay, F., 1916. The algebraic theory of modular systems. Cambridge University Press.
Pedersen, P., Sturmfels, B., 1996. Mixed monomial bases. Algorithms in algebraic geometry and applications (Santander, 1994), 307-316, Progr. Math., 143, Birkhuser, Basel.
van der Waerden, B. L. 1950. Modern Algebra. $3^{\text {rd }}$ edn. New York, F. Ungar Publishing Co.
Szanto, A., 2002. Multivariate subresultants using Jouanolou's resultant matrices. Preprint.


[^0]:    1 As in Macaulay (1902), the rows of $M$ are indexed by the monomial basis of the domain.

