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Computing Instanton Numbers of Curve Singularities

Elizabeth Gasparim and Irena Swanson*

We present an algorithm for computing instanton numbers of curve singu-
larities. A comparison is made between these and some other invariants of
curve singularities. The algorithm is implemented in Macaulay2, and can be
downloaded from http://www.math.nmsu.edu/˜iswanson/instanton.m2.

We start with any polynomial p(x, y) defining a plane curve with singularity at 0 ∈ C
2.

Let π: C̃2 → C
2 denote the blow-up of C2 at the origin and let j be a positive integer.

The data (j, p) determines a holomorphic bundle E(j, p) on C̃
2 with splitting type j and

extension class p. We algorithmically compute numerical invariants of the bundle E(j, p)

and use them as invariants of the curve.

Tables giving examples of these new invariants of the curve together with some classical

invariants are given in Section 1. A specially interesting example appears on table IV,

where we give two inequivalent singularities that have all the same classical invariants, but

are distinguished by instanton numbers.

The holomorphic bundle E(j, p) and its numerical invariants have interpretation in

mathematical physics as instantons on C̃
2 and numerical invariants of the instantons. Here

we mention briefly some properties of these invariants. More details are given in [G3].

Instantons are well known to have a topological invariant called the charge, which in the

case of compact surfaces corresponds to a second Chern number of a vector bundle. For

the case of bundles on a blown-up surface, the local Chern number around the exceptional

divisor decomposes as a sum of two numerical invariants (denoted w and h), which are

local analytic invariants of the bundle. In [BG] it is shown that the pair of invariants

(w, h) is strictly finer than the Chern numbers in the following sense. The pair (w, h)

provides the coarsest stratification of moduli of instantons on the blown-up plane for which

the strata are Hausdorff. In contrast, the stratification by topological charge does not

provide Hausdorff strata [BG, Theorem 4.1]. Hence, the pair (w, h) gives strong numerical

invariants, detecting more than topological information.

The idea of using these invariants for curves is natural given that, as a first step

toward resolving the singularity of the plane curve defined by p, one blows up the plane,

thus arriving at C̃2, the base space of the bundles we construct.
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Firstly, let us explain how to pass from curves on C
2 to vector bundles on C̃

2. In

what follows we fix, once and for all, the following coordinate charts. Let (x, y) be the

coordinates on C
2. Write C̃

2 = U ∪ V where

U = {(z, u)} ∼= C
2 ∼= {(ξ, v)} = V

with (ξ, v) = (z−1, zu) in U ∩V . Note that in these coordinates, the blow-up map π: C̃2 →

C
2 gives x = u, y = zu. We denote by ℓ the exceptional divisor.

Once these charts are fixed, there is a canonical choice of transition matrix for bundles

on C̃
2. If E is a holomorphic rank 2 bundle on C̃

2 with c1(E) = 0 then there exists an integer

j, called the splitting type of E, such that E|ℓ ∼= O(j)⊕ O(−j). By [G2, Theorem 2.1] E

has a canonical transition matrix of the form

(
zj q
0 z−j

)
(1)

from U to V , where

q: =

2j−2∑

i=1

j−1∑

l=i−j+1

qilz
lui

is a polynomial in z, z−1 and u.

In this paper, we start with a polynomial p ∈ C[x, y] and for each positive integer j

we associate to the pair (j, p) a holomorphic bundle E(j, p) on C̃
2 obtained as follows.

Definition 0.1: Given a polynomial p(x, y) defined over C[x, y] we first consider the

polynomial p(u, zu) =
∑

i

∑
l pilz

lui obtained from p by making x = u and y = zu. If

furthermore a positive integer j is chosen, we define p̄ =
∑

i

∑
l p̄ilz

lui by the rule

p̄il =

{
pil if 1 ≤ i ≤ 2j − 2 and 0 ≤ l ≤ j − 1;
0 otherwise.

(2)

We then set E := E(j, p̄) to be the bundle given in canonical coordinates (as above) by the

transition matrix

T =

(
zj p̄
0 z−j

)
. (3)

We have therefore associated to each pair (j, p) formed by an integer and a polynomial

p(x, y) a unique vector bundle E(j, p̄) over C̃2. We now define instanton invariants w and

h for these vector bundles.

Definition 0.2: Given a bundle E over C̃
2 we define the sheaf Q by the exact sequence

0 → π∗E → (π∗E)∨∨ → Q → 0
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and set

w(E): = l(Q), h(E): = l(R1π∗E).

In instanton terminology, w is called the width of the instanton and h is called the

height of the instanton. The charge of the instanton is c = w+h. These are clearly analytic

invariants of the bundle. To use them as invariants of the singularity, and to perform the

calculations, we choose charts for the bundle and a representative p of the singularity.

Such choice works particularly well in the case of quasi-homogeneous singularities, where

preferred representatives are known to exist, cf. Saito [Sa] or Arnold [Ar, page 95].

If a different representative p′ of the germ of the singularity is chosen, then by classical

theory it is known that there exists a holomorphic change of coordinates taking p to p′.

The same change of coordinates has to be made to take the bundle E(j, p̄) to a bundle

E′(j, p′). E and E′ are isomorphic bundles and therefore have the same invariants. In this

sense the numbers can be considered as analytic invariants for germs of curve singularities.

In this paper we prove that the computation of h and w can be automated. We

implemented our algorithm in the symbolic computer algebra package Macaulay2 (due to

Grayson-Stillman [GS]). Having implemented algorithms to compute both invariants, we

obtained a large amount of examples, which lead us to a simple formula for h.

Theorem 3.3: Let m denote the largest power of u dividing p̄. If E is the bundle defined

by data (j, p̄), then h(E) =
(
j
2

)
−

(
j−m
2

)
.

The algorithm we present here has as input data the polynomial p(x, y) and the integer

j, and as output the values of the instanton height h(E(j, p̄)) and width w(E(j, p̄)). Our

implementation on Macaulay2 is for p with rational coefficients.

1. Some tables

Before giving the algorithm, we illustrate some instanton numbers by tabulating them

together with some classical invariants. Tables I and II give examples of instanton numbers

of monomials.

TABLE I splitting type 2

polynomial w h charge

x 1 1 2

y 1 1 2

xy 2 1 3
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TABLE II splitting type 3

polynomial w h charge

x 1 2 3

y 1 2 3

x2 3 3 6

xy 2 3 5

y2 3 3 6

x2y 4 3 7

xy2 4 3 7

x2y2 5 3 8

Table III illustrates that for a fixed polynomial, we may get different invariants as we vary

the splitting type.

TABLE III splitting type 7 splitting type 8

polynomial w h charge w h charge

x2 − y2 2 11 13 3 13 16

x2 − y3 3 11 14 3 13 16

x2 − y5 3 11 14 3 13 16

x3 − y3 4 15 19 4 18 22

x3 − y4 6 15 21 6 18 24

x3 − y5 6 15 21 6 18 24

Our interest in instanton numbers was partially fueled by the fact that in some cases,

instanton numbers give finer information than the classical invariants. We considered the

invariants: multiplicitym, δP = dim (Õ/O), µ =Milnor number, and τ = Tjurina number.

Note that the Milnor and Tjurina numbers are defined only for isolated singularities, but

instanton numbers are well defined for non-isolated singularities as well. Here is an example

where instanton numbers distinguish the singularities, but other invariants do not.

TABLE IV splitting type 3

polynomial m δP µ τ w h charge

x3 − x2y + y3 3 3 4 4 4 3 7

x3 − x2y2 + y3 3 3 4 4 5 3 8
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Note that the first polynomial is irreducible, whereas the second is reducible in the local

ring, cf. [Ha, ex. I 5.14], so they define inequivalent singularities.

We believe that the fact that the classical invariants m, δP , µ, and τ do not distinguish

some inequivalent singularities is an evidence that finer invariants are useful. In tables

V-VII below we give examples of inequivalent singularities which are distinguished by

instanton numbers, and also by one other classical invariant.

TABLE V splitting type 4

polynomial m δP µ τ w h charge

x2 − y7 2 3 6 6 3 5 8

x3 − y4 3 3 6 6 6 6 12

Table VI comes from [Ha, ex. V 3.8] on page 395. However, in the statement of this

exercise, the first polynomial contains an incorrect exponent: it is written as “x4y − y4”

but it should be “x5y − y4”.

TABLE VI splitting type 4

polynomial m δP µ τ w h charge

x4 − xy5 4 9 17 17 10 6 16

x4 − x2y3 − x2y5 − y8 4 9 17 15 8 6 14

Table VII comes from the list of bimodular singularities given by Arnold in [Ar, page 159].

TABLE VII splitting type 8

polynomial m δP µ τ w h charge

x3 + x2y3 + y9 + xy7 3 9 15 16 6 18 24

x3y + x2y3 + xy6 + y7 4 9 14 15 7 22 29

x4 + x2y3 + y6 4 8 15 15 10 22 32

(x2 + y3)2 + xy4 4 7 12 13 9 22 31

(x2 + y3)2 + xy3 4 6 9 9 6 22 28

Table VIII below comes from the list of exceptional families of unimodal singularities in

[Ar, page 95].
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TABLE VIII splitting type 7

polynomial w h charge

x3 + y7 + xy5 6 15 21

x3 + y8 + xy6 6 15 21

x3y + xy4 + x2y3 7 18 25

x3 + xy5 + y8 6 15 21

x3y + y5 + xy4 7 18 25

x3y + y6 + xy5 7 18 25

x4 + xy4 + y6 9 18 25

2. Computing the instanton width

In this section we present an algorithm that takes as input the pair (j, p) and computes

the instanton width w = l(Q), where Q is the skyscraper sheaf as given in Definition 0.2.

Since Q is supported at zero, l(Q) is the dimension of the stalk at zero. Let M be the

completion of the stalk π∗E at zero, that is, M : = (π∗E)∧0 . Then the length of Q equals

the dimension of the cokernel of the canonical map from M to its double dual. If we can

compute M , we can also compute Q via the following lemma:

Lemma 2.1: Let R be a commutative Noetherian ring and A an n × m matrix with

entries in R. Let M be the R-module such that Rm A
−→Rn → M → 0 is an exact sequence.

Let N be the kernel of the transpose of A. Then N is a submodule of Rn, say generated by

t elements. Let B be the n × t matrix whose columns are the given generators of N . Let

C be the matrix such that Rk C
−→Rt → N → 0 is exact. Let ∨ = HomR( , R). Then

(i) M∨∨ is isomorphic to the kernel of the transpose of C,

(ii) the image of the canonical map M → M∨∨ is isomorphic to the module generated by

the columns of the transpose of B,

(iii) M∨∨/M is isomorphic to (kernel CT )/(image BT ).

Proof: By left-exactness of the Hom functor, M∨ = HomR(M,R) is the kernel of the

map defined by the transpose of A. Thus N = M∨. Similarly, by the definition of C, M∨∨

is the kernel of the transpose of C. Let f1, . . . , ft generate M∨ ⊆ Rn. The natural map

M → M∨∨ takes m to ϕm, where for each f ∈ M∨, ϕm(f) = f(m). Thus, in coordinates,

the image of m ∈ M in M∨∨ ⊆ Rt is the vector (f1(m), . . . , ft(m)), therefore the image of

M in M∨∨ is generated by the columns of the transpose of B.

Once Q is computed as in the previous lemma, its length can be computed as well.
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Thus it remains to compute the C[[x, y]]-moduleM . By the Theorem on Formal Functions,

M ∼= lim
←−

H0(ℓn, E|ℓn)

as C[[x, y]]-modules, where ℓn is the nth formal neighborhood of ℓ. We use the following

lemma:

Lemma 2.2: [G1, Lemma 2.2] Set M̄ = H0(ℓ2j−2, E|ℓ2j−2
), and let ρ: M̄ →֒ M̄∨∨ be the

natural inclusion of M̄ into its bidual. Then l(Q) = dim coker ρ.

This lemma greatly simplifies the calculations. Using this lemma, for the purpose of

finding l(Q), we may assume M = M̄. Under this identification, and with our choice of

transition matrix T in (3), it then follows that M is generated by all holomorphic vectors

v over C[[z, u]] for which Tv is a holomorphic vector over C[[z−1, zu]]. Thus, we need to

find all vectors v = (a, b), given by a =
∑

i,l ailz
lui, b =

∑
i,l bilz

lui, where all i and l are

non-negative, and ail, bil are (unknowns) in the field, for which Tv is holomorphic over

C[[z−1, zu]]. This restriction yields relations among the unknowns ail, bil. To get all such

relations, at the beginning we treat ail and bil as variables.

Lemma 2.3: Whenever l > i+ j, then bil = 0. Whenever l > i, then ail = 0.

Proof: The second coordinate of Tv is z−jb =
∑

i,l bilz
l−jui =

∑
i,l bilz

l−j−i(zu)i. In order

for this to be holomorphic in z−1 and zu, necessarily the coefficients bil with l > i+j must

vanish.

The first entry of Tv is

zj
∑

i,l

ailz
lui + p̄

∑

i1,l1

bi1l1u
i1zl1

=
∑

i,l

ailz
l−i+j(zu)i +

2j−2∑

i0=1

j−1∑

l0=i0−j+1

p̄i0l0(zu)
i0zl0−i0

∑

i1,l1

bi1l1z
l1−i1(zu)i1 .

Let m be the minimum u-degree occurring in p̄, i.e., the minimum i0 such that p̄i0l0 6= 0.

Then for each i < m, the coefficient of ui in the first entry of Tv is
∑

l ail(zu)
izl−i+j . In

order for this to be holomorphic in zu and z−1, necessarily for all l > i− j, ail = 0. Now

consider the case i ≥ m. The coefficient of (zu)izl+j−i in the first entry of Tv is

ail +

2j−2∑

i0=1

j−1∑

l0=i0−j+1

p̄i0l0bi−i0,l+j−l0 ,

where bi′,l′ is treated as zero whenever i′ or l′ is negative. By the established bounds,

whenever l > i− i0 + l0, then bi−i0,l+j−l0 = 0. Since p̄ is a subpolynomial of p(u, zu), the
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only pairs (i0, l0) to consider are those with l0 ≤ i0. Thus whenever l > i − i0 + l0, then

bi−i0,l+j−l0 = 0. In particular, if l > i, then all bi−i0,l+j−l0 are zero, so that the coefficient

of (zu)izl+j−i in the first entry of Tv is ail. But if Tv is to be holomorphic in zu, z−1,

then necessarily ail = 0.

Thus for each i, we need only to consider finitely many unknowns ail, bil to construct

the vectors v as in the set-up above, and find relations on these. Using Lemma 2.2, we may

assume that M = H0(ℓ2j−2, E|ℓ2j−2
). This means that we only need relations involving

ail, bil for i ≤ 2j − 2. But the relations involving bil with i ≤ 2j − 2 arising from zja+ p̄b

being holomorphic over C[[u, zu]] involve variables ai′l and bi′l with i′ ≤ 2j − 2 + degup̄,

so that

Lemma 2.4: Let N be the sum of 2j − 2 plus the u-degree of p̄. Then M is generated

by vectors (a, b) with a =
∑

i,l ailz
lui, b =

∑
i,l bilz

lui, where all i and l are non-negative,

ail, bil ∈ C, and

(i) ail = bil = 0 whenever i > N .

(ii) bil = 0 whenever l > i+ j.

(iii) ail = 0 whenever l > i.

The conditions on the ail and bil as in the lemma above are not the only ones that

arise from the condition that Tv be holomorphic in z−1, zu. Finding all the conditions

amounts to finding the generators of M .

Definition 2.5: All the remaining relations on the variables ail, bil arise from the condition

that in the first entry of Tv, whenever l > i, then the coefficient of uizl must be 0. From

now on, we refer to these coefficients as the generating relations.

Note that these coefficients are all linear forms in the ring C[ail, bil].

As in [G1], we find these relations successively in the zeroth through Nth neighbor-

hoods. Below follows our algorithm which computes the generating relations, arising from

ensuring that the first coordinate of Tv is holomorphic in zu, z−1. We write all algorithms

in this paper in pseudocode, close to the Macaulay2 code that we implemented.

Algorithm “getrelations” to get the generating relations on the ail, bil

Input: non-negative integer N,
fTv = first entry of Tv
ring R, the polynomial ring in u, z, all ail, bil

Output: ideals nonfree and relations in R

nonfree = zero ideal in R
relations = zero ideal in R
k = 0
while (k ≤ N) (

tempoly = truncation of fTv to terms of u-degree at most k
while (tempoly != 0) (
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tempterm = leading term of tempoly
i = u exponent of tempterm
l = z exponent of tempterm

partp = coefficient of uizl in tempoly, linear form in ail, bil
tempoly = tempoly - partp * uizl

fTv = fTv - partp * uizl

if (l > i) then (
relations = relations + ideal(partp)
nonfree = nonfree + ideal (leading variable in partp)

)
)
k = k + 1

)
return nonfree, relations

)

The ideal of all the generating relations obtained in this way is called relations. The

ideal nonfree contains the leading variable of each relation: in the sense of linear algebra,

these leading variables are not free. We use the following ordering of the monomials.

Definition 2.6: We say that ail > ai′l′ if i > i′ or if i = i′ and l > l′, and similarly

bil > bi′l′ if i > i′ or if i = i′ and l > l′, and furthermore that ail > bi′l′ for all i, l, i′, l′.

Thus by the form of Tv, each relation contains at most one ail, and each ail appears

at most once in a generating relation. Observe that if all the coefficients of p(x, y) are in

a subfield F of C, then all the generating relations have coefficients in F . The algorithm

"getrelations" above computes the relations among the given ail, bil, but some of these

relations are “fake” in the following sense:

Example: Let p(x, y) = x2 − y3, j = 3. Then with notations as above, N = 7, p̄ =

u2−u3z3. For holomorphic a =
∑

ailu
izl, b =

∑
bilu

izl, the coefficient of u8z9 in zja+ p̄b

is 0 = a86 + b69 − b56. However, if we restrict the first index of ail to only vary from 0 to

N , then "getrelations" gives the “fake” relation 0 = b69 − b56.

Thus, computation of the instanton width will have to account for and remove such

“fake” relations. We do this as follows. Such relations only involve variables ail, bil with

i > 2j − 2. Thus these variables are not allowed to be free variables in the sense of linear

algebra. Using Lemma 2.2, the remaining free variables do give a generating set of M as

follows. For each of the free variables, set that variable to 1 and all the others to 0 in

(a, b). This produces a finite generating set of M as a module over C[[x, y]] = C[[u, zu]] of

elements whose entries are in C[[u, z]]. As u is a non-zerodivisor, M is isomorphic to ukM

for arbitrary integer k. By Lemma 2.4, uja and ujb are both polynomials in u(= x) and

zu(= y), so that the generators of ujM can be written as pairs of polynomials in C[[x, y]].

Algorithm “polyconv” to convert C[u, z]-polynomials to C[x, y]-polynomials
Input: a polynomial f in u and z

9



Output: a “truncated” polynomial g(x, y) such that g(u,zu) = f’,
where f’ is that part of f for which this can be done

g = 0 zero element of C[u,z]
while (f != 0) (

lf = leading term of f
i := the u exponent of lf
l := the z exponent of lf
if (l ≤ i) then

g = g + yl * xi−l * leading coefficient of lf
f = f - lf
)

return g
)

Algorithm “setvectors” to express generators of uN+j M
as vectors with entries in C[x, y]

Input: polynomials uj a, uj b, named Apoly, Bpoly, respectively,
lists changeables, allvars

Output: A, a presentation matrix for the C[[x, y]]-module M

Mxy = zero submodule of C[x, y]2

total = #changeables
k = 0
while (k < total) (

tapoly = substitute in Apoly the kth changeable variable to 1

tbpoly = substitute in Bpoly the kth changeable variable to 1
tapoly = substitute in tapoly all other variables to 0
tbpoly = substitute in tbpoly all other variables to 0
A = convert tapoly into a polynomial in x and y (use polyconv)
B = convert tbpoly into a polynomial in x and y (use polyconv)

Mxy = Mxy + submodule of C[x,y]2 generated by (A,B)
k = k + 1

)
return a presentation of the C[x, y]-module Mxy

)

The output of the last routine is the presentation matrix of a C[x, y]-module, which

by faithful flatness of C[[x, y]] over C[x, y] is also the presentation matrix of the C[[x, y]]-

module M . Finally, tying it all together:

Algorithm to compute instanton width of the instanton with data (j,p)
Input: a polynomial p in C[x, y] and a non-negative integer j
Output: the width of the instanton with data (j,p)

p̄ = p(u,zu) truncated to u-degree at most 2j-2
N = 2j-2 + u-degree of p̄
R = C[u,z,ail, bil], i < N+1, ordered as in Definition 2.6
a =

∑
ail ui zl

b =
∑

bil ui zl

fTv = zj a + p̄ b
compute relations and nonfree variables as in algorithm getrelations

10



changeables = all ail, bil with i ≤ 2j − 2, which are not in nonfree
a = a after applying all the relations
b = b after applying all the relations
A the presenting matrix of the C[x,y]-module M,

output of setvectors(uj+N apoly, uj+Nbpoly, changeables, allvars)
Q = cokernel of the natural map M → M∨∨, as in Lemma 2.1
return (length of Q)

)

3. Computing the instanton height

In this section we compute the instanton height. Recall that the instanton height h

is the length l(R1π∗E(j, p̄)). Another use of the Theorem on Formal Functions gives

(R1π∗E)∧0 = lim
←−

H1(ℓn, E|ℓn).

We use the following lemma:

Lemma 3.1: [G1, Lemma 2.3] l(R1π∗E) = dimC H1(ℓ2j−2, E|ℓ2j−2
).

This lemma greatly simplifies the calculations. We then proceed to compute the first

Čech cohomology.

Remark: We have two options to compute Čech cohomology. Given that our open

cover of the base space is given by affine sets that are open in the analytic topology as

well as in the Zariski topology, we have the option to compute either holomorphic Čech

cohomology (by taking holomorphic cochains) or else algebraic Čech cohomology (by taking

algebraic, i.e, polynomial cochains). Since ℓ is compact, so are its formal neighborhoods.

By Serre’s G.A.G.A., holomorphic bundles on a compact variety are algebraic, therefore

H1
alg(ℓn, E|ℓn) = H1

hol(ℓn, E|ℓn). It follows that the holomorphic and the algebraic methods

give the same answer.

We compute the instanton height using holomorphic Čech cohomology. The 1-cocycles

consist of the vectors (a, b) which are holomorphic functions defined on the intersection

U ∩ V . Hence a, b ∈ C[[u, z, z−1]]. The coboundaries consist of the vectors of the form

v + T−1v′, where v is holomorphic in z, u (on U) and v′ in z−1, zu (on V ). First of all we

choose simple representatives for the cocycles:

Lemma 3.2: Every 1-cocycle has a representative of the form

j−2∑

i=0

−1∑

l=i−j+1

(
ail
0

)
zlui,

with ail ∈ C. In particular, every 1-cochain represented by

(
ail
0

)
zlui with i, l ≥ 0 is a

coboundary.
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Proof: Let σ be a 1-cocycle and let ∼ denote cohomological equivalence. A power series

representative for a 1-cochain has the form σ =
∞∑

i=0

∞∑

l=−∞

(
ail
bil

)
zlui, with ail, bil ∈ C.

The 1-cochain s1 =
∞∑

i=0

∞∑

l=0

(
ail
bil

)
zlui is holomorphic in U , hence is a coboundary. Hence

σ ∼ σ − s1 =
∞∑

i=0

−1∑

l=−∞

(
ail
bil

)
zlui.

After a change of coordinates

Tσ =

∞∑

i=0

−1∑

l=−∞

(
zjail + p̄ bil

z−jbil

)
zlui,

but given that s2 =
∞∑

i=0

−1∑

l=−∞

(
0

z−jbil

)
zlui is holomorphic in V ,

Tσ ∼ Tσ − s2 =

∞∑

i=0

−1∑

l=−∞

(
zjail + p̄ bil

0

)
zlui

and going back to the U–coordinate chart,

σ = T−1Tσ ∼
∞∑

i=0

−1∑

l=−∞

(
ail + z−j p̄ bil

0

)
zlui.

But p̄ contains only terms zk for k ≤ j−1, therefore z−j p̄ contains only negative powers of

z. Renaming the coefficients we may write σ =

∞∑

i=0

−1∑

l=−∞

(
a′il
0

)
zlui for some a′il ∈ C, and

consequently Tσ =
∞∑

i=0

−1∑

l=−∞

(
zja′il
0

)
zlui. Here each term a′ilz

j+lui satisfying j + l ≤ i

is holomorphic in the V –chart. Subtracting these holomorphic terms we are left with an

expression for a where the index l varies as i−j+1 ≤ l ≤ −1. This in turn forces i ≤ j−2,

giving the claimed expression for the 1-cocycle.

Thus we only have to consider cocycles of the form (a, 0). Which of the cocycles (a, 0)

is a coboundary? In other words, which (a, 0) equal to (c, d) + T−1(c′, d′), where c, d are

holomorphic on U and c′, d′ on V , or even more simply, for what c and d holomorphic on

U is T (a + c, d) holomorphic on V ? The second coordinate of T (a + c, d) is z−jd, and in

order for that to be holomorphic, dil = 0 whenever l ≥ i + j. This is the only restriction
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on c and d obtained from the second coordinate. From the first coordinate of T (a + c, d)

we obtain the constraint that zj(a+ c)+ p̄d be holomorphic on V, that is, holomorphic on

coordinates z−1 and zu.

Lemma 3.3: Let E be the bundle defined by data (j, p̄), and m the smallest exponent of

u appearing in p̄. Then

l(R1π∗E) ≥

(
j

2

)
−

(
j −m

2

)
.

Proof: Let σ = (a, 0) denote a 1-cocycle where a = zlui with 0 ≤ i ≤ m − 1 and

i − j + 1 ≤ l ≤ −1. We claim that σ represents a nonzero cohomology class. In fact, for

σ to be a coboundary there must exist c and d, holomorphic in U , making the expression

zj(a + c) + p̄d holomorphic in V . However, zja is not holomorphic in V . Moreover, by

the choice of m, no term in p̄d cancels zja. Consequently, no choice of c and d solves the

problem of holomorphicity on V . Hence l(R1π∗E) is at least the number of independent

cocycles of the form σ = (a, 0), where a = zlui with 0 ≤ i ≤ m− 1 and i− j +1 ≤ l ≤ −1.

There are
(
j
2

)
−
(
j−m
2

)
such terms.

Theorem 3.4: Let E be the bundle defined by data (j, p̄), and m the smallest exponent

of u appearing in p̄. Then

l(R1π∗E) =

(
j

2

)
−

(
j −m

2

)
.

Proof: First note that, by Lemma 3.2, if l ≥ j, then (zl−jui, 0) is a coboundary. Using

the proof of Lemma 3.3, it suffices to show that if j > l > i ≥ m, then σ = (zl−jui, 0)

is a coboundary. Write p̄ =
∑s

r=0
arz

m−rum + p′, where s ∈ {0, . . . , m} is some integer,

ar are constants, as 6= 0, and p′ is a polynomial in u and zu each of whose terms has

u−degree at least m + 1. Observe that d = a−1s ui−mzl−m+s is holomorphic on U, since

by assumption i ≥ m and l > m − s. Therefore σ ∼ σ′ = (zl−jui,−d), where ∼ denotes

cohomological equivalence. Changing coordinates we have Tσ′ = (zlui− p̄d,−z−jd). From

j > l > i ≥ m ≥ s we deduce that z−jd is holomorphic on V . We rewrite the first entry

Tσ′ as

zlui − p̄d =
s−1∑

r=0

a−1s arz
l+s−rui + a−1s ui−mzl−m+sp′.

By assumption, l− j + s− r ≤ s− r ≤ s ≤ m ≤ i, therefore the first sum on the right side

of this expression is holomorphic on V . It follows that Tσ′ ∼ (a−1s ui−mzl−m+sp′, 0).

Let zvur be an arbitrary term in p′. Then r > m and v ≤ r. If i − m + r ≥

l − m + s + v, then the term c = a−1s ui−mzl−m+s · urzv is holomorphic on V , therefore

Tσ′ ∼ (a−1s ui−mzl−m+sp′ − c, 0).
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Removing all such terms c, we may now write Tσ′ ∼ (a−1s ui−mzl−m+sp̄, 0), where

p̄ contains only terms in zvur such that i − m + r < l − m + s + v. Consequently σ′ ∼

(z−ja−1s ui−mzl−m+sp̄, 0) and as i−m+ r > i, by (reverse) induction on i and l, each term

(ui−mzl−m+s · urzvz−j , 0) is a coboundary. Hence, σ′ is a sum of coboundaries, and is

itself a coboundary.

Thus when starting with p(x, y) ∈ C[x, y], the computation of the instanton height

is very fast: once m is determined, then the following routine "iheight" finishes the

computation:

Algorithm “iheight” to compute instanton height
Input: a polynomial p and a non-negative integer j
Output: returns the length of R1.

p̄ = p(u,zu) truncated to u-degree at most 2j-2
m = the largest power of u dividing p̄
M = j*(j-1)/2;
if (j > m+1) then M = M - (j-m)*(j-m-1)/2;
return M

)

We implemented in Macaulay2 these algorithms for computing the instanton widths

and heights. The computation of height of course only takes a negligible amount of time,

and the computation of widths takes a few seconds. For example, "iwidth(x^4-x*y^5,4)"

finishes in a Linux workstation in 17.07 seconds, and "iwidth(x^4-x^2*y^3 -x^3*y^5-

y^8,4)" finishes in 32.02 seconds.

Acknowledgment. We thank Michael Stillman for help with Macaulay2 code. We also

thank the referees for suggesting several improvements to the exposition.
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