
Brauer groups of diagonal quartic surfaces
Bright, M.J.

Citation
Bright, M. J. (2006). Brauer groups of diagonal quartic surfaces. Journal Of Symbolic
Computation, 41(5), 544-558. doi:10.1016/j.jsc.2005.10.001
 
Version: Accepted Manuscript
License: Leiden University Non-exclusive license
Downloaded from: https://hdl.handle.net/1887/3239223
 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:3
https://hdl.handle.net/1887/3239223


Brauer groups of diagonal quartic surfaces

Martin Bright 1

Department of Mathematical Sciences
University of Liverpool

Liverpool L69 7ZL
England

Abstract

We describe explicit methods of exhibiting elements of the Brauer groups of diagonal
quartic surfaces. Using these methods, we compute the algebraic Brauer–Manin
obstruction in two contrasting examples. In the second example, the obstruction is
found to be trivial but a computer search reveals no points of small height on the
surface.

1 Introduction

We are concerned with the solubility in rational numbers of the equation

a0X
4
0 + a1X

4
1 + a2X

4
2 + a3X

4
3 = 0 (1)

where the ai are non-zero rational numbers. Let V denote the smooth surface
defined by this equation over Q. We will always suppose that V has points
everywhere locally, that is, in the real numbers R and in each p-adic field Qp;
for otherwise the equation (1) certainly has no rational solutions.

One reason that V might have no rational points is given by the Brauer–Manin
obstruction, first described by Manin (1971, 1974). This obstruction is defined
in terms of the Brauer group of V , which is the group of Azumaya algebras on
V modulo equivalence. Our objective is to show how one part of the Brauer
group, the so-called algebraic part, may be computed, and how the associated
obstruction may thence be evaluated.
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The surface V is geometrically a K3 surface; for certain choices of coefficients
ai, there is a fibration V → P1 defined over Q, the fibres of which are curves
of genus 1.

Colliot-Thélène et al. (1998) studied elliptic fibrations over P1 satisfying cer-
tain criteria: that the singular fibres are all of type I2; and a technical condition
(“Condition D”) on the class of the fibration in a geometric Selmer group of its
Jacobian. Conditionally on two well-known conjectures (the finiteness of the
Tate–Shafarevich groups of elliptic curves, and Schinzel’s hypothesis), they
were able to prove that the obstruction associated to the so-called vertical
Brauer group is the only obstruction to the Hasse principle.

Swinnerton-Dyer (2000) proved a similar result for a particular family of di-
agonal quartic surfaces, those where a0a1a2a3 is a square. In that case there
is a fibration over P1 with six fibres each of type I4, consisting of four straight
lines arranged in a skew quadrilateral. He defined a new obstruction to the
existence of rational points on these surfaces, and showed under analogous
conditions to those mentioned above that this obstruction is the only obstruc-
tion to the Hasse principle. He then showed that the new obstruction is in fact
a Brauer–Manin condition.

The object of this article is to show how the algebraic Brauer group and asso-
ciated obstruction may be computed for any diagonal quartic surface, whether
or not it has the structure of an elliptic fibration over P1. By automating this
procedure and calculating a large number of examples, we hope to gather
evidence on the Brauer–Manin obstruction on these surfaces. In addition to
describing the general procedures for carrying out the calculations, we present
in detail two examples which exhibit contrasting results.

The first example computed in the present article is another example of a
diagonal quartic surface with a fibration. We show that there is a non-trivial
Brauer–Manin obstruction and therefore that the surface has no rational
points.

On the other hand, a general diagonal quartic surface has no fibration defined
over Q. In this case, the algebraic Brauer group has order 2 and it is relatively
straightforward to compute the associated obstruction. Our second example
has no algebraic Brauer–Manin obstruction and yet no rational points of small
height; and numerical evidence suggests that this is a common occurrence.

1.1 Overview

The approach we adopt is as follows. Let Br1 V denote the algebraic Brauer
group, and V̄ the extension of V to an algebraic closure Q̄ of Q. It is well known
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that Br1 V/ Br Q is isomorphic to the Galois cohomology group H1(Q, Pic V̄ ).
We can write down a set of generators for Pic V̄ and compute this cohomology
group, which is finite; this process has been implemented in Magma (see
Magma, 2003; Bosma et al., 1997), using Gavin Brown’s algebraic geometry
machinery and the group cohomology algorithms implemented by Derek Holt.
Code to do this is available from the author’s web page at Bright (2002).
Unfortunately the isomorphism from H1(Q, Pic V̄ ) to Br1 V/ Br Q is rather
awkward to calculate. For certain special types of algebra, though, we can
write down Azumaya algebras on V and easily compute the corresponding
elements of H1(Q, Pic V̄ ). In this way it is often possible to find a set of
representatives for the whole algebraic Brauer group.

The first special class of algebras we consider are those which arise from a
fibration of V . Let π be a surjective morphism from V to P1; then any ele-
ment of the Brauer group of Q(P1) lifts to an element of the Brauer group of
Q(V ); and it is possible to write down simple criteria which determine when
this resulting algebra is Azumaya. These algebras, which live in the so-called
“vertical” Brauer group of V , are discussed in Section 2. We compute the
algebraic Brauer–Manin obstruction for a particular diagonal quartic surface
equipped with a fibration over P1.

The second special class of algebras are the cyclic algebras. Just as in the
theory of Brauer groups of fields, it is more straightforward to compute with
cyclic algebras than with general algebras. In Section 3 we describe the map
from Br1 V/ Br Q to H1(Q, Pic V̄ ) for cyclic algebras. We compute the alge-
braic Brauer–Manin obstruction for a surface which has no fibration over P1.

Although we are primarily concerned with surfaces as above defined over the
rational numbers, the techniques described apply more generally. Throughout,
k will denote a number field over which V is defined.

1.2 The Brauer group

For background information on Brauer groups of schemes, we refer the reader
to Grothendieck (1968).

Let V be any smooth surface over k. We will write Br0 V for the image of
Br k in Br V ; when V has points everywhere locally, this map is injective. Let
Br1 V denote the kernel of Br V → Br V̄ , the “algebraic” part of the Brauer
group.

As described by Skorobogatov (2001, pp. 116–117), there is an isomorphism
between Br1 V/ Br k and H1(k, Pic V̄ ). We now discuss computational aspects
of this map.
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Proposition 1 Let Prin V denote the group of principal divisors on the vari-
ety V . There are isomorphisms as follows:

Br1 V/ Br k

easy �� easy

ker(H2(k, k̄(V )×) → H2(k, Div V̄ ))/ Br k

hard �� easy

ker(H2(k, Prin V̄ ) → H2(k, Div V̄ ))

easy �� easy

H1(k, Pic V̄ )

where the arrows are labelled to show ease of computation.

PROOF. The top isomorphism is the correspondence between an Azumaya
algebra on V (specified as a vector space over k(V ) together with a multiplica-
tion law) and the corresponding 2-cocycle (or factor set, in old terminology).
This is well known and described explicitly in, say, Deuring (1935).

For the middle isomorphism, note that, as H3(k, k̄×) = 0 (see Tate, 1967,
p. 199), there is an exact sequence

H2(k, k̄×) → H2(k, k̄(V )×) → H2(k, k̄(V )×/k̄×) → 0

and so the map from H2(k, k̄(V )×) to H2(k, Div V̄ ), being trivial on Br k,
factors through that quotient. Now the group k̄(V )×/k̄× is isomorphic to the
group Prin V̄ of principal divisors on V̄ . There are two problems with com-
puting this map: firstly, we must make effective the triviality of H3(k, k̄×);
and secondly, we must have some procedure which, given a divisor known to
be principal, finds a function having that divisor. Hence the upward arrow is
labelled “hard”.

The lower isomorphism is the coboundary map from the long exact sequence
in cohomology associated to

0 → Prin V̄ → Div V̄ → Pic V̄ → 0

where H1(k, Div V̄ ) = 0 because it is a permutation module. Computing the
upward arrow is easy: given a 1-cocycle with values in Pic V̄ , we lift to Div V̄
and take the coboundary. For the downward arrow, we must compute the
inverse of the coboundary map; splitting Div V̄ into its irreducible components
makes this a simple problem in linear algebra. 2

For more details on how these isomorphisms may be computed, see Bright and
Swinnerton-Dyer (2004).

4



1.3 Computing H1(k, Pic V̄ )

There are two main reasons why the Picard group of V̄ is particularly amenable
to computational methods. Firstly, the surface V̄ is a K3 surface, which means
that it has trivial canonical sheaf and

H1(V̄ ,OV̄ ) = 0

and therefore Pic V̄ is finitely generated. Moreover, this means that divisors
are linearly equivalent if and only if they are numerically equivalent, that is,
their difference has intersection number zero with all divisors. The geometry
of K3 surfaces is thoroughly covered by Barth et al. (1984).

Secondly, there is a very convenient set of generators. Let ε denote a fixed
primitive eighth root of unity and set

αij = 4

√
ai/aj

where the ai are the coefficients from (1) and the fourth roots are chosen such
that

αijαjk = αik

for all i, j, k. Then we can write down the equations of 48 straight lines con-
tained in V̄ :

L123
mn : X0 = εmα10X1, X2 = εnα32X3;

L231
mn : X0 = εmα20X2, X3 = εnα13X1;

L312
mn : X0 = εmα30X3, X1 = εnα21X2.

Here in each case m and n take the values 1, 3, 5, 7.

Let Λ denote the (free) subgroup of Div V̄ generated by the 48 lines. The
intersection numbers of straight lines are easy to compute; let Λ0 denote the
subgroup of Λ consisting of those linear combinations of lines which are nu-
merically equivalent to 0, in other words, principal.

The following is well known; a proof may be found in Pinch and Swinnerton-
Dyer (1991, Lemma 1).

Proposition 2 The Picard group Pic V̄ is free of rank 20, and is generated
by the classes of the 48 lines Lpqr

mn. 2

Let K denote the field
K = k(ε, α10, α20, α30).

Then all 48 lines are clearly defined over K, and in fact K is the smallest
common field of definition of the 48 lines. The Galois action on the lines
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therefore factors through
G = Gal(K/k)

and the inflation-restriction sequence gives us H1(k, Pic V̄ ) ∼= H1(G, Λ/Λ0).

Let m be an integer known to annihilate H1(G, Pic V̄ ), such as |G|. By consid-
ering the long exact sequence in cohomology associated to the exact sequence

0 → Λ/Λ0 ×m−−→ Λ/Λ0 → Λ/Λ0 ⊗ Z/mZ → 0

(remember that Λ/Λ0 is torsion-free), we see that there is an isomorphism

H0(G, Λ/Λ0 ⊗ Z/mZ)

H0(G, Λ/Λ0)⊗ Z/mZ
inf ◦d−−−→ H1(k, Pic V̄ ) (2)

where the map is the coboundary map followed by inflation.

The Galois action on the 48 lines is straightforward. Using the above isomor-
phism it is easy to compute H1(k, Pic V̄ ) for any diagonal quartic surface.
In fact the author has computed this group for all diagonal quartic surfaces.
These results, together with some Magma and Pari scripts for producing
them, are available electronically (Bright, 2002).

2 The vertical Brauer group of a fibration

2.1 The vertical Brauer group

In this section we suppose that the surface V has a surjective morphism π :
V → P1, whose fibres must be curves of genus 1. This gives a useful way of
producing Azumaya algebras on V . We choose once and for all a coordinate
t on P1, such that the fibre of π over t = ∞ is non-degenerate. Whenever we
write A1, we mean that open subscheme of P1 where t 6= ∞.

Definition 3 We define the following groups associated to the fibration π:

B := {A ∈ Br k(P1) | π∗A ∈ Br V }/ Br k

Brvert := π∗(Br k(P1)) ∩ Br V

Picvert := ker(Pic V̄ → Pic V̄η)

where η is the generic point of P1, and Vη the generic fibre of π.

Tsen’s theorem (Milne, 1998, 13.5(b)) shows that Brvert is contained in Br1 V .
A simple piece of diagram-chasing gives the following result.
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Proposition 4 There is an isomorphism B ∼= H1(k, Picvert), such that the
diagram

H1(k, Picvert)
∼−−−→ By y

H1(k, Pic V̄ )
∼−−−→ Br1 V/ Br k

commutes. 2

If we can compute Picvert, then Proposition 4 allows us to find out how much of
Br1 V/ Br k comes from the Brvert without having to compute with elements of
the Brauer group. In general, finding a generating set for Picvert is not totally
straightforward. Such a generating set is given by the irreducible components
of the singular fibres of π, as described by Shioda (1972). The procedure of
Section 1.3 gives us H1(k, Pic V̄ ) in terms of the straight lines Lpqr

mn. In order
to compute H1(k, Picvert) compatibly with this, we need to know a sum of
classes of straight lines which is equal to the class in Pic V̄ of each irreducible
component of each singular fibre. However, it is possible to find these without
ever knowing explicitly what the singular fibres are, as follows.

• Each component of a singular fibre is a rational curve, of self-intersection
−2; and the degree (that is, intersection number with a plane section) of a
component is bounded by the degree of a general fibre of π, which is easily
found from any explicit formula for π.

• There exist only finitely many divisor classes of a given self-intersection and
bounded degree, and when the degree is reasonably small they may easily
be listed.

• Any component of a fibre has intersection number 0 with the class of a
fibre; this condition rules out any rational curves which are transverse to
the fibration.

• Each fibre is connected; this means that, by considering the intersection
numbers of the rational curves we find, we can partition them into possible
fibres.

In this way it is possible to find a generating set for Picvert.

2.2 Structure of the vertical Brauer group

To compute the Brauer–Manin obstruction coming from Brvert, we want to
write down elements of B.

Lemma 5 For any closed point P of A1, identify the residue field k(P ) with
k[t]/F (t), where F = Nk(P )/k(t− tP ) is the monic irreducible polynomial gen-
erating the maximal ideal associated to P . When c ∈ H1(`, Q/Z) and f ∈ `(t)
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for some field `, let (c, f) denote the algebra in Br `(t) associated to the 2-
cocycle f ∪ dc.

Any element A of Br k(P1) may be written uniquely as

A =
∑
P

coresk(P )/k(cP , t− tP ) + α (3)

where the sum is over finitely many distinct closed points P of P1; cP lies in
H1(k(P ), Q/Z); and α lies in Br k.

PROOF. Colliot-Thélène and Swinnerton-Dyer (1994, Proposition 1.2.1). 2

The following description of which of these algebras lift to Azumaya algebras
on V is stated by Swinnerton-Dyer (2000).

Proposition 6 The algebra A described in (3) lies in B if and only if the
following two conditions hold:

(1)
∑

P coresk(P )/k(cP ) = 0 in H1(k, Q/Z);
(2) for each P , res`/k(P )(cP ) = 0 whenever ` is the least field of definition of

an irreducible component of the fibre π−1P . 2

Note that condition 2 of the proposition shows that non-trivial Azumaya al-
gebras are only obtained by taking the points P to lie below geometrically
reducible fibres of π. Therefore there are, up to elements of Br k, only finitely
many classes of Azumaya algebras arising by this method: at each of the
finitely many geometrically reducible fibres of π, the group

ker
(
H1(k(P ), Q/Z) → H1(`, Q/Z)

)
= H1(`/k(P ), Q/Z)

is finite.

2.3 Example

2.3.1 A surface and a fibration

We consider the diagonal quartic surface V defined by

X4
0 + X4

1 = 6X4
2 + 12X4

3 . (4)

It is easily checked with Magma, using routines by Nils Bruin, that the surface
has points everywhere locally. A search using an algorithm described by Bern-
stein (2001) finds that there are no global solutions with the |Xi| less than
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104. The 48 straight lines on this surface are defined over the field

L = Q(ε,
4
√

2,
4
√

3)

of degree 32 over Q. (Here ε denotes, as always, a primitive eighth root of
unity.) Looking at the Galois action on the lines shows that Pic V is free of
rank 2, generated by the classes of a plane section and of the divisor

F = L123
11 + L123

15 + L123
31 + L123

35 .

While the class of F is defined over Q and contains a divisor defined over Q,
the divisor F itself is defined only over K = Q(

√
−2). We will write σ for

the non-trivial automorphism of K/Q. The conjugate over Q of F is another
divisor

F σ = L123
53 + L123

57 + L123
73 + L123

77

linearly equivalent to F . The individual straight lines involved are defined over
Q(i, 4

√
2).

The divisor F has self-intersection 0 and hence arithmetic genus 1; therefore
the linear system |F | defines a fibration π : V → P1 whose generic fibre is
a curve of genus 1. Although it would be possible to compute an equation,
defined over Q, for this fibration, it will not be necessary. The morphism π is
defined only up to an automorphism over Q of P1; we will later find a fibre of
π defined over Q and choose this to be the fibre at infinity.

As described in Section 1.3, we can compute H1(Q, Pic V̄ ). Using Magma
and the routines available at Bright (2002), we find that it is of order 2:

Magma V2.10-8 Tue Oct 14 2003 15:29:43 on kiwi

Type ? for help. Type <Ctrl>-D to quit.

> load "quartic";

Loading "quartic"

> V := DiagonalQuarticSurface([1,1,-6,-12]);

> V;

Scheme over Rational Field defined by

X0^4 + X1^4 - 6*X2^4 - 12*X3^4

> H1Pic(V);

Full Quotient RSpace of degree 1 over Integer Ring

Column moduli:

[ 2 ]

Thus Br1 V/ Br k is also of order 2. It would be possible to work out the
singular fibres of the fibration and hence the associated Picvert, and then to
show that the non-trivial element of Br1 V/ Br k lies in the image of Brvert; but
this is unnecessary, as any non-trivial Azumaya algebra which we produce with
the help of Proposition 6 must lie in the unique non-trivial class of Azumaya
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algebras.

2.3.2 An Azumaya algebra

We will now use Proposition 6 to write down an Azumaya algebra on V aris-
ing from the fibration described above. As we already know that F is one
geometrically reducible fibre of the fibration, we will try to find an Azumaya
algebra without having to compute all the singular fibres.

Lemma 7 Let g be a function on V , defined over K, with divisor (g) =
F − F∞, where F∞ is a geometrically irreducible closed curve defined over Q.
Then the quaternion algebra A = (−1, NK/Qg) is Azumaya on V .

PROOF. Choose the fibration π so that F∞ lies above the point at infinity,
that is, π∗∞ = F∞. Let P be the closed point of A1

Q over which the two fibres
F and F σ lie; so π∗P = F + F σ and k(P ) = K. Then g is, up to a constant
multiple, equal to π∗(t− tP ). We have

coresk(P )/Q(−1, g) = (−1, NK/Qg) = A

as the quadratic character on K× associated to −1 comes by restriction from
Q×. All we must check are the conditions of Proposition 6. Condition 1 is
satisfied because NK/Q(−1) is a square. Condition 2 is satisfied because the
least field of definition of each irreducible component of F or F σ is Q(i, 4

√
−2),

in which −1 is a square. 2

The function

f(X0, X1, X2, X3) =
X2

0 −
√
−2X0X1 −X2

1

X2
2 +

√
−2X2

3

is found to have divisor F − F σ. Therefore the map from V to P1, defined
over K by f , differs from π by an automorphism of P1 over K. Note also
the following property of f : that fσ has a zero at F σ and a pole at F ; and
therefore NK/Qf = ffσ is a constant function. In fact,

NK/Qf =
X4

0 + X4
1

X4
2 + 2X4

3

= 6. (5)

Suppose we can find a c ∈ K such that the fibre {f = c} is defined over Q
and geometrically irreducible; then we can take

g =
f

f − c
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to satisfy the requirements of Lemma 7.

Lemma 8 The fibre {f = c} is defined over Q if and only if NK/Q(c) = 6.

PROOF. The conjugate fibre to {f = c} is defined by the equation fσ = cσ;
by (5) this is equivalent to f = 6/cσ. The fibre is defined over Q if and only
if the two equations define the same fibre, that is, c = 6/cσ. 2

We will take
c = 2−

√
−2.

The fibre over c is defined over Q, and is easily checked to be non-singular.
Following Lemma 7, we define

G = NK/Q

(
f

f − c

)

=
X4

0 + X4
1

2(X4
0 + X4

1 )− 4(X2
2 + X2

3 )(X2
0 −X2

1 )− 4(X2
2 − 2X2

3 )X0X1

and then A = (−1, G) is an Azumaya algebra on V .

2.3.3 Computing the obstruction

To compute the Brauer–Manin obstruction on V , we must calculate the value
of ∑

v

invvA(xv)

for each adèlic point (xv) in V (AQ). This task is made easier by several facts:

• The function invvA(xv) is continuous, hence locally constant, on V (Qv) for
each v.

• The support of (G) (and, indeed, of any divisor) is closed in each V (Qv), un-
der the appropriate complete (real or p-adic) topology (see Colliot-Thélène
et al., 1980, Lemma 3.1.2). It is therefore unnecessary to evaluate the local
invariants along zeros or poles of G.

• At finite primes v where both the variety V and the algebra A extend to
Zv, the function invvA(xv) is zero (see Skorobogatov, 2001, p. 101).

We must therefore evaluate invvA(xv) at v = 2, 3 and at the infinite prime.

On R, the algebra A = (−1, G) is trivial where G is positive, and non-trivial
where G is negative. Now G has no zeros in V (R), and a double pole along
a curve of genus 1; therefore G is either everywhere positive or everywhere
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negative. Evaluating G at any one point of V (R) gives a positive value; hence
the local invariant is everywhere zero on V (R).

Over Q3, we ask Magma to compute the kernel of the local restriction map
H1(Q, Pic V̄ ) → H1(Q3, Pic V̄ ):

> RestrictionKernel(V,3);

Full Quotient RSpace of degree 1 over Integer Ring

Column moduli:

[ 2 ]

This computation involves finding the decomposition group at 3, and then
using Derek Holt’s group cohomology functions to realise the restriction map.
The necessary code can be found at Bright (2002). It turns out that the
restriction map is the zero map; so any Azumaya algebra on V over Q3 is
equivalent to a constant algebra over Q3. We therefore only need to evaluate
(−1, G) at one point of V (Q3) to discover that the invariant is everywhere
equal to 0.

On Q2, we must work a little harder. Looking modulo 16 shows that every
primitive solution of (4) in Z2 must have all the Xi units. Hensel’s Lemma
then shows that any such solution is equivalent, modulo 25, to an integer point
with

X4
0 + X4

1 ≡ 6X4
2 + 12X4

3 (mod 27). (6)

Modulo squares, G is equal to

(X4
0 + X4

1 )
(
2(X4

0 + X4
1 )− 4(X2

2 + X2
3 )(X2

0 −X2
1 )− 4(X2

2 − 2X2
3 )X0X1

)
(7)

and knowing the Xi modulo 25 gives the value of (7) modulo 28. We list the
odd (Xi) modulo 25 satisfying (6) and evaluate (7) at each such point; it turns
out that the value of G is always either 96 or 176 modulo 28. In either case,
the formula for the Hilbert symbol given in Serre (1973, Chapter III, 1.2,
Theorem 1) shows that the local invariant is 1

2
.

Combining these calculations shows that

∑
v

invvA(xv) =
1

2

for all points (xv) ∈ V (AQ). Therefore there is a Brauer–Manin obstruction
to the existence of rational points on V , and so there are no rational solutions
to (4).
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3 Cyclic algebras

In this section we look at another class of Azumaya algebras on a surface V
which are often straightforward to find, that is, cyclic Azumaya algebras.

3.1 Background

The following well-known proposition is a straightforward generalisation of
the Lemma 11 stated by Swinnerton-Dyer (2000).

Proposition 9 Let A = (K/k, f) be a cyclic algebra on V , where K is a
cyclic extension of the base field k and f is some rational function in k(V ).
Then A is Azumaya if and only if the divisor (f) is the norm of some divisor D
defined over K. If moreover we assume that V has points in every completion
of k, then A is equivalent to a constant algebra if and only if we can take D
to be principal. 2

In the examples which follow, we will never need to compute the element of
H1(k, Pic V̄ ) corresponding to a cyclic algebra: the mere fact of being non-
trivial gives it away. In more complex examples, though, this may be useful
and we include it here for completeness.

Proposition 10 Let A = (K/k, f) be a cyclic Azumaya algebra on V , with
(f) = NK/kD for some divisor D defined over K. Let α be the 1-cocycle with
values in Pic VK defined by

α(1) = 0

α(σr) =
r−1∑
i=0

σiD

where σ is an (implicitly fixed) generator of Gal(K/k). Then the class inf k̄/K α
in H1(k, Pic V̄ ) corresponds to the class of A in Br1 V/ Br k, under the iso-
morphism descibed in Proposition 1.

PROOF. Using the convention that an empty sum is 0, we work through the
isomorphisms described in Proposition 1. Considering α as a 1-cocycle with
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values in Div VK , its coboundary is given by

dα(σr, σs) =
r+s−1∑

i=0

σiD −
((r+s) mod n)−1∑

i=0

σiD

=

0 r + s < n

NK/kD = (f) r + s ≥ n.

This is indeed the image of (K/k, f) in H2(k, Prin VK). 2

3.2 Example

The example of Section 2.3 describes a cyclic algebra: there, the algebra pro-
duced was split by the extension Q(i). The function G had divisor F + F σ −
2F∞, which is easily shown to be the norm from Q(i) to Q of the divisor

L123
11 + L123

15 + L123
53 + L123

57 − F∞

and so (−1, G) is Azumaya.

3.3 Example

In this section we will describe another example, where the surface has no
fibrations in curves of genus 1 defined over Q. The approach used is a general
one which extends to other similar cases. In this example, we will show that
there is no algebraic Brauer–Manin obstruction on the chosen surface. The
surface V this time is given by

7X4
0 + 15X4

1 = 2X4
2 + 6X4

3 . (8)

This diagonal quartic surface shows the “most general” possible Galois module
structure on the 48 straight lines: that is, the least common field of definition
of the lines,

Q(ε, 4
√

15× 7, 4
√

2× 7, 4
√

6× 7),

is as large as it can be, of degree 256 over Q. The cohomology computations
described earlier show that Pic V = H0(Q, Pic V̄ ) is of rank 1, generated by
the class Π of a plane section; and Br1 V/ Br k is again of order 2. A computer
search reveals that there are no integer solutions with the |Xi| less than 104.

We will use a fibration of V in curves of genus 1, defined over a quadratic
extension K of Q, to find a divisor F whose norm is linearly equivalent to
twice a plane section. This will allow us to construct a function f satisfying
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the conditions described in Proposition 9, and hence an Azumaya algebra.

3.3.1 A useful fibration

There are no fibrations from V to P1 defined over Q, for there are no divisors
over Q which could be fibres of such a fibration. However, Swinnerton-Dyer
(2000) describes two conjugate fibrations which are defined over

K = Q(
√

7× 15× 2× 6) = Q(
√

35).

We will not reproduce the details of the geometry of these fibrations here, but
will describe as much as is necessary for this example. The recipe given for
finding such fibrations is as follows. Let

(a0, a1, a2, a3) = (7, 15,−2,−6)

be the coefficients in the equation of the surface V .

Lemma 11 Let θ, r1, r2, r3 be elements of K such that

a1r
2
1 + a2r

2
2 + a3r

2
3 = 0, θ2 = a0a1a2a3.

Define polynomials A, B, C,D by

A = θr2X
2
0 + a1a3(r3X

2
1 − r1X

2
3 )

B = θr3X
2
0 − a1a2(r2X

2
1 + r1X

2
2 )

C = a3θr3X
2
0 − a1a2a3(r2X

2
1 − r1X

2
2 )

D = −a2θr2X
2
0 − a1a2a3(r3X

2
1 + r1X

2
3 );

then the original equation (8) factorises over K as

A(X0, X1, X2, X3)D(X0, X1, X2, X3)

= B(X0, X1, X2, X3)C(X0, X1, X2, X3).

The two morphisms πi : V → P1 given by

π1 = (A : B) = (C : D)

π2 = (A : C) = (B : D)

are fibrations whose fibres are curves of genus 1. The classes in Pic VK of the
fibres of π1 and π2 respectively are conjugate over Q, and the sum of these two
classes is equal to twice the class of a plane section.

PROOF. See Swinnerton-Dyer (2000). 2
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If we write (A) for the divisor of zeros of the polynomial A, and so on, then

(A) = F1 + F2 (B) = F ′
1 + F2

(C) = F1 + F ′
2 (D) = F ′

1 + F ′
2

(9)

where F1 and F ′
1 are two fibres of π1, each defined over K, and similarly F2

and F ′
2 are two fibres of π2.

Now consider the divisor F σ
1 , where σ is the non-trivial element of Gal(K/Q).

This is a smooth curve lying in the class in Pic VK of the fibres of π2, and
therefore is a fibre of π2, defined by an equation B/D = c for some c ∈ K. To
find c, it suffices to evaluate B/D at any point of F σ

1 . We first find a Q̄-valued
point on F1: such a point is a common zero of A and C. Rearranging the
equation A = 0 gives us X2

3 in terms of X0 and X1; similarly C = 0 yields an
expression for X2

2 . Setting X0 = 0 and X1 = 1 gives

X2
2 =

r2

r1

X2
3 =

r3

r1

and, taking conjugates and substituting into B/D, we obtain

c =
B

D
(F σ

1 ) =
r1r

σ
2 + r2r

σ
1

a3(r1rσ
3 + r3rσ

1 )
. (10)

Lemma 12 The function

f =
C

X2
0

(
B

D
− c

)
=

A− cC

X2
0

has divisor NK/Q(F1 + D0), where D0 is the plane section divisor defined by
{X0 = 0}. The algebra

A = (K/Q, f)

is a non-trivial Azumaya algebra on V .

PROOF. The expression for (f) comes straight from (9) and (10). Proposi-
tion 9 then shows that A is Azumaya. Proposition 10 and the isomorphism
(2) show that it is non-trivial. 2

3.3.2 Computing the obstruction

To compute the algebra described in Lemma 12, we follow Lemma 11 and find
r1, r2 and r3 in Q(

√
35) satisfying

15r2
1 − 2r2

2 − 6r2
3 = 0. (11)
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This is not entirely straightforward. Such conic equations over the rational
numbers have been well studied: Legendre famously described an algorithm
for solving quadratic forms in three variables, and more recent work on efficient
solution is described in Cremona and Rusin (2003). However, these methods
run into problems when applied over a number field, as described in Simon’s
thesis (Simon, 1998). In the present case, several steps of Legendre’s descent
technique reduce the equation (11) to

x2 − ωy2 = 3z2

where ω = 6+
√

35 is a fundamental unit in K. Fortunately, this new equation
succumbs to a computer search, and we deduce the solution

(r1, r2, r3) = (20 + 2
√

35, 15, 20 + 5
√

35)

to (11). Note the similarity to the example in Section 2.3, where finding the
rational fibres of a fibration also involved solving a norm equation. Substituting
these values into the expression in (10) gives c = −1. Lemma 12 produces,
after removing a constant factor,

f =
7X2

0 + 5X2
1 − 4X2

2 − 2X2
3

X2
0

(12)

such that (35, f) is an Azumaya algebra on V .

We now show that there is no Brauer–Manin obstruction on V associated to
the algebra A.

Lemma 13 Let A be an element of the 2-torsion subgroup of Br V . Suppose
that, for some place w of Q, the local invariant function

invwA(xw)

takes both values 0 and 1
2

for xw in V (Qw). Then there is no Brauer–Manin
obstruction associated to A.

PROOF. Let (xv) be a point of V (AQ). Then
∑

v invvA(xv) is equal to either
0 or 1

2
. In the first case, this shows that there is no Brauer–Manin obstruction

associated to A. In the second case, we replace xw by x′w so as to change the
value of invwA(xw) and make the sum equal 0. 2

In our example, looking at Q5 shows that there is no Brauer–Manin obstruc-
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tion. Using the formula in Serre (1973, Chapter III, 1.2, Theorem 1), we have

(35, b)5 =

(
7

5

)β(
u

5

)
= (−1)β

(
u

5

)

where b = 5βu with u a 5-adic unit. Now let

g = 7X2
0 + 5X2

1 − 4X2
2 − 2X2

3 ;

then (35, f) = (35, g). It is enough to show that g takes both square and
non-square values in Z×

5 when evaluated at points of V (Q5). For example, the
point (2 : 1 : 1 : 5) satisfies

7X4
0 + 15X4

1 − 2X4
2 − 6X4

3 ≡ 0 (mod 53)

and so by Hensel’s Lemma is equivalent modulo 53 to a point of V (Q5). But
putting these values into g gives

g(2, 1, 1, 5) ≡ 4 (mod 52)

which is a square in Q5. On the other hand, the point (2 : 2 : 7 : 5) also lifts
to a point of V (Q5), this time modulo 52, but we have

g(2, 2, 7, 5) ≡ 2 (mod 52)

which is not a square in Q5. Therefore (35, f) takes values both +1 and −1
on V (Q5), and so inv5A(x) takes values 0 and 1

2
. By Lemma 13, there is no

Brauer–Manin obstruction associated to A, and hence no algebraic Brauer–
Manin obstruction on V .

That the quadratic form g should take both square and non-square values in
Z×

5 on the surface V seems unsurprising; indeed, one might be surprised if the
opposite were true. It seems likely that the absence of an algebraic Brauer–
Manin obstruction on this particular surface is one instance of a more general
trend. This is supported by the evidence described below.

On the other hand, it is possible to list surfaces which fall into this “most
general” class, and to search for rational points of bounded height on them.

There are 424 everywhere locally soluble diagonal quartic surfaces of the form

aX4
0 + bX4

1 = cX4
2 + dX4

3

with |a|, |b|, |c|, |d| less than 16, and “sufficiently general” in the sense described
at the beginning of this section. Checking these conditions is simple with
Magma: the only one not yet described is local solubility, for which the bounds
given by the Weil conjectures show that we only need to check solubility at 2,
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5 and the primes dividing the coefficients.

It is reasonably straightforward (see Bernstein, 2001) to search for solutions
with the |Xi| less than 104. Let N(H) denote the number of such surfaces with
no point satisfying |Xi| < H for all i; then we obtain the following data.

H 100 1000 10000

N(H) 81 69 61

There appears to be a trend for surfaces in this family to have a point of
reasonably small height if at all. Should this pattern continue, there would be
some surfaces either with points of extremely large height, or with no points
at all. Moreover, the same construction as used above allows us to compute
the algebraic Brauer–Manin obstruction, which turns out to be trivial on all
of these surfaces: in each case, there is some prime at which the local invariant
takes both values 0 and 1

2
. Although very vague, this evidence does suggest

that some diagonal quartic surfaces may have trivial algebraic Brauer–Manin
obstruction but no rational points.
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