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06 Simplicial cycles and the computation of

simplicial trees

Massimo Caboara∗ Sara Faridi† Peter Selinger‡

Abstract

We generalize the concept of a cycle from graphs to simplicial com-

plexes. We show that a simplicial cycle is either a sequence of facets

connected in the shape of a circle, or is a cone over such a structure. We

show that a simplicial tree is a connected cycle-free simplicial complex,

and use this characterization to produce an algorithm that checks in poly-

nomial time whether a simplicial complex is a tree. We also present an

efficient algorithm for checking whether a simplicial complex is grafted,

and therefore Cohen-Macaulay.

1 Introduction

The main goal of this paper is to demonstrate that it is possible to check, in
polynomial time, if a monomial ideal is the facet ideal of a simplicial tree.

Facet ideals were introduced in [F1] (generalizing results in [Vi1] and [SVV]
on edge ideals of graphs) as a method to study square-free monomial ideals. The
idea is to associate a simplicial complex to a square-free monomial ideal, where
each facet (maximal face) of the complex is the collection of variables that appear
in a monomial in the minimal generating set of the ideal (see Definition 2.4). The
ideal will then be called the “facet ideal” of this simplicial complex. A special
class of simplicial complexes are called “simplicial trees” (Definition 2.9). The
definition of a simplicial tree is a generalization of the concept of a graph-tree.
Facet ideals of trees have many properties; for example, they have normal and
Cohen-Macaulay Rees rings [F1]. Finding such classes of ideals is in general a
difficult problem. Simplicial trees also have strong Cohen-Macaulay properties:
their facet ideals are always sequentially Cohen-Macaulay [F2], and one can
determine under precisely what combinatorial conditions on the simplicial tree
the facet ideal is Cohen-Macaulay [F3]. In [F4] it is shown that the theory is
not restricted to square-free monomial ideals; via polarization, one can extend
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many properties of facet ideals to all monomial ideals. All these properties, and
many others, make simplicial trees useful from an algebraic point of view.

But how does one determine if a given square-free monomial ideal is the
facet ideal of a simplicial tree? In Section 4, we give a characterization of trees
that shows this can be done in polynomial time. This characterization is based
on a careful study of the structure of cycles in Section 3. The study of simplicial
cycles is indeed interesting in its own right. In graph theory, the concepts of a
tree and of a cycle are closely linked to each other: a tree is a connected graph
that does not contain a cycle, and a cycle is a minimal graph that is not a tree.
Generalizing to the simplicial case, we use the latter property, together with the
existing definition of a simplicial tree, to define the concept of a simplicial cycle.
We then prove the remarkable fact that a simplicial cycle is either a sequence of
facets connected in the shape of a circle, or a cone over such a structure. This
in turns yields an alternative characterization of trees, given in Section 4.

This result enables us to produce a polynomial time algorithm to decide
whether a given simplicial complex is a tree. The algorithm itself is introduced in
Section 5, where the complexity and optimizations are also discussed. Section 6
focuses on the algebraic properties of facet ideals: in Section 6.1 we discuss
a method of adding generators to a square-free monomial ideal (or facets to
the corresponding complex) so that the resulting facet ideal is Cohen-Macaulay.
This method is called “grafting” a simplicial complex. For simplicial trees, being
grafted and being Cohen-Macaulay are equivalent conditions [F3]. We then
introduce an algorithm that checks whether or not a given simplicial complex
is grafted and discuss its complexity.

Implementations. The algorithms described in this paper have first been
coded using CoCoAL, the programming language of the CoCoA system (please
see http://cocoa.dima.unige.it/). These prototypical implementations can be
downloaded from [CFS2]. Much more efficient (but less user friendly) C++
implementations have been developed for several versions of Algorithm 5.1 using
the CoCoALib framework (http://cocoa.dima.unige.it/cocoalib/). The C++ code
is also available at the website [CFS2].

2 Simplicial complexes and trees

We define the basic notions related to facet ideals. More details and examples
can be found in [F1, F3].

Definition 2.1 (Simplicial complex, facet). A simplicial complex ∆ over a
finite set of vertices V is a collection of subsets of V , with the property that if
F ∈ ∆ then all subsets of F are also in ∆. An element of ∆ is called a face of
∆, and the maximal faces are called facets of ∆.

Since we are usually only interested in the facets, rather than all faces, of a
simplicial complex, it will be convenient to work with the following definition:
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Definition 2.2 (Facet complex). A facet complex over a finite set of vertices
V is a set ∆ of subsets of V , such that for all F,G ∈ ∆, F ⊆ G implies F = G.
Each F ∈ ∆ is called a facet of ∆.

Remark 2.3 (Equivalence of simplicial complexes and facet complexes).
The set of facets of a simplicial complex forms a facet complex. Conversely, the
set of subsets of the facets of a facet complex is a simplicial complex. This defines
a one-to-one correspondence between simplicial complexes and facet complexes.
In this paper, we will work primarily with facet complexes.

We define facet ideals, giving a one-to-one correspondence between facet
complexes (or, equivalently, simplicial complexes) and square-free monomial
ideals.

Definition 2.4 (Facet ideal of a facet complex, facet complex of an
ideal).

• Let ∆ be a facet complex over a vertex set {v1, . . . , vn}. Let k be a field,
and let R = k[x1, . . . , xn] be the polynomial ring with indeterminates
x1, . . . , xn. The facet ideal of ∆ is defined to be the ideal of R generated
by all the square-free monomials xi1 . . . xis , where {vi1 , . . . , vis} is a facet
of ∆. We denote the facet ideal of ∆ by F(∆).

• Let I = (M1, . . . ,Mq) be an ideal in the polynomial ring k[x1, . . . , xn],
where k is a field and M1, . . . ,Mq are square-free monomials in x1, . . . , xn

that form a minimal set of generators for I. The facet complex of I is
defined to be δF (I) = {F1, . . . , Fq}, where for each i, Fi = {vj | xj |Mi, 1 6

j 6 n}.
From now on, we often use x1, . . . , xn to denote both the vertices of ∆

and the variables appearing in F(∆). We also sometimes ease the notation by
denoting facets by their corresponding monomials; for example, we write xyz
for the facet {x, y, z}.

We now generalize some notions from graph theory to facet complexes. Note
that a graph can be regarded as a special kind of facet complex, namely one in
which each facet has cardinality 2.

Definition 2.5 (Path, connected facet complex). Let ∆ be a facet com-
plex. A sequence of facets F1, . . . , Fn is called a path if for all i = 1, . . . , n− 1,
Fi ∩ Fi+1 6= ∅. We say that two facets F and G are connected in ∆ if there
exists a path F1, . . . , Fn with F1 = F and Fn = G. Finally, we say that ∆ is
connected if every pair of facets is connected.

Notation 2.6. If F , G and H are facets of ∆, H 6F G means that H ∩ F ⊆
G∩F . The relation 6F defines a preorder (reflexive and transitive relation) on
the facet set of ∆.

Definition 2.7 (Leaf, joint). Let F be a facet of a facet complex ∆. Then F
is called a leaf of ∆ if either F is the only facet of ∆, or else there exists some
G ∈ ∆ \ {F} such that for all H ∈ ∆ \ {F}, we have H 6F G. The facet G
above is called a joint of the leaf F if F ∩G 6= ∅.
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It follows immediately from the definition that every leaf F contains at least
one free vertex, i.e., a vertex that belongs to no other facet.

Example 2.8. In the facet complex ∆ = {xyz, yzu, uv}, xyz and uv are leaves,
but yzu is not a leaf. Similarly, in ∆′ = {xyu, xyz, xzv}, the only leaves are
xyu and xzv.

∆ = x

y

z
v

u

∆′ =

u

y z

vx

Definition 2.9 (Forest, tree). A facet complex ∆ is a forest if every nonempty
subset of ∆ has a leaf. A connected forest is called a tree (or sometimes a
simplicial tree to distinguish it from a tree in the graph-theoretic sense).

It is clear that any facet complex of cardinality one or two is a forest. When
∆ is a graph, the notion of a simplicial tree coincides with that of a graph-
theoretic tree.

Example 2.10. The facet complexes in Example 2.8 are trees. The facet com-
plex pictured below has three leaves F1, F2 and F3; however, it is not a tree,
because if one removes the facet F4, the remaining facet complex has no leaf.

F3

F1 F2F4

The following property is proved in [F3, Lemma 4.1]:

Lemma 2.11 (A tree has two leaves). Every tree with two or more facets
has at least two leaves.

3 Cycles

In this section, we define a simplicial cycle as a minimal complex without leaf.
This in turns characterizes a simplicial tree as a connected cycle-free facet com-
plex. We further show that cycles possess a particularly simple structure: each
cycle is either equivalent to a “circle” of facets with disjoint intersections, or to
a cone over such a circle.

Definition 3.1 (Cycle). A nonempty facet complex ∆ is called a cycle if ∆
has no leaf but every nonempty proper subset of ∆ has a leaf.
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Equivalently, ∆ is a cycle if ∆ is not a forest, but every proper subset of ∆
is a forest. If ∆ is a graph, Definition 3.1 coincides with the graph-theoretic
definition of a cycle. The next two remarks are immediate consequences of the
definitions of cycle and forest:

Remark 3.2. A cycle is connected.

Remark 3.3. A facet complex is a forest if and only if it does not contain a
cycle.

In the remainder of this section, we provide a complete characterization of
the structure of cycles.

Definition 3.4 (Strong neighbor). Let ∆ be a facet complex and F,G ∈ ∆.
We say that F and G are strong neighbors, written F ∼∆ G, if F 6= G and for
all H ∈ ∆, F ∩G ⊆ H implies H = F or H = G.

The relation ∼∆ is symmetric, i.e., F ∼∆ G if and only if G ∼∆ F . Note
that if ∆ has more than two facets, then F ∼∆ G implies that F ∩G 6= ∅.
Example 3.5. For the facet complex ∆′ in Example 2.8, xyu 6∼∆′ xzv, as
their intersection x lies in the facet xyz. However, xyz ∼∆′ xzv and similarly
xyz ∼∆′ xyu.

Remark 3.6. Suppose ∆ is a facet complex, and ∆′ ⊆ ∆. Let F,G ∈ ∆′. If
F ∼∆ G, then F ∼∆′ G. The converse is not in general true.

Remark 3.7. We have F ∼∆ G if and only if G is strictly maximal with respect
to 6F on ∆ \ {F}, i.e., for all H 6= F , G 6F H implies G = H . This is a simple
restatement of the definition.

It turns out that a cycle can be described as a sequence of strong neighbors.
The following lemma follows directly from Definition 3.4.

Lemma 3.8. If ∆ is a facet complex with distinct facets F,G1, G2 such that
F ∼∆ G1 and F ∼∆ G2, then F is not a leaf of ∆.

Proof. If F is a leaf, there exists a facet H 6= F such that G1 6F H and
G2 6F H , which by Remark 3.7 implies that G1 = G2 = H , a contradiction.

Corollary 3.9. Let ∆ be a facet complex, and let F1, . . . , Fn be distinct facets
with n > 3, such that F1 ∼∆ F2 ∼∆ . . . ∼∆ Fn ∼∆ F1. Then {F1, . . . , Fn} has
no leaf.

Proof. This follows directly from Remark 3.6, and Lemma 3.8.

Lemma 3.10. Suppose ∆ is a facet complex and F,G ∈ ∆. If F is a leaf of
∆ \ {G}, but not a leaf of ∆, then F ∼∆ G.

Proof. Suppose H is some facet such that F ∩G ⊆ H , but H 6= F and H 6= G.
Since F is a leaf for ∆ \ {G}, there exists a facet H ′ ∈ ∆ \ {G} such that
L ∩ F ⊆ H ′ for all L ∈ D \ {F,G}, and so F ∩ H ⊆ H ′. But now we have
F ∩G ⊆ F ∩H ⊆ H ′, which implies that F is a leaf of ∆, a contradiction.
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Proposition 3.11 (A cycle is a sequence of strong neighbors). Suppose
∆ is a cycle, and let n = |∆|. Then n > 3, and the facets of ∆ can be enumerated
as ∆ = {F1, . . . , Fn} in such a way that

F1 ∼∆ F2 ∼∆ . . . ∼∆ Fn ∼∆ F1,

and Fi 6∼∆ Fj in all other cases, so that each facet is a strong neighbor of
precisely two other facets.

Proof. First note that since ∆ is not a forest, n > 3. We begin by showing that
each facet has at least two distinct strong neighbors. Let F ∈ ∆ be a facet.
Since ∆ is a cycle, ∆ \ {F} is a tree. The subset ∆ \ {F} also has cardinality at
least two, and therefore has two distinct leaves, say G and H , by Lemma 2.11.
Since neither G nor H are leaves of ∆ (because ∆ is a cycle), we have F ∼∆ G
and F ∼∆ H by Lemma 3.10.

Now we can simply choose F1 arbitrarily, then choose F2 6= F1 such that
F1 ∼∆ F2, then for every i > 3 choose Fi such that Fi−1 ∼∆ Fi and Fi 6=
Fi−1, Fi−2. Since ∆ is finite, there will be some smallest i such that Fi = Fj for
some j < i. Then ∆′ = {Fj, . . . , Fi−1} has no leaf by Corollary 3.9, so ∆′ = ∆.
It follows that j = 1 and i − 1 = n. Finally, suppose that Fk ∼∆ Fl for some
k 6 l − 2, where k > 1 or l < n. Then {F1, . . . , Fk, Fl, . . . , Fn} has no leaf by
Corollary 3.9, contradicting the fact that it is a tree.

The converse of Proposition 3.11 is not true.

Example 3.12. The facet complex ∆ is not a cycle, as its proper subset ∆′

(which is indeed a cycle) has no leaf. However, we have F1 ∼∆ F2 ∼∆ G ∼∆

F3 ∼∆ F4 ∼∆ F1, and these are the only pairs of strong neighbors in ∆.

∆ = F1 F3

F2

F4

G

∆′ =

F2

F3

F4

F1

Lemma 3.13. If ∆ is a cycle, written as F1 ∼∆ F2 ∼∆ . . . ∼∆ Fn ∼∆ F1, then
for each i, ∆i = ∆ \ {Fi} is a tree with exactly two leaves Fi−1 and Fi+1, with
joints Fi−2 and Fi+2, respectively.

Proof. We know that ∆i is a tree, so it has at least two leaves. By Lemma 3.8
Fi−1 and Fi+1 are the only choices. By Remark 3.7 Fi−2 is the only possible
joint for Fi−1, and Fi+2 is the only possible joint for Fi+1.

The following lemma will be fundamental for the classification of cycles.

Lemma 3.14. Let ∆ be a cycle with facets F 6= G ∈ ∆. If F 6∼∆ G, then
F ∩G ⊆ H for all H ∈ ∆.
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Proof. We first prove the claim in the special case where F ∼∆ H . Indeed, since
F is a strong neighbor of exactly two facets, there must be some L 6= G,H such
that L ∼∆ F ∼∆ H . Then Lemma 3.13 implies that H is a joint of F in the
tree ∆ \ {L}, and therefore F ∩G ⊆ H , or equivalently, F 6G H .

Now consider the general case. By Proposition 3.11, the facets of ∆ can
be enumerated as F1 ∼∆ F2 ∼∆ . . . ∼∆ Fn ∼∆ F1. Assume, without loss of
generality, that F = F1 and G = Fi, where 2 < i < n. By repeated applications
of the special case above, we have

F 6G F2 6G . . . 6G Fi−1.

In the other direction, we similarly have

F 6G Fn 6G Fn−1 6G . . . 6G Fi+1.

Therefore, F ∩G ⊆ Fj for j = 1, . . . , n.

Lemma 3.15. Let ∆ be a facet complex, and let

A =
⋂

F∈∆

F and ∆′ = {F \A | F ∈ ∆}.

Then ∆′ is a facet complex. Moreover, ∆ is a cycle if and only if ∆′ is a cycle.

Proof. For each F ∈ ∆, let F ′ = F \ A. Since ∆ is a facet complex, we have
F 6⊆ G for any two distinct facets F,G ∈ ∆, which clearly implies F ′ 6⊆ G′. So
∆′ is a facet complex. Let Γ be any subset of ∆, and let Γ′ = {F ′ | F ∈ ∆} be
the corresponding subset of ∆′. Then for any triple of facets F,G,H ∈ Γ, we
have F 6H G ⇐⇒ F ′ 6H′ G′. Therefore, Γ has a leaf if and only if Γ′ has a
leaf. It follows that ∆ is a cycle if and only if ∆′ is a cycle.

Theorem 3.16 (Structure of a cycle). Let ∆ be a facet complex. Then
∆ is a cycle if and only if ∆ can be written as a sequence of strong neighbors
F1 ∼∆ F2 ∼∆ . . . ∼∆ Fn ∼∆ F1 such that n > 3, and for all i, j

Fi ∩ Fj =
n
⋂

k=1

Fk if j 6= i− 1, i, i+ 1 (mod n).

Proof. Let ∆ be a cycle. Then by Proposition 3.11 and Lemma 3.14, ∆ can be
written as a sequence of strong neighbors with the desired properties.

Conversely, suppose that ∆ is written as a sequence of strong neighbors
F1 ∼∆ F2 ∼∆ . . . ∼∆ Fn ∼∆ F1 such that Fi ∩ Fj =

⋂n

k=1 Fk if j 6= i −
1, i, i + 1 (mod n). By Lemma 3.15 we can without loss of generality assume
that

⋂n

k=1 Fk = ∅.
By Corollary 3.9, ∆ has no leaf. Suppose ∆′ is any nonempty proper subset

of ∆. We need to show that ∆′ has a leaf. Suppose Fi ∈ ∆′ and Fi+1 6∈ ∆′.
There are two cases:
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1. Fi−1 /∈ ∆′. In this case, since Fi ∩ Fk = ∅ for all Fk ∈ ∆′ \ {Fi}, Fi is a
leaf.

2. Fi−1 ∈ ∆′. In this case, Fi ∩ Fk ⊆ Fi−1 for all Fk ∈ ∆′ \ {Fi}, and so Fi

is again a leaf, this time with Fi−1 as a joint.

So ∆ is a cycle and we are done.

The implication of Theorem 3.16 is that a simplicial cycle has a very intuitive
structure: it is either a sequence of facets joined together to form a circle in
such a way that all intersections are pairwise disjoint (this is the case where the
intersection of all the facets is the empty set in Theorem 3.16), or it is a cone
over such a structure (Lemma 3.15).

Example 3.17. The facet complex ∆ is a cycle. The facet complex Γ is a cycle
and is also a cone over the cycle Γ′.

∆ = Γ = Γ′ =

4 Characterization of trees

We now consider the problem of deciding whether or not a given facet complex
is a tree. We refer to this problem as the decision problem for simplicial trees.

Note that the näıve algorithm (namely, checking whether every non-empty
subset has a leaf) is extremely inefficient: for a facet complex of n facets, there
are 2n−1 subsets to check. Also note that the definition of a tree is not inductive
in any obvious way: for instance, attaching a single leaf to a tree need not yield a
tree, as Example 2.10 shows. This seems to rule out an easy recursive algorithm.

Nevertheless, we demonstrate that the decision problem for simplicial trees
can be solved efficiently. This is done via a characterization of trees given in
this section.

Definition 4.1 (Paths and connectedness outside V ). Let ∆ be a facet
complex, and let V be a set of vertices. We say that a sequence of facets
H1, . . . , Hn ∈ ∆ is a path outside V in ∆ if for all i = 1, . . . , n− 1, (Hi∩Hi+1)\
V 6= ∅. We say that two facets F,G ∈ ∆ are connected outside V in ∆ if there
exists a path H1, . . . , Hn outside V in ∆ such that H1 = F and Hn = G.

Note that in case V = ∅, this coincides with the definition of connectedness
from Definition 2.5.

8



Notation 4.2. If F,G1, G2 are three distinct facets of ∆, then we define ∆G1,G2

F

to be the following subset of ∆:

∆G1,G2

F = {H ∈ ∆ | H ∩ F = G1 ∩G2} ∪ {G1, G2}.

Definition 4.3 (Triple condition). Let ∆ be a facet complex. We say a triple
of facets 〈F,G1, G2〉 satisfies the triple condition if G1 66F G2 and G2 66F G1,

and if G1 and G2 are connected outside F in the facet complex ∆G1,G2

F .

We note that the definitions of ∆G1,G2

F and the triple condition have changed
from an earlier version of this article [CFS1]; they have been simplified.

Example 4.4. Consider ∆ in Example 3.12. Then the triple 〈F1, F2, F4〉 sat-
isfies the triple condition. This is because F4 66F1

F2 and F2 66F1
F4. More-

over ∆F2,F4

F1
= {F2, F3, F4, G}, and a path connecting F2 and F4 outside F1 is

F2, F3, F4.
However, 〈G,F2, F3〉 does not satisfy the triple condition, since F2 6G F3

(and F3 6G F2). Also ∆F2,F3

G = {F2, F3}, and F2 and F3 are not connected
outside G.

Proposition 4.5 (A triple is part of a cycle). Let ∆ be a facet complex. A
triple 〈F,G1, G2〉 satisfies the triple condition if and only if there exists a cycle
∆′ ⊆ ∆ such that F,G1, G2 ∈ ∆′ and G1 ∼∆′ F ∼∆′ G2.

Proof. Suppose 〈F,G1, G2〉 satisfies the triple condition. Then by definition,
G1 66F G2 and G2 66F G1. Choose a minimal (with respect to inclusion) path
H1, . . . , Hn outside F that connectsH1 = G1 toHn = G2. Note that minimality
implies that for j > i+1, (Hi∩Hj)\F = ∅. We claim that ∆′ = {F,H1, . . . , Hn}
is a cycle with

F ∼∆′ H1 ∼∆′ . . . ∼∆′ Hn ∼∆′ F. (1)

(a) F ∼∆′ G1 and F ∼∆′ G2.

If F ∩ G1 ⊆ Hi for some i, 1 < i < n, then since Hi ∈ ∆G1,G2

F , we have
F ∩ G1 ⊆ Hi ∩ F = G1 ∩ G2 ⊆ G2. This implies that G1 6F G2, a
contradiction. So F ∼∆′ G1, and similarly F ∼∆′ G2

(b) Hi ∼∆′ Hi+1 for i = 1, . . . , n− 1.

Since (Hi ∩Hi+1) \ F 6= ∅, we have that Hi ∩Hi+1 6⊆ F . By minimality
of the path, if Hi ∩ Hi+1 ⊆ Hj for some j > i + 1, then Hi ∩ Hi+1 ⊆
Hi ∩Hj ⊆ F , a contradiction. The case j < i is similar.

This shows (1). To finish the proof that ∆′ is a cycle, we must show that it
meets the remaining condition of Theorem 3.16. If n = 2, there is nothing to
show; assume therefore that n > 3. By definition of ∆G1,G2

F , F ∩Hj = G1 ∩G2

for j = 2, . . . , n − 1, and so
⋂

G∈∆′ G = G1 ∩ G2. Also, if j > i + 1, then
Hi ∩Hj ⊆ F by minimality of the path, therefore

Hi ∩Hj = (Hi ∩ F ) ∩ (Hj ∩ F ) = G1 ∩G2 =
⋂

G∈∆′ G.
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So ∆′ is a cycle.
Conversely, suppose that ∆′ is a cycle containing F , G1 and G2, written as

F ∼∆′ G1 ∼∆′ H1 ∼∆′ . . . ∼∆′ Hn ∼∆′ G2 ∼∆′ F , where n > 0.
From the strong neighbor relations it follows that G1 66F G2 and G2 66F G1.

It also follows that the above sequence of strong neighbors provides a path from
G1 to G2 outside F . We only need to show that for i = 1, . . . , n, Hi ∩ F =
G1 ∩G2.

If ∆′ = {F,G1, G2} we are done. So assume that n > 1.
We know Hi 6∼∆′ F , and so by Lemma 3.14, Hi ∩ F ⊆ G1 ∩ G2. On

the other hand, since G1 6∼∆′ G2, Lemma 3.14 implies the opposite inclusion
Hi ∩ F ⊇ G1 ∩ G2. It therefore follows that Hi ∩ F = G1 ∩ G2 and we are
done.

An immediate implication of Proposition 4.5 is an (algorithmically) efficient
criterion to determine whether or not a facet complex is a tree.

Theorem 4.6 (Main Theorem). Let ∆ be a connected facet complex. Then
∆ is a tree if and only if no triple of facets in ∆ satisfies the triple condition.

5 A polynomial-time tree decision algorithm

By Theorem 4.6, to check if a facet complex ∆ = {G1, . . . , Gl} is a tree, we
only need to check the triple condition for all triples of elements of ∆. The
checks themselves are straightforward. Since the triple condition for 〈F,G,G′〉
is clearly unchanged if one switches G and G′, we can limit triple checking to the
elements of the set {〈F,Gi, Gj〉 ∈ ∆3 | Gi 6= F 6= Gj , i < j}. The procedures
for the basic steps follow immediately from the earlier definitions.

Algorithm 5.1 (Tree decision algorithm).
Input: a connected facet complex ∆ = {G1, . . . , Gl} with n vertices.
Output: True if ∆ is a tree, False otherwise.

1. For each triple 〈F,G,G′〉 ∈ {〈F,Gi, Gj〉 ∈ ∆3 | Gi 6= F 6= Gj , i < j}

(a) If G 6F G′ or G′ 6F G, continue with the next triple.

(b) Build ∆G,G′

F .

(c) If G and G′ are connected outside F in ∆G,G′

F , return False.

2. Return True.

The correctness of this algorithm is an immediate consequence of Theo-
rem 4.6. The algorithm uses very little memory; the input ∆ requires nl bits,

and ∆G,G′

F ⊆ ∆ requires l bits. The memory required to perform the connected-
ness check and to store the various counters is negligible. Thus, memory locality
is good, and the computations can generally take place in the cache.
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Remark 5.2. In the process of checking the triple condition for a triple 〈F,G,G′〉
that is part of a cycle, we build a connection path outside F . Clearly, any such
path can be reduced to a minimal connection path {H1, . . . , Hn} outside F for
G,G′, and therefore, by the proof of Proposition 4.5, {F,H1, . . . , Hn} forms a
cycle. Therefore, an easy modification of Algorithm 5.1 allow us to produce the
set of all the facets F ∈ ∆ that are part of some cycle, and a cycle ∆′

F ⊇ {F}
for each of them.

5.1 Complexity

For each triple it is trivial to see that steps (a) and (b) can be performed with
cost O(n) and O(nl) respectively. For step (c), the following holds.

Lemma 5.3. Let ∆ be a facet complex with l facets over n variables such that
F,G,G′ are distinct facets of ∆. The connectedness outside F of G,G′ ∈ ∆ can
be determined with time cost O(nl).

Proof. First of all we substitute ∆ with the set {H\F | H ∈ ∆}. We then define
n + 1 equivalence relations P0, . . . , Pn on the set {1, . . . , l}. P0 is the identity
relation, i.e., each equivalence class is a singleton. For each j = 1, . . . , n, consider
the vertex vj and the set Xj = {i | vj ∈ Fi}. Let Pj be the smallest equivalence
relation such that Pj−1 ⊆ Pj and such that for all i, i′ ∈ Xj , (i, i

′) ∈ Pj . Then
facets Fi and Fi′ are connected if and only if (i, i′) ∈ Pn. With a suitable data
structure for representing equivalence relations, the complexity of the procedure
above is O(nl).

Consequently, step (c) of the tree decision algorithm can be performed at
cost O(nl). Thus, the total complexity of the tree decision algorithm is as

follows: in the worst case we have to check 3 ·
(

l

3

)

= l(l−1)(l−2)
2 = O

(

l3
)

triples.
The complexity of the steps (a)–(c) is O(nl) and hence the total complexity of
the algorithm is O

(

nl4
)

.

Example 5.4. Consider the facet complex ∆ = {xy, xz, yz, yu, zt}. We have
to check 3 ·

(

5
3

)

= 30 triples. We start with the triple 〈xy, xz, yz〉.
• xz 66xy yz since xy ∩ xz = x 6⊆ y = xy ∩ yz. Similarly yz 66xy xz.

• xz and yz are connected outside xy in the complex ∆xz,yz
xy = {zt, xz, yz}.

We have hence discovered that ∆ is not a tree. A more unlucky choice of
facets could have brought about the checking of 27 useless triples before the
discovery that ∆ is not a tree, the other two useful triples being 〈yz, xy, xz〉 and
〈xz, xy, yz〉.
Example 5.5. Some statistics for a bigger random example. Consider the facet
complex ∆ = {lka, qik, tykj, wuv, rjb, eioab, gdc, zv, rtj, qrvm, gzm, tgzb,
rgvm, qlav, qeocn, ikfaz, bn, ekjs, pfvn, wtodv}. We discover that it is not
a tree after checking 4 facets; we performed the connectedness check only once.
If one checks all 3 ·

(

20
3

)

= 3420 triples, one finds that 445 of them require a
connectedness check, and 403 of them reveal that ∆ is not a tree.
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Example 5.6. The facet complex {xixi+1xi+2 | i = 1, . . . , 400} is trivially a
tree. Checking this by a direct application of Algorithm 5.1 requires dealing
with 3 ·

(

400
3

)

= 31, 760, 400 triples, and takes about 12.6 seconds on an Athlon
2600+ machine for our C++ implementation. All the timings in the remainder
of this paper refer to this machine.

5.2 Optimization

The runtime of Algorithm 5.1 can be improved by introducing some optimiza-
tions. First, note that if F is a facet such that no triple 〈F,G,G′〉 satisfies the
triple condition, then by Proposition 4.5, F cannot be part of any cycle of ∆.
Therefore, F can be removed from ∆, reducing the number of subsequent triple
checks. We refer to this optimization as the removal of useless facets.

Example 5.7. We check the tree {xixi+1xi+2 | i = 1, . . . , 400} of Example 5.6
with a version of Algorithm 5.1 with removal of useless facets. This requires
checking 10, 586, 800 triples and takes about 3.46 seconds.

An important special case of a “useless facet” is a reducible leaf, as captured
in the following definition:

Definition 5.8 (Reducible leaf). A facet F of a facet complex ∆ is called a
reducible leaf if for all G,G′ ∈ ∆, either G 6F G′ or G′ 6F G.

A reducible leaf is called a “good leaf” by Zheng [Z].

Remark 5.9. The facet F is a reducible leaf of ∆ if and only if F is a leaf of
every ∆′ ⊆ ∆ with F ∈ ∆′.

The remark immediately implies that a reducible leaf cannot be part of a cy-
cle. Thus, it can be removed from ∆, and the algorithm can then be recursively
applied to ∆ \ {F}. We were not able to find a tree without a reducible leaf;
in fact, Zheng [Z] conjectured that this is always the case. Checking whether
a given facet F is a reducible leaf requires ordering all facets with respect to
6F , which takes O(nl log l) steps. A reducible leaf can thus be found in time
O
(

nl2 log l
)

. Therefore, if Zheng’s conjecture is true, the tree problem can be

decided in time O
(

nl3 log l
)

. But even if the conjecture is not true, remov-
ing all reducible leaves at the beginning of Algorithm 5.1 is still a worthwhile
optimization.

5.3 Optimization for sparse complexes

Let ∆ be a facet complex with l facets. If every F ∈ ∆ intersects a substantial
(≈ l) number of facets, then the number of cycles is probably high and our
algorithm is usually able to detect one of them easily. If this does not happen,
we can exploit the “sparseness” of the facet complex in our algorithm.

For the remainder of this subsection, ∆ will be a facet complex with l facets
over n vertices such that the maximum number of neighbors of a facet F ∈ ∆

12



is d and the maximum number of vertices of a facet F ∈ ∆ is v. Note that trees
are the hard cases for our algorithm, since all the triples have to be checked.
Also note that, if ∆ is a tree, then l 6 n. This follows by induction on l, from
the fact that every leaf contains at least one free vertex.

5.3.1 Connection set algorithm

To check if ∆ is a tree it is sufficient to check the connected triples only. For
each facet F (l facets): first construct the set of all facets G connected to F
(called the connection set, at cost O(lv)), then for all G,G′ in the set (O

(

d2
)

pairs) perform the triple check on 〈F,G,G′〉 (cost O(nl) per triple). We call
this optimization of Algorithm 5.1 the connection set algorithm. The total cost
is O

(

nl2d2
)

. The space required to construct the connection sets is O(d), hence
negligible. If the complex is not sparse (d ≈ l, v ≈ n), the complexity is
the same as Algorithm 5.1. However, for sparse examples, this optimization is
clearly worthwhile:

Example 5.10. We check the tree {xixi+1xi+2 | i = 1, . . . , 400} of Example 5.6
with the algorithm detailed above. We deal with 398 triples and spend 0.2
seconds.

Example 5.11. The facet complex {xixi+1 · · ·xi+200 | i = 1, . . . , 3200} is a tree
but not sparse. Tree checking with the connection set algorithm is still quite ef-
ficient; it requires dealing with 61, 013, 400 triples, and takes about 140 seconds.
Without any optimization, the number of triples to check is 16, 368, 643, 200 and
the time spent by the algorithm is > 2 days.

5.3.2 Incidence matrix algorithm

The connectedness relation for a facet complex ∆ can be represented by a graph
through an incidence matrix. This matrix can be built and used during the
tree checking algorithm. Since creating incidence matrices from a complex is a
relatively expensive operation, we build them in steps, exploiting at every step
the relations already computed.

We compute the connectedness relation for ∆ at cost O
(

l2d
)

. Then for every
facet F ∈ ∆ we compute the “connectedness outside F” relation for ∆, at cost
O(nld). Then for every triple 〈F,G,G′〉 (there are O

(

d2
)

of them) we compute

the “connectedness outside F” relation for ∆G,G′

F at cost O(dv + ld). Using

this additional structure, we do not actually need to build ∆G,G′

F , and we can

check connectedness outside F in ∆G,G′

F using the connectedness relations at
cost O(ld). We call this optimization of Algorithm 5.1 the incidence matrix
algorithm.

The total complexity for this algorithm is hence O
(

nl2d+ ld3v + l2d3
)

. If ∆
is not sparse (v ≈ n, d ≈ l), then this algorithm has roughly the same complexity
as Algorithm 5.1.

On the other hand, if d ≈ v ≈
√
l ≈ √

n, which is a reasonable assump-
tion for sparseness, then the complexity of the incidence matrix algorithm is
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O
(

l3
√
l
)

, while the complexity of the connection set algorithm is O
(

l4
)

and

that of Algorithm 5.1 is O
(

l5
)

.

6 Algebraic properties of facet ideals

We now study facet ideals from a more algebraic point of view. In particular, we
are interested in ways to determine whether a given facet complex ∆ is Cohen-
Macaulay, meaning whether R/F(∆) is a Cohen-Macaulay ring. We first need
to introduce some new terminology.

Definition 6.1 (Vertex covering number, unmixed facet complex). Let
∆ be a facet complex. A vertex cover for ∆ is a set A of vertices of ∆, such
that A ∩ F 6= ∅ for every facet F . The smallest cardinality of a vertex cover of
∆ is called the vertex covering number of ∆ and is denoted by α(∆). A vertex
cover A is minimal if no proper subset of A is a vertex cover. A facet complex
∆ is unmixed if all of its minimal vertex covers have the same cardinality.

Example 6.2. Consider the two facet complexes in Example 2.8. We have
α(∆) = 2. Also, ∆ is unmixed as its minimal vertex covers {x, u}, {y, u},
{y, v}, {z, u} and {z, v} all have cardinality equal to two. We further have
α(∆′) = 1, but ∆′ is not unmixed, because {x} and {y, z} are minimal vertex
covers of different cardinalities.

The following observations are basic but useful.

Proposition 6.3 (Cohen-Macaulay facet complexes [F1, F3]). Let ∆ be
a facet complex with vertices in x1, . . . , xn, and consider its facet ideal I = F(∆)
in the polynomial ring R = k[x1, . . . , xn]. Then the following hold:

(a) height I = α(∆) and dim R/I = n− α(∆).

(b) An ideal p = (xi1 , . . . , xis) of R is a minimal prime of I if and only if the
set {xi1 , . . . , xis} is a minimal vertex cover for ∆.

(c) If k[x1, . . . , xn]/F(∆) is Cohen-Macaulay, then ∆ is unmixed.

6.1 Grafting

One of the most basic ways to build a Cohen-Macaulay facet complex is via
grafting.

Definition 6.4 (Grafting [F3]). A facet complex ∆ is a grafting of the facet
complex ∆′ = {G1, . . . , Gs} with the facets F1, . . . , Fr (or we say that ∆ is
grafted) if

∆ = {F1, . . . , Fr} ∪ {G1, . . . , Gs}
with the following properties:

(i) G1 ∪ . . . ∪Gs ⊆ F1 ∪ . . . ∪ Fr;
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Figure 1: Three different ways of grafting the facet complex ∆.

(ii) F1, . . . , Fr are all the leaves of ∆;

(iii) {G1, . . . , Gs} ∩ {F1, . . . , Fr} = ∅;

(iv) For i 6= j, Fi ∩ Fj = ∅;

(v) If Gi is a joint of ∆, then ∆ \ {Gi} is also grafted.

Note that the definition is recursive, since graftedness of ∆ is defined in terms
of graftedness of ∆ \ {Gi}. Also note that a facet complex that consists of only
one facet or several pairwise disjoint facets is grafted, as it can be considered
as a grafting of the empty facet complex. It is easy to check that conditions (i)
to (v) above are satisfied in this case. It is also clear that the union of two or
more grafted facet complexes is itself grafted.

Example 6.5. There may be more than one way to graft a given facet complex.
For example, some possible ways of grafting {G1, G2} are shown in Figure 1.

The interest in grafted facet complexes, from an algebraic point of view, lies
in the following facts.

Theorem 6.6 (Grafted facet complexes are Cohen-Macaulay [F3]). Let
∆ be a grafted facet complex. Then F(∆) is Cohen-Macaulay.

Even more holds when ∆ is a tree.

Theorem 6.7 ([F3, Corollaries 7.8, 8.3]). If ∆ is a simplicial tree, then the
following are equivalent:

(i) ∆ is unmixed;
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(ii) ∆ is grafted;

(iii) F(∆) is Cohen-Macaulay.

6.2 Graftedness algorithm

A direct application of Definition 6.4 is not very convenient for checking whether
a given facet complex ∆ is grafted, since at each step of the recursion, one
potentially needs to check condition (v) for several of the Gi, and this leads
to a worst-case exponential algorithm. In order to arrive at a more efficient
algorithm, we characterize graftedness as follows:

Lemma 6.8 (cf. [F3, Remarks 7.2, 7.3]). A facet complex ∆ is grafted if
and only if (1) for each vertex v, there exists a unique leaf F such that v ∈ F ,
and (2) all leaves of ∆ are reducible.

Sketch of the proof. First, assume that ∆ is grafted. Condition (1) follows from
(i), (ii) and (iv). The fact that all leaves are reducible is shown by induction on
the number of facets of ∆. The converse is also shown by induction. Suppose ∆
satisfies (1) and (2), and let {F1, . . . , Fr} and {G1, . . . , Gs} be the sets of leaves
and non-leaves, respectively. Conditions (i)–(iv) hold trivially. Further, if Gi

is a joint, then F1, . . . , Fr are still reducible leaves of ∆ \ {Gi} by Remark 5.9.
Also, there are no additional leaves in ∆ \ {Gi}, since none of the Gj have
free vertices by Condition (1). Therefore, ∆ \ {Gi} satisfies (1) and (2) and is
therefore grafted by induction hypothesis, proving (v).

The algorithm for checking if a facet complex is grafted follows immediately
from Lemma 6.8.

Algorithm 6.9 (Graftedness algorithm).
Input: A facet complex ∆ with l facets and n vertices.
Output: True if ∆ is grafted, False otherwise.

1. Build the lists F = {F1, . . . , Fk} (leaves of ∆) and G = {G1, . . . , Gm}
(facets of ∆ which are not leaves).

2. If
⋃

G∈G
G 6⊆ ⋃

F∈F
F , return False.

3. If ∃ F, F ′ ∈ F such that F ∩ F ′ 6= ∅, return False.

4. If ∃ F ∈ F that is not a reducible leaf, return False.

5. Return True.

6.3 Complexity

The leaf checking cost is O(nl), hence the cost of step 1 is O
(

nl2
)

. The cost
of steps 2 and 3 is O(nl). For step 4, there are k facets F to check. Check-
ing whether F is reducible takes O(nl log l) steps as mentioned in Section 5.2.
Therefore the total cost for step 4 is O

(

nl2 log l
)

, and this is the cost of the
algorithm.
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Example 6.10. Let ∆ = {xyz, yzu, ztu, uv, tw}, with F = {xyz, uv, tw} and
G = {yzu, ztu}. Then ⋃

G∈G
G ⊆ ⋃

F∈F
F = {x, y, z, t, u, v, w} and xyz ∩ uv =

xyz ∩ tw = uv ∩ tw = ∅. Additionally, we check that each F ∈ F is a reducible
leaf by showing that the set {F ∩ G | G ∈ G} is a totally ordered set under
inclusion. For example, if F = xyz, then this set is equal to {yz, z} which
is totally ordered. This holds for all F ∈ F , and hence the facet complex is
grafted.

tx z w

y u
v
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