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GRÖBNER BASES OF IDEALS

INVARIANT UNDER ENDOMORPHISMS

VESSELIN DRENSKY AND ROBERTO LA SCALA

Abstract. We introduce the notion of Gröbner S-basis of an ideal
of the free associative algebra K〈X〉 over a field K invariant under
the action of a semigroup S of endomorphisms of the algebra. We
calculate the Gröbner S-bases of the ideal corresponding to the
universal enveloping algebra of the free nilpotent of class 2 Lie
algebra and of the T-ideal generated by the polynomial identity
[x, y, z] = 0, with respect to suitable semigroups S. In the latter
case, if |X | > 2, the ordinary Gröbner basis is infinite and our
Gröbner S-basis is finite. We obtain also explicit minimal Gröbner
bases of these ideals.

1. Introduction

Let K be a field of any characteristic and let X = {x1, x2, . . .} be a
finite or countable set with more than one element. Let K〈X〉 be the
free unitary associative K-algebra generated by X . Its elements are
polynomials in the noncommuting variables xi.
In this paper we study some two-sided ideals of K〈X〉 from compu-

tational point of view. We immediately face the problem that, even
when the set X is finite, very few ideals of K〈X〉 are finitely gener-
ated. On the other hand, quite often important ideals of K〈X〉 have
additional structure and “uniformly looking” generating sets.
For example, let L = L(X) be the free Lie algebra freely generated

by X and canonically embedded into K〈X〉. It is known that the free
nilpotent of class c Lie algebra L/[L, . . . , L

︸ ︷︷ ︸

c+1 times

], usually denoted in the

theory of varieties of Lie algebras F (Nc), has a set of defining relations
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2 VESSELIN DRENSKY AND ROBERTO LA SCALA

consisting of all (left normed) commutators

uj = [[. . . [xj1 , xj2], . . . , xjc ], xjc+1
] = 0.

Hence, by the Poincaré-Birkhoff-Witt theorem, its universal enveloping
algebra U(F (Nc)) is a homomorphic image of K〈X〉 modulo the ideal
I generated by all uj. We may define the ideal I as the minimal ideal
of K〈X〉 which contains the commutator

[x1, x2, . . . , xc, xc+1] = [[. . . [x1, x2], . . . , xc], xc+1]

and is invariant, or stable, under all endomorphisms sending X to X .
Other examples are the T-ideals of K〈X〉. These ideals are invari-

ant under all endomorphisms of K〈X〉 and coincide with the ideals of
polynomial identities of suitable PI-algebras. If

U = {uj(x1, . . . , xnj
) | j ∈ J} ⊂ K〈X〉

is any set, then the T-ideal generated by U is generated as a usual ideal
by all uj(f1, . . . , fnj

), when the nj polynomials f1, . . . , fnj
run onK〈X〉.

For infinite X nontrivial T-ideals cannot be finitely generated as ideals.
If the set X is finite, then a theorem of Markov [Ma] describes the few
cases when a T-ideal is finitely generated as an ideal. This happens if
and only if the T-ideal contains for some c the Engel polynomial

[x2, x1, . . . , x1
︸ ︷︷ ︸

c times

].

One of the classical problems in PI-theory is the Specht problem [Sp]
which states whether any T-ideal is finitely generated as a T-ideal. The
celebrated structure theory of T-ideals developed by Kemer, see his
book [K2] for the account, allowed him [K1] in 1987 to give a positive
solution to the Specht problem over a field of characteristic 0. In the
case of positive characteristic there are several counterexamples. The
first of them was given by Belov [B]. A good source for the state of
the art of the Specht problem, as well as an improved exposition of the
theory of Kemer, can be found in the recent book by Kanel-Belov and
Rowen [KBR].
When the set of variables X is finite, the knowledge of a generating

set of an ideal I of the polynomial algebra K[X ] is not always sufficient
for concrete calculations with the elements of I and in the factor alge-
bra K[X ]/I. A similar phenomenon appears for the ideals of K〈X〉,
even if the ideal has a finite generating set. In commutative algebra
the problem is solved with the technique of Gröbner bases. This is a
powerful tool for computing with commutative algebras, in algebraic
geometry, and in invariant theory, see e.g. the books by Adams and
Loustaunau [AL], Kreuzer and Robbiano [KRo], Sturmfels [St]. In the
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last two decades the number of the applications of the noncommuta-
tive Gröbner bases increases, see e.g. the seminal paper by Bergman
[Be] and the surveys by Mora and Ufnarovski [Mo, U]. Nevertheless,
there are very few examples of ideals of the free algebras with explicitly
known Gröbner bases.
In the present paper we consider ideals I of the free algebra K〈X〉

which are invariant under the action of a subsemigroup S of the en-
domorphism semigroup of K〈X〉. We introduce the notion of Gröbner
S-basis of I. This is a subset B of I with the property that S(B) is
a Gröbner basis of I in the usual sense, with respect to some term-
ordering of the monomials in K〈X〉.
We handle completely two cases of Gröbner S-bases. The first is the

universal enveloping algebra U(F (N2)) of the free nilpotent of class
2 Lie algebra F (N2) = L/[L, L, L]. The semigroup S consists of all
endomorphisms which send X to X and preserve the ordering on X .
The corresponding ideal I of K〈X〉 is generated by the commutators
[xi, xj , xk]. We give a concrete finite Gröbner S-basis of I. It consists
of commutators of length 3 and one more commutator of degree 4.
One may introduce Gröbner bases for ideals not only in the polyno-

mial algebra K[X ] and in the free associative algebra K〈X〉, but also
for free Lie algebras and other free objects, see e.g. [BFS]. In this case
one often calls the corresponding bases Gröbner-Shirshov bases instead
of Gröbner bases. By a theorem of Lalonde and Ram [LR], and Bokut
and Malcolmson [BM], if H is an ideal of the free Lie algebra L(X) and
B is its Gröbner-Shishov basis with respect to a certain ordering on a
suitable basis of the vector space L(X), then B is also a Gröbner basis
of the ideal I of K〈X〉 generated by H . Of course, the factorization
modulo this ideal gives the universal enveloping algebra U(L/H). This
result easily implies that the algebra U(F (N2)) does have a Gröbner
basis consisting of polynomials of degree 3 and 4 only. We want to
mention that our approach is direct and does not use the theorem of
Lalonde-Ram [LR] and Bokut-Malcolmson [BM]. Instead, we use easy
combinatorics of words and the explicit K-basis of U(F (N2)).
The second example treats another algebra of importance for the

theory of PI-algebras and with applications to superalgebras. This is
the relatively free algebra F (varE) of the variety of associative algebras
generated by the Grassmann (or exterior) algebra E over an infinite
field of characteristic different from 2. This algebra can be considered as
the generic Grassmann algebra. The structure of F (varE), charK =
0, was described by Krakowski and Regev [KR], see also the paper
by Di Vincenzo [DV] or the book [D] by one of the authors. It is
known that the polynomial identities of E are consequences of the
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commutator identity [x1, x2, x3] = 0. The defining relations of F (varE)
in characteristic 0 were described by Latyshev [L] and consist of the
polynomials

[xi, xj , xk] = 0, [xi, xj ][xk, xl] + [xi, xk][xj , xl] = 0,

where xi, xj , xk, xl are replaced by all possible elements of X . It is well
known that the same polynomials form a set of defining relations of
K〈X〉/([x1, x2, x3])

T over any field of characteristic different from 2,
where ([x1, x2, x3])

T is the T-ideal of K〈X〉 generated by [x1, x2, x3].
Bokut and Makar Limanov [BML] showed that, when |X| > 2, the
ideal ([x1, x2, x3])

T has no finite Gröbner basis. On the other hand,
they introduced an extra set of generators of the algebra F (varE), yij =
[xi, xj ], which are in its centre, and established that the corresponding
Gröbner basis is finite when X is finite. In the present paper we show
that, although the Gröbner basis of the T-ideal ([x1, x2, x3])

T is infinite
for m > 2, it is uniformly looking. We present explicitly a finite set of
polynomials G and a subsemigroup S of the endomorphism semigroup
of K〈X〉 such that G is a Gröbner S-basis of the ideal. We also correct
some inaccuracies in the paper by Bokut and Makar Limanov [BML].
Again, our approach is based on combinatorics of words and the explicit
basis of F (varE).

2. S-ideals, S-bases, Gröbner S-bases

Denote by End(K〈X〉) the semigroup of all endomorphisms of theK-
algebra K〈X〉. Let S ⊂ End(K〈X〉) be a subsemigroup which includes
the identity endomorphism. If I is a two-sided ideal of K〈X〉 we say
that I is an S-invariant ideal or simply an S-ideal if it is invariant
under all the endomorphisms of S, i.e.

ϕ(I) ⊂ I for all ϕ ∈ S.

To construct an S-ideal it is sufficient to take any subset B ⊂ K〈X〉
and form the two-sided ideal I generated by S(B). In this case, we say
that B is an S-basis of I.
A natural problem is to establish if, for different choices of the semi-

group S, all the S-ideals have finite S-bases. For example, the positive
solution by Kemer [K1] of the Specht problem in characteristic 0 can
be restated that for S = End(K〈X〉) every S-invariant ideal is finitely
S-generated.
We fix now on K〈X〉 a term-ordering <, i.e. a linear order on the

set 〈X〉 of words, or monomials, which is a multiplicatively compatible
well-ordering. This means that:
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(i) For every two different monomials u, v we have either u < v or
v < u;
(ii) Every subset of 〈X〉 has a minimal element;
(iii) If u < v in 〈X〉, then wu < wv and uw < vw for every w ∈ 〈X〉.
If f ∈ K〈X〉 is a nonzero polynomial, we denote by lt(f) the greatest

monomial of f . We recall that a Gröbner basis of an ideal I of K〈X〉
is a subset G ⊂ I (not necessarily finite) which satisfies the following
property: for any nonzero f ∈ I there exists a gi ∈ G such that lt(gi)
is a subword of lt(f). By induction on the term-ordering, it is easy to
prove that we can write any f ∈ I as

f =
∑

figihi,

where gi ∈ G (possibly gi = gj for i 6= j) and we have fi, hi ∈ K〈X〉,
only a finite number of them different from zero, such that for all i

lt(f) ≥ lt(fi)lt(gi)lt(hi).

We have hence that G is also a generating set of I as a two-sided ideal
of K〈X〉. For any subset G ⊂ K〈X〉 it is useful to define init(G) as the
two-sided ideal generated by the set of monomials { lt(gi) | gi ∈ G }.
We say that init(G) is the initial ideal generated by G. Then, we have
clearly that a subset G ⊂ I is a Gröbner basis of I if and only if
init(G) = init(I). In other words, the set of monomials of K〈X〉

{w ∈ 〈X〉 | there exists gi ∈ G such that lt(gi) is a subword of w }

is a K-basis of the subspace init(I) ⊂ K〈X〉. Then the set

N = 〈X〉\lt(init(G))

of normal words with respect to G is a K-basis of the factor algebra
K〈X〉/I. A Gröbner basis G of an ideal I is called reduced if every
gi ∈ G is a linear combination of normal words with respect to G\{gi}.
Moreover, we call G minimal if for any gi ∈ G we have that G\{gi} is
not a Gröbner basis of I, i.e. lt(gi) is a normal word with respect to
G\{gi}. For more details about the theory of noncommutative Gröbner
bases we refer to [Mo, U].
Now let S be a semigroup of endomorphisms of K〈X〉 and let G be

a subset of the S-ideal I. We say that G is a Gröbner S-basis of I if
S(G) is a Gröbner basis of I as a two-sided ideal of K〈X〉, i.e. init(I)
is equal to the initial ideal generated by S(G).
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3. Universal enevoping algebras of free nilpotent

algebras

We keep K, X , and K〈X〉 as in the previous section. We introduce
the standard deg-lex ordering on 〈X〉. We compare the monomials first
by total degree and then lexicographically, reading them from left to
right and assuming that x1 < x2 < · · · . We consider K〈X〉 also as
a multigraded vector space, counting in the monomials the number of
enterings of each variable. If f, g ∈ K〈X〉, the commutator of f, g is
simply the polynomial

[f, g] = fg − gf.

We refer to the book by Bahturin [Ba] as a background on Lie algebras
and their polynomial identities. Here we summarize the basic facts we
need. The Lie subalgebra of K〈X〉 generated by X with respect to
the commutator operation is isomorphic to the free Lie algebra freely
generated by X . We denote this algebra by L = L(X). Every Lie
algebra generated by a countable (or finite) set is isomorphic to L/H
for some ideal H of the Lie algebra L. Then the Poincaré-Birkhoff-
Witt theorem gives that the universal enveloping algebra U(L/H) is
isomorphic to K〈X〉/I, where I = K〈X〉HK〈X〉 is the ideal of K〈X〉
generated by H . If f1, f2, . . . is a basis of the K-vector space L/H ,
then U(L/H) has a K-basis consisting of all “monomials” fa1

1 · · · f
ap
p .

The algebra L has several important bases consisting of commuta-
tors. They are built on the following principle. One fixes an ordered set
of associative Lyndon-Shirshovmonomials defined in terms of some spe-
cial combinatorial properties. Then, for each monomial, one arranges
the Lie brackets in a certain recursive way, and obtains the basis of
L. The elements of the basis are either elements of X or commutators
[[u], [v]], where [u], [v] are also elements of the basis. The bases under
consideration allow to introduce an analogue of Gröbner bases for the
ideals H of L, called Gröbner-Shirshov bases. The subset G of H is a
Gröbner-Shirshov basis of H , if for every nonzero f ∈ H with leading
commutator [u] there exists a g ∈ G with leading commutator [v] such
that the associative word v obtained by deleting the Lie brackets in [v]
is a subword of the associative word u. The theorem of [LR, BM] cited
in the introduction gives that every Gröbner-Shirshov basis of the ideal
H of L is a Gröbner basis of the ideal I generated in K〈X〉 by H .
We denote by F (Nc) the free nilpotent of class c Lie algebra. It is

isomorphic to the factor algebra of L modulo the (c+ 1)-st member

γc+1(L) = [L, . . . , L
︸ ︷︷ ︸

c+1 times

]
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of the lower central series of L. It is well known that γc+1(L) is spanned
by all commutators of length ≥ c+ 1 and can be generated as an ideal
by commutators of length c + 1. We apply the version of Bokut and
Malcolmson of [LR, BM] to the universal enveloping algebra U(F (Nc))
and the ideal of K〈X〉 generated by γc+1(L).

Proposition 3.1. There exists a Gröbner basis with respect to the deg-
lex ordering of the ideal of K〈X〉 generated by γc+1(L) consisting only
of commutators of length c+ 1, c+ 2, . . . , 2c.

Proof. Clearly, γc+1(L) is a multigraded subspace of K〈X〉 and does
not contain linear combinations of commutators of length < c + 1.
Hence, if a Gröbner-Shirshov basis of γc+1(L) consists of commutators,
all commutators have to be of length≥ c+1. Let us fix a basis of L built
on Lyndon-Shirshov words, and let G be the set of all commutators of
lenght c + 1, c + 2, . . . , 2c from this basis. We shall show that G is a
Gröbner-Shirshov basis of γc+1(L). We apply induction on the length
of the elements of the basis: If [[u], [v]] is a commutator of lenght > 2c,
then at least one of the commutators [u], [v] is of length ≥ c+1 and, by
inductive arguments, at least one of the associative words u, v contains
as a subword w for a suitable element [w] ∈ G. Now the proof is
completed by the theorem of [BM]. �

We apply Proposition 3.1 to the ideal I of K〈X〉 generated by γ3(L).

Proposition 3.2. The polynomials

(1) f ′

ij = [[xi, xj ], xj ], f ′′

ij = [xi, [xi, xj ]], i > j,

(2) g′ijk = [xi, [xj , xk]], g′′ikj = [[xi, xk], xj ], i > j > k,

(3) hijk = [[xi, xj ], [xi, xk]], i > j > k,

form a Gröbner basis with respect to the deg-lex ordering of the ideal
I = K〈X〉γ3(L)K〈X〉.

Proof. We consider the set B of all associative Lyndon-Shirshov words
u defined with the property that u is bigger than all its cyclic rear-
rangements. The brackets on u are arranged as follows. One finds the
longest right Lyndon-Shirshov subword v of u. Then u = wv for some
word w. It turns out that w is also a Lyndon-Shirshov word. One con-
siders the nonassociative Lyndon-Shirshov words [w], [v] corresponding
to w and v. Then one defines [u] = [[w], [v]].
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By Proposition 3.1 we need all associative Lyndon-Shirshov words
of length 3 and 4. They are

(4) xixjxj , xixixj , i > j,

(5) xixjxk, xixkxj , i > j > k,

(6) xixjxjxj , xixixjxj , xixixixj , i > j,

(7) xixixjxk, i > j, k, xixjxixk, i > j > k,

(8) xixjxkxl, i > j, k, l.

The arrangement of the brackets in the cases (4) and (5) is, respectively,

[[xi, xj], xj ], [xi, [xi, xj]], [xi, [xj , xk]], [[xi, xk], xj ],

and this gives the elements f ′

ij and f ′′

ij, i > j, in (1) and g′ijk and g′′ijk,
i > j > k, in (2). Similarly, we obtain hijk, i > j > k, in (3) from
xixjxixk in (7). We do not need the commutators built on the words
from (6), (8), and the words xixixjxk from (7) for the Gröbner basis of
the ideal I generated by γ3(L) because they contain a subword of the
form uiuiuj or uiujuk with i > j, k. Hence the commutators (1), (2),
and (3) give a Gröbner basis of I. �

Now we state Proposition 3.2 in terms of Gröbner S-bases.

Theorem 3.3. Let X be an infinite set and let S be the semigroup con-
sisting of all endomorphisms of K〈X〉 which send X to X and preserve
the ordering on X. Then the set of polynomials

(9) [[x2, x1], x1], [x2, [x2, x1]],

(10) [x3, [x2, x1]], [[x3, x1], x2], [[x3, x2], [x3, x1]]

is a Gröbner S-basis of the ideal of K〈X〉 generated by γ3(L).

Proof. Let ϕ1 be an endomorphism from S such that ϕ1(x1) = xj and
ϕ1(x2) = xi, i > j. Applying ϕ1 to [[x2, x1], x1] and [x2, [x2, x1]] we
obtain the elements (1). Similarly, if i > j > k, we start with ϕ2 ∈ S
satisfying ϕ2(x1) = xk, ϕ2(x2) = xj , ϕ2(x3) = xi. Applying it on
[x3, [x2, x1]], [[x3, x1], x2], and [[x3, x2], [x3, x1]], we obtain (2) and (3).
In this way, acting by S on the elements from (9) and (10), we obtain
the Gröbner basis of the ideal generated by γ3(L). �



GRÖBNER BASES OF IDEALS INVARIANT UNDER ENDOMORPHISMS 9

Remark 3.4. (i) It is easy to see that applying the semigroup S from
Theorem 3.3 to the Gröbner S-basis (9), (10), we obtain a minimal
Gröbner basis which is not reduced. The polynomial

[x3, [x2, x1]] = x3x2x1 − x3x1x2 − x2x1x3 + x1x2x3

contains as a summand the monomial x3x1x2 which can be reduced
using [[x3, x1], x2]. The commutator [[x3, x2], [x3, x1]] also needs to be
reduced. These reductions can be done by easy calculations.
(ii) The restriction that X is countable is not essential. Theorem 3.3

can be restated for any infinite well-ordered set X .
(iii) When the set X is finite, the semigroup S from Theorem 3.3

consists of the identity endomorphism only. We may replace it with
the semigroup generated by the endomorphisms ϕ1, ϕ2 of K〈X〉 with
the property ϕ1(X), ϕ2(X) ⊆ X , ϕ1(x1) < ϕ1(x2), ϕ2(x1) < ϕ2(x2) <
ϕ2(x3).

We shall give another direct combinatorial description of the Gröbner
basis of the ideal of K〈X〉 generated by γ3(L) which we shall use later
for the Gröbner basis of the T-ideal ([x1, x2, x3])

T .

Lemma 3.5. The polynomials

(11) xi1 · · ·xil [xj1 , xk1] · · · [xjm , xkm],

where i1 ≤ · · · ≤ il, js > ks, s = 1, . . . , m, and (j1, k1) ≤ · · · ≤
(jm, km) with respect to the lexicographic ordering, form a K-basis of
the universal enveloping algebra U(F (N2)).

Proof. The Poincaré-Birkhoff-Witt theorem gives that, if g1, g2, . . . is an
ordered K-basis of a Lie algebra, then its universal enveloping algebra
has a K-basis consisting of all ga11 · · · gann . This immediately completes
the proof: the free nilpotent of class 2 Lie algebra F (N2) is spanned by
all commutators of length 1 and 2, i.e. by the elements xi and [xi, xj],
and the anticommutativity allows to assume that i > j in [xi, xj ]. �

Lemma 3.6. The set of normal words N(G) with respect to the set G
of the commutators (1), (2), and (3) consists of all monomials w =
xi1 · · ·xin such that

(i) The inequality ik > ik+1 implies that ik ≤ ik+2 and if, addition-
ally k > 1, then ik−1 < ik;

(ii) If ik = ik+2 > ik+1, ik+3, then ik+1 ≤ ik+3.

Proof. The leading monomials of the elements of G are of three types:

(a) xixjxj and xixixj , where i ≥ j;
(b) xixjxk, where i > j, k;
(c) xixjxixk, where i > j > k.
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If the word w = xi1 · · ·xin does not satisfy the condition (i), then
ik > ik+1 for some k, but ik−1 ≥ ik or ik > ik+2. In this case at least
one of the subwords xik−1

xikxik+1
and xikxik+1

xik+2
is of type (a) or (b).

Suppose now that w does not satisfy (ii), i.e. ik = ik+2 > ik+1, ik+3

and ik+1 > ik+3. Then, the subword xikxik+1
xik+2

xik+3
is of type (c).

Moreover, the above arguments can be clearly reversed. �

Now we give an explicit bijection between the basis of U(F (N2))
from Lemma 3.5 and the set of normal words from Lemma 3.6.

Proposition 3.7. There is a one-to-one correspondence between the
set B of the products (11) and the set N(G) from Lemma 3.6 which
preserves the multigrading.

Proof. We consider the set of sequences of indices that parametrize the
polynomials in B, say:

B = {(i1, . . . , il, (j1, k1), . . . , (jm, km))}.

We consider also the set of sequences of indices that occur in the words
of N = N(G):

N = {(i1, . . . , in) | ik satisfies (i),(ii)}

We define recursively a map ψ from B into the set of sequences of
integers. If u = (i1, . . . , il, (j1, k1), . . . , (jm, km)) then we find the first
index ip+1 with the property j1 ≤ ip+1 (hence ip < j1 if p ≥ 1) and
define

ψ(u) = (i1, . . . , ip, j1, k1, ψ(v))

where v = (ip+1, . . . , il, (j2, k2), . . . , (jm, km)). We shall prove that the
image of ψ is contained in N . Since i1 ≤ · · · ≤ il and by the definition
of ψ we have that ψ(u) satisfies the condition (i). Moreover, owing to
the lexicographic ordering of the pairs (j1, k1), . . . , (jm, km) it is clear
that also (ii) is verified. For example, if

u = (1, 2, 2, 2, 3, 4, 5, 6, (2, 1), (2, 1), (3, 1), (3, 2), (5, 2), (5, 3), (6, 4)),

(we have typesetted the pairs (j, k) in bold) then

(12) ψ(u) = (1, 2, 1, 2, 1, 2, 2, 2, 3, 1, 3, 2, 3, 4, 5, 2, 5, 3, 5, 6, 4, 6).

We define now two maps ϑ1, ϑ2 from N respectively into the set
of integer sequences and the set of sequences of pairs of integers. If
u = (i1, . . . , in) then:

ϑ1(u) = (i1, . . . , ik−1, ϑ1(v)) and ϑ2(u) = ((ik, ik+1), ϑ2(v)),

where i1 ≤ · · · ≤ ik > ik+1 and v = (ik+2, . . . , in). Define now the map
ϑ : v 7→ (ϑ1(v), ϑ2(v)). We claim that the image of ϑ is contained in B.
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In fact, by the condition (i) we have that ϑ1(u) is an increasing sequence
of indices. Moreover, from the definition of ϑ2 and the condition (ii)
it follows that ϑ2(u) is a sequence of pairs (j, k) with j > k, which
is increasing with respect to the lexicographic ordering. In the above
example, if v = ψ(u), then ϑ(v) = u.
Finally, it is easy to check that the maps ψ and ϑ induce bijections

between B and N which preserve the multigrading and are inverse of
each other. �

Remark 3.8. It is more convenient, compare with the example in (12),
to write the normal words N(G) from Lemma 3.6 in the form

(13) xa11 (x2x1)
b21xa22 (x3x1)

b31(x3x2)
b32xa33 · · ·

m−1∏

p=1

(xmxp)
bmpxamm ,

where ai, bij ≥ 0. For example, in (12) we have the word

x1(x2x1)
2x32(x3x1)(x3x2)x3x4(x5x2)(x5x3)x5(x6x4)x6.

Let I be a multigraded ideal of K〈X〉 and let B be a multigraded
basis of R = K〈X〉/I. If G is a subset of I and N(G) is the set
of normal words with respect to G, then in each multihomogeneous
component of B and N(G), the number of elements from B is not
greater than the number of elements from N(G). If the number of
these elements coincides for each multihomogeneous component, we
have that G is a Gröbner basis for I. Hence Proposition 3.7 implies
immediately Proposition 3.2 and Theorem 3.3.

4. The polynomial identities of the Grassmann algebra

In this section we assume that the base field K is of characteris-
tic different from 2. We consider the T-ideal T = ([x1, x2, x3])

T of
K〈X〉 generated by the commutator [x1, x2, x3]. We shall summarize
the necessary facts, including also some proofs to make the exposition
self-contained. The following proposition is well known, see Latyshev
[L] for the case of characteristic 0.

Proposition 4.1. (i) The factor algebra K〈X〉/T satisfies the identi-
ties

(14) [x1, x2]x3 = x3[x1, x2],

(15) [x1, x2][x1, x3] = 0, [x1, x2]x4[x1, x3] = 0,

(16) [x1, x2][x3, x4] + [x1, x3][x2, x4] = 0,
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(17) [x1, x2]x5[x3, x4] + [x1, x3]x5[x2, x4] = 0.

(ii) The products

(18) xi1 · · ·xil [xj1 , xk1] · · · [xjm , xkm],

i1 ≤ · · · ≤ il, k1 < j1 < · · · < km < jm, form a K-basis of K〈X〉/T .

Proof. (i) The identity (14) is an expanded form of [[x1, x2], x3] = 0.
The first identity of (15) is obtained from [[x1, x2], x3] = 0 by the
substitution x21 instead of x1 and using that the commutators are in
the centre:

0 = [[x21, x2], x3]

= x1[x1, x2, x3] + [x1, x2, x3]x1 + [x1, x2][x1, x3] + [x1, x3][x1, x2]

= [x1, x2][x1, x3] + [x1, x3][x1, x2] = 2[x1, x2][x1, x3].

This gives [x1, x2][x1, x3] = 0 because the characteristic is different from
2. The second identity of (15) follows from the first and (14):

0 = x4[x1, x2][x1, x3] = [x1, x2]x4[x1, x3].

The linearization of (15) gives (16):

0 = [x2 + x3, x1][x2 + x3, x4]− [x2, x1][x2, x4]− [x3, x1][x3, x4]

= −([x1, x2][x3, x4] + [x1, x3][x2, x4]),

and the second identity in (17) is obtained as the second identity in
(15).
(ii) The algebra K〈X〉/T is a homomorphic image of the algebra

U(F (N2)). Hence it is spanned on the products from (11). The anti-
commutative law [x1, x2] = −[x2, x1] and the identities (15), (16) allow
to rearrange the indices j1, k1, . . . , jm, km and to remove the products
with two equal indices in the commutators. Hence the elements of (18)
span K〈X〉/T . In order to see that (18) are linearly independent, it
is sufficient to consider only multihomogenous linear combinations of
(18) with nonzero coefficients (because the ideal T is multigraded). The
Grassmann algebra E(K) generated by e1, e2, . . . over K (or over an
infinite extension of K when the field K is finite) satisfies the identity
[x1, x2, x3] = 0. It satisfies the relations eiej = −ejei and has a K-basis
consisting of all ei1 · · · eik , i1 < · · · < ik. Using a well known calculation
in the theory of PI-algebras, we replace xi with αi + ei, αi ∈ K, and,
choosing properly the αi’s, we obtain a nonzero evaluation of the con-
sidered linear combination of (18). This guarantees that the elements
(18) are linearly independent. �
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Theorem 4.2. Let char(K) 6= 2. The polynomials

f ′

ij = [[xi, xj ], xj ], f ′′

ij = [xi, [xi, xj ]], i > j,

g′ijk = [xi, [xj , xk]], g′′ikj = [[xi, xk], xj ], i > j > k,

from (1) and (2) and the polynomials

(19) tij = [xi, xj ][xi, xj ], i > j,

(20) u′ijk = [xi, xj][xi, xk], u′′ijk = [xi, xk][xi, xj ], i > j > k,

(21) v′ijka = [xj , xk]x
aj
j · · ·x

ai−1

i−1 [xi, xk],

(22) v′′ijka = [xj , xk]x
aj
j · · ·x

ai−1

i−1 [xi, xj ],

where i > j > k, aj , . . . , ai−1 ≥ 0,

(23) w′

ijkla = [xj , xk]x
aj
j · · ·x

ai−1

i−1 [xi, xl] + [xj , xl]x
aj
j · · ·x

ai−1

i−1 [xi, xk],

(24) w′′

ijkla = [xj , xl]x
aj
j · · ·x

ai−1

i−1
[xi, xk] + [xk, xl]x

aj
j · · ·x

ai−1

i−1
[xi, xj ],

where i > j > k > l, aj , . . . , ai−1 ≥ 0, form a minimal Gröbner basis
with respect to the deg-lex ordering of the T-ideal of K〈X〉 generated
by [x1, x2, x3].

Proof. By Proposition 4.1 (i), the polynomials (1), (2), (19), (20), (21),
(22), (23), (24) belong to the T-ideal T generated by [x1, x2, x3]. Their
leading terms are obtained by deleting the commutators in the corre-
sponding elements and are, respectively,

xixjxj , xixixj , i > j,

xixjxk, xixk, xj , i > j > k,

xixjxixj , i > j,

xixjxixk, xixkxixj , i > j > k,

xjxkx
aj
j · · ·x

ai−1

i−1 xixk, xjxkx
aj
j · · ·x

ai−1

i−1 xi, xj , i > j > k,

xjxkx
aj
j · · ·x

ai−1

i−1 xixl, xjxlx
aj
j · · ·x

ai−1

i−1 xixk, i > j > k > l,

and aj , . . . , ai−1 ≥ 0. It is easy to see that these words are pairwise
different. Clearly, the polynomial u′ijk = [xi, xj ][xi, xk] from (20) has
the same leading term as hijk = [[xi, xj ], [xi, xk]] from (3). Hence the
set of normal words with respect to f ′

ij , f
′′

ij , g
′

ijk, g
′′

ikj, u
′

ijk is the same
as the one in Lemma 3.6 and we may assume that these normal words
are in the form (13). Now we want to remove the words in (13) which
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contain as a subword a leading word of some tij, u
′′

ijk, v
′

ijka, v
′′

ijka, w
′

ijkla,
w′′

ijkla. If bij ≥ 2 for some i, j, then we remove the word using tij . Hence
we may assume that bij ≤ 1. If bik = bij = 1 for some i > j > k, and
bi,k+1 = · · · = bi,j−1 = 0, then we use u′′ijk. Therefore, the words left in
(13) are

(25) xa11 (x2x1)
ε2xa22 (x3xk3)

ε3xa33 · · · (xmxkm)
εmxamm ,

where ai ≥ 0, i > ki, εi = 0, 1. Let us consider two consecutive nonzero
εc and εd. The corresponding monomial contains a subword

(26) xcxpx
ac
c · · ·x

ad−1

d−1
xdxq, d > c > p, d > q.

If p = q or c = q, then we use, respectively, v′dcpa and v
′′

dcp. If c, d, p, q are
pairwise different, then we have the three possibilities p > q, c > q > p,
and q > c. The first two possibilities are excluded, respectively, using
w′

dcpqa and w′′

dcqpa. In this way, the only subwords (26) left are for
d > q > c > p. Hence, we reduce the set of normal words from (25) to
the words with the condition that for the nonzero εj1, . . . , εjr we have

kj1 < j1 < kj2 < j2 < · · · < kjr < jr.

Using the correspondence ϑ from Proposition 3.7, we obtain that these
words are in bijection with the basis elements (18) of K〈X〉/T which
preseves the multigrading. This implies that the polynomials f ′

ij , f
′′

ij,
g′ijk, g

′′

ikj, tij , u
′

ijk, u
′′

ijk, v
′

ijka, v
′′

ijka, w
′

ijkla, and w
′′

ijkla do form a minimal
Gröbner basis of the T-ideal. �

We can state Theorem 4.2 in the following way. We require |X| ≥ 5
for simplification of the statement only.

Theorem 4.3. Let char(K) 6= 2, |X| ≥ 5, and let S be the semigroup
of End(K〈X〉) generated by all endomorphisms sending x1, x2, x3, x4 to
arbitrary elements of X (allowing repetitions) and x5 to products of the
form xa11 · · ·xamm , ai ≥ 0. The polynomials

[[x1, x2], x3], [x1, x2]x5[x3, x4] + [x1, x3]x5[x2, x4]

form a (nonminimal) Gröbner S-basis with respect to the deg-lex or-
dering of the T-ideal of K〈X〉 generated by [x1, x2, x3].

Remark 4.4. (i) As in the previous section, the condition that X is
countable can be replaced by the requirement that X is any infinite
well-ordered set.
(ii) In [BML] Bokut and Makar Limanov include in the list of the

Gröbner basis of the T-ideal of K〈x1, x2〉 generated by [x1, x2, x3] the
element (x2x1)

2 − (x1x2)
2. The evaluation of this polynomial on the

Grassmann algebra x1 → 1+e1, x2 → 1+e2 shows that (x2x1)
2−(x1x2)

2
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does not belong to the T-ideal. The correct Gröbner basis consists of
the three polynomials

[[x2, x1], x1], [x2, [x2, x1]], [x2, x1][x2, x1].
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