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Abstract

The Gröbner walk is an algorithm for conversion between Gröbner bases for different
term orders. It is based on the polyhedral geometry of the Gröbner fan and involves
tracking a line between cones representing the initial and target term order. An im-
portant parameter is explicit numerical perturbation of this line. This usually involves
both time and space demanding arithmetic of integers much larger than the input num-
bers. In this paper we show how the explicit line may be replaced by a formal line
using Robbiano’s characterization of group orders on Qn. This gives rise to the generic
Gröbner walk involving only Gröbner basis conversion over facets and computations with
marked polynomials. The infinite precision integer arithmetic is replaced by term or-
der comparisons between (small) integral vectors. This makes it possible to compute
with infinitesimal numbers and perturbations in a consistent way without introducing
unnecessary long integers. The proposed technique is closely related to the lexicographic
(symbolic) perturbation method used in optimization and computational geometry. We
report on computations with toric ideals, where a version of our algorithm in certain
cases computes test sets for hard integer knapsack problems significantly faster than the
Buchberger algorithm.

1 Introduction

Let R = k[x1, . . . , xn] denote the polynomial ring in n variables over a field k. Gröbner basis
computations in R tend to be very expensive for certain term orders (like the lexicographic
order). Therefore it often pays to compute Gröbner bases for “easier” term orders and convert
them into Gröbner bases for the desired term order. For zero-dimensional ideals this can be
accomplished by the FGLM-algorithm [9]. For general ideals the Gröbner walk algorithm [5]
can be applied.

Let ≺1 and ≺2 be term orders on R. The usual Gröbner walk proceeds from the reduced
Gröbner basis G for I over ≺1 by tracking a line ω(t) = (1 − t)ω0 + tτ0, 0 ≤ t ≤ 1, where
ω0 and τ0 are vectors in the respective Gröbner cones C≺1

(I) and C≺2
(I) of I. At t = 0 the
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Gröbner basis is known. The line ω(t) is tracked through the Gröbner fan of I and Gröbner
bases are computed at common faces of successive Gröbner cones. At t = 1 we reach the
reduced Gröbner basis for I over ≺2.

The efficiency of the Gröbner walk rests on clever choices of ω0 and τ0. A choice of ω0 and τ0

on low dimensional faces of Gröbner cones may lead to very heavy Gröbner basis calculations
along ω(t). Often (but not always) it pays to choose ω0 and τ0 generically inside C≺1

(I) and
C≺2

(I) and ensure that ω(t) only intersects common faces of low codimension on its way to
the target term order ≺2.

The initial reduced Gröbner basis G over ≺1 makes it possible to compute an interior
point in C≺1

(I). Computing an interior point in the target cone C≺2
(I) is considerably more

difficult, since we do not know the reduced Gröbner basis over ≺2 in advance. Tran [19]
approached this problem using general degree bounds on polynomials in Gröbner bases. The
general degree bounds in Tran’s approach may lead to integral weight vectors with 10, 000-
digit entries in representing a lexicographic interior point in the case of polynomials of degree
10 in 10 variables.

In this paper we give an algorithm where the line ω(t) is replaced by a (formal) line Ω(t)
between suitably chosen perturbations given by ≺1 and ≺2 and I. It turns out that the
numerical dependence on I disappears in our algorithm and that Ω(t) may be viewed as a
line which can be used for all ideals in the Gröbner walk from ≺1 to ≺2. The formal line has
the property that its initial and target points are always in the interior of the Gröbner cones.
Furthermore the common faces that Ω(t) intersect are all facets.

In the classical Buchberger algorithm [3] for computing Gröbner bases one only computes
with term orders and initial terms of polynomials. Tracking Ω(t) gives a “Buchberger-like”
Gröbner walk algorithm, where one only needs to compute with marked polynomials and term
orders. On smaller examples the algorithm can easily be carried out by hand (cf. §5).

We have observed some interesting experimental results using a version of the generic walk
tailored to lattice ideals [13]. When the generic walk is applied in computing full test sets
for feasibility of the hard integer knapsacks from [1], the natural initial and target vectors
are rather close in the Gröbner fan. This leads to very fast computations of test sets. These
examples with polynomials of high degree in many variables seem out of reach for the classical
Gröbner walk. We report on computational experiments in the last section of this paper.

An understanding of our algorithm requires a firm grip on the usual Gröbner walk algo-
rithm. Therefore §2 and §3 recalls and proves fundamental results for the usual Gröbner walk
using which we transition to the generic Gröbner walk in §4.

The basic technique we propose to avoid explicit perturbation is not quite new. The key
idea of implicit (symbolic) perturbation was proposed by Charnes in 1952 to make Dantzig’s
simplex method for linear programming finite. The method is now known as the lexicographic
perturbation method, see [4, page 34], and used by many reliable implementations of the
simplex method. In computational geometry, similar symbolic perturbation schemes are used
to treat input data points in Rn as if they were in general position, see [8, page 14].
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2 Preliminaries

In this section we recall the basics of convex polyhedral cones. We emphasize a crucial result
from the theory of group orders (Lemma 2.1) and recall the construction of the (restricted)
Gröbner fan.

2.1 Cones and fans

A convex polyhedral cone is a set

C(v1, . . . , vr) = R≥0v1 + · · ·+ R≥0vr ⊆ Rn

where v1, . . . , vr ∈ Rn. In the following a cone will refer to a convex polyhedral cone. The
dual of a cone C ⊆ Rn is

C∨ = {ω ∈ Rn | 〈ω, v〉 ≥ 0, for every v ∈ C}.

The dual of a cone is a cone and the intersection of two cones is a cone. The dimension
of a cone is the dimension of the linear subspace it spans. For a vector u ∈ Rn we let
u⊥ = {x ∈ Rn | 〈u, x〉 = 0}. A face F ⊆ C of a cone C is a subset F = u⊥∩C, where u ∈ C∨.
Faces of codimension one in C are called facets .

A collection F of cones and their faces is called a fan if for every C1, C2 ∈ F we have
C1 ∩ C2 ∈ F and C1 ∩ C2 is a common face of C1 and C2.

2.2 Rational group orders on Qn

Let (A, +) be an abelian group. Recall that a group order ≺ on A is a total order ≺ on A
such that

x ≺ y =⇒ x + z ≺ y + z

for every x, y, z ∈ A.
Let ω = (ω1, . . . , ωn) ⊂ Qn be a Q-vector space basis for Qn. Then we get a group order

≺ω on Qn given by u ≺ω v if and only if

(〈ω1, u〉, . . . , 〈ωn, u〉) <lex (〈ω1, v〉, . . . , 〈ωn, v〉),

where <lex refers to the lexicographic order on Qn. We call such a group order rational . To
describe arbitrary group orders on Qn similarly, one needs a more general setup including real
vectors (see [16]). To ease the exposition we will restrict ourselves to rational group orders.
A group order refers to a rational group order in the following. For a rational ǫ > 0 we put

ωǫ = ω1 + ǫω2 + · · ·+ ǫn−1ωn.

The following well known lemma plays a key role in the generic Gröbner walk.
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Lemma 2.1 Let ω = (ω1, . . . , ωn) ⊂ Qn be a Q-basis. Suppose that F ⊂ Qn is a finite set of
non-zero vectors with 0 ≺ω v for v ∈ F . Then there exists 0 < δ ∈ Q such that 〈ωǫ, v〉 > 0 for
every v ∈ F and ǫ ∈ Q with 0 < ǫ < δ.

Proof. We prove this by induction on n. The case n = 1 is clear. For n > 1 we may find
0 < δ0 ∈ Q such that

〈ωn−1 + ǫωn, v〉 > 0

for every v ∈ F with 〈ωn−1, v〉 > 0 and ǫ ∈ Q with 0 < ǫ < δ0. Therefore 0 ≺ω′ v for
ω′ = (ω1, . . . , ωn−2, ωn−1 + ǫωn) for every v ∈ F if 0 < ǫ < δ0.

By induction there exists 0 < δ1 ∈ Q such that 〈ω′
ǫ, v〉 > 0 for every v ∈ F and ǫ ∈ Q

with 0 < ǫ < δ1. Putting δ = min(δ0, δ1) we get 〈ωǫ, v〉 > 0 for every v ∈ F and ǫ ∈ Q with
0 < ǫ < δ. �

A group order ≺ on Qn is called a term order if 0 ≺ v for every v ∈ Nn. This is equivalent
to 0 ≺ ei where ei denotes the i-th canonical basis vector for i = 1, . . . , n. As a consequence
of Lemma 2.1 we get the following corollary.

Corollary 2.2 Let F ⊂ Qn be a finite set of positive vectors for the group order ≺ i.e. v ≻ 0
for every v ∈ F . Then there exists ω ∈ Qn such that

〈ω, v〉 > 0

for every v ∈ F . If ≺ is a term order, we may assume that ω has positive coordinates.

2.3 The Gröbner fan

Let R = k[x1, . . . , xn] denote the ring of polynomials in n variables over a field k. It is
convenient to view R as the semigroup ring k[Nn]. We briefly recall the construction of the
(restricted) Gröbner fan (cf. [15]) for an arbitrary ideal in R.

Fix a group order ≺ on Qn. For a polynomial f =
∑

v∈Nn avx
v ∈ R we let supp(f) = {v ∈

Nn | av 6= 0} and in≺(f) = aux
u, where u = max≺ supp(f). For a vector ω ∈ Rn we let inω(f)

denote the sum of terms avx
v in f maximizing the ω-weight 〈ω, v〉. We call f ω-homogeneous

if f = inω(f). To an ideal I ⊆ R we associate the ideals in≺(I) = 〈in≺(f) | f ∈ I \ {0}〉 and
inω(I) = 〈inω(f) | f ∈ I〉. These ideals may be viewed as deformations of the original ideal I.
The initial ideal in≺(I) is generated by monomials. This does not hold for inω(I) in general
(unless ω is chosen generically).

Now define
∂≺(f) = {u − u′ | u′ ∈ supp(f) \ {u}} ⊂ Zn,

where aux
u = in≺(f). For a finite set F ⊆ R of polynomials we let

∂≺(F ) =
⋃

f∈F

∂≺(f)

and

C≺(F ) = C(∂≺(F ))∨ ∩ Rn
≥0

= {ω ∈ Rn
≥0 | 〈ω, v〉 ≥ 0, v ∈ ∂≺(f), f ∈ F}.
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Notice that dim C≺(F ) = n by Corollary 2.2 and that

C≺(F ) = {ω ∈ Rn
≥0 | in≺(inω(f)) = in≺(f) for every f ∈ F}.

A Gröbner basis for I over ≺ is a finite set of polynomials G = {g1, . . . , gr} ⊆ I such that

〈in≺(g1), . . . , in≺(gr)〉 = in≺(I).

The Gröbner basis G is called minimal if none of g1, . . . , gr can be left out and reduced if
the coefficient of in≺(gi) is 1 and in≺(gi) does not divide any of the terms in gj for i 6= j
and i, j = 1, . . . , r. A reduced Gröbner basis is uniquely determined. Minimal Gröbner bases
exist for arbitrary group orders. However, Gröbner bases over arbitrary group orders do not
necessarily generate the ideal (as opposed to Gröbner bases over term orders). Similarly, the
reduced Gröbner basis is only guaranteed to exist for term orders.

To define the Gröbner fan we now specialize to the case where ≺ is a term order. The
Gröbner cone C≺(I) of an ideal I over ≺ is defined as C≺(G), where G is the reduced Gröbner
basis of I over ≺. The Gröbner fan of I is defined as the set of cones C≺(I) along with their
faces, where ≺ runs through all term orders. This is a finite collection of cones [17, Theorem
1.2] and one may prove that it is a fan (Propositions 2.3 and 2.4 in [17] give a proof assuming
non-negative weight vectors). The following proposition shows that C≺(I) is the largest cone
among C≺(G), where G is a Gröbner basis for I over ≺.

Proposition 2.3 Let G be a (not necessarily reduced) Gröbner basis for I over ≺. Then

C≺(G) ⊆ C≺(I).

Proof. Transforming G into a minimal Gröbner basis G′ by omitting certain polynomials in
G clearly leads to an inclusion C≺(G) ⊆ C≺(G′). Transforming G′ into the reduced Gröbner
basis proceeds by a sequence of reduction steps: suppose that fi, fj ∈ G′ and that a term xv

in fj is divisible by in≺(fi). Then fj is replaced by f ′
j = fj − (xv/ in≺(fi))fi. This reduction

may introduce “new” monomials which are not present in fj. More precisely if w ∈ supp(f ′
j),

then w ∈ supp(fj) or w = v − u + u′, where aux
u = in≺(fi) and u′ ∈ supp(fi). In the

latter case we get w′ − w = (w′ − v) + (u − u′), where aw′xw′

= in≺(fj). Let G′′ denote the
Gröbner basis obtained by replacing fj with f ′

j . Then C(∂≺(G′)) ⊇ C(∂≺(G′′)) and thereby
C≺(G′) ⊆ C≺(G′′). Since the reduced Gröbner basis is obtained using a finite number of these
reduction steps we have proved the inclusion. �

For a specific term order one may have infinitely many cones given by different minimal
Gröbner bases. As an example consider the ideal I = 〈x, y〉 ⊂ k[x, y]. If n is a positive natural
number then Gn = {x − yn, y} is a minimal Gröbner basis for I over the lexicographic order
≺ with x ≻ y. In this case

C≺(I) ) C≺(G1) ) C≺(G2) ) · · · .

3 The Gröbner walk

We outline the basic idea of the Gröbner walk [5] and give a new lifting step using reduction
modulo the known Gröbner basis.
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Let ≺1 and ≺2 be term orders and I an ideal in R. Suppose that we know the reduced
Gröbner basis G for I over ≺1. If

ω ∈ C≺1
(I) ∩ C≺2

(I)

lies on the common face of the two Gröbner cones, then Gω = {inω(g) | g ∈ G} is the reduced
Gröbner basis for inω(I) over ≺. Now a “lifting” of Gω to a Gröbner basis for I over ≺2 is
required. The procedure for this is based on Proposition 3.2 below. It involves a Gröbner
basis computation for inω(I) over ≺2. The point is that if F = C≺1

(I) ∩ C≺2
(I) is a high

dimensional face (like a facet) and ω is in the relative interior of F , the ideal inω(I) is close
to a monomial ideal and this Gröbner basis computation becomes very easy.

Given a term order ≺ and a vector ω ∈ Rn
≥0 we define the new term order ≺ω by u ≺ω v if

and only if 〈u, ω〉 < 〈v, ω〉 or 〈u, ω〉 = 〈v, ω〉 and u ≺ v. We record the following well known
lemma.

Lemma 3.1 [17, Proposition 1.8] Let I ⊆ R be any ideal and ω ∈ Rn
≥0. Then

in≺(inω(I)) = in≺ω
(I).

The lifting step (Proposition 3.2(ii) below) in the following proposition is different from
the lifting step in the usual Gröbner walk [17, Subroutine 3.7].

Proposition 3.2 Let I ⊆ R be an ideal and ≺1,≺2 term orders on R. Suppose that G is the
reduced Gröbner basis for I over ≺1. If ω ∈ C≺1

(I) ∩ C≺2
(I), then

(i) The reduced Gröbner basis for inω(I) over ≺1 is Gω = {inω(g) | g ∈ G}.

(ii) If H is the reduced Gröbner basis for inω(I) over ≺2, then

{f − fG | f ∈ H}

is a minimal Gröbner basis for I over ≺2ω. Here fG is the unique remainder obtained
by dividing f modulo G.

(iii) The reduced Gröbner basis for I over ≺2ω coincides with the reduced Gröbner basis for
I over ≺2.

Proof. Given a term order ≺ and a vector ω ∈ C≺(I), the reduced Gröbner bases for I over
≺ and ≺ω agree. This proves (iii) and (i) taking Lemma 3.1 into consideration. Suppose
that f is an ω-homogeneous polynomial (cf. §2.3) in inω(I). Using the division algorithm in
computing the unique remainder fG, we keep reducing terms with the same ω-weight as the
terms in f = inω(f). Since in≺1

(inω(g)) = in≺1
(g) for g ∈ G and fGω = 0, we see that all

terms in fG will have ω-weight strictly less than the terms in f . Therefore

inω(f) = inω(f − fG).
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Now suppose that {f1, . . . , fs} is the reduced Gröbner basis for inω(I) over ≺2. In particular
we get that fi is ω-homogeneous for i = 1, . . . , s. Then

in≺2ω(I) = in≺2
(inω(I)) = 〈in≺2

(f1), . . . , in≺2
(fs)〉

= 〈in≺2
(inω(f1)), . . . , in≺2

(inω(fs))〉

= 〈in≺2
(inω(f1 − fG

1 )), . . . , in≺2
(inω(fs − fG

s ))〉

= 〈in≺2ω(f1 − fG
1 ), . . . , in≺2ω(fs − fG

s )〉.

This proves that {f1 − fG
1 , . . . , fs − fG

s } ⊆ I is a (minimal) Gröbner basis for I over ≺2ω. �

Proposition 3.2 may be turned into a Gröbner basis conversion algorithm as shown in the
following section.

3.1 Conversion along a line

A natural approach to Gröbner basis conversion is to trace the line between vectors in different
Gröbner cones and update Gröbner bases successively using Proposition 3.2. This process is
called the Gröbner walk [5]. A good reference for this procedure is [6, §4], which inspired the
following. We sketch the first step of the Gröbner walk. The succeeding steps of the Gröbner
walk are similar. Suppose that ω0 ∈ C≺1

(I), τ0 ∈ C≺2
(I) and that G is the reduced Gröbner

basis for I over ≺1. Here ≺1 and ≺2 are rational term orders (cf. §2.2) given by Q-bases
ω = (ω1, . . . , ωn) and τ = (τ1, . . . , τn) respectively. Then we consider the line

ω(t) = (1 − t)ω0 + tτ0, 0 ≤ t ≤ 1

in the Gröbner fan of I from ω0 to τ0. Initially we know the reduced Gröbner basis at ω(0) = ω0

(being G). Consider the “last” ω′ = ω(t′) in C≺1
(I) = C≺1

(G). To be more precise t′ satisfies

1. 0 ≤ t′ < 1

2. ω(t) ∈ C≺1
(I) for t ∈ [0, t′] and ω(t′ + ǫ) 6∈ C≺1

(I) for every ǫ > 0.

If no such t′ exists then G is the reduced Gröbner basis over ≺2. If t′ exists ω(t′) is on a
proper face of C≺1

(I) and v ∈ ∂(G) exists with 〈ω(t′ + ǫ), v〉 < 0 for ǫ > 0. This implies that
〈τ0, v〉 < 〈ω0, v〉 and hence 〈τ0, v〉 < 0.

This indicates the procedure for finding t′ given G. For v ∈ ∂(G) satisfying 〈τ0, v〉 < 0 we
solve 〈ω(t), v〉 = 0 for t giving

tv =
〈ω0, v〉

〈ω0, v〉 − 〈τ0, v〉
.

Then t′ is the minimal among these tv. In this case ω′ = ω(t′) lies on a proper face F of C≺1
(I)

and clearly
ω′ ∈ C≺2ω′

(I).

Now we use ≺2ω′ as the term order ≺2 in Proposition 3.2. The point is that we only need
the target term order ≺2 to compute a Gröbner basis for inω′(I) (not the notational beast
≺2ω′). The reason for this is that the Buchberger algorithm in this case solely works with
ω′-homogeneous polynomials and ties are broken with ≺2.
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To prove that we actually enter a new Gröbner cone we need to show that t′ > 0 (cf. [6],
§5, (5.3) Lemma). In the initial step it may happen that t′ = 0. But if this is the case we
may assume (in the following step of the Gröbner walk) that G is the reduced Gröbner basis
over ≺= ≺2ω′ . Since τ0 ∈ C≺2

(I) is non-zero we may use τ0 as the first vector in a Q-basis
representing ≺2. In this case assume that t′ = 0. This means that we can find v ∈ ∂(G) with
〈ω′, v〉 = 0 and 〈τ0, v〉 < 0 contradicting that G is a Gröbner basis over ≺.

We have outlined the procedure for tracking the line ω(t) through the Gröbner fan detecting
when ω(t) leaves a cone. The salient point of the generic Gröbner walk is that this calculation
can be done formally by choosing certain generically perturbed ω0 and τ0 given by ≺1 and ≺2.

Here are the steps of the usual Gröbner walk algorithm with the modified lifting step.
Recall that a marked polynomial is a polynomial with a distinguished term, which is the
initial term with respect to a term order ≺. For a marked polynomial f , ∂(f) is defined in the
natural way (cf. the definition of ∂≺(f) in §2.3). A marked Gröbner basis over a term order
≺ is a Gröbner basis over ≺ with all initial terms (with respect to ≺) marked. For a marked
Gröbner basis we let ∂(G) = ∪f∈G∂(f).

INPUT: Marked reduced Gröbner basis G for I over a term order ≺1, a term order ≺2 along
with ω0 ∈ C≺1

(I) and τ0 ∈ C≺2
(I).

OUTPUT: Reduced Gröbner basis for I over ≺2.

(i) t = −∞.

(ii) Compute last t. If t = ∞ output G and halt.

(iii) Compute generators inω(G) = {inω(g) | g ∈ G} for inω(I) as

inω(g) = auxu +
∑

v∈Sg

avx
v,

where Sg = {v ∈ supp(g) \ {u} | tu−v = t} and aux
u is the marked term of g ∈ G.

(iv) Compute reduced Gröbner basis H for inω(I) over ≺2 and mark H according to ≺2.

(v) Let
H ′ = {f − fG | f ∈ H}.

Use marking of H to mark H ′.

(vi) Autoreduce H ′ and put G = H ′.

(vii) Repeat from (ii).

Compute last t:

1. Let V := {v ∈ ∂(G) | 〈ω0, v〉 ≥ 0 and 〈τ0, v〉 < 0 and t ≤ tv}, where

tv =
〈ω0, v〉

〈ω0, v〉 − 〈τ0, v〉
.

2. If V = ∅, put t = ∞ and return.

3. Let t := min{tv|v ∈ V } and return.
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Figure 1: C≺1,≺2
for ≺1=degrevlex and ≺2=lex

4 The generic Gröbner walk

In this section we show how certain generic choices of ω0 and τ0 from §3 lead to the generic
Gröbner walk algorithm. The crucial point is that step (3) of the procedure Compute last t

can be carried out formally using ω0 and τ0 from well defined perturbations given the term
orders ≺1 and ≺2.

For an ideal I ⊆ R we let ∂(I) ⊆ Qn denote the union of ∂≺(G), where G runs through
the finitely many reduced Gröbner bases for I. Let ≺1 and ≺2 be two term orders given by
Q-bases ω = (ω1, . . . , ωn) and τ = (τ1, . . . , τn) of Qn respectively. Observe that ωη and τη

are in the interior of the Gröbner cones C≺1
(I) and C≺2

(I) respectively for sufficiently small
positive η. This follows from Lemma 2.1. Now define

C≺1,≺2
= {v ∈ Rn | 0 ≺1 v and v ≺2 0}.

Here ≺1,≺2 are extended to group orders on Rn using ω and τ .

Example 4.1 Suppose that ≺1 is degree (reverse) lexicographic order and ≺2 lexicographic
order with y ≺1,2 x. Then choosing ω = ((1, 1), (0,−1)) and τ = ((1, 0), (0, 1)), we get 0 ≺1 v
imples (0, 0) <lex (v1 + v2,−v2) and v ≺2 0 implies (v1, v2) <lex (0, 0). Intersecting the regions
yielded gives (see Figure 1)

C≺1,≺2
= {(x, y) ∈ R2 | x + y > 0, x < 0}.
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To fully understand the choice of δ and ǫ in the following we encourage the reader to
compare with the computations in (∗) and (∗∗) below. Define

Mτ = {〈τi, u〉v | i = 1, . . . , n; u, v ∈ ∂(I)}.

Corollary 2.2 shows that there exists sufficiently small positive δ such that

u ≺1 v ⇐⇒ 〈ωδ, u〉 < 〈ωδ, v〉 (1)

for u, v ∈ Mτ . Suppose that δ satisfies (1). Now put

Nδ = {〈ωδ, u〉v | u, v ∈ ∂(I)}.

Again by Corollary 2.2 we know that there exists sufficiently small positive ǫ such that

u ≺2 v ⇐⇒ 〈τǫ, u〉 < 〈τǫ, v〉 (2)

for u, v ∈ Nδ. Suppose now that we pick δ according to (1) and ǫ according to (2). If
v ∈ ∂(I) ∩ C≺1,≺2

we put

tv =
〈ωδ, v〉

〈ωδ, v〉 − 〈τǫ, v〉
=

1

1 −
〈τǫ, v〉

〈ωδ, v〉

.

If u, v ∈ ∂(I) ∩ C≺1,≺2
then 〈ωδ, u〉, 〈ωδ, v〉 > 0 and

tu < tv ⇐⇒ (∗)

〈τǫ, u〉

〈ωδ, u〉
<

〈τǫ, v〉

〈ωδ, v〉
⇐⇒

〈τǫ, 〈ωδ, v〉u〉 < 〈τǫ, 〈ωδ, u〉v〉 ⇐⇒

〈ωδ, v〉u ≺2 〈ωδ, u〉v

To evaluate ≺2 above we see that

〈τi, 〈ωδ, v〉u〉 < 〈τi, 〈ωδ, u〉v〉 ⇐⇒ (∗∗)

〈ωδ, 〈τi, u〉v〉 < 〈ωδ, 〈τi, v〉u〉 ⇐⇒

〈τi, u〉v ≺1 〈τi, v〉u

for i = 1, . . . , n. Let T denote the matrix whose rows are τ1, . . . , τn. By choosing δ and ǫ
generically as above it follows that

tu < tv ⇐⇒ Tuvt ≺1 Tvut

where ≺1 above refers to the lexicographic extension of ≺1 on Zn to Zn ×· · ·×Zn. Here, Tuvt

and Tvut are n× n matrices and we need to compare their rows. Notice that the comparison
between tu and tv does not involve δ and ǫ but only the term orders ≺1 and ≺2. This leads
us to define the facet preorder ≺ by

u ≺ v ⇐⇒ tu < tv ⇐⇒ Tuvt ≺1 Tvut (3)

for u, v ∈ ∂(I) ∩ C≺1,≺2
.
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Example 4.2 Continuing the setup in Example 4.1, if u = (u1, u2) and v = (v1, v2), then

T =

(

1 0
0 1

)

and the facet preorder ≺ is given by

u ≺ v ⇐⇒ (u1v ≺1 v1u) ∨ ((u1v = v1u) ∧ (u2v ≺1 v2u)).

If tu = tv then Tuvt = Tvut and uvt = vut since T is an invertible matrix. The identity
uvt = vut implies that u and v are collinear. Since u and v lie in the same half space, u is a
positive multiple of v.

This has the nice consequence that the line ω(t) between ωδ and τǫ intersects the cones
in the Gröbner fan in dimension ≥ n − 1. Consider the typical situation, where v ∈ C =
C(v, v1, . . . , vm) is chosen to minimize tv as in the Gröbner walk. Then ω(tv) is on a proper
face F of C∨. Since tv = tu implies that u is a positive multiple of v for u ∈ {v1, . . . , vm}, we
conclude that dim F = n − 1 i.e. F is a facet.

The facet preorder ≺ defined in (3) may be inserted in the classical Gröbner walk algorithm
giving the generic Gröbner walk algorithm completely removing the numerical dependence on
the line ω(t). Below, −∞(∞) denotes a vector strictly smaller (larger) than the vectors in
∂(I) ∩ C≺1,≺2

.

INPUT: Marked reduced Gröbner basis G for I over a term order ≺1 and a term order ≺2

(the facet preorder ≺ is given as in (3) using ≺1 and ≺2).

OUTPUT: Reduced Gröbner basis for I over ≺2.

(i) w = −∞.

(ii) Compute last w. If w = ∞ output G and halt.

(iii) Compute generators inω(G) = {inω(g) | g ∈ G} for inω(I) as

inω(g) = auxu +
∑

v∈Sg

avx
v,

where Sg = {v ∈ supp(g) \ {u} | u − v ≺ w, w ≺ u − v} and aux
u is the marked term of

g ∈ G.

(iv) Compute reduced Gröbner basis H for inω(I) over ≺2 and mark H according to ≺2.

(v) Let
H ′ = {f − fG | f ∈ H}.

Use marking of H to mark H ′.

(vi) Autoreduce H ′ and put G = H ′.

(vii) Repeat from (ii).
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Compute last w:

1. Let V := {v ∈ ∂(G) ∩ C≺1,≺2
| w ≺ v}.

2. If V = ∅, put w = ∞ and return.

3. Let w := min≺{v|v ∈ V } and return.

4.1 Variations on the generic Gröbner walk

Several variations on the generic Gröbner walk are possible. In many cases generators for
an ideal are given which form a natural Gröbner basis with respect to a specific weight vector.
This happens for example in implicitization problems with polynomials y1 − f1, . . . , ym − fm,
where fi are polynomials in x1, . . . , xn for i = 1, . . . , m. These polynomials form a Gröbner
basis over a vector ω assigning zero weights to x1, . . . , xn and positive weights to y1, . . . , ym.
In this case one only needs to work with ω and perturbations τǫ of the target vector. One
may also truncate the facet preorder ≺ (to get a face preorder) using only parts (ω1, . . . , ωp)
and (τ1, . . . , τq) of the Q-bases ω and τ . This leads to an analogue of the perturbation degree
(p, q)-walk defined in [2].

5 An introductory example

We illustrate the generic Gröbner walk by a detailed example in the two dimensional case. For
a given polynomial f ∈ R we let LG(f) = f−fG, where G is a marked Gröbner basis (markings
are underlined). Let ≺1 denote degree (reverse) lexicographic order and ≺2 lexicographic order
with y ≺1,2 x. The facet preorder ≺ is given as in Example 4.2. Consider the ideal

I = 〈x2 − y3, x3 − y2 − x〉 ⊂ Q[x, y].

Initially we put
G = {y3 − x2, x3 − y2 − x},

where the initial terms over ≺1 are marked. Clearly G is the reduced Gröbner basis for I over
≺1. The Gröbner cone is given by

C≺1
(I) = C({(−2, 3)} ∪ {(3,−2)})∨ ∩ R2

≥0.

In this case (3,−2) 6∈ C≺1,≺2
and V = {(−2, 3)}. So the first facet ideal is 〈y3 − x2, x3〉. The

reduced Gröbner basis for this ideal over ≺2 is {x2 − y3, xy3, y6} and the lifting step is given
by

LG(x2 − y3) = x2 − y3

LG(xy3) = xy3 − y2 − x

LG(y6) = y6 − xy2 − x2.
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Our new marked reduced Gröbner basis is

G = {x2 − y3, xy3 − y2 − x, y6 − xy2 − y3}.

Since w = (−2, 3) ≺ (−1, 4) it follows that V = {(−1, 4)} and the next facet ideal is
〈x2, xy3, y6 − xy2〉 with reduced Gröbner basis {x2, xy2 − y6, y7} over ≺2. Since

LG(x2) = x2 − y3

LG(xy2 − y6) = xy2 − y6 + y3

LG(y7) = y7 − y4 − y2 − x

our new marked reduced Gröbner basis is

G = {x2 − y3, xy2 − y6 + y3, y7 − y4 − y2 − x}.

Since w = (−1, 4) ≺ (−1, 7) we get V = {(−1, 7)} and the next facet ideal is 〈x2, xy2, y7 − x〉
with reduced Gröbner basis (y9, x − y7) over ≺2. Here

LG(y9) = y9 − 2y6 − y4 + y3

LG(x − y7) = x − y7 + y4 + y2.

The new marked reduced Gröbner basis is

G = {y9 − 2y6 − y4 + y3, x − y7 + y4 + y2}.

Since V = ∅ in this case, the generic Gröbner walk halts and G is the reduced Gröbner basis
for I over ≺2.

6 Computational experience for lattice ideals

In this section we report briefly on computations using the implementation GLATWALK [14]
of the Buchberger algorithm and generic Gröbner walk for lattice ideals. Not surprisingly
the walk performs best when initial and target vectors are close. An ideal situtation where
this arises seems to come from a special case of feasibility in integer programming. Consider
natural numbers a1, . . . , an ∈ N. Given b ∈ N decide if the equation

x1a1 + · · · + xnan = b (4)

has a solution x1, . . . , xn ∈ N and find it if so. Adjoining the extra variable t we seek to
minimize t subject to

t + x1a1 + · · ·+ xnan = b (5)

and t, x1, . . . , xn ≥ 0. We denote this integer programming problem IPA,τ (b), where A is the
1 × (n + 1) matrix (1 a1 . . . an) and τ = (1, 0, . . . , 0) ∈ Nn+1. This problem has a trivial
feasible solution: t = b, x1 = · · · = xn = 0. Now we may apply standard algebraic techniques
in integer programming (cf. [7] and [18]) and form the toric ideal

IA = (x1 − ta1 , . . . , xn − tan) ⊂ Q[t, x1, . . . , xn]. (6)



14

A Gröbner basis Gτ for IA with respect to τ is a test set for the integer programming problems
IPA,τ(b), where b varies and an optimal solution to (5) is the exponent of the normal form of
tb with respect Gτ thereby solving (4).

It is important to observe that the generating set for IA in (6) already is a Gröbner basis
Gσ for IA with respect to the vector σ = (−1, 0, . . . , 0). In the following section we report on
computational results in computing Gτ using the generic walk to go from σ to τ compared with
a direct computation with Buchberger’s algorithm. We use the programs walk and gbasis of
the program package GLATWALK.

6.1 Comparison with Buchberger’s algorithm

To walk from σ to τ we break ties with the reverse lexicographic order < given by t < x1 <
· · · < xn i.e. we walk from the initial term order <σ to the target term order <τ . The names
of the computational examples in the following table refer to specific numbers a1, . . . , an as in
§6. They can be found in [1]. The timings below are in seconds and the computations were
carried out on a 1.6 GHz Pentium mobile with 1MB L2 Cache.

EXAMPLE walk gbasis |Gσ| |Gτ |
cuww1 1.1 17.7 5 7343
cuww2 11.4 2.4 6 2472
cuww3 24.4 9.5 6 4888
cuww4 1.2 21.3 7 7937
cuww5 7.9 1.3 8 1724
prob1 0.1 0.1 8 410
prob2 0.0 0.0 8 142
prob3 0.1 0.1 8 425
prob4 0.1 0.2 8 757
prob5 0.2 0.1 8 516
prob6 0.1 0.5 10 1035
prob7 0.1 0.1 10 461
prob8 0.2 0.1 10 558
prob9 0.0 0.0 10 270
prob10 0.6 2.5 10 2416

In the problems cuww1, cuww4 and prob10 the initial and target vectors are separated by
less than 10 Gröbner cones in the Gröbner fan . This leads to surprisingly fast computation
of relatively large Gröbner bases. It would be interesting to further explore the efficiency of
the generic Gröbner walk in solving Frobenius problems more general than the Aardal-Lenstra
knapsack problems.
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7 Concluding Remarks

The strength of the generic walk is that it is a completely deterministic algorithm avoiding
the inherent instability of explicit numerical computation.

The most recent version of the program 4ti2 (see [12]) employs a projection algorithm for
computing Gröbner bases of toric ideals before using the usual Buchberger algorithm. This
addition turns out to be a crucial optimization. It would be interesting to use a similar pro-
jection algorithm before using the walk. Our preliminary experiments indicate that the walk
is a little faster than the projection algorithm in the cases where it is significantly faster than
the Buchberger algorithm. The current available implementations of Buchberger’s algorithm
like CoCoa, Singular, Macaulay2 etc. are slowed down by a significant factor compared to
specialized integer vector implementations for lattice ideals.

While the generic Gröbner walk is presented here as a technique to compute a Gröbner
basis efficiently, one can use it for walking the entire Gröbner fan systematically. In fact, a
recent paper [10] presents an algorithm based on both the generic Gröbner walk and the reverse
search technique to list all Gröbner bases of a general polynomial ideal. In short, it reverses
the generic Gröbner walk in all possible ways from the lexicographic basis to reach all other
bases. Obviously, such an exhaustive search requires an enormous amount of computational
effort, and the symbolic perturbation turns out to be essential for this purpose.
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Symbolic Comp. 6 (1997), 209–217.

[6] D. Cox, J. Little, D. O’Shea. Using Algebraic Geometry, 2. edition, Springer Verlag, New
York 2005.

[7] P. Conti, C. Traverso. Buchberger Algorithm and Integer Programming. Applied Algebra,

Algebraic Algorithms and Error-Correcting Codes, H. F. Mattson, T. Mora, T. R. N.
Rao(eds), Lecture Notes in Computer Science 539, Springer-Verlag, (1991) 130–139.

[8] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Computational Ge-
ometry: Algorithms and Applications. Springer-Verlag, Berlin, Germany, 2nd edition,
2000.



16
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bases, Graver bases, toric Gröbner bases, and more. September 2005. Available at
www.4ti2.de.
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