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Abstract

We prove several basic properties for difference ascending chains includ-
ing a necessary and sufficient condition for an ascending chain to be the
characteristic set of its saturation ideal and a necessary and sufficient
condition for an ascending chain to be the characteristic set of a reflexive
prime ideal. Based on these properties, we propose an algorithm to de-
compose the zero set of a finite set of difference polynomials into the union
of zero sets of certain ascending chains. This decomposition algorithm is
implemented and used to solve the perfect ideal membership problem and
to prove certain difference identities automatically.

Keywords: difference polynomial, ascending chain, characteristic set, coherence,
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1. Introduction

A basic idea to deal with a system of algebraic or differential equations is to
decompose its zero set into the union of the zero sets of algebraic or differential
equations in certain triangular form, or to decompose the radical ideal generated
by these equations into the intersection of prime or radical ideals represented by
their characteristic sets. The theory of the characteristic set method was estab-
lished by Ritt in the 1930s (19). The method is further extended by Kolchin,
Rosenfeld, Seidenberg and other people (13; 21; 22). But, the study of the al-
gorithmic aspect of the characteristic set method is in stagnation for quite a
long time until Wu’s work appeared in the late 1970s. Since then, theories and
algorithms of the characteristics set methods were revived. In (25; 26; 27), Wu
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introduced methods to decompose the zero set of a finitely generated polynomial
or differential polynomial system into the union of quasi varieties represented by
triangular sets. Aubry et al., Kalkbrener, Lazard, Zhang-Yang proposed decom-
position methods without using the factorization of polynomials over algebraic
extension fields (1; 12; 14; 29). The decomposition into simple systems was pro-
posed by Wang (24). The decomposition into unmixed varieties was proposed by
Bouziane et al and Gao-Chou (3; 10). The concepts of invertibility, first intro-
duced by Lazard (14), was studied in detail by Kandry-Rody et al. and played
an important rule in (3). Efficient algorithms for decomposing differential poly-
nomial systems were proposed in (2; 4; 11; 15; 18). Lazard’s Lemma plays an
essential rule in (2). On the complexity issues, Gallo and Mishra gave an upper
bound for the degrees of the polynomials in the characteristic set of an ideal (9).
Dahan and Schost proved that the height of the triangular set for a zero dimen-
sional variety could be linear with respect to the height of the variety, which
shows that triangular sets provide an efficient representation tool for varieties.

The notion of characteristic set (or basic set as named in (20)) for difference
polynomial systems was also proposed by Ritt (20). The general theory of dif-
ference algebra was established mainly by Cohn and his students (6). Cohn also
introduced the theory of characteristic sequence, which plays an important rule
in the theoretical study, but is not an algorithm in the general case (6; 7). More
recently, elimination algorithms for linear difference or differential-difference op-
erators are extensively studied (5; 16; 23; 28). But, we are not aware the existence
for a zero decomposition algorithm for non-linear difference polynomial systems
based on the characteristic set method.

In this paper, we will establish a characteristic set method for non-linear or-
dinary difference polynomial systems. We show that this method can be used to
solve some of important problems in difference algebra, like the intrinsic descrip-
tion of reflexive prime ideals, the perfect ideal membership problem, finding the
dimension and order of prime ideals, and automated proving of theorems about
difference polynomials. The major difference between the differential case and
the difference case is that the differentiation of a differential polynomial is al-
ways linear in its leading variable and this property is not true anymore in the
difference case. This makes some of the key tools used in the algebraic and differ-
ential cases not available anymore in the difference case. For instance, Rosenfeld’s
lemma and Lazard’s lemma are not true in difference case. As a consequence,
we need to introduce new concepts and to develop new techniques.

We first consider the following question: “Let A be a difference ascending
chain. Under what condition A is a characteristic set of its saturation ideal?”
In the algebraic case, Aubry et al. proved that a sufficient and necessary condi-
tion for this to be valid is that A is regular (1). This result is extended to the
differential cases by Kandry-Rody et al. (3). In order to solve this problem in
difference case, we introduce two new properties for difference ascending chains.
First, the concept of coherent ascending chain is introduced. In the differential
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case, the coherent conditions are needed only in the partial differential case.
But, in difference case, this property is needed even in the ordinary difference
case. We prove that any element of the saturation ideal of a coherent ascending
chain has a normal representation. Second, we introduce the concept of regular
difference ascending chains. With these concepts, we proved that a difference
ascending chain A is a characteristic set of its saturation ideal iff A is coherent
and regular.

A new type of strong irreducibility is introduced. We prove that a sufficient
and necessary condition for an ascending chain A to be the characteristic set of
a reflexive prime ideal is that A is coherent and strong irreducible. In (6), Cohn
also gave a necessary and sufficient condition for a reflexive prime ideal in terms
of characteristic sequences. The condition given in this paper is intrinsic, that is,
it only involves properties of the ascending chain itself, while the one in (6) does
not have this property. We also show that the dimension and order of a reflexive
prime ideal can be obtained directly from its characteristic set.

There is no direct method to check whether an ascending chain is regular. In
order to develop an algorithm, we give a constructive criterion for the regularity
test. This new criterion is called proper irreducibility. We proved that if an as-
cending chain is proper irreducible, then it is a regular chain and its saturation
ideal has at least one solution over an extension field.

Based on the properties of ascending chains, we propose an algorithm which
can be used to decompose the zero set of a finitely generated difference poly-
nomials set into the union of the zero sets of the saturation ideals of coherent
and proper irreducible ascending chains. As applications of the decomposition
algorithm, we could solve the perfect ideal membership problem for difference
polynomial systems and prove theorems which can be represented by difference
polynomials automatically. This method to check the perfect ideal membership
problem is different from the one proposed in (6). The algorithm is implemented
in Maple and is used to prove certain difference identities.

The rest of this paper is organized as follows. In Section 2, we introduce some
notations and preliminary results. In Section 3, the concepts of coherent and
regular ascending chains are introduced. In Section 4, the concepts of strong and
proper irreducible ascending chains are introduced. In Section 5, the algorithm
of zero decomposition is introduced. In Section 6, conclusions are presented.

2. Preliminaries

We will introduce the notions and preliminary properties needed in this paper.
Details on these concepts can be found in (6; 20).

2.1. Difference fields, difference polynomials, and difference ideals

A difference field F is a field with a unitary operation δ satisfying: for any
a, b ∈ F , δ(a + b) = δa + δb, δ(ab) = δa · δb, and δa = 0 iff a = 0. Here, δ is
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called the transforming operator of F . If a ∈ F , δa is called the transform of a.
If δ−1a is defined for all a ∈ F , we say that F is inversive. Every difference field
has an inversive closure (6). In this paper, all difference fields are assumed to be
inversive and of characteristic zero.

As an example, let K = O(x) be the set of rational functions in variable x and
with rational numbers as coefficients. Let δ be the mapping: δf(x) = f(x+1), f ∈
K. Then K is a difference field with transforming operator δ. This is an inversive
field. In all the examples in this paper, K is assumed to be this difference field.

Let Y = {y1, y2, . . . , yn} be indeterminants. Then R = K{Y} is called an n-
fold difference polynomial ring over K. Any difference polynomial P (abbr. r-pol)
in the ring K{Y} is an ordinary polynomial in variables δkyj(k = 0, 1, 2, . . . , j =
1, . . . , n). For convenience, we also denote δkyj by yj(x + k).

Let P ∈ K{Y}. The class of P , denoted by cls(P ), is the least p such that
P ∈ K{y1 . . . , yp}. If P ∈ K, we set cls(P ) = 0. The order of P w.r.t. yi, denoted
by ord(P, yi), is the largest j such that yi(x+ j) appears in P . When yi does not
occur in P, we set ord(P, yi) = 0. If cls(P ) = p and ord(P, yp) = q, we called yp

the leading variable and yp(x+ q) the lead of P, denoted as lvar(P ) and lead(P ),
respectively. The leading coefficient of P as a univariate polynomial in lead(P )
is called the initial of P , and is denoted as init(P ).

An r-pol P1 has higher rank than an r-pol P2, denoted as P1 Â P2, if
i). cls(P1) > cls(P2), or
ii). c = cls(P1) = cls(P2) and ord(P1, yc) > ord(P2, yc)
iii). c = cls(P1) = cls(P2), o = ord(P1, yc) = ord(P2, yc), and deg(P1, yc(x +

o)) > deg(P2, yc(x + o)).
If no one has higher rank than the other for two r-pols, they are said to have

the same rank, denoted as P1 ∼ P2. We use P1 º P2 to denote the fact that
either P1 Â P2 or P1 ∼ P2. It is easy to see that º is a total order on R.

An n-tuple over K is of the form a = (a1, . . . , an), where the ai are selected
from some difference extension field of K. Let P ∈ K{Y}. To substitute an n-
tuple a into P means to replace each of the yi(x + j) occurring in P with δjai.
Let P be a set of r-pols in K{Y}. An n-tuple over K is called a solution of the
equation set P=0 if the result of substituting the n-tuple into each r-pol of P is
zero. Let

Zero(P) = {n-tuples η, s.t. P (η) = 0,∀P ∈ P}.
It is easy to check that Zero(P ) = Zero(δP ). For instance, let P = y(x+1)y(x)+
y(x+1)−y(x). Then y = 1

x+c(x)
is a solution of P = 0, where c(x) is any function

satisfying c(x + 1) = c(x).
A difference ideal is a subset I of R = K{Y}, which is an algebraic ideal

in R and is closed under δ. Let P be a set of elements of R. The difference
ideal generated by P is denoted by [P]. Obviously, [P] is the set of all linear
combinations of the r-pols in P and their transforms. The (ordinary or algebraic)
ideal generated by P is denoted as (P). A difference ideal I is called reflexive if
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for an r-pol P , δP ∈ I implies P ∈ I. A difference ideal I is called perfect if the
presence in I of a product of powers of transforms of an r-pol P implies P ∈ I.
The perfect difference ideal generated by P is denoted as {P}. A perfect ideal is
always reflexive. It is clear that Zero(P) = ∅ iff 1 ∈ {P}. A difference ideal I is
called a prime ideal if for r-pols P and Q, PQ ∈ I implies P ∈ I or Q ∈ I.

2.2. Difference ascending chains

Let P1,P2 be two r-pols and lead(P1) = yp(x + q) with p > 0. P2 is said to be
reduced w.r.t. P1 if deg(P2, yp(x+q+ i)) < deg(P1, yp(x+q)) for any nonnegative
integer i. If P1 ∈ K and nonzero, then P2 is not reduced w.r.t. P1.

A finite sequence of nonzero r-pols A = A1, . . . , Ap is called an ascending
chain, or simply a chain, if either p = 1 or p > 1, 0 < cls(A1), Ai ≺ Aj, and Aj

is reduced w.r.t. Ai for 1 ≤ i < j ≤ p. A is called trivial if cls(A1) = 0.

Example 2.1: Let P1 = y(x+1)2−y2(x)+1, P2 = y(x+2)+y(x+1) ∈ K{y}.
Since P1 ≺ P2, deg(P2, y(x + 1)) < deg(P1, y(x + 1)) and deg(P2, y(x + 2)) <
deg(P1, y(x + 1)), P2 is reduced w.r.t. P1. Hence, P1, P2 is a chain.

From this example, we can see that even in ordinary difference case, a chain
could contain more than one r-pol in the same leading variable. This is different
from the differential case.

Let A be a chain and IA the set of all products of powers of the initials of the
r-pols in A and their transforms. The saturation ideal of A is defined as follows

sat(A) = sat(A) = {P ∈ K{Y} | ∃J ∈ IA, s.t.JP ∈ [A]}.

Note that IA is closed under transforming and multiplication. Then sat(A) is a
difference ideal.

Let B be an algebraic chain and IB the set of products of powers of initials of
the polynomials in B. Then we define

asat(B) = (B) : IB = {P ∈ K[Y] | ∃J ∈ IB, s.t.JP ∈ (B)}

A chain A = A1, . . . , Ap is said to be of higher rank than another chain B =
B1, . . . , Bs, denoted as A Â B, if one of the following conditions holds:

i). ∃ 0 < j ≤ min{p, s}, such that ∀ i < j, Ai ∼ Bi and Aj Â Bj, or
ii). s > p and Ai ∼ Bi for i ≤ p.
If no one has higher rank than the other for two chains, they have the same

rank, and is denoted as A ∼ B. A1 º A2 means either A1 Â A2 or A1 ∼ A2. It
is easy to see that º is a total order on the difference chain set.

Lemma 2.1: (20) Let Ai be a sequence of chains satisfying

A1 º A2 º . . . º Ak º . . . .
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Then there is an index i0 such that for any i > i0,Ai ∼ Ai0 .
Let P be a set of r-pols. It is possible to form chains with r-pols in P. Among

all those chains, by the above lemma, there are some which have a lowest rank.
Any chain in P with the lowest rank is called a characteristic set of P.

An r-pol is said to be reduced w.r.t. a chain if it is reduced to every r-pol in
the chain. The following result is evident from the definitions.

Lemma 2.2: A ⊂ P is a characteristic set of P iff there is no nonzero r-pol in
P which is reduced w.r.t. A.

Lemma 2.3: (20) If A is a characteristic set of P and A′
a characteristic set of

P ∪ {P} for an r-pol P , then we have A º A′
. Moreover, if P is reduced with

respect to A, we have A Â A′
.

The difference pseudo-division is defined as follows.

Algorithm 2.1: rprem(G,P ). Input: G,P ∈ K{Y}. Output: an r-pol R which
is the pseudo remainder of G w.r.t. P .

p := cls(P );
If p = 0 or ord(G, yp) < ord(P, yp) then return G;
else

R := G;
for i from ord(G, yp)− ord(P, yp) to 0 by -1 do

R := prem(R, δiP, yp(x + ord(P, yp) + i)); // (*)
If R=0 then return(0) ;

return(R);
end;

In (*), prem(P,Q, v) is the pseudo-remainder of P w.r.t Q in variable v, where the
variables yi and their transforms are treated as independent algebraic variables.

From the above algorithm, it is easy to check that

Lemma 2.4: Let R = rprem(G,P ), lead(P ) = yp(x+ q)(p > 0), h = ord(G, yp),
and k = h − q ≥ 0. Then R is reduced w.r.t. P and we have the remainder
formula

JG = Q1δ
kP + Q2δ

k−1P + · · ·+ Qk+1P + R,

where R,Qi(i = 1, . . . , k + 1) are r-pols and J =
∏k

i=0(δ
iinit(P ))si for non-

negative integers si. Note that J ≺ P .
We define the pseudo-remainder of an r-pol P w.r.t. a chainA = A1, . . . , Ap re-

cursively as rprem(P,A) =rprem( rprem(P,Ap), A1, . . . , Ap−1) and rprem(P, {}) =
P . As a direct consequence of Lemma 2.4, we have

Lemma 2.5: Let P,A be as above. Then there is a J ∈ IA with J ≺ P such that
JP ≡ R mod [A] and R is reduced w.r.t A.
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3. Coherent and regular difference chains

3.1. Invertibility of algebraic polynomials

We will introduce some notations and results about invertibility of algebraic
polynomials w.r.t. an algebraic chain.

A sequence of polynomials A = A1, . . . , Am in K[x1, . . . , xn] is called a trian-
gular set if cls(A1) < cls(A2) < · · · < cls(Am). Let yi be the leading variable of
Ai, Y = {y1, . . . , yp} and U = {x1, . . . , xn}\Y. U and Y are called the parameter
set and the leading variable set of A respectively. We can denote K[x1, . . . , xn]
as K[U,Y]. A polynomial P is said to be invertible w.r.t. A if either P ∈ K[U]
or (P,A1, . . . , As) ∩ K[U] 6= {0} where lvar(P ) = lvar(As). A is called regular if
the initials of Ai are invertible w.r.t. A.

Theorem 3.1: (1; 3) Let A be a triangular set. Then A is a characteristic set
of (A) : IA iff A is regular.

Lemma 3.1: (3) A polynomial P is not invertible w.r.t. a regular triangular set
A iff there is a nonzero Q in K[U,Y] such that PQ ∈ (A) and Q is reduced
w.r.t. A.

Lemma 3.2: (27) Let A be an irreducible algebraic triangular set with parame-
ters U, leading variables Y, and a generic point η. Then asat(A) is a prime ideal
of dimension |U| and for any polynomial Q, the following facts are equivalent.

• Q is invertible w.r.t. A.

• prem(Q,A) 6= 0, or equivalently Q 6∈ (A) : IA.

• Q(η) 6= 0.

• resl(Q,A) 6= 0. Let A = A1, . . . , Am, resl(Q,A) is defined as follows:
resl(Q,A) = resl(resl(P,Am, lvar(Am)), A1, . . . , Am−1) and resl(Q, {}) =
Q.

3.2. Extension of a chain

For any chain A, after a proper renaming of the variables, we could write it as
the following form.

A =





A1,1(U, y1), . . . , A1,k1(U, y1)
. . .
Ap,1(U, y1, . . . , yp), . . . , Ap,kp(U, y1, . . . , yp)

(1)

where lvar(Ai,j) = yi and U = {u1, . . . , uq} such that p + q = n. Let oi,j =
ord(Ai,j, yi). U is called the parameter set of A and dim(A) = |U| is called the
dimension of A. Denote

P(A) = {yi(x + j)|1 ≤ i ≤ p, 0 ≤ j ≤ oi,1 − 1} (2)
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and call ord(A) = |P(A)| = ∑p
i=1 o(i,1) the order of A.

Let A be a chain of form (1) and h1, . . . , hm (m ≤ p) nonnegative integers.
The extension of A, denoted as A(h1,...,hm), is the following sequence of r-pols

A1,1, δA1,1, . . . , δ
o1,2−o1,1−1A1,1, A1,2, . . . , A1,k1 , δA1,k1 , . . . , δ

ĥ1−o1,k1 A1,k1 ,
. . . ,

Am,1, δAm,1, . . . , δ
om,2−om,1−1Am,1, Am,2, . . . , Am,km , δAm,km , . . . , δĥm−om,km Am,km

(3)

where ĥi is defined as follows: ĥm = max{hm, om,km}+1, and for i = m−1, . . . , 1,

oi =max{order of yi(x) appears in Ai+1,1, δAi+1,1, . . ., δĥm−om,km Am,km}, ĥi =
max{hi, oi, oi,ki

}+ 1. For a chain A and an r-pol P , let

A∗ = A(0,...,0)

AP = A
(ord(P,y1),...,ord(P,yp))

(4)

With these notations, it is clear that

rprem(P,A) = prem(P,AP ) (5)

where the variables and their transforms in prem(P,AP ) are treated as indepen-
dent variables. The following fact is clearly true.

Lemma 3.3: Use the notations in (3).

• For each i, there exist at least two r-pols in AP with yi as leading variable.

• Let ej = maxA∈A(h1,...,hm)
{ord(A, uj)}, V = {δiuj | 1 ≤ j ≤ q, 0 ≤ i ≤ ej},

Z = {δiyj | 1 ≤ j ≤ m, 0 ≤ i ≤ ĥj}. Then A(h1,...,hm) is an algebraic triangu-
lar set in K[V,Z] when the elements in V and Z are treated as independent
variables.

• The parameters of A(h1,...,hm) as a triangular set are V ∪ P(A).

3.3. Coherent chains

Note that in Example 2.1, we have δP1 − (y(x + 2) + y(x + 1))P2 = 1, i.e.
1 ∈ [P1, P2]. This fact leads to the following concept.

Let A = A1, . . . , Am be a chain and oi = ord(Ai, lvar(Ai)), i = 1, . . . , m. For
any 1 ≤ i < j ≤ m, if cls(Ai) = cls(Aj) = t, let

∆ij = prem(δoj−oiAi, Aj, yt(x + oj)) (6)

otherwise, let ∆ij = 0. If rprem(∆ij,A) = prem(∆ij,A∗) = 0, we call A a
coherent chain.

Let A = A1, . . . , As be a chain. A linear combination C =
∑

i,j Qijδ
jAi is

called normal if δjAi in the expression are distinct elements in A(h1,...,hp) for
some nonnegative integers h1, . . . , hp. In other words, C ∈ (A(h1,...,hp)).
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Lemma 3.4: Let A = A1, . . . , Am be a coherent chain, cls(Ai) = cls(Aj) = t, i <
j, and oi = ord(Ai, lvar(Ai)), i = 1, . . . , m. Then, there is a J ∈ IA∗ satisfying
J ≺ Aj such that J · δoj−oiAi = 0 mod (A∗).
Proof: Let ∆ij = prem(δoj−oiAi, Aj, yt(x + oj)), Ij = init(Aj). Then there is a
nonnegative integer v such that Iv

j · δoj−oiAi = QAj + ∆ij. Since A is coherent,
prem(∆ij,A∗) = 0. Now, the result is a consequence of the remainder formula
for the algebraic pseudo-remainder.

Lemma 3.5: Let A be a coherent chain of form (1), P ∈ (A(l1,...,lp)) and li ≥
ord(Ai,oi

, yi). Then ∃J ∈ IA∗ s.t. J ≺ δP and JδP ∈ (A(l1+1,...,lp+1)).
Proof. Let A(l1,...,lp) = B1,1, . . . , B1,c1 , . . . , Bp,1, . . . , Bp,cp with lvar(Bi,j) = yi.
Then we have P =

∑
i,j Pi,jBi,j and δP =

∑
i,j δPi,jδBi,j. Since Bi,ci

∈ A(l1,...,lp)

and li ≥ ord(Ai,oi
, yi), δBi,ci

must be in A(l1+1,...,lp+1). For j < ci, δBi,j is either
in A(l1,...,lp) or fall in the situation considered in Lemma 3.4. This proves the
Lemma.

Lemma 3.6: Let A be a coherent chain of form (1), A ∈ A, and m a non-
negative integer. Then there is a J ∈ IA such that J ≺ δmA and J · δmA has a
normal representation.
Proof: Let fi = ord(δmA, yi), c = cls(A). We divide the proof into three cases.
First, if δmA ∈ A(f1,...,fp), the result is obvious. Second, if there exists a B ∈ A
such that ord(B, yc) = ord(δmA, yc), then this is Lemma 3.4. Third, if there
exists a B ∈ A with a higher lead than that of A and an integer g > 0 such that
ord(δgB, yc) = ord(δmA, yc). It is clear that g < m. We will prove the lemma by
induction on m. We already proved the case for m = 0. Now, suppose that the
lemma is correct for m = 1, . . . , k − 1 and we will prove the case for m = k. By
Lemma 3.4, there is a J1 ∈ IA such that lead(J1) < lead(δm−gA) and

J1 · δm−gA ≡ 0 mod (A(h1,...,hc)).

Perform g transformations, we have

δgJ1 · δmA ≡ 0 mod (δgA(h1,...,hc)).

Each element in δgA(h1,...,hc) must satisfy the induction hypothesis. Then there
is a J2 ∈ IA such that lead(J2) < lead(δmA) and

δgJ1 · J2 · δmA ≡ 0 mod (A(h1+g,...,hc+g)).

The condition lead(J) ≺ lead(δmA) is clearly valid.
As a direct consequence of Lemma 3.6, we now have the main property of a

coherent chain.

Theorem 3.2: If A = A1, . . . , As is a coherent chain, for any P =
∑

Qijδ
jAi,

there is a J ∈ IA such that J · P has a normal representation, and J ≺
max{δjAi}.
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3.4. Regular chains

Let A be a chain of form (1) and P an r-pol. P is said to be invertible w.r.t. A
if it is invertible w.r.t. AP when P and AP are treated as algebraic polynomials.

Let A = A1, . . . , Am be a difference chain and Ii = init(Ai). A is said to be
(difference) regular if δiIj is invertible w.r.t. A for any non-negative integer i
and 1 ≤ j ≤ m, or equivalently, every J ∈ IA is invertible w.r.t. A.

Lemma 3.7: Let A be a characteristic set of an ideal I. If an r-pol P is invertible
w.r.t A, then P 6∈ I.
Proof: Let U be the parameter set of A. Since P is invertible w.r.t A, there exist
an r-pol Q and a nonzero N ∈ K{U} such that QP = Nmod[A]. If P ∈ I, then
N ∈ I. Since N is reduced w.r.t A, by Lemma 2.2 N = 0, a contradiction.

Lemma 3.8: If a chain A of form (1) is the characteristic set of sat(A), then
for any integers hi ≥ 0, A(h1,...,hp) is a regular algebraic triangular set.
Proof. By Theorem 3.1, we need only to prove that B = A(h1,...,hp) is the char-
acteristic set of asat(B). Let X be the set of all the δiyj ¹ δuyv such that δuyv

occurs in B. Then B ⊂ K[X]. If B is not the characteristic set of asat(B), then
there is a P ∈ asat(B) ∩ K[X] which is reduce w.r.t. B and is not zero. By
Lemma 3.3, P does not contain δiyj which is of higher rank than those in X. As
a consequence, P is also reduced w.r.t. A. Since P ∈ asat(B) ⊂ sat(A) and A
is the characteristic set of sat(A), P must be zero, a contradiction.

The following result shows that a coherent and regular chain is regular.

Lemma 3.9: Let A be a coherent and regular chain, and R an r-pol reduced
w.r.t. A. If R ∈ sat(A), then R = 0.

Proof. Let A = A1, . . . , Am. Since R ∈ sat(A), there is a J ∈ IA such that
J · R ≡ 0 mod [A]. Since A is regular, J is invertible w.r.t. A, i.e. there is an
r-pol J̄ and a nonzero N ∈ K[V] such that J̄ · J ≡ N mod [A] where V is the
set of parameters of A∗ as an algebraic triangular set (see Lemma 3.3). Hence,
NR ≡ J̄ · J ·R ≡ 0 mod [A]. Or equivalently,

N ·R =
∑

Ru,vδ
uAv. (7)

Since A is coherent, by Theorem 3.2, there is a J̃ ∈ IA such that J̃NR has a
normal representation in [A], where lead(J̃) ≺ max{lead(δuAv)} in (7). That is

J̃ ·N ·R =
∑

Qijδ
jAi, (8)

where, each δjAi has a different lead. If the leads of δjAi in (8) are of lower
rank than that of δuAv in (7), we already reduce the rank of δuAv in (7). Other-
wise, assume yk(x + q) = max{lead(δjAi)} and lead(δj0Ai0) = yk(x + q). Let us
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assume Ai0 = Ii0yk(x+s)di0 +Ri0 . Then δj0Ai0 = δj0Ii0yk(x+q)di0 +δj0Ri0 . Sub-

stituting yk(x + q)di0 by − δj0Ri0

δj0Ii0
in (8), the left hand side keeps unchanged since

lead(J̃) ≺ yk(x+q), N is free of yk(x+q), and R is reduced w.r.t. A. In the right
hand side, the δj0Ai0 becomes zero, i.e. the max{lead(δjAi)} decreases. Clearing
denominators of the substituted formula of (8), we obtain a new equation:

(δj0Ii0)
t · J̃ ·N ·R =

∑
Q̂ijδ

jAi. (9)

In the right hand side of (9), the lead of δjAi with highest rank is less than

yk(x + q) and (δj0Ii0)
t · J̃ is invertible w.r.t. A and wit rank lower than that of

yk(x + q). Repeating the process starting from the proof, we will finally obtain

a nonzero N̂ ∈ K[V], such that N̂ ·R = 0. Then R = 0. By Lemma 2.2, A is the
characteristic set of sat(A).

The above lemma is a difference version of the Rosenfeld Lemma (21). The
condition in this lemma is stronger than that used in the differential Rosenfeld
Lemma. The conclusion is also stronger. The following example shows that the
Rosenfeld Lemma (21) is not valid in the difference case.

Example 3.1: Let A = {y1(x + 1)2 − 1, (y1 − 1)y2
2 + 1}. A is coherent and

y1(x + 1) + 1 is reduced w.r.t. A. y1(x + 1) + 1 ∈ sat(A), because (δ(y1 −
1))(y1(x+1)+1) = y1(x+1)2− 1. On the other hand, y1(x+1)+1 /∈ asat(A).

The following is the key property for a regular and coherent chain.

Theorem 3.3: A chain A is the characteristic set of sat(A) iff A is coherent
and regular.
Proof: If A is coherent and regular, then by Lemma 3.9, A is a characteristic
set of sat(A). Conversely, let A = A1, . . . , Am be a characteristic set of sat(A)
and Ii = init(Ai). For any 1 ≤ i < j ≤ p, let R = rprem(∆ij,A) where ∆ij

is defined in (6). Then R is in sat(A) and is reduced w.r.t. A. Since A is the
characteristic set of sat(A), R = 0. Then A is coherent. To prove that A is
regular, for any i ≥ 0, 1 ≤ j ≤ m, we need to prove that P = δiIj is invertible
w.r.t. A. Assume this is not true. By definition, P is not invertible w.r.t. AP

when they are treated as algebraic equations. By Lemma 3.8, AP is a regular
algebraic chain. By Lemma 3.1, there is a nonzero Q which is reduced w.r.t. AP

(and hence A) such that PQ = δiIjQ ∈ (AP ) ⊂ [A]. Then Q ∈ sat(A) and Q is
reduced w.r.t. A. Since A is the characteristic set of sat(A), this is impossible.
Hence, P = δiIj is invertible w.r.t. A and A is regular.

We have the following normal representation for the saturation ideal of a
coherent and regular chain.

Theorem 3.4: If A is a coherent and regular chain of form (1), then

sat(A) =
⋃

h1≥0,...,hp≥0

(asat(A(h1,...,hp)))
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Proof. It is easy to see that sat(A) ⊃ ⋃
h1≥0,...,hm≥0

(asat(A(h1,...,hp))). Let P ∈
sat(A). Since A is coherent and regular, by Theorem 3.3, A is the charac-
teristic set of sat(A), and hence rprem(P,A) = prem(P,Af ) = 0. That is
P ∈ asat(AP ). Hence sat(A) ⊂ ⋃

h1≥0,...,hm≥0

asat(A(h1,...,hp))).

4. Proper and strong irreducible chains

Note that there is no direct method to check wether a given chain is difference
regular since we need to check that all possible transforms of the initials are
invertible. In this section, we will give a constructive criterion for a chain to be
difference regular.

4.1. Proper irreducible chains

An r-pol P is called effective in variable yi if yi(x) occurs in P . P is called
effective if P is effective in its leading variable.

A chain A of the form (1) is said to be proper irreducible if

• A∗ as defined in (4) is an algebraic irreducible triangular set; and

• For c = 1, . . . , p, Ac,1 is effective and Âc,1 is irreducible in K(ηc−1)[yc(x), . . . ,
yc(x+fc)], where fc = ord(Ac,1, yc), Bc = A∗∩K{U, y1, . . . , yc} (B0 = ∅), ηc

is a generic point for the algebraic irreducible chain Bc, and Âc,1 is obtained
by substituting ηc−1 into Ac,1.

The following result is a key property of proper irreducible chains, which gives
a constructive criterion to check whether a given chain is regular.

Theorem 4.1: A coherent and proper irreducible chain is regular.
Proof. Let A = A1, . . . , Am and Ij = init(Aj). Since A∗ is an irreducible algebraic
triangular set, by Lemma 3.2, Ii are invertible w.r.t. A∗ and hence invertible
w.r.t. A. By Lemma 4.2, all δjIi are invertible w.r.t. A.

We need to prove several lemmas.

Lemma 4.1: Use the notations in the definition of proper irreducible chains. Let
A be proper irreducible, and P an r-pol satisfying 1 ≤ ord(P, yi) ≤ fi. Then P
is algebraic invertible w.r.t. A∗.
Proof. This lemma only involves algebraic properties. Hence all statements should
be understood to be algebraic. We prove the lemma by induction on p. By Lemma
3.7, we need to prove resl(P,A∗) 6= 0. If p = 1, P ∈ K[V, y1(x+1), . . . , y1(x+f1)],
where V is the set of δiuj occurring in P and A∗. Variable y1(x + f1) must oc-
cur in P effectively. Otherwise P is already invertible w.r.t. A∗. Note that the
lead of any r-pol in A other than A1,1 is of higher rank than y1(x + f1). Then
R = resl(P,A∗) = resl(P,A1,1, y1(x + f1)). If R = 0, then A1,1|P , since A1,1



X.S. Gao, Y. Luo, and C. Yuan: Characteristic Set Method 13

is irreducible. This is impossible since y1(x) occurs in A1,1 (A is effective) but
not in P . Now, suppose that the result is true for 1, . . . , p− 1. We are going to
show that it is also true for p. By the induction hypothesis, we may assume that
resl(P,Bp−1) 6= 0. Since A is proper irreducible, Bp−1 is an algebraic irreducible

triangular set. For any polynomial Q, let Q̂ be obtained from Q by substituting
U, yi with ηp−1. Substituting ηp−1 into P and Ap,1 we get two polynomials in

P̂ ∈ K(η)[yp(x + 1), . . . , yp(x + fp)] and Âp,1 ∈ K(η)[yp(x), . . . , yp(x + fp)]. Since

resl(P,Bp−1) 6= 0, P̂ 6= 0. Furthermore, Âp,1 involves yp(x) effectively. This is be-
cause Ap,1 is reduced w.r.t. Bp−1, and hence by Lemma 3.2, the term containing
yp(x) does not vanish after the substitution. Let R = resl(P,Ap,1, yp(x + fp)).

We will show that R̂ 6= 0. Since A is proper irreducible, Âp,1 is an irreducible

polynomial. If R̂ = 0, then Âp,1|P̂ , which is impossible since ym(x) occurs in

Âp,1 effectively but not in P . Since Bp−1 is irreducible, by Lemma 3.2, R̂ 6= 0 is
equivalent to the fact that R is invertible w.r.t. Bp−1. Therefore, P is invertible
w.r.t. A∗.

The following result is a key lemma for proper and strong irreducible chains.

Lemma 4.2: Let A be a coherent and proper irreducible chain of the form (1).
If P is invertible w.r.t. A, then δP is invertible w.r.t. A.
Proof: Let fi = ord(Ai,1, yi), V the parameter set of the algebraic triangular set
AP , and Y the leading variables of AP . By Lemma 3.3, V is also the parameter
set of A∗. Since P is invertible w.r.t. A, there are P̂ ∈ K[V,Y] and a nonzero
N ∈ K[V] such that P̂ ·P ≡ N mod (AP ). Performing the transforming operator
on the above formula, we have

δP̂ · δP − δN =
∑

A∈AP

QAδA (10)

If ord(P, yi) ≥ ord(Ai,ki
, yi) for all i, by Lemma 3.5, there is a J ∈ IA∗ such that

JδP̄ · δP ≡ Jδg mod (AδP ). (11)

If ord(P, yi) < ord(Ai,ki
, yi) for some i, we may assume that for A in (10),

ord(A, yi) < ord(Ai,ki
, yi). Similar to Lemma 3.5, we can also find a J ∈ IA∗ such

that (11) is true.
Since J is a product of powers of initials of A∗ and A∗ is irreducible, by

Lemma 3.2, it is invertible w.r.t. A∗. Note that δN satisfies 1 ≤ δN ≤ fi. Then
by Lemma 4.1, δN is also invertible w.r.t. A∗. Then, JδN is invertible w.r.t. A∗.
As a consequence, there is a T and a nonzero R ∈ K[V] such that

T · JδN ≡ R mod (A∗) ≡ R mod (AδP ).

The last equality is valid because A∗ ⊂ AδP . Hence,

T · JδP̂ · δP ≡ T · J · δN ≡ R mod (AδP ).

That is, δP is invertible w.r.t. A.
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Example 4.1: This example explains why Ac,1 has to be effective in the defi-
nition of proper irreducible chains. Let A = A1, A2, where A1 = y1(x + 1) −
y1(x), A2 = y2(x+1)−y1(x). Then A satisfies all the properties in the definition
of proper irreducible chains except that A2 is not effective. Let P = A2 − A1 =
δ(y2(x)− y1(x)). It is easy to check that Q = y2(x)− y1(x) is invertible w.r.t A,
but δQ is not, which implies that Lemma 4.2 is not true without this assumption.

4.2. Consistence of proper irreducible chains

In order to obtain a complete algorithm for difference polynomial systems, we
need to show that a coherent and proper irreducible chain A is consistent, or
equivalently, Zero(sat(A)) is not empty. The proof of Theorem 4.2 uses the
theory of difference kernels established by Cohn (6). It can also be considered
as an extension of some of the results obtained by Cohn about one irreducible
difference polynomial to proper irreducible chains.

Let ai = (ai,1, . . . , ai,n), i = 0, . . . , r be n-tuples, where ai,j are elements from
an extension field of K. A difference kernel of length r, R = K(a0, a1, . . . , ar),
over the difference field K is an algebraic field extension of K such that the differ-
ence operator δ of K can be extended to a field isomorphism from K(a0, . . . , ar−1)
to K(a1, . . . , ar) and δai = ai+1, i = 0, . . . , r − 1.

Theorem 4.2: Let A be a coherent and proper irreducible chain. Then
Zero(sat(A)) 6= ∅, or equivalently, 1 6∈ {sat(A)}.
Proof: Let A be of form (1). Denote A∗ as follows

A∗ = B1,1, . . . , B1,c1 , . . . Bp,1, . . . , Bp,cp

where lvar(Bi,j) = yi. Let oi = ord(Bi,ci
, yi), i = 1, . . . , p, e = maxA∈A∗,1≤j≤q

{ord(A, uj)}, U0 = {δiuj | 1 ≤ j ≤ q, 0 ≤ i ≤ e}, U1 = {δiuj | 1 ≤ j ≤ q, 1 ≤
i ≤ e + 1}, Y0 = {δiyj | 1 ≤ j ≤ p, 0 ≤ i ≤ oj − 1}, and Y1 = {δiyj | 1 ≤
j ≤ p, 1 ≤ i ≤ oj}. Then V0 = U0 ∪ Y0 and V1 = U1 ∪ Y1 have the same
number of elements. Since A is proper irreducible, A∗ is an irreducible algebraic
triangular set when δiuj and δiyj are treated as independent variables. Hence,

I = sat(A∗) is a prime ideal in K[V̂], where V̂ = U0∪Y0∪{δo1y1, . . . , δ
opyp}. Let

η = (α
(i)
j , β

(i)
j ) be a generic zero of this prime ideal. Then δjui = α

(j)
i , δjyi = β

(j)
i

annul every polynomial in A∗ but not their initials.
We will construct a difference kernel of length one. Now, let a0 and a1 be

obtained from V0 and V1 by replacing δjui and δjyi with the corresponding α
(i)
j

and β
(i)
j . The kernel is K(a0, a1). The difference operator δ introduces a map

from K(a0) to K(a1) as follows δ(α
(i)
j ) = α

(i+1)
j and δ(β

(i)
j ) = β

(i+1)
j . We will

prove that δ introduces an isomorphism between K(a0) and K(a1). Let

B0 = A∗ − {B1,c1 , . . . , Bp,cp},B1 = {δA |A ∈ B0}.
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From the definition of A∗, the orders of yk in Bi,j ∈ B0 are not exceeding ok− 1.
As a consequence, a0 is a generic zero of the algebraic prime ideal I0 with B0 as
a characteristic set.

Note that δB0 = B1 and δa0 = a1, by the nature of the difference operator, B1

is an irreducible triangular set in K[V1] and a1 is a generic zero of the prime ideal
I1 with B1 as a characteristic set. We will show that I1 = (B1) : IB1 = I ∩K[V1].
Let ti = ord(Bi,1), U∗ = U0∪U1,Y∗ = Y0∪Y1. Since each Bi,1 is effective, we can
choose U∗ and {yi,j|1 ≤ i ≤ p, 1 ≤ j ≤ ti} as the parametric set of I ∩K[U∗,Y∗].
Then the number of parameters in I0 is the same as that of I ∩ K[V1]. I1 has
the same number of parameters as I0. Hence I1 also has the same number of
parameters as I ∩ K[V1]. Since these two prime ideals I1 and I ∩ K[V1] have
the same parameter set and I1 ⊂ I ∩ K[V1], we have I1 = I ∩ K[V1]. Since
δI0 → I1 is an isomorphism between two prime ideals, δK(a0) → K(a1) is a field
isomorphism. As a consequence, K(a0, a1) is a difference kernel over K.

By Lemma V on page 156 of (6), the kernelK(a0, a1) has a principal realization
ψ corresponding to a series of kernels K(a0, a1), K(a0, a1, a2), . . .. We will show
that ψ is a zero of sat(A). From the construction of the kernel, for any A ∈ A∗,
we have A(ψ) = A(η) = 0. Hence ψ is a zero of the polynomials in A∗ but does
not annul any initials of A∗. Then for any A ∈ A, η is a zero of δkA for any k,
since δ is an isomorphism. Also, η does not annul any J ∈ IA. As a consequence,
η ∈ Zero(sat(A)).

The following example, due to Cohn trough private communication, shows
that a coherent and regular chain could have no solutions.

Example 4.2: Let A1 = y2
1 + 1, A2 = y1(x + 1)− y1, A3 = y2

2 + 1, A4 = y2(x +
1) + y2, and A = {A1, A2, A3, A4}. A is coherent and regular. But A is not
proper irreducible, since A3 −A1 = (y2 − y1)(y2 + y1). We have Zero(sat(A)) =
Zero(A) = Zero(A ∪ {y2 − y1}) ∪ Z(A ∪ {y2 − y1}) = ∅.

4.3. Characteristic sets of reflexive prime ideals

The following example shows that for a coherent and proper irreducible chain
A, sat(A) does not necessarily to be a perfect or prime ideal. It also shows that
Lazard’s lemma cannot be generalized to the difference case.

Example 4.3: Let A = y2
1 + 1 and A = A. Then A is coherent and proper

irreducible over K = O(x). We will show that sat(A) = [A] is not a perfect
ideal. δA − A = PQ where P = y1(x + 1) − y1, Q = y1(x + 1) + y1. If [A] is a
perfect ideal, from PQ ∈ [A], we have

PδQδ(PδQ) = Pδ2Qδ(PQ) ∈ [A].

Hence, PδQ ∈ [A]. By Theorem 4.1, A is a regular chain and rprem(PδQ, A) =
0. But, a direct computation shows that rprem(PδQ,A) 6= 0, a contradiction.
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In order to describe prime ideals with chains, we introduce the following con-
cept. A proper irreducible chain A is called strong irreducible if for any nonneg-
ative integers hi, A(h1,...,hp) is an irreducible algebraic triangular set.

Theorem 4.3: Let A be a coherent and strong irreducible chain of form (1).
Then sat(A) is a reflexive prime ideal whose dimension is dim(A) and whose
relative order w.r.t. U is ord(A).
Proof: Let P,Q be two r-pols such that PQ ∈ sat(A). By Theorem 3.4, there exist
nonnegative integers h1, . . . , hp such that PQ ∈ D = (A(h1,...,hp)) : IA(h1,...,hp)

.
Since A is strong irreducible, A(h1,...,hp) is an irreducible algebraic triangular
set and hence D is a prime ideal. We thus have P ∈ D or Q ∈ D. In other
words, P ∈ sat(A) or Q ∈ sat(A). Hence, sat(A) is a prime ideal. We still
need to show that sat(A) is reflexive, that is, if δP ∈ sat(A) then P ∈ sat(A).
Suppose P 6∈ sat(A). By Lemma 3.4, P 6∈ (AP ) : IAP

. Since AP is an irreducible
algebraic triangular set, P must be invertible w.r.t. AP . As a consequence, P is
invertible w.r.t. A. By Lemmas 4.2 and 3.7, δP is invertible w.r.t. A and hence
δP 6∈ sat(A), which contradicts the fact δP ∈ sat(A). We proved that sat(A)
is a reflexive prime ideal.

We will prove that U is a complete parameter set of sat(A), that is sat(A) ∩
K{U} = {0} and sat(A) ∩ K{U, yi} 6= {0} for every i. By Theorems 4.1 and
3.3, A is a characteristic set of sat(A). Then, sat(A) ∩ K{U} = ∅, since every
non-zero r-pol in sat(A) ∩K{U} is reduced w.r.t to A and hence must be zero.
If there exists an i, such that sat(A) ∩K{U, yi} = {0}, let h = |P(A)| (see (2))
and C = A(0,...,0,h,0,...,0), where h is at the i-th place. Let Y′ and U′ be the set
of all yi(x + j) and uk(xl) occurring in C and Y′′ = Y′ ∪ P(A). By Lemma 3.2,
asat(C) is a prime ideal of dimension dim(A) = h in K(U′)[Y′′]. On the other
hand, asat(C) ∩K(U′)[yi,0, . . . , yi,h] ⊂ sat(A) ∩K(U′)[yi,0, . . . , yi,h] = {0}. From
this, we have dim(asat(C)) ≥ h + 1, a contradiction. This proves that U is a
complete parameter set of sat(A). Then, by Theorem IV on page 127 of (6),
dim(sat(A)) = dim(A).

The relative order of sat(A) w.r.t. U is defined to be the number of yi(x + h)
which are algebraically independent module sat(A) in K(U){Y} (page 128 of
(6)). By Lemma 3.3, this is just the dimension of the algebraic prime ideal
asat(A∗) in K(U){Y}, which is |P(A)| = ord(A) by Lemma 3.2.

Conversely, not every characteristic set of a reflexive prime ideal is strong
irreducible. For instance, a characteristic set of [y2(x + 1) + y1(x)] under the
variable order y1 < y2 is not effective and hence not strong irreducible. But, we
have the following result.

Theorem 4.4: Let I be a reflexive prime ideal. We may choose a proper order
of variables such that among the characteristic sets of I under this variable order,
there exists one A which is coherent, strong irreducible, and I = sat(A).
Proof: By Lemma 4.3, for any characteristic set A of I, we have I = sat(A). By
Theorem 3.3, A is coherent.
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Assume that A is of the form (1). Since I is a prime ideal, we may choose
A1,1 to be irreducible. For c = 1, . . . , p, let Bc = A∗ ∩ K{U, y1, . . . , yc} (B0 =
∅) and ηc a generic point for the algebraic irreducible triangular set Bc. Since
I is prime, we may choose A such that Ac,1 is an irreducible polynomial in
K(ηc−1)[yc(x), . . . , yc(x + fc)], where fc = ord(Ac,1, yc). It is obvious that the ui

and yi in (1) satisfy the conditions in Lemma 4.5.
We will show that there exist r-pols Pi ∈ K{U, yi}, i = 1, . . . , p satisfying the

conditions of Lemma 4.5 where U = {u1, . . . , uq}.
Since I is a prime ideal, there exists a non-zero Pi ∈ Ii = I ∩ K{

U, yi} which is of lowest order in yi and lowest total degree. Pi must be an
irreducible r-pol. We will prove that Pi is effective in yi by induction. If P1 is
not effective in y1, we may assume that P1 is effective in one of the ui, say u1.
Otherwise, P1 is not effective in all the variables P1 and hence P1 = δQ1 for
some r-pol Q1. Since I is reflexive, Q1 ∈ I, which contradicts the fact that P1

has the lowest order in y1. Suppose that Pj, j = 1, . . . , i− 1 is effective in yj and
Pi is not effective in yi. Similar to the case of i = 1, we may assume that Pi is
effective in one of the ui, say u1. We may exchange u1 and yi and treat yi as a
parameter and u1 as the leading variable of Pi. We choose V = {u2, . . . , uq, yi}
as the parameter set. Let P ′

j , j = 1, . . . , i−1 be the irreducible r-pols which have
the lowest rank and total degree in I ∩ K{V, yj} and P ′

i the irreducible r-pol
which has the lowest rank and total degree in I ∩ K{V, u1}. We will show that
P ′

j , 1 ≤ j < i is effective in yj and P ′
i is effective in u1.

First, P ′
i is effective in u1. Otherwise, we choose a characteristic set B of

I ∩ K{V, u1} under the variable order u2 < · · · < uq < yi < u1. Write Pi as an
r-pol in u1(x):

Pi =
∑

j

Qju1(x)j.

By Lemma 4.4, BPi
is an irreducible triangular set and u1(x) does not oc-

cur in any polynomial in B. Then by Lemma 3.2, prem(Pi,BPi
) = 0 implies

prem(Qk,BPi
) = 0 and hence Qk ∈ I which contradicts the fact the Pi has the

lowest total degree.
Second, for any j, 1 ≤ j < i, we will show that P ′

j is effective in yj. Other-
wise, we choose the characteristic set B′ of I ∩K{u2, . . . , uq, yi, u1, yj} under the
variable order u2 < . . . < uq < yi < yj < u1. Then by Lemma 4.4, B′Pj

is an
irreducible triangular set. Since P ′

j does not contain yj(x), yj(x) does not occur
in each polynomial in B′Pj

. Write Pj as a polynomial in yj(x):

Pj =
∑

k

Qkyj(x)k.

Then by Lemma 3.2, prem(Pi,B′Pj
) = 0 implies prem(Qk,B′Pj

) = 0 and hence
Qk ∈ I which contradicts the fact the Pj has the lowest total degree.

In this way, we have selected the Pi satisfying the conditions in Lemma 4.5.
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By Lemma 4.5, A is effective. Together with Lemma 4.4, we know that A is
strong irreducible.

Lemma 4.3: Let I be a reflexive prime difference ideal, A its characteristic set.
Then I = sat(A).
Proof: It is clear that I ⊂ sat(A). Let P ∈ sat(A). Then there is a J ∈ IA such
that JP ∈ [A] ⊂ I. By Theorem 3.3 and Lemma 3.7, J is invertible w.r.t. A and
hence not in I. Since I is a prime ideal, P ∈ I.

Lemma 4.4: Let I be a reflexive prime difference ideal, A its characteristic set.
Then for any nonnegative integers hi, A(h1,...,hp) is algebraic irreducible.
Proof: Otherwise, we have nonnegative integers h1, . . . , hp such that A(h1,...,hp) is
a reducible algebraic triangular set. By definition, there exist r-pols P and Q
which are reduced w.r.t. A(h1,...,hp) and with order not higher than those r-pols
in A(h1,...,hp) such that PQ ∈ A(h1,...,hp) ⊂ sat(A) = I. From this we have P ∈ I
or Q ∈ I, which is impossible since P and Q are reduced w.r.t. A.

Lemma 4.5: Let I be a reflexive prime difference ideal in K{u1, . . . , uq, y1, . . . , yp}
such that I ∩K{u1, . . . , uq} = {0}, for each yi, Ii = I ∩K{u1, . . . , uq, yi} 6= {0},
and Pi ∈ Ii a non-zero irreducible r-pol of lowest order in yi and of lowest total
degree. If Pi is effective in yi then a characteristic set of I under the variable
order ui < y1 < y2 < . . . < yp is effective.
Proof: Assume that the characteristic set of I is of form (1). We need only to
show that Ac,1 is effective in yc. Assume that there is a c such that Ac,1 is not
effective. Write Pc as a polynomial in yc(x):

Pc =
∑

i

Qiyc(x)i.

Since Pc has the lowest order in yc, we have ord(Pc, yc) = ord(Ac,1, yc). As a
consequence, when computing prem(Pc,APc), all Ac,i, i > 1 are not needed. By
Lemma 4.4,APc is an irreducible algebraic triangular set and yc(x) does not occur
in Ac,1. Then by Lemma 3.2, prem(Pc,APc) = 0 implies prem(Qk,APc) = 0 and
hence Qk ∈ I which contradicts the fact the Pc has the lowest total degree.

5. A zero decomposition algorithm

We will give an algorithm to decompose the zero set of a finitely generated r-pol
systems into the union of zero sets of regular and proper irreducible chains.

5.1. Effective characteristic sets

Note that an r-pol is called effective if it is effective in its leading variable. A set
of r-pols P is called effective if any r-pol in P is effective.
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Lemma 5.1: Let P be a finite set of r-pols in K{y1, . . . , yn} and ki, i = 1, . . . , n
integers. By a proper transformation of variables zi(x + ki) = yi(x), there is
a set of r-pols P̂ ∈ K{z1, . . . , zn} which is effective and there is a one to one
correspondence between the solutions of P and P̂.
Proof: First, let us divide P into P1, . . . ,Pn according to their classes. Let hi be the
largest one among the lowest orders of P ∈ Pi in yi (denoted by lord(P, yi)). Now
the transformation of variables is yi(x) = zi(x+hi+1 + · · ·+hn), i = 1, . . . , n− 1
and yn(x) = zn(x). Under such a transformation, an r-pol P ∈ Pi becomes P̂ . It
is easy to see lord(P̂ , zj) = lord(P, yj) + hj+1 + · · · + hn ≥ lord(P, yi) + hi+1 +

· · ·+hn = lord(P̂ , zi), for j = 1, . . . , i−1. Since K is inversive, we get an effective

r-pol P̄ = δ−lord(P̂ ,zi)P̂ in K{z1, . . . , zn}. We obtain a set of effective r-pols P̂
from P. If a = (a1, . . . , an), ai ∈ F is a solution of P. Then in the inversive
closure of F , let bi = δ−(hi+1+···+hn)ai, 1 ≤ i < n and bn = an. We can check
that b = (b1, . . . , bn) is a solution of P̂. On the other hand, for any solution
b = (b1, . . . , bn) of P̂. Let ai = δhi+1+···+hnbi, 1 ≤ i < n and an = bn. We get a
solution a = (a1, . . . , an) of P.

We have the following procedure to find a set of effective r-pols.

Algorithm 5.1: Effective(P) Input: a finite set of r-pols P. Output: variables
transformation yi(x) = zi(x + ki) and a set of effective r-pols P̄.

Begin
hi := 0, i = 1, . . . , n; P̄ := { };
For P in P do

if i := cls(P ) then hi := max(hi, lord(P, yi));
T := {yi(x) = zi(x + hi+1 + · · ·+ hn), i = 1, . . . , n};
P̂ := subs(T,P); (Do a variable change as in Lemma 5.1 )
For P in P̂ do

let k := cls(P );

P̄ := P̄ ∪ {δ−lord(P,zk)P};
return(T, P̄);

end.

Example 5.1: Let

P =

{
y1(x + 1) + xy1(x), y1(x)y2(x + 3) + y2(x + 2),
y2(x + 4) + y1(x)y2(x + 1), y3(x + 3) + y2(x)y3(x + 1)

}

Then h1 = 0, h2 = max{2, 1} = 2, h3 = 1. Let z1(x + 2 + 1) = y1(x), z2(x + 1) =
y2(x), z3(x) = y3(x). Then

P̂ =

{
z1(x + 4) + xz1(x + 3), z1(x + 3)z2(x + 4) + z2(x + 3),
z2(x + 5) + z1(x + 3)z2(x + 2), z3(x + 3) + z2(x + 1)z3(x + 1)

}
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Hence P̄ = {z1(x + 1) + (x − 3)z1(x), z1(x)z2(x + 1) + z2(x), z2(x + 3) + z1(x +
1)z2(x), z3(x + 2) + z2(x)z3(x)}. Note that each r-pol in P̄ is effective.

It is easy to verify the following properties.

Lemma 5.2: Under the variable transformation yi(x) = zi(x + ki), i = 1, . . . , n,
r-pols A1, A2, P, Q and chains A1,A2 in K{y1, . . . , yn} become the r-pols Ā1, Ā2,
P̄ , Q̄ and chains Ā1, Ā2 in K{z1, . . . , zn} respectively. Then, we have A1 ≺
A2 ⇐⇒ Ā1 ≺ Ā2, A1 ≺ A2 ⇐⇒ Ā1 ≺ Ā2, and Zero(P ) = Zero(Q) ⇐⇒
Zero(P̄ ) = Zero(Q̄).

Lemma 5.3: A finite set P of r-pols becomes P̄ by the effective algorithm, the
variable transformation is T = {yi(x) = zi(x + ki), i = 1, . . . , n}. If A is a
characteristic set of P, A becomes Â under the variable transformation T. Let
Ā be a characteristic set of P̄. Then Â º Ā.
Proof : By Lemma 5.2, Â is a chain in K{z1, · · · , zn}. If Â is effective, Â ⊂ P̄.
Hence it has a higher or equal rank than that of Ā. Otherwise, there is an Ai ∈ Â
which is not effective, that is, there is an Āi ∈ P̄, t > 0, such that δtĀi = Ai. It
is clear that Āi ≺ Ai. Hence Â Â Ā.

Algorithm 5.2: ECharSet(P) Input: a finite set P of r-pols. Output: a vari-

able transformation yi(x) = zi(x + ki), i = 1, . . . , n, P̂ = Effective(P ), and an

effective chain B which is a characteristic set of P̂.

Begin
[T, P̂] = Effective(P),B = { };
while P̂ 6= { } do

P̂ =the r-pols in P̂ which are reduced w.r.t. B;
B = B∪ {one of r-pols with the lowest rank in P̂};

return(T, P̂,B)
end.

5.2. A zero decomposition algorithm for difference polynomial systems

A chain A is called a Wu characteristic set of a set P of r-pols if A ⊂ [P] and
for all P ∈ P, rprem(P,A) = 0.

Lemma 5.4: Let P be a finite set of r-pols, A = A1, . . . , Am a Wu characteristic
set of P, Ii = init(Ai), and J =

∏m
i=1 Ii. Then

Zero(P) = Zero(sat(A))
⋃
∪m

i=1Zero(P ∪ A ∪ {Ii})
Zero(P) = Zero(A/J)

⋃
∪m

i=1Zero(P ∪ A ∪ {Ii})

Proof: This is a direct consequence of the remainder formula in Lemma 2.5.
The following algorithm is a modification of a standard algorithm to compute

the Wu characteristic set of a finite polynomials set (27).
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Algorithm 5.3: ECohWuCharSet(P) Input: a finite set P of r-pols. Output:
a variable transformation T = {yi(x) = zi(x+ki), i = 1, . . . , n}, an effective r-pol
set P′, and a coherent and effective chain A ⊂ P′ such that

• Zero(P′) = Zero(P̂) where P̂ = Effective(P) under T.

• For any P ∈ P′, we have rprem(P,A) = 0. Hence, A is a Wu characteristic
set of P′.

Begin
P′ := P, R := P, T = I is the identity variable transformation;
while R 6= { } do

[T̄,P′ ,A] := ECharSet(P′);
R := {rprem(f,B) | f ∈ ∆(A)} \ {0};
R := R ∪ {rprem(P,A) |P ∈ P′} \ {0};
P′ = P′ ∪ R;
T = T̄ ◦T; (compositions of variable transformation))

return(T,P′ ,A)
end.
In Algorithm 5.3, ∆(A) is the set of ∆ r-pols defined in (6). The r-pols in R

are reduced w.r.t. A by Lemma 2.5. By Lemmas 2.3, 5.2 and 5.3, the rank of A
is decreasing after each iteration. Then by Lemma 2.1, the algorithm terminates.

Lemma 5.5: Let A be a Wu characteristic set of a finite set P. If A∗ is not
an algebraic irreducible triangular set, then we can find P1, P2, . . . , Ph which are
reduced w.r.t. A and some initials Ii of A such that

Zero(P) = ∪h
i=1Zero(P, Pi)

⋃
∪iZero(P, Ii).

Proof: Denote B = A∗ = B1, . . . , Bp. Since A∗ is not irreducible, by Lemma 3
in Section 4.5 of (27), there are P1, . . . , Ph which are reduced w.r.t. A∗ such that

P =

p∏
i=1

Ivi
i P t1

1 . . . P th
h =

k+1∑
i=1

QiBi

where Ii is the initial of Bi. Since A is a Wu characteristic set of P, P ∈ [P].
Then Zero(P) = Zero(P ∪ {P}) = ∪h

i=1Zero(P, Pi)
⋃∪iZero(P, Ii).

Now, we can give the Ritt-Wu zero decomposition algorithm.

Algorithm 5.4: RittWuDec(P) Input: a finite set P of r-pols. Output: Either
Zero(P) = ∅, or a sequence of variable transformations Ti = {yj(x) = zij(x +
kij), j = 1, . . . , t} and a sequence of coherent and proper irreducible difference
chains Ai ⊂ K{zi1, · · · , zin}, i = 1, . . . , t such that

Zero(P̂) =
t⋃

i=1

Zero(sat(Âi))
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where P̂ and Âi in K{z1, · · · , zn} are obtained from P and Ai under the variable
transformation T = {yj(x) = zj(x + kj), j = 1, . . . , n}, where kj = max{kij, i =
1, . . . , t}.

Begin
[T,P′ ,A] :=ECohCharSet(P);
If A is trivial then return{};
If A is proper irreducible then

return({[A,T]}⋃∪iRittWuDec(P′ ∪ A ∪ {Ii}));
else by Lemma 5.5, we can find Pi, i = 1, . . . , h and

return(∪iRittWuDec(P′ ∪ {Fi})
⋃∪iRittWuDec(P′ ∪ {Ii}));

end.
Proof of the correctness of the Algorithm. In algorithm ECohCharSet, since

Zero(P′) = Zero(P̂) and A ⊂ P′ , it is clear that if A is trivial Zero(P) = ∅.
Note that A is already coherent. If A is proper irreducible, then we have an
output. The correctness of the return value is due to Lemma 5.4 and the fact
Zero(P′) = Zero(P̂). If A is not proper irreducible, the correctness of the return
value is due to Lemma 5.5. In all the recursive cases, the added r-pols Ii or Pi are
reduced w.r.t to A. Then by Lemmas 2.3, 5.2 and 5.3, the rank of A obtained
from RittWuDec(P′ ∪ A ∪ {Ii}) or RittWuDec(P′ ∪ A ∪ {Pi}) has lower rank.
Then by Lemma 2.1, the algorithm terminates. Note that for each Ai, we have
a variable transformation Ti to ensure that Ai is effective. In order to obtain a
decomposition for P, we need to have a “maximal” variable transformation such
that all Ai can be represented explicitly in terms of these variables.

Example 5.2: Let

P1 = (y1(x + 1)− y1(x))2 − (y1(x + 1) + y1(x))

P2 = (y1(x + 3)− y1(x + 1)) ∗ y2(x + 1) + (y1(x + 2)− y1(x)) ∗ y2(x).

RittWuDec(P1) returns {P1}. RittWuDec(P1, P2) returns two chains:
{

P1, y1(x + 2)− y1(x)
P1, y1(x + 2)− 2y1(x + 1) + y1(x)− 1, P3

where P3 = (2y1(x + 1)− 2y1(x) + 3)y2(x + 1) + (2y1(x + 1)− 2y1(x) + 1)y2(x).
There is no variables transformations.

As an application of Ritt-Wu’s zero decomposition algorithm, we can solve
the membership problem of perfect difference ideals.

Theorem 5.1: Let P be a finite set of r-pols in K{y1, . . . , yn} and the Ritt-Wu
zero decomposition of P is {[A1,T1], . . . , [Ak,Tk]}. Then Zero(P) = ∅ iff k = 0.
Proof: By Lemma 5.1, P = 0 has solutions iff P = 0 has solutions under a variable
transformation. Now the result is a direct consequence of Theorem 4.2.

The membership problem of perfect difference ideals can be solved as follows.
An r-pol Q ∈ {P} iff Zero(P∪{Qz +1}) = ∅ where z is a new variable. Now the
problem can be solved with Theorem 5.1.
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5.3. Automated proving of certain difference identities

If a sequence of numbers {fn}n≥0 satisfies a linear homogenous r-pol equation
whose coefficients are algebraic polynomials, it can be regard as a solution of an
r-pol equation under certain initial values. If the order of the r-pol is k and the
initial of the r-pol is not zero, we need only to verify that f0, f1, . . . , fk−1 are zero
in order to show that for all i, fi = 0. Algorithms to prove identities of this type
can be found, for instance, in (5; 17; 23; 30). Since Ritt-Wu’s zero decomposition
algorithm proposed in this paper provides an elimination tool for non-linear dif-
ference equations, it is possible to prove identities for number sequences defined
by non-linear difference equations. In what below, we use two examples to show
how to prove difference identities with Ritt-Wu’s zero decomposition algorithm.

The first example is about Gauss’ hypergeometric function which can be re-
garded as a power series solution to the hypergeometric equation

z(1− z)w
′′

+ [r − (a + b + 1)z]w
′ − abw = 0.

It is denoted as F (a, b, r; z) =
∑∞

0 ckz
k, where ck satisfies

(n + 1)(n + r)cn+1 − (n + a)(n + b)cn = 0, c0 = 1.

To prove

(r − 1)F (a, b, r − 1; z)− aF (a + 1, b, r; z)− (r − a− 1)F (a, b, r; z) = 0, (12)

let us denote F (a, b, r − 1; z) =
∑∞

0 akz
k. Then ak satisfies (n + 1)(n + r −

1)an+1 − (n + a)(n + b)an = 0, a0 = 1. Denote F (a + 1, b, r; z) =
∑∞

0 bkz
k. Then

bk satisfies (n + 1)(n + r)bn+1 − (n + a + 1)(n + b)bn = 0, b0 = 1. With these
notations, identity (12) becomes

∞∑

k=0

((r − 1)ak − abk − (r − a− 1)ck)z
k = 0.

That is, we need to show: ∀ k, (r − 1)ak − abk − (r − a− 1)ck = 0. Let

P1 = (n + 1)(n + r − 1)an+1 − (n + a)(n + b)an,
P2 = (n + 1)(n + r)bn+1 − (n + a + 1)(n + b)bn,
P3 = (n + 1)(n + r)cn+1 − (n + a)(n + b)cn,
P4 = hn − (r − 1)an − abn − (r − a− 1)cn).

Using RittEuDec under the variable order hn < an < bn < cn (in our implemen-
tation, the command is RittWuDec([P1, P2, P3, P4], [hn, an, bn, cn])), we obtain a
trivial chain and a coherent proper irreducible chain whose first r-pol is:

A1 = (b + 1 + n) (n + b) (n + 1 + a) (n + a) hn − 2 (n + r) (n + 1) (b + 1 + n)
(n + 1 + a) hn+1 + (n + 2) (n + 1) (n + r + 1) (n + r) hn+2.
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Since Pi are linear, hn satisfies the difference equation A1 = 0 of order two.
We need only to verify that h0 = h1 = 0, then hn = 0 for any n. It is clear
that h0 = (r − 1)a0 − ab0 − (r − a − 1)c0 = (r − 1) − a − (r − a − 1) = 0,
h1 = (r − 1)a1 − ab1 − (r − a− 1)c1 = 0.We proved the identity.

The second example is to prove the Cassini identity about Fibonacci numbers.
The Fibonacci number Fn satisfies

Fn+2 − Fn+1 − Fn = 0, F0 = 0, F1 = 1.

We will prove the Cassini identity:

Fn+2Fn − F 2
n+1 = (−1)n+1, n = 0, 1, 2, . . . .

The number sequence (−1)n can be represented by difference relations an+1 +
an = 0 with initial value a0 = 1. Let P1 = Fn+2−Fn+1−Fn, P2 = hn−(Fn+2Fn−
F 2

n+1 +an), P3 = an+1 +an. Using RittEuDec to {P1, P2, P3} under the variable
order hn < an < Fn, we obtain a coherent proper irreducible chain:

hn+1 + hn, an+1 + an,FnFn+1 + Fn
2 − hn − Fn+1

2 + an,Fn+2 − Fn+1 − Fn.

From the computation procedure, we know that C = hn+1 + hn is a linear
combination of P1, P2, and P3 and their transformations. Then hn satisfies C = 0.
Since h0 = F2F0−F 2

1 + a0 = 0, hn = 0 for any n. Cassini’s identity is proved. In
(17), a difference equation of order three hn+3 − 2 hn+2 − 2 hn+1 + hn is obtained
with linear algebraic tools. In (5), the same difference equation as the one in this
paper is obtained with an elimination procedure over Ore algebras.

6. Conclusion

In this paper, we developed a characteristic set method for nonlinear ordinary
difference polynomial systems. The method could be used to decompose the
zero set of a finitely generated difference polynomial system into the union of
the zero sets of coherent and proper irreducible chains. We further proved that a
coherent and proper irreducible chain has the following nice properties: it is the
characteristic set of its saturation ideal and it has at least one solution. These
two properties make us possible to solve the membership problem for perfect
difference ideals and to prove difference identities.

We also established several basic properties of difference chains. In particular,
we proved that an chain is the characteristic set of its saturation ideal iff it is
coherent and regular; a chain is the characteristic set of a reflexive prime ideal iff
it is coherent and strong irreducible. This last criterion gives an intrinsic criterion
for a chain to be the characteristic set for a reflexive prime ideal.
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