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Abstract

Toric codes are obtained by evaluating rational functions of a nonsin-

gular toric variety at the algebraic torus. One can extend toric codes to

the so called generalized toric codes. This extension consists on evaluating

elements of an arbitrary polynomial algebra at the algebraic torus instead

of a linear combination of monomials whose exponents are rational points

of a convex polytope. We study their multicyclic and metric structure,

and we use them to express their dual and to estimate their minimum

distance.

1 Introduction

J.P. Hansen introduced toric codes in [4], these codes are algebraic-geometry
codes at a toric variety over a finite field [2]. Algebraic-geometry codes are
obtained by evaluating rational functions on a normal variety [12]. For a toric
variety and a Cartier divisor D, toric codes are obtained by evaluating rational
functions of L(D) at the points of the algebraic torus T = (F∗

q)
r, where Fq is the

finite field with q elements. Toric codes have been studied in [3, 4, 5, 6, 7, 8, 10].
In [6] there are some examples of toric codes with very good parameters.

We extend the definition of toric codes to the so called generalized toric
codes. Generalized toric codes are obtained by evaluating polynomials at T as
for toric codes but considering arbitrary polynomial algebras instead of L(D).
We emphasize that toric codes are generalized toric codes. [3] claimed that toric
codes are multicyclic and it was proved there for a toric code defined using a
toric surface. We prove that generalized toric codes are multicyclic, and there-
fore toric codes coming from a convex polytope of arbitrary dimension. The
aim of this paper is to study the multicyclic and metric structure of generalized
toric codes. We compute the dual of a generalized toric code, which is a gener-
alized toric code (the dual of a toric code is not a toric code in general). One
cannot estimate its minimum distance using intersection theory [5, 10] but we
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provide here a method to estimate the minimum distance similar to the one in
[8] studying its structure.

In the next section we have compiled some basics facts about toric codes and
we also introduce the generalized toric codes. In section 3 we study the multi-
cyclic structure of generalized toric codes. Finally in section 4 we study their
metric structure which makes it possible to compute the dual of a generalized
toric code. Furthermore we show that there are no self-dual generalized toric
codes.

2 Toric Codes and Generalized Toric Codes

Let M be a lattice isomorphic to Z
r for some r ∈ Z and MR = M⊗R. A convex

polytope is the same datum as a toric variety and Cartier divisor. Let P be an
r-dimensional convex polytope in MR and let us consider XP and DP the toric
variety and the Cartier divisor defined by P . We may assume that XP is non
singular, in other case we refine the fan. Let L(DP ) = H0(XP ,O(DP )) be the
Fq-vector space of rational functions f over XP such that div(f) +DP � 0.

The toric code CtP associated to P is the image of the Fq-linear evaluation
map

ev : L(DP ) → F
n
q

f 7→ (f(t))t∈T

where T = (F∗
q)

r. Since we evaluate at #T points, CtP has length n = (q − 1)r.
For a toric variety XP one has that L(DP ) is the Fq-vector space generated by
the monomials with exponents in P ∩M

L(DP ) = 〈{Y
u = Y u1

1 · · ·Y
ur

r | u ∈ P ∩M}〉 ⊂ Fq[Y1, . . . , Yr]

The dimension of the code and the kernel of ev are computed in [10]. Let
u ∈ P ∩M and u = cu + bu where cu ∈ H = {0, . . . , q− 2}× · · · × {0, . . . , q− 2}
and bu ∈ ((q − 1)Z)r. We will also denote u = cu. Let P = {u | u ∈ P ∩M}.
The dimension of the code CtP is k = #P .

The minimum distance of a toric code CtP is estimated using intersection
theory [4, 10]. Also, it can be estimated using a multivariate generalization of
Vandermonde determinants on the generator matrix [8].

Let U ⊂ H = {0, . . . , q − 2} × . . .× {0, . . . , q − 2}, T = (F∗
q)

r and Fq[U ] the
Fq-vector space

Fq[U ] = 〈Y u = Y u1

1 · · ·Y
ur

r | u = (u1, · · · , ur) ∈ U〉 ⊂ Fq[Y1, · · · , Yr]

The Generalized toric code CU is the image of the Fq-linear map

ev : Fq[U ] → F
n
q

f 7→ (f(t))t∈T

where n = #T = (q − 1)r. Some of the results for toric codes are also valid for
generalized toric codes. Namely, the following result ensures that the map ev is
injective and therefore the dimension of CU is k = #U .
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Lemma 1. Let U ⊂ H and set

f =
∑

u∈U

λuY
u, λu ∈ Fq

Then (f(t))t∈T = (0)t∈T if and only if λu = 0, ∀ u ∈ H.

The proof of the previous result if the same as the one of [10, lemma 3.2] for
toric codes, and consequently we do not reproduce it. This is because the proof
for toric codes shows that a nonzero polynomial which is a linear combination
of monomials of H does not vanish completely on T .

We have defined the generalized toric codes for U ⊂ H as the evaluation
of Fq[U ] at T . As we claimed in the previous section, this family of codes
include the ones obtained evaluating polynomials of an arbitrary subalgebra of
Fq[Y1, . . . , Yr] at T . The following result shows this fact.

Proposition 2. Let V ⊂ Z
r, Fq[V ] = 〈Y v | v ∈ V 〉 and CV the linear code

defined by the image of the evaluation map ev at T

ev : Fq[V ] → F
n
q

f 7→ (f(t))t∈T

Let v ∈ Z
r, where we write v = cv + bv with cv ∈ H and bv ∈ ((q − 1)Z)r.

We also denote it by v = cv. Then CU = CV , where U = V .

Proof.
Let f =

∑

v∈V λvY
v ∈ Fq[V ] and t ∈ T . One has that

f(t) =
∑

v∈V

λvt
cv+uv =

∑

v∈V

λvt
cv

And the result holds.
Let P be a convex polytope in MR, by the previous proposition it follows

that CtP = CU with U = P . Therefore all the results for generalized toric codes
are valid in particular for toric codes.

3 Multicyclic Structure of Generalized Toric Codes

Multicyclic codes are those whose words are invariant under certain cyclic per-
mutations, they can also be understood as ideals in a certain polynomial algebra.
[3] proves that a toric code defined using a plane convex polytope (r = 2) is
multicyclic by representing the words of the code by matrices. The proof is hard
to extend for arbitrary dimension because one should consider r-dimensional ar-
rays, although the result was claimed there for any r. We represent the words
of the code by polynomials in order to prove that a generalized toric code of
arbitrary dimension is multicyclic.
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Let C ⊂ F
n
q be a linear code. We call C a cyclic code if c = (c0, c1, . . . , cn−1) ∈

C then (cn−1, c0, c1, . . . , cn−2) ∈ C.
Let Fq[X ]≤n−1 be the Fq-vector space of polynomials of degree lower than n

and A the quotient ring Fq[X ]/(Xn−1). Since Fn
q , Fq[X ]≤n−1 and A are vector

spaces over the same field with the same finite dimension n they are isomorphic.
Then we consider the isomorphisms

F
n
q ≃ Fq[X ]≤n−1 ≃ Fq[X ]/(Xn − 1)

and for abbreviation one identifies (c0, c1, . . . , cn−1), the polynomial c0 + c1X+
· · ·+ cn−1X

n−1 and the class c0+ c1X+ · · ·+ cn−1X
n−1+(Xn−1). In practice

one uses the most convenient notation when no confusion can arise. A code in
the polynomial algebra A is cyclic if and only if it is an ideal in A.

Cyclic codes have been deeply studied and used for real applications [9]. A
natural extension of cyclic codes are the so called multicyclic codes. A code
C ⊂ A = Fq[X1, . . . , Xr]/(X

N1

1 − 1, . . .XNr

r − 1) is multicyclic or r-D cyclic

if it is an ideal in A, with N1, . . . , Nr ∈ N. Let Fq[X1, . . . , Xr]≤(N1−1,...,Nr−1) be
the Fq-vector space of polynomials in the variables X1, . . . , Xr of degree lower
than Ni in each variable Xi for all i. In particular, a cyclic code is a 1-cyclic
code. In the same way as for the cyclic case one can consider the following
isomorphisms of vector spaces

F
n
q ≃ Fq[X1, . . . , Xr]≤(N1−1,...,Nr−1) ≃ A

where n = N1 · · ·Nr and we can identify its elements.
Let CU be the generalized toric with U ⊂ H . Set α a primite element of Fq,

i.e. F
∗
q = {α0, α1, . . . , αq−2} and therefore T = {αi = (αi1 , . . . , αir ) | i ∈ H}.

Then CU is the vector subspace of Fn
q generated by {(Y u(αi))i∈H | u ∈ U}, where

Y u(αi) = α〈u,i〉 = αu1i1+···+unin . In order to study the multicyclic structure we
shall use the previous isomorphism, we denote the code CU in A as CA

U . Namely,
we represent

(α〈u,i〉)i∈H ∈ CU by
∑

i∈H

α〈u,i〉X i ∈ CAU

Let U ⊂ H and A = Fq[X1, . . . , Xr]/(X
q−1
1 − 1, . . . , Xq−1

r − 1). The code
CAU ⊂ A which is isomorphic to CU ⊂ F

n
q is

CAU = {
∑

u∈U

λu

∑

i∈H

α〈u,i〉X i | λu ∈ Fq} ⊂ A

Proposition 3. Let U ⊂ H = ({0, . . . , q − 2})r, CAU is a r-D cyclic code with
N1 = q − 1, . . ., Nr = q − 1.

Proof.
Let u ∈ U ,

∑

i∈H α〈u,i〉X i ∈ CAU .

Xa
∑

i∈H α〈u,i〉X i =
∑

i∈H αu1(i1−a1)+···+ur(ir−ar)X i = α−〈u,a〉
∑

i∈H α〈u,i〉X i.
And the results holds due to the linearity of CAU .
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Besides of the product of polynomials in Fq[H ] which we denote by ·, Y u ·

Y v = Y u+v, we consider the multiplicative structure of A in Fq[H ]. The product
of A is given in the basis {X i}i∈H by X i ∗ Xj = X i+j. The following result
pulls back the structure of A in Fq[H ] which will be used in theorem 5.

Proposition 4. Let us denote ev−1(X i) by X i in Fq[H ], then

X i ∗ Y u = α−〈u,i〉Y u

Y u ∗ Y v =

{

0 if u 6= v
(−1)rY u if u = v

Proof.
By the following isomorphisms considered above

Fq[H ] ←→ F
n
q ←→ A

Y u 7→ (α〈u,i〉)i∈H 7→
∑

i∈H α〈u,i〉X i (1)

one has that
X i ∗ Y u = X i ∗

∑

j∈H α〈u,j〉Xj = α−〈u,i〉Y u, by proposition 3.

Y u ∗ Y v =
∑

i∈H α〈u,i〉X i ∗ Y v =
∑

i∈H α〈u−v,i〉Y v =

=







∑

i∈H α〈u−v,i〉Y v = q(q−1)
2 (sup(u − v)) = 0 if u 6= v

∑

i∈H Y u = (−1)rY u if u = v

where sup(u− v) is the number of nonzero coordinates of u− v.
The following result proves that any linear code over Fq which is r-D cyclic

with N1 = q− 1, . . . , Nr = q− 1, is a generalized toric code. That is, the ideals
of A = Fq[X1, . . . , Xr]/(X

q−1
1 − 1, . . . , Xq−1

r − 1) are generalized toric codes.
Therefore the generalized toric codes and the r-D cyclic codes with N1 = q− 1,
. . ., Nr = q − 1 are the same family of codes.

Theorem 5. Let J ⊂ Fq[X1, . . . , Xr]/(X
q−1
1 − 1, . . . , Xq−1

r − 1) an ideal, then
exists U ⊂ H such that J = CAU .

Proof.
Since A is isomorphic to Fq[H ] by (1) and {Y u | u ∈ H} is a basis of Fq[H ], we

have that {ev(Y u) | u ∈ H} is a basis of A, where ev(Y u) =
∑

i∈H α〈u,i〉X i ∈ A.
Let

∑

v∈H λvev(Y
v) ∈ J and set u ∈ H , according to proposition 4 we have

that ev(Y u)
∑

v∈H λvev(Y
v) = (−1)rλuev(Y

u) ∈ J . Therefore ev(Y u) ∈ J if
λu 6= 0. We now apply this argument again, for every generator of J and u in
H , to obtain U such that J = (ev(Y u) | u ∈ U).

4 Metric Structure of Generalized Toric Codes

In this section we study the metric structure given by the bilinear form which
defines the dual of a linear code, 〈x, y〉 =

∑n

i=1 xiyi with x, y ∈ F
n
q . The

following result considers the metric structure of a generalized toric code CU ⊂
F
n
q in Fq[H ] and computes its dual.
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Theorem 6. With the above notations set u, v ∈ H, one has that

〈ev(Y u), ev(Y v)〉 =

{

0 if u+ v 6= 0
(−1)r if u+ v = 0

Let u ∈ H, u′ = −u with u as in proposition 2 and U ′ = {u′ | u ∈ U},
#U = #U ′. Let U ⊂ H and U⊥ = H \U ′ = (H \U)′, then the dual code of CU
is C⊥U = CU⊥

Proof.
Let u, v ∈ H , then one has that 〈(α〈u,i〉)i∈H , (α〈v,i〉)i∈H〉 =

∑

i∈H α〈u+v,i〉

∑

i∈H

α〈u+v,i〉 =
∑

i∈H

α〈u+v,i〉 =







q(q−1)
2 (sup(u + v)) = 0 if u+ v 6= 0

∑

i∈H 1 = (−1)r if u+ v = 0

where sup(u+ v) is the number of nonzero coordinates of u+ v.
Then 〈ev(Y u), ev(Y v)〉 = 0 for u ∈ U , v ∈ U⊥ since u+ v 6= 0. On account

of the dimension of Fq[U ] and Fq[U
⊥] and the linearity of the codes the proof

is completed.
The previous result shows that the dual of a toric code CP1

is a toric code

only when there is a convex polytope P2 such that P1
⊥
= P2. However the dual

of a generalized toric code is a generalized toric code.

Remark 7. The main results of this paper were published without proofs in [11].
Later, a similar result to theorem 6 has been obtained independently in [1].

Summarizing, the matrix M of the evaluation map ev : Fq[H ]→ F
n
q is

M =

















α〈u1,i1〉 α〈u1,i2〉 · · · · · · α〈u1,in〉

α〈u2,i1〉 α〈u2,i2〉 · · · · · · α〈u2,in〉

...
...

...
...

...
...

...
...

...
...

α〈un,i1〉 α〈un,i2〉 · · · · · · α〈un,in〉

















where {u1, . . . , un} = {i1, . . . , in} = H and if moreover uj = ij then M is a
symmetric matrix, therefore we assume uj = ij ∀j = 1, . . . n.

We have thus proved that a generator matrix of the code CU with U ⊂ H , k =
#U , is the (k×n)-matrixM(U) consisting in the k rows α〈u,i1〉, . . . , α〈u,in〉 ofM
with u ∈ U and a control matrix of CU is the (n−k×n)-matrixM(U⊥) consisting
of the n − k rows α〈u,i1〉, . . . , α〈u,in〉 of M with u ∈ U⊥. Or equivalently the
transpose of a control matrix is the (n× n− k)-matrix consisting of the n− k
columns α〈u1,i〉, . . . , α〈un,i〉 of M with i ∈ U⊥ since we assume uj = ij ∀j =
1, . . . n.

The knowledge of the dual of a generalized toric code provides the following
result to compute the minimum distance. This proposition is an analogue of [8,
Proposition 2.1] for toric codes whose proof remains valid for generalized toric
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codes. Using the control matrix one simplifies the computations with respect to
the generator matrix.

Proposition 8. Let U ⊂ H and set d an integer greater than or equal to 1.
Suppose that ∀ S ⊂ H with #S = d − 1 exists V ⊂ U⊥ with #V = d − 1
such that the square submatrix M(S, V ) of M has nonzero determinant then
d(CU ) ≥ d, where M(S, V ) is the submatrix of M corresponding to the rows of
S and columns of V , i.e. M(S, V ) = (α〈uS ,iV 〉)uS∈S,iV ∈V .

Proof.
The minimum distance of a linear code is greater than or equal to d if any

d− 1 columns of a control matrix are linearly independent. A control matrix of
CU is M(U⊥). Therefore the minimum distance of CU is greater than or equal
to d if any d− 1 columns of M(U⊥) are linearly independent that is equivalent
to the fact that exists a square submatrix of M(U⊥) with size d−1 and nonzero
determinant.

Let σ(u) = u′, and since σ2 = Id, one has that σ is an involution. Moreover
we order the elements of H in such a way that the matrix of the involution σ
has a characteristic form. By theorem 6 we have that B(ev(Y u), ev(Y v)) = 0
if and only if u+ v 6= 0. We consider first the elements u ∈ H such that
σ(u) = u′ = u, then u+ u = 0 and we have B(ev(Y u), ev(Y u)) = (−1)r and
B(ev(Y u), ev(Y v)) = 0 for all v ∈ H \ {u}. Then, we consider in H the pairs
of elements u y σ(u) = u′, with u 6= σ(u), then u+ u′ = 0 and we have
B(ev(Y u), ev(Y u′

)) = (−1)r, B(ev(Y u), ev(Y v)) = 0 for all v ∈ H \ {u′} and
B(ev(Y u′

), ev(Y v)) = 0 for all v ∈ H \ {u}. Let H = {u1, . . . , un} ordered in
the previous way. One has that the matrix Iσ of the involution σ is

(−1)rIσ =





























1
. . .

1
0 1
1 0

. . .

0 1
1 0





























and therefore M tM = (−1)rIσ , and since M t = M one has that

M−1 = (−1)rIσM

With these notations, the number of 1’s in the main diagonal of the matrix
(−1)rIσ is established by our next proposition. Also, we deduce that there are
no self-dual generalized toric codes.

Proposition 9. Let σ be the involution σ(u) = u′ in H. The number of ele-
ments u ∈ H such that σ(u) = u is 2r if q is odd and 1 if q is even. Moreover,
there are no self-dual generalized toric codes.
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Proof.
Let u = (u1, . . . , ur) in H , σ(u) = u if and only if 2ui = 0 mod (q − 1), for

i = 1, . . . , r.
If q is odd, then 2ui = 0 mod (q − 1) if and only if ui is equal to 0 or

(q − 1)/2. Therefore there are 2r elements in H with σ(u) = u. We turn to
the case q even, then q − 1 is odd and the only element in H such that 2ui = 0
mod (q − 1) for all i is (0, . . . , 0).

A linear code is self-dual if C⊥ = C, in particular nmust be even and k = n/2.
If q is even one has an odd length n = (q − 1)r and therefore there are no self-
dual toric codes with q even. Let q be odd, since there are u1, . . . u2r ∈ H such
that 〈ev(Y u

i ), ev(Y u
i )〉 6= 0 the maximum dimension of a self-orthogonal code

(C⊥ ⊂ C) is n/2− 2r−1 < n/2, and therefore there are no self dual generalized
toric codes.

Example 10. Let F5 the finite field with 5 elements and r = 2. Therefore
H = {0, 1, 2, 3} × {0, 1, 2, 3}. The length of a generalized toric code CU with
U ⊂ H is n = 42 = 16.

We order the elements of H to obtain Iσ in the previous way. Since the
base field has 5 elements one has σ(u) = u for 22 = 4 elements u1 = (0, 0),
u2 = (2, 0), u3(0, 2) and u4 = (2, 2). For the other elements of H we have
σ(u) 6= u and we consider uj = u and uj+1 = σ(u), for instance σ(0, 1) = (0, 3)
and σ(0, 3) = (0, 1). Therefore we write u5 = (0, 1), u6 = (0, 3), u7 = (1, 0),
u8 = (3, 0), u9 = (1, 1), u10 = (3, 3), u11 = (1, 2), u12 = (3, 2), u13 = (1, 3),
u14 = (3, 1), u15 = (2, 1), u16 = (2, 3). Let ij = uj ∀j ∈ {1, . . . n}. This ordering
of H is not unique.

The evaluation matrix M of the map F5[H ]→ F
n
5 in the previous basis is

M =

























































1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 4 4 1 1 4 4 1 1 4 4 4 4
1 1 1 1 1 1 4 4 4 4 4 4 4 4 1 1
1 1 1 1 4 4 4 4 1 1 4 4 1 1 4 4
1 4 1 4 2 3 1 1 2 3 4 4 3 2 2 3
1 4 1 4 3 2 1 1 3 2 4 4 2 3 3 2
1 1 4 4 1 1 2 3 2 3 2 3 2 3 4 4
1 1 4 4 1 1 3 2 3 2 3 2 3 2 4 4
1 4 4 1 2 3 2 3 4 4 3 2 1 1 3 2
1 4 4 1 3 2 3 2 4 4 2 3 1 1 2 3
1 1 4 4 4 4 2 3 3 2 2 3 3 2 1 1
1 1 4 4 4 4 3 2 2 3 3 2 2 3 1 1
1 4 4 1 3 2 2 3 1 1 3 2 4 4 2 3
1 4 4 1 2 3 3 2 1 1 2 3 4 4 3 2
1 4 1 4 2 3 4 4 3 2 1 1 2 3 2 3
1 4 1 4 3 2 4 4 2 3 1 1 3 2 3 2

























































And we have that the matrix M ·M t = Iσ is
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Iσ =

























































1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

























































Let U = {(0, 0), (1, 0), (2, 0), (0, 1), (1, 1), (2, 1) and CU the code defined by
U of length n = 16 and dimension k = 6. In this case CU is also a toric code [8,
Theorem 2.5] and [10, example 5.1]. A generator matrix of CU is the submatrix
of M consisting of the rows 1, 3, 5, 7, 9 and 15 of M . And a control matrix of
CU , equivalently a generator matrix of C⊥U , is the submatrix of M consisting of
the rows 2, 4, 5, 7, 9, 11, 12, 13, 14 and 15 of M

Acknowledgments: The author thanks A. Campillo for helpful comments
on this paper.
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