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Abstract

A method of computing a basis for the second Yang-Baxter cohomology of a finite biquandle

with coefficients in Q and Zp from a matrix presentation of the finite biquandle is described. We

also describe a method for computing the Yang-Baxter cocycle invariants of an oriented knot

or link represented as a signed Gauss code. We provide a URL for our Maple implementations

of these algorithms.
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1 Introduction

In [7], algorithms for computing the values of quandle counting invariants on virtual knots and for
finding the finite quandles which define these invariants were described. In this paper we describe
algorithms for finding and computing a generalized form of this quandle counting invariant using a
similar methodology – representing virtual knots and links as signed Gauss codes and representing
finite biquandles as block matrices.

A biquandle is a non-associative algebraic structure defined on a set B whose axioms are moti-
vated by thinking of the elements of B as semi-arcs in an oriented knot diagram and thinking of
the four possible crossing relationships on inbound semi-arcs at a crossing as four binary operations
on the set; the biquandle axioms are then the conditions required in order to preserve the algebraic
structure under the three Reidemeister moves. Biquandles have been studied in recent papers such
as [6], [10], [14] and more. The resulting algebraic structure is naturally a source of invariants of
knots and links, both in the classical sense of disjoint unions of simple closed curves in S3 and the
combinatorial sense of Reidemeister equivalence classes of Gauss codes, also known as abstract knots
or virtual knots [9], [8].

Perhaps the simplest easily computable link invariant derivable from a finite biquandle is the
counting invariant |Hom(K,T )| which counts homomorphisms from the knot biquandle K into a
finite target biquandle T . This counting invariant has been studied in the case of various finite
biquandle structures defined algebraically (Alexander biquandles, quaternionic biquandles, etc.) in
[6] and in the case of biquandles defined symbolically by biquandle matrices encoding the four
operation tables in [14].

Simply counting homomorphisms, however, discards some information about the link by treating
all homomorphisms as the same. One way to incorporate information about the link diagram in the
set of biquandle homomorphisms is to use the homomorphism to define a Boltzmann weight, such
as an integer power of a variable t, at each crossing; the product of these weights over all crossings
defines an invariant of the colored knot diagram, and the sum of these weights over the set of all
colorings defines a new knot invariant. The kinds of weight-assigning functions which make this
construction work are elements of the second Yang-Baxter cohomology of the target biquandle as
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defined in [2]; hence, to find these invariants we must compute the second cohomology of our target
biquandle.

In this paper we describe an algorithm for computing the second Yang-Baxter cohomology of
a finite biquandle with rational coefficients from its symbolic matrix presentation. We give some
examples of symbolic computation of the resulting Yang-Baxter cocycle invariants for virtual links
represented by Gauss codes.

The paper is organized as follows: In section 2, we define biquandles and describe ways of
representing finite biquandles in Maple. In section 3 we describe a combinatorial generalization
of knot theory known as virtual knot theory and describe how virtual knots and links may be
represented in Maple as signed Gauss codes. In section 4 we describe our method for computing
a basis for the second Yang-Baxter cohomology of a finite biquandle with coefficients in Q or a
finite field Zp and our method for computing the Yang-Baxter 2-cocycle invariants of a knot or
link using these cocycles. Our Maple programs are available in the files biquandles-maple and
yangbaxtercohomology.txt downloadable at www.esotericka.org/quandles.

2 Finite biquandles

We begin this section with the definition of a biquandle [11].

Definition 1 A biquandle is a set B with four binary operations B ×B → B denoted by

(a, b) 7→ ab, ab, ab, and ab

respectively, satisfying the following axioms:

1. For every pair of elements a, b ∈ B, we have

(i) a = abba , (ii) b = b
aab , (iii) a = abba , and (iv) b = b

aab .

2. Given elements a, b ∈ B, there are elements x, y ∈ B, possibly but not necessarily distinct,
such that

(i) x = abx , (ii) a = xb, (iii) b = bxa,

(iv) y = aby , (v) a = yb, and (vi) b = bya.

3. For every triple a, b, c ∈ B we have:

(i) abc = acbb
c

, (ii) cba = cabba , (iii) (ba)
c
ab = (bc)acb ,

(iv) abc = acbb
c

, (v) cba = c
abba

, and (vi) (ba)
c
ab = (bc)

a
c
b
.

4. Given an element a ∈ B, there are elements x, y ∈ B, possibly but not necessarily distinct,
such that

(i) x = ax, (ii) a = xa, (iii) y = ay, and (iv) a = ya.

If B = {x1, x2, . . . , xn} is a finite biquandle, then we define the biquandle matrix of B to be the
2n× 2n matrix

B =

[

B1 B2

B3 B4

]

where the i, j entry of the submatrix Bm is (Bm)i,j = k where

(xk) =















(xi)
(xj) m = 1

(xi)
(xj) m = 2

(xi)(xj)
m = 3

(xi)(xj) m = 4.

2



To avoid confusing subscripts denoting elements of B with the biquandle operations, we generally
drop the “x”s and just write B = {1, 2, . . . , n}.

In Maple, we represent a finite biquandle as a list of four n×n matrices [M [1],M [2],M [3],M [4]]
where M [i] is the matrix Bi for i = 1, . . . , 4. Thus, the biquandle word 1232 in our Maple notation is

M [2][1,M [4][2,M [3][3, 2]]].

If axioms (1)-(3) are satisfied, B is a birack. The notation can be simplified by denoting S(a, b) =
(ba, a

b); then axiom (1) implies that S : B × B → B × B is invertible with inverse given by

S−1(a, b) = (ab, ba). This is known as switch notation; a map S is called a switch map if it satisfies
the set-theoretic Yang-Baxter equation

(S × Id)(Id× S)(S × Id) = (Id× S)(S × Id)(Id× S).

A biquandle is then a set B with an invertible switch map S : B × B → B × B whose component
maps additionally satisfy axioms (2) and (4). See [6] for more.

Example 1 The set Zn = {0, 1, 2, . . . , n− 1} is a biquandle with operations

xy = tz + (1− st)y mod n, xy = sx mod n,

xy = t−1z + (1− s−1t−1)y mod n, xy = s−1x mod n

where s, t are invertible elements of Zn. This is an example of an Alexander biquandle. See [10] and
[13] for more.

In [14], an algorithm is described for finding all biquandle structures on a set with a given finite
cardinality, as well as an algorithm for counting homomorphisms from a finitely presented biquan-
dle described by a presentation matrix into the specified finite biquandle. The biquandle search
algorithm works by taking a “partially completed” 2n × 2n matrix with entries in {0, 1, 2, . . . , n}
where a zero is considered a “blank;” the program then selects a zero entry and replaces the zero
with nonzero entries, propagating the value through the matrix using the biquandle axioms and
equations obtained from them and searching for contradictions. Zeroes are rated according to how
many biquandle words in the list of axiom testing conditions will be completed if the zero is filled
in, via a program called ratezero; the program selects a zero entry with maximal rating in order to
move through the search space more efficiently. Any resulting matrices are appended to a working
list, and the process repeats until all zeroes have been filled in.

Our Maple code includes a program abq which finds the biquandle matrix for the Alexander
biquandle Zn with a choice of s and t invertible elements of Zn, as a way of generating biquandle
matrices with larger cardinalities.

3 Virtual knots

Knots and links (disjoint unions of simple closed curves in S3) are usually represented as knot

diagrams, which are 4-valent graphs embedded in an oriented surface Σ with vertices interpreted as
crossings and decorated to indicate which strand passes over and which passes under.

Various methods exist for encoding the information from a knot diagram in a more code-friendly
way. One such method uses Dowker-Thistlethwaite codes or DT codes, e.g. the knotscape1 package.
For oriented links in which each component has a preferred choice of direction, we use signed Gauss
codes to represent link diagrams.

A signed Gauss code for an oriented knot diagram K is an ordered list of crossing labels (in-
cluding over/under information) and signs encountered as one travels the knot the direction of the

1Available at http://www.math.utk.edu/∼morwen/knotscape.html
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orientation. An oriented crossing is positive if, while looking in the positive direction of the over-
crossing strand, the undercrossing strand is oriented right-to-left, and the crossing is negative if the
under-strand is oriented left-to-right. If we have an oriented link with multiple components, we sepa-
rate the Gauss code components with commas. For a given oriented link diagram, the corresponding
signed Gauss code is well-defined up to ordering of the components and choice of base point for each
component, with different choices of base point corresponding to cyclic permutations of the crossing
labels. Given a signed Gauss code obtained from a link, we can reconstruct the original link diagram
up to local isotopy, i.e., isotopy of the surface Σ in which the link diagram is embedded.

To represent an n-crossing Gauss code in Maple, we use a vector whose components are Gaussian
integers ±X for a positive crossing and ±(X +

√
−1) for a negative crossing where X ∈ {1, . . . , n},

with the positive entry representing the overcrossing label and the negative the undercrossing label.
We use a “0” entry as an “end of component” indicator to separate components in a link.

Example 2 The two-component link has signed Gauss code

[−1− I, 2,−3, 1 + I,−4− I, 5,−6, 4 + I, 0, 3,−2, 6,−5, 0]

in our Maple format.

Knots and links may be defined combinatorially as equivalence classes of link diagrams under
the equivalence relation generated by the Reidemeister moves. If we restrict our attention to Gauss
codes in which every crossing number appears once as an overcrossing and once as an undercrossing,
with the same sign for both instances, then equivalence classes of such codes under the equivalence
relation generated by the Gauss code Reidemeister moves are called virtual knots. These equivalence
classes include some codes which do not correspond to knot diagrams which can be realized in the
plane. Such Gauss codes may be interpreted as knot diagrams drawn on surfaces Σ with genus,
corresponding geometrically to knots or links in thickened surfaces Σ × [0, 1] up to stabilization
[4]. When such knots are drawn on genus-0 paper, the crossings which correspond to genus in
the supporting surface, called virtual crossings, are shown as circled intersections to distinguish
them from the ordinary classical crossings. In particular, virtual crossings have no over- or under-
sense. Classical knots and links are then simply the subset of virtual knots and links which have
representatives with supporting surface of genus 0. See [8] for more about virtual knots.

For any oriented virtual link L there is an associated biquandle, the knot biquandle B(K), defined
by assigning a generator for each semi-arc (the portion of a link diagram going from one over or
undercrossing point to the next) and two relations at each crossing:

Thus, for any virtual knot or link K, we have an associated biquandle B(K) defined via a
universal algebra-style presentation with generators and relations; see [11] and [6] for more. If we
label semi-arcs with generator numbers 1, 2, . . . , n then such a presentation can be expressed as
a biquandle presentation matrix with non-zero entries corresponding to relations coming from the
crossings.

4



A homomorphism from the knot biquandle B(K) to a finite target biquandle T can be regarded
as a “coloring” of the knot diagram, i.e., an assignment of an element of T to every semiarc in the
diagram such that above-pictured relations are satisfied at every crossing.

Initially, we used biquandle presentation matrices to represent knot biquandles for the purpose of
counting homomorphisms into finite biquandles. The simplest method of computing |Hom(B(K), T )|
is to generate a presentation matrix for B(K) from a signed Gauss code, then test all possible maps
from the set {1, 2, . . . , 2n} of generators of B(K) to the target biquandle T = {1, 2, . . . ,m} for the
homomorphism condition (i.e., that the images of the generators of the knot biquandle satisfy the
relations from the knot biquandle). However, for links with largish numbers of crossings this becomes
very slow; an n-crossing link diagram has a knot biquandle with 2n generators, and brute-force
checking all (2n)m maps where the target biquandle has cardinality m is impractical. An improved
method is to use a “blank” homomorphism and propagate values through using the homomorphism
condition in a manner analogous to our biquandle finding program. This is implemented in our
Maple code as bhomlist.

An improved method of representing the knot biquandle of an oriented link is implemented in
bhomlist2 in the file yangbaxtercohomology.txt, available on www.esotericka.org/quandles.
Rather than using a biquandle presentation matrix, the program gauss2list2 takes a signed Gauss
code and creates a list of biquandle relations using M [1][i, j] for ij , M [2][i, j] for ij , M [3][i, j] for

ij and M [4][i, j] for ij . The program reducepreslist then reduces the presentation by looking
for generators which appear on one side of the relation but not the other; such generators are then
eliminated, with all instances being replaced by the equivalent word in the remaining generators.
This results in a dramatic reduction in the amount of brute-force checking required to compute
|Hom(B(K), T )|. Unfortunately, this method does require brute-force checking of maps; we cannot
fill in and propagate values through since all surviving generators appear on both sides of any relation
in which they appear. Nevertheless, this method is computationally much faster than the method
of bhomlist since most knot biquandle presentations can be reduced significantly.

Example 3

This 11-crossing diagram of the Conway knot has knot biquandle with 22-generator presentation

〈1, 2, . . . , 22 | 116 = 2, 215 = 3, 38 = 4, 49 = 5, 522 = 6, 611 = 7,

720 = 8, 83 = 9, 94 = 10, 1021 = 11, 116 = 12,

1217 = 13, 1318 = 14, 1419 = 15, 152 = 16, 161 = 17,

1712 = 18, 1813 = 19, 1914 = 20, 207 = 21,

2110 = 22, 225 = 1〉.

gauss2pres2 reduces this to a 5-generator presentation with generators 1, 8, 15, 16, and 21 and
relations too awkward to list here, though the interested reader can readily generate them with our
code. For computing |Hom(K,T )| with |T | = 4, this reduces the number of brute-force checks from
224 to 54, an improvement of 37,481%; moreover, the number of relations which must be checked at
each step is also reduced from 22 to 5.
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Given a homomorphism obtained from the reduced biquandle presentation from gauss2pres2,
we can recover the corresponding coloring of the diagram by using bhomcomplete. We will need
these complete colorings for computing the Yang-Baxter cocycle invariant in the next section.

4 Yang-Baxter cocycle invariants

For any link L and finite biquandle T , the cardinality of the set of biquandle homomorphisms from
the knot biquandle B(L) to T is an invariant of link type. A set is more than a mere cardinality,
however, and we’d like to try to extract more information about the link type from the set of
biquandles colorings.

One way to do this, described in [2], is to use Yang-Baxter cocycles. The authors define a
homology theory for finite biquandles with n-chains generated by ordered n-tuples of biquandle
elements. The boundary map is defined using a bijection between ordered n-tuples in T n and
colorings of the n-cube graph Qn with biquandle elements defined by interpreting an n-tuple as a
coloring of the edges in a “preferred path” from the origin to (1, 1, . . . , 1) in the n-cube graph Qn.
Such a coloring extends to a unique Yang-Baxter coloring of the whole graph. The boundary map
from standard cubical homology then induces via this bijection a boundary map ∂Y B

n : A[T n] →
A[T n−1] with coefficients in an abelian group A. The resulting homology and cohomology theories
are the Yang-Baxter homology and cohomology of the biquandle. We will primarily use Q as our
coefficient ring for ease of computation; our software includes both Q and Zp versions of our programs
for p prime.

An alternative description of H2
Y B(T ;Q) in terms of knot diagrams makes it clear how Yang-

Baxter 2-cocycles can be used to retain some information from the sets of biquandle colorings of a
link diagram. Given a link diagram L with a coloring by elements of T , we will define a function
φ : T×T → Q such that the sum of the values of φ on the inbound crossings at each positive crossing
and on the outbound crossings at each negative crossing, always with the color on the undercrossing
semi-arc listed first, is unchanged by the Reidemeister moves. The value φ(x, y) at a crossing is
called the Boltzmann weight of the crossing. Invariance under the second Reidemeister move is
guaranteed by the convention just described; invariance under the third Reidemeister move requires

φ(x, y) + φ(xy , z) + φ(yx, zxy ) = φ(x, zy) + φ(y, z) + φ(xzy , yz)

which is precisely the condition that φ ∈ H2
Y B(T ;Q).

Invariance under the first Reidemeister move requires that φ(x, a) = 0 and φ(a, y) = 0, where
x and y are the elements associated to a in biquandle axiom 4, for every a ∈ T . The subspace of
H2

Y B(T ;Q) satisfying this condition is the reduced Yang-Baxter cohomology of T with coefficients in
Q. For each Yang-Baxter 2-cocycle φ : T × T → Q, the sum

∑

φ(x, y) of Boltzmann weights over
the set of all crossings in a biquandle-colored link diagram is unchanged by Reidemeister moves and
can be understood as a kind of “signature” of the coloring homomorphism.

For such a cocycle φ, we compute the Yang-Baxter cocycle invariant of a link L by computing for
each coloring f ∈ Hom(B(L), T ) of L by T the sum over all crossings in L of the Boltzmann weights

6



φ(x, y) as above. Then, the set with multiplicities of these sums for all colorings of L by T is an
invariant of links which contains more information than the cardinality of the set. For convenience,
we can make each such sum the exponent of a formal variable t and then take the sum over the set
of colorings; there is no loss of information here since we are adding only powers of t with coefficients
of 1. Then,

ΦY B(L, T, φ) =
∑

f∈Hom(B(L),T )

t
P

φ(x,y).

Note that cohomologous cocycles define the same invariant.
To compute a basis for the rational cohomology vector space H2

Y B(T ;Q) from a biquandle matrix
for T , we first make a matrix with rows corresponding to triples of biquandle elements and columns

corresponding to characteristic functions χ(x,y)(v, w) =

{

1 (v, w) = (x, y)
0 else

on pairs of biquandle

elements; for each triple (x, y, z) the entries in the columns corresponding to χ(x,y), χ(xy,z) and
χ(yx,zxy ) are set equal to 1, those corresponding to χ(x,zy), χ(y,z) and χ(xzy ,yz) are set equal to −1
and all other entries are 0. H2

Y B(T,Q) is then the null space of this matrix. To find a basis we use
Gauss-Jordan elimination and then apply getkernel to read off a basis which is consistent between
runs.

The program ybcohom then eliminates cohomologous cocycles by comparing the basis vectors from
ybcocycles pairwise and keeping only one vector from each pair whose difference is a coboundary.
Finally, redybcohom eliminates cocycles which do not satisfy the condition arising from the type I
Reidemeister move.

Our program ybinv takes as input a signed Gauss code, a biquandle matrix, and a Yang-Baxter
2-cocycle and computes the Yang-Baxter 2 cocycle invariant. Another program ybinv2 takes a
signed Gauss code and biquandle matrix and computes a basis for the reduced cohomology of T ,
and for each such cocycle computes the resulting cocycle invariant, outputting a vector of cocycle
invariant values. Our use of getkernel ensures that the cocycles (and hence their invariants) are
listed in the same order between runs.

Finally, we have modified versions of ybinv and associated programs, called redybcohommodn,
ybinvmodn, etc. in which we replace Q with the finite field Zp for p prime.

Example 4 The trivial cocycle φ(x, y) = 0 has Yang-Baxter cocycle invariant ΦY B(L, T, 0) =
|Hom(B(L), T )| equal to the biquandle coloring invariant.

Example 5 If the finite target biquandle T satisfies ab = ab = a for all a, b ∈ T then T is a quan-

dle and the Yang-Baxter 2-cocycle invariants associated to T are the CJKLS state-sum invariants
described in [3].

Example 6 This virtual knot is one of the Kishino knots introduced in [12]. The fact that it is
not equivalent to the unknot, which was shown in [1] using quaternionic biquandles, shows that the
operation of connected sum for virtual knots, unlike the classical case, is dependent on the portion
of the knot in which the sum is performed. The biquandle

K = T =

























1 4 2 3 1 3 4 2
2 3 1 1 3 1 2 4
4 1 3 2 2 4 3 1
3 2 4 1 4 2 1 3
1 3 4 2 1 4 2 3
3 1 2 4 2 3 1 4
2 4 3 1 4 1 3 2
4 2 1 3 3 2 1 4

























has reduced Yang-Baxter 2nd rational cohomology with basis {φ1, φ2} where

φ1 = −χ(1,3) − χ(2,1) − χ(2,3) − χ(3,2),
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φ2 = χ(1,3) + χ(1,4) + χ(2,1) − χ(2,3) + χ(3,1) − χ(3,4).

Our program ybinv computes the Yang-Baxter 2-cocycle invariant values

ΦY B(K,T, φ1) = 12 + 2t−1 + 2t and ΦY B(K,T, φ1) = 12 + 2t2 + 2t−2.

We note that both of these invariants distinguish the Kishino knot K from the unknot, which has a
value of ΦY B(K,T, φi) = 4.
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