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A doubly infinite complex sequence (c,), n € Z, is a sequential solution of a difference
equation of the form

aa(2y(z +d) + -+ + ar(2)y(z + 1) + ag(2)y(2) = 0, (1)
ao(2), . ag(2) € Clz], ao(2),aa(z) € 2]\ {0}, if |
ag(n)epeg + - +ar(n)ep1 + ag{n)e, =0,

for all n € Z.

A sequential solution (¢y) of {1) is subanalytsic if equation (1) has a solution in the form of a
single-valued analytic funcion f:C — C such that ¢, = f(n) for all n € Z.

We show that the dimension of the msbml0 scaled 1200 C-linear space of all sequential
solutions of (1} is always at least d, and that for any integer m > d there exists an equation of
the form (1) of order d such that this dimension is equal to m. However the space of subanalytic
solutions of an equation (1) of order d has always dimension d.

If d =1, then a sequential solution of (1) is a hypergeometric sequence. We also consider
s—dimensional (s > 1) hypergeometric sequences, i.e., sequential, resp., subanalytic solutions of
consistent systems of first-order difference equations for a single unknown function:

fi(zla va- )zs)y('zl? sy Ri 14 %% + 1s-z'i+la .o szs) = Qz(zh e ,Zs)y(Z]_, . 333)1 (2)
where (z1,...,25) € C°, and f;, g, are non-zero polynomials which are relatively prime for each
i €{1,2,...,s}, and satisfy

gi(zla"' !ZS) gj(zla' sy Zim1y X T+ 1}zi+1a' .. ,25) =9j(31: P 128) gi(zla' vy Z5—1525 + I:zj'{-la‘“)zs)
fi(zla"'}zs) fj(zlu sy Zym1y 2 + 1? Zadlyr - ?ZS) fj(ZI? v azs) f?:(zla vee sy Bj—1y % + ]-:lzj-l-la"' :zs)

for all 4,7 € {1,2,...,s}. We show that the dimension of the space of subanalytic solutions is
always at most 1, and that this dimension may be equal to 0 for some systems (although the
dimension of the space of all sequential solutions is always positive).
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Subanalytic solutions have applications in computer algebra. We show that some
implementations of certain well-known summation algorithms {(Gosper, Zeilberger, Accurate
Summation) in existing computer algebra systems work correctly when the input sequence is a
subanalytic solution of an equation or a system, but can give incorrect result for some sequential
solutions.



