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AN EXTENSION OF KEDLAYA’S ALGORITHM FOR HYPERELLIPTIC

CURVES.

MICHAEL HARRISON

Abstract. In this paper we describe a generalisation and adaptation of Kedlaya’s algorithm for

computing the zeta function of a hyperelliptic curve over a finite field of odd characteristic that

the author used for the implementation of the algorithm in the Magma library. We generalise

the algorithm to the case of an even degree model. We also analyse the adaptation of working

with the xidx/y3 rather than the xidx/y differential basis. This basis has the computational

advantage of always leading to an integral transformation matrix whereas the latter fails to

in small genus cases. There are some theoretical subtleties that arise in the even degree case

where the two differential bases actually lead to different redundant eigenvalues that must be

discarded.

1. Introduction

Kedlaya’s algorithm for hyperelliptic curves in odd characteristic was one of the first practical

computational algorithms for computing the zeta function of a curve of genus greater than 1 over

a large finite field of small characteristic [Ked01], [Ked04]. It was generalised by Denef and

Vercauteren to characteristic two [DV06b] and has also been extended to more general curves

like Cab curves [DV06a]. Kedlaya’s algorithm is based on the calculation of the Frobenius

action on an appropriate p-adic cohomology group that can be described in sufficiently concrete

terms for explicit computer computations to be made. In the hyperelliptic case, Kedlaya used

Monsky-Washnitzer cohomology on the open affine subset of the curve defined by the removal

of all Weierstrass points.

In 2003, the author wrote the implementation of Kedlaya’s algorithm in the standard user

library of the Magma computer algebra system [BCP97]. In practical terms, there appeared

to be two issues with the algorithm as it stood.

Firstly, it only covered the odd degree case of a hyperelliptic model with a single point at

infinity. Following Kedlaya’s analysis, we extended the algorithm in a natural way to also

cover the even degree case. The extension is fairly straightforward and the algorithm runs as

before except that a degree one term has to be removed from the final characteristic polynomial

corresponding to an extra eigenvalue q (the field size) arising from the extra point at infinity

removed from the complete curve.

More seriously, if p, the characteristic of the base finite field Fq, is small compared to the genus

g of the hyperelliptic curve C - specifically if p ≤ 2g− 1 in the odd degree case and p ≤ g in the

even degree case - then the matrix M representing the σ-linear transformation of p-Frobenius

Key words and phrases. Kedlaya’s Algorithm, Monsky-Washnitzer Cohomology, Magma.
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on Kedlaya’s chosen differential basis of cohomology is non-integral. That is, the integral lattice

generated by the basis is not stable under Frobenius. Because M has to be σ-powered to a

large degree to get to the final result, this presents obvious p-adic precision problems. If M

represented a linear transformation, it could be easily replaced by an integral conjugate before

powering (though then the characteristic polynomial of the power could be computed without

matrix powering, anyway!), but the semi-linear situation is not so easy to work with. This issue

is remarked upon in [Ked03] and can be dealt with in a number of ways. One approach is to try

to analyse the situation using high-powered techniques like crystalline cohomology (or general

F -module theory) to find an integral lattice to work with that is invariant under Frobenius. For

example, Edixhoven gives a general criterion for stability under Frobenius of a sub Zp-module

L of the Zp-module of differentials generated by Kedlaya’s differential basis in Prop. 5.3.1

of [Edi06]. A full proof of the criterion can be found in [vdB08]. See also [CDV06], which is

described further below, for more general plane curves.

In this very concrete situation, however, we computed that a slightly different differential

basis for the minus part of the H1 cohomology always works: namely differentials of the form

xidx/y3 rather than xidx/y. The computation is again straightforward but, as far as we are

aware, it has not appeared in detail before in the literature so, for completeness, we will show

that Kedlaya’s reduction process applied to this space of differentials always leads to an integral

matrix M .

The interesting technical point is that the y3 differentials only form a basis for the minus part

of the cohomology in the odd degree case. In the even degree case, the map from this space

of differentials into H1
− actually has a 1-dimensional kernel and cokernel. It turns out that the

kernel has eigenvalue 1 and cokernel eigenvalue q under q-Frobenius, so in this case we have

to remove a factor of t − 1 rather than t − q from the final characteristic polynomial. This is

demonstrated in the final section of the paper.

In summary, in the even degree case, one additional eigenvalue of Frobenius occurs on the

affine Monsky-Washnitzer cohomology because of the additional point removed at infinity. This

merely has to be removed at the end in order to get the numerator of the zeta function. Our

alternative set of differentials generate a Zp-module V with Frobenius action. This space gen-

uinely gives an F-stable lattice in H1
− for odd degree and the algorithm goes through as before,

except with guaranteed p-integral matrices. For even degree, V also gives p-integrality but V ⊗Q

doesn’t quite coincide with H1
− as a Frobenius module. However, an explicit analysis in this

case shows that the difference between V and H1
− results in just having to remove a different

additional eigenvalue at the end.

A very general Kedlaya-style algorithm applying to non-degenerate plane curves is presented

by Castryck, Denef and Vercauteren in [CDV06]. There, a deterministic algorithm is given

where a basis for cohomology is determined and an integrality analysis is performed involving

Edixhoven’s criterion and consideration of the Newton polygon of the curve. The hyperelliptic

case, however, with its particular choices of differential bases, is still an important special case
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amenable to the specific original analysis of Kedlaya and that presented here, and I have had

requests from a number of people to publish details of the Magma implementation.

We should also mention some of the other point-counting methods which have been developed

over the last decade for curves of genus greater than 1 and that use different techniques to that

of Kedlaya.

Generalising the elliptic curve case, Mestre devised an algorithm for ordinary hyperelliptic

curves in characteristic 2 based on the theory of the canonical lift. This computes a 2-adic

approximation of a particular function of the eigenvalues of Frobenius from which a finite num-

ber of possibilities for the characteristic polynomial of Frobenius can be obtained by rational

reconstruction in many cases (e.g. when the Jacobian is irreducible). Again generalising their

algorithm for the genus 1 case, Lercier and Lubicz found a way to efficiently effect the lifting

stage to obtain a quasi-quadratic algorithm [LL06]. The author implemented this algorithm

for the standard Magma user library. Following the work of Robert Carls on theta structures

of canonical lifts [Car07], Carls and Lubicz have generalised the algorithm to odd characteris-

tic [CL09].

Another important p-adic method is the deformation method of Lauder and Wan [LW08].

This generalises from the curve case to higher-dimensional hypersurfaces and provides the basis

for the computation of zeta-functions of fairly general varieties over finite fields. The ideas go

back to Dwork and use his approach to p-adic cohomology theory, working with parametrised

families of hypersurfaces and continuously deforming to ones of special form (diagonal in Dwork’s

original work). R. Gerkmann has further studied the method, considering relations to rigid

cohomology and practical p-adic precision analysis [Ger07]. He has written an implementation

in Magma. Fuller details for the deformation method in the particular case of hyperelliptic

curves have been worked out by H. Hubrechts [Hub08] who provided the implementation that

appears in the standard Magma user library.

A brief outline of the paper is as follows. In the next section, we introduce basic notation,

summarise Kedlaya’s original algorithm and describe our extension of it. We also give a brief

overview of Monsky-Washnitzer cohomology and explain Kedlaya’s reduction procedure on dif-

ferentials which remains formally the same in the extended version.

In Section 3, we consider our alternative (pseudo)-basis and give a proof of the integrality

of the reduction of the image of p-Frobenius on its elements alongside an analysis of Kedlaya’s

original basis. We also give the short proof of the generalisation of the point-counting formula

to even degree hyperelliptic models.

Finally, in the last section we give proofs of the slightly more technical result relating the

space spanned by our pseudo-basis to its image in Monsky-Washnitzer cohomology and giving

the difference between the eigenvalues of Frobenius on these two spaces.

Acknowledgements I would like to thank the referees for many useful suggestions.
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2. Review of Kedlaya’s Algorithm

In this section we give a summary of Kedlaya’s algorithm as it appears in [Ked01] as well as

describing our extension of it. The basic notation introduced below will be used throughout the

paper.

Basic notation.

Throughout, q := pn will denote a positive power of an odd prime p. k will denote the finite

field Fq, unless otherwise indicated. R will denote W (k), the ring of integers of K, the unique

unramified degree n extension of the local fieldQp. σp will denote the p-Frobenius automorphism

of R or K that reduces to a 7→ ap on k.

C will denote the hyperelliptic curve which is the projective normalisation of the smooth

plane affine curve C1 with defining equation

y2 = Q(x)

where Q(x) = adx
d+ . . .+a0 is a separable polynomial of degree d in k[x]. To simplify notation,

we also use Q(x) to denote some arbitrary lift of Q(x) to R (i.e. a degree d polynomial over

R such that reduction mod p of the coefficients gives Q(x)). It will always be clear from the

context which polynomial is being referred to.

We let g denote the genus of C, so that d = 2g + 1 or d = 2g + 2. We refer to the d = 2g + 1

case as the odd case and the d = 2g + 2 case as the even case. In the odd case C\C1 consists

of a single k-rational point, which is a Weierstrass point of C and will sometimes be referred

to as ∞. In the even degree case, C\C1 consists of a pair of non-Weierstrass points, ∞1 and

∞2, which are either k-rational or conjugate points over Fq2 . Computationally, it is easiest to

transform the initial Q over k[x] so that ad = 1 and the lift to R of ad is also 1. This may involve

working with the quadratic twist of C in the even case, but there is no problem converting back

the final result (by substituting t 7→ −t in the numerator of the zeta function). So from now on,

we assume that ad is 1 and C has two k-rational points at infinity in the even case.

Following Kedlaya, we define Ca as the open affine subset of C1 given by inverting y; i.e.

Ca = Spec(Ak) where

Ak := k[x, y, y−1]/(y2 −Q(x))

and we will let AR := R[x, y, y−1]/(y2−Q(x)) which is a finitely-generated, R-smooth R-algebra

with AR ⊗R k ≃ Ak. C
a is just C with all Weierstrass points and points at infinity removed.

Basic outline of the algorithm.

Given an odd degree model of a hyperelliptic curve C over Fq as above, Kedlaya’s algorithm

computes the degree 2g monic polynomial L(X) that gives the numerator of the zeta-function

of C [ζC(s) = L(q−s)/(1 − q−s)(1 − q1−s)]. The number of points on C, #C(Fqr), or the order

of its Jacobian, #Jac(C)(Fqr), over any finite extension Fqr of the base field can be simply

computed from L(X) in the usual way (e.g. see Appendix C [Har77]).

The main stages are given in Algorithm 1.
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Algorithm 1 Kedlaya’s original algorithm

Step 0: Input Q(x).

Step 1: Working in W (k)[x][[1/y]], compute (1/yσ) to sufficiently large p-adic and (1/y)-

adic precision by formally expanding

y−p

(

1 +
Q(x)σ −Q(x)p

y2p

)−1/2

This gives a finite approximation of the image of the differential basis of cohomology

xi(dx/y), 0 ≤ i ≤ d− 2 under p-Frobenius.

Step 2: Reexpress the images of the differentials as W (k) ⊗ Q-linear combinations of

the differential basis using the RednA and RednB reduction processes described below.

This results in a (2g)-by-(2g) matrix M for the action of p-Frobenius to finite p-adic

approximation.

Step 3: By binary-powering or similar, compute the product N = MMσ . . .Mσn−1
and

the characteristic polynomial Fp(X) of N . This is actually equal to L(X) ∈ Z[X] but

will have been determined here in Zp[X] to a large, finite p-adic precision.

Step 4: Recover and return L(X) from the p-adic approximation in step 3, using the Weil

bound to guarantee correct integer coefficients.

Extension of the original algorithm.

We adapt/extend the original algorithm in two ways.

• Even degree models (d even) are allowed.

• When p < 2g, d odd, or p ≤ g, d even, the differential pseudo-basis xi(dx/y3), 0 ≤ i ≤
d− 2 is used rather than xi(dx/y).

The first change extends the algorithm to an arbitrary hyperelliptic curve (possibly after

applying a quadratic twist as described earlier).

The second change guarantees that we always work with a p-Frobenius matrix M with p-

integral coefficients. In the cases where we use the alternative differential basis, Kedlaya’s

original basis generally leads to a p-adically non-integral M . Strictly speaking, the alternative

set of differential forms only form a basis for cohomology when d is odd. This is why we refer to

it as a pseudo-basis. It still leads to correct results in the new algorithm. All of this, along with

the justification for the new Step 4 below in the even degree case, is demonstrated in Sections

3 and 4.

The new algorithm is formally very similar to the original, so we will just state the changes

that need to be made.

Steps 1 and 2. These are unaffected except that the expression to be formally expanded

in step 1 has exponent −3/2 rather than −1/2 in the cases where the alternative differential



6 MICHAEL HARRISON

pseudo-basis is used. The matrix M in step 2 will be of size 2g + 1 rather than 2g when d is

even.

Step 4 Compute L1(X) from the p-adic approximation to Fp(X) coming from Step 3. If d is

even then let L(X) = L1(X)/(X − q) if using the dx/y basis or L(X) = L1(X)/(X − 1) if using

the dx/y3 pseudo-basis. If d is odd, just let L(X) = L1(X). Return L(X).

The linear factor that has to be removed in the even case comes from an extra eigenvalue

of the action of Frobenius on cohomology (see Section 3.1). That the factor is different for the

pseudo-basis comes from the relation between it and an actual cohomology basis. The extra q

eigenvalue is lost but a new eigenvalue 1 appears (see Section 4).

In practice, only half of the coefficients of Fp(X) (those of the higher powers of X) need to

be computed (because of the α ↔ q/α symmetry of the algebraic roots of L(X)) and we can

effectively remove the extra X − q or X − 1 factor from Fp(X) (rather than from L1(X) at

the end) in the even degree case during these computations. The coefficients can be computed

from the traces of the first g powers of N as a matrix over Zp. Removing the extra factors at

this stage means that there is no necessity to increase the p-adic precision to which we need to

know N beyond the same lower bound used in the odd-degree case. This is determined from

the upper bound for the size of the (top) coefficients of L(X) that comes from all of its roots

(over C) having absolute value
√
q. Expressions in g and n for the p-adic precision needed in

the initial series expansion computed in Step 1 are given near the end of Section 3.

In the remainder of this section - which relates to Steps 1 and 2 - where we describe the

Monsky-Washnitzer cohomology groups and the reduction procedures for Step 2, no distinction

need be made between the even and odd degree cases except where indicated.

That the differential reductions of Step 2 take p-Frobenius transforms of elements of the

pseudo-basis back into linear combinations of such elements will be demonstrated in Lemma 3.4.

Monsky-Washnitzer Cohomology. [MW68], [Mon68], [Mon71].

Let X be a non-singular affine scheme over k. Monsky and Washnitzer defined a p-adic

cohomology theory for such X with appropriate fixed-point theorems for proving zeta-function

results. Kedlaya used this (originally at least) to provide the technical basis for his algorithm.

Monsky-Washnitzer cohomology agrees with Berthelot’s more general rigid cohomology in the

affine case and is pleasantly explicit in its definition. We will need some of its properties for

later proofs and so we give a brief description of the theory here.

Let Ak temporarily represent the affine coordinate ring of our general X and AR/R be a lift to

an R-smooth R-algebra as above and AK = AR ⊗R K.

Definition 2.1. Let Fq be the k-linear Frobenius endomorphism Ak → Ak given by a 7→ aq.

Similarly, let Fp be the k-semilinear endomorphism of Ak, a 7→ ap.
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The goal is to define a good cohomology group which simulates de Rham cohomology of AK

and to which Fq lifts. Fq lifts to the p-adic completion, ÂR = lim←
n
AR/p

nAR, but the de Rham

cohomology of ÂK = ÂR ⊗R K is usually bigger than that of AK . Monsky-Washnitzer define a

subalgebra A† of ÂR, referred to as the weak completion, as follows. If x1, . . . , xr are R-algebra

generators of AR then

A† := {
∞
∑

n=0

anpn(x1, . . . , xr) : an ∈ pnR, pn of total degree ≤ C(n+ 1) for some C > 1}

and A†
K = A† ⊗R K. Up to isomorphism, A† is shown to be independant of the lift AR and the

generators xi.

Ω̃i
A†

K
/K

is the separated ith differential module, the plain differential module Ωi
A†

of A† divided

out by the intersection ∩np
nΩi

A†
and tensored with K. There is the usual differential complex

0 → A†
K

d→ Ω̃1
A†

K
/K

d→ Ω̃2
A†

K
/K

d→ . . .

the homology groups of which give the MW cohomology groups H i(Ak;K).

If Ak is of Krull dimension 1, as in our case, then Ω̃i
A†

K
/K

= 0 for all i ≥ 2 and so H1(Ak;K) =

Ω̃1
A†

K
/K

/d(A†
K) and all higher cohomology is trivial.

If Fq lifts to F on A† then F functorially induces aK-linear automorphism F∗ of theH
i, which

is independent of the choice of lift, and there is a cohomological trace formula for #X(Fqm) for

all m ≥ 1 (see next section). Furthermore, if Fp lifts to a σ-semilinear map F †
p : A† → A†, then

F †
p induces a σ-semilinear automorphism Fp∗ of the H i with F∗ = Fn

p∗.

Now let Ak, AR refer to the hyperelliptic algebras again. The inversion of y allows Kedlaya to

define a lift of Fp to A† by

x 7→ xp y 7→ yp
(

1 +
Qσ(xp)− [Q(x)]p

y2p

)1/2

y−1 7→ y−p(1 + . . .)−1/2

The congruence Qσ(xp) ≡ Q(x)p mod pR[x] means that the standard power series expansions

of (1 + . . .)1/2 and (1 + . . .)−1/2 converge to elements in A†
K .

In fact, Kedlaya gives the following explicit description of A†:

A† =

{

∞
∑

−∞

Sn(x)y
n : deg(Sn) ≤ d− 1 lim inf

n→∞

vp(Sn)

n
> 0 lim inf

n→∞

vp(S−n)

n
> 0

}

where vp(f), f ∈ R[x] is the smallest m such that f ∈ pmR[x].

The hyperelliptic involution ω : x 7→ x, y±1 7→ −y±1 extends to A† (and A† ⊗R K) giving the

direct sum decomposition

A† = A†
+ ⊕A†

− with A†
+ = {

∑

S2ny
2n}, A†

− = {
∑

S2n+1y
2n+1}
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and a corresponding decomposition of H1(Ak;K) into + and − components. Kedlaya shows

that the Monsky-Washnitzer trace formula leads to the result that the numerator of the zeta-

function of C is just the characteristic polynomial of F∗ on H1
− when d is odd. We will show in

Section 3.1 that the same analysis gives only a minor difference when d is even.

Reduction steps in the computation of F∗

Kedlaya shows that a K-basis for the finite-dimensional H1(Ak;K) is given by the AK dif-

ferentials

{xidx/y : 0 ≤ i ≤ d− 2} ∪ {xidx/y2 : 0 ≤ i ≤ d− 1}
the first set giving a basis for H1

− and the second for H1
+. We come back to this in the next

section where we note that it also holds for d even.

The first stage of the algorithm consists of expanding the series for Fp∗(1/y) to sufficient

p-adic precision. We will give a precise value for the precision required at the end of Section 3.

The second stage consists of applying two types of reduction to reexpress these images as

K-linear combinations of basis elements. The two basic relations are

y2 = Q(x) and dy = (Q′(x)/2y)dx

where the prime denotes the standard derivative.

As Q and Q′ are relatively prime in k[x], there exist U, V ∈ R[x] such that UQ + V Q′ is 1.

Therefore, for any S ∈ R[x], there exist A,B ∈ R[x] with S = AQ+BQ′. Then, for m 6= 2,

S
dx

ym
= A

dx

ym−2
+ 2B

dy

ym−1
= A

dx

ym−2
+

(

2

m− 2

)

B′ dx

ym−2
−

(

1

m− 2

)

d

(

2B

ym−2

)

This gives the first reduction type:

RednA S
dx

ym
≡

(

A+

(

2

m− 2

)

B′

)

dx

ym−2
if S = AQ+BQ′

to reduce m by 2 when m > 2. Note that in practice, we only apply this for deg(S) < d because

we begin by recursively dividing S by Q (which is monic) to express S as S0+S1Q+S2Q
2+ . . .

with Si ∈ R[x], deg(Si) < d and then replace Qi by y2i. In fact, we only divide out by Q

and replace by y2 while this leads to negative powers of y in the expression. Note also that if

deg(S) < d (in fact, if deg(S) < 2d − 1), then A and B can be chosen as SU mod Q′ and SV

mod Q, so with deg(A) < d− 1 and deg(B) < d.

In this way, RednA applied recursively reduces S(dx/ym) to a T (dx/y) or T (dx/y2) depending

on the parity of m. Note also, that if the initial m was ≤ 0, then we could shift up instead by

replacing a positive power y2i by Qi, but this case doesn’t occur.

The second reduction uses the differential equalities (for r ≥ 0)

d(xr) = rxr−1dx = rxr−1Q(x)(dx/y2) leading term rxr+d−1

d(2xry) = [2rxr−1Q(x) + xrQ′(x)](dx/y) leading term (2r + d)xr+d−1
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Subtracting multiples of the right hand sides of these from T (dx/y2) or T (dx/y), reduces the

degree of T until we are back to linear combinations of basis elements. This will be referred to

as RednB.

Applying a number of RednA followed by a number of RednB steps thus reduces any S(dx/ym)

to a linear combination of basis elements. The reductions can clearly introduce a power of p

into the denominator of the final expression. This should be accurately estimated in order to

gauge a priori what the loss of p-adic precision may be and if there will be non-integral terms

at the end. We give the analysis in Section 3.

Stages 1 and 2 of the algorithm give an explicit (d − 1)-by-(d − 1) matrix M over R which

represents the σ-linear transformation Fp∗ on H1
− with respect to the chosen xi(dx/y) basis.

Computationally, the entries of M will be finite approximations of the exact values which are

correct mod pN for some N depending on the p-adic precision that we carried out the stage 1

expansion to and on the loss of precision in stage 2. The final stage is to compute the nth

twisted power of M : Mσn−1
Mσn−1

. . .M . This gives the matrix of F∗ on H1
− and we just need

its characteristic polynomial, PF (t).

IfM is p-integral, PF (t) will be correct mod pN and the Weil bound tells us how largeN should

be taken for this to determine the numerator of the zeta function of C. If M is non-integral, it is

hard to give good small estimates of the p-adic precision lost in the twisted powering. Therefore,

it is highly desirable to have a p-integral M . As we show in Section 3, for small p, the xi(dx/y)

basis will usually lead to M with denominators whereas the xi(dx/y3) pseudo-basis never does.

3. Adaptation of the basic algorithm

In this section we describe in detail the adaptations to Kedlaya’s algorithm outlined in the

introduction and previous section, and provide proofs of correctness.

3.1. Zeta function formula: even or odd case.

Let PC(t) be the numerator of the zeta-function of C/k (see, eg, App. C, [Har77]). The

polynomial PC(t) = t2g + c2g−1t
2g−1 + . . . + c0, a monic polynomial over Z. Its roots over C,

{αi}, all have absolute value q1/2 and this set is invariant under α 7→ q/α. Furthermore, if

Sr(α) = αr
1 + . . .+ αr

2g then

#C(Fqr) = qr + 1− Sr(α) ∀r ≥ 1

Lemma 3.1. The characteristic polynomial of F∗ acting K-linearly on H1(Ak;K)− is PC(t)

when d is odd, and is (t− q)PC(t) when d is even.

Proof. The following argument is from [Ked01] when d is odd. From the explicit description of

A†, it follows immediately that, if Bk = k[x]Q and BR = R[x]Q, then Fp lifts to B† as a σ-linear

map with x 7→ xp and

A†
+ ≃ B† and (Ω̃1

A†/R)
+ ≃ Ω̃1

B†/R
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as Fp-modules. Thus (abbreviating H i(Ak;K) toH i and using subscripts for the ± eigenspaces),

H0 = H0
+ and H1

+ are F∗-isomorphic to the cohomology groups for Spec(Bk). This is isomorphic

to P
a := P

1
k\S, where S is the set of finite places corresponding to the irreducible factors of

Q ∈ k[x] and the point at infinity.

Essentially, the contribution to cohomology resulting from the removal of closed points from

C to get to Ca is precisely matched by the removal of the corresponding points from P
1 in

the odd case and gives the H0
+ component. When d is even, as well as the Weierstrass points,

we are removing 2 k-rational points from C at infinity which are swapped by the hyperelliptic

involution and lie over a single k-rational point of P1. This leads to an extra eigenvalue q in

each of the + and − components of H1. Formally, this follows easily from the trace formula as

we now show.

The fixed-point theorem for Monsky-Washnitzer cohomology gives the following trace formula

for a general affine X/k of dimension n with (finite-dimensional) cohomology groups H i:

#X(Fqr) =

n
∑

i=0

(−1)iTraceK((qnF−1
∗ )r|H i) ∀r ≥ 1

Let Nr = the number of roots of Q(x) over Fqr and δ = 0 if d is odd and 1 if d is even. The

MW trace formula for Ca and P
a and Weil formula for #C(Fqr) give

(Ca) qr − Sr(α) −Nr − δ = Tr((qF−1
∗ )r|H0)− Tr((qF−1

∗ )r|H1
+)−Tr((qF−1

∗ )r|H1
−)

(Pa) qr −Nr = Tr((qF−1
∗ )r|H0)− Tr((qF−1

∗ )r|H1
+)

Subtracting gives

Tr((qF−1
∗ )r|H1

−) = Sr(α) + δ ∀r ≥ 1

which implies that the eigenvalues of qF−1
∗ on H1

− are {αi}[∪{1}]d even. Hence, the eigenvalues

of F∗ are {αi}[∪{q}]d even.

Therefore the characteristic polynomial of F∗ on H1
− is PC(t), if d is odd, or (t − q)PC(t), if

d is even. �

3.2. Differential basis choices.

We first note that Kedlaya’s assertion that {xidx/y : 0 ≤ i ≤ d− 2} ∪ {xidx/y2 : 0 ≤ i ≤ d− 1}
form a basis for H1 remains true for d even.

By Thm. 5.6 of [MW68], the natural map H1
dR(C

a
K/K) → H1(Ak;K) is an isomorphism,

where CK ,Ca
K are the hyperelliptic lifts of C, Ca to K corresponding to the lift of Q(x). The

reductions RednA and RednB on algebraic differentials show that the above set of differentials

generate H1
dR(C

a
K/K) and a similar argument shows that no nontrivial K-linear sum of them

is of the form df for f ∈ K[x, y, y−1]/(y2 −Q(x)) [Note: any element of this algebra is a finite

sum of the form
∑N

n=0 an(x)y
−n]

Remark. That the given differentials form a basis also follows easily from general de Rham theory

for complete curves and their open affine subsets applied to H1
dR(CK/K) and H1

dR(C
a
K/K).
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Definition 3.2. We define two sets of differentials, B1 and B2.

B1 = {dx/y, x(dx/y), . . . , xd−2(dx/y)}

B2 = {dx/y3, x(dx/y3), . . . , xd−2(dx/y3)}
The classes of the differentials in B1 give a basis for H1

−. B2 is our pseudo-basis whose classes

only give a basis for H1
− when d is odd, as we shall see.

For convenience, we also define V2 as the (d − 1)-dimensional K-vector subspace of Ω̃1
A†

K
/K

with basis B2 and η as the class map into H1
−

η : V2 −→ H1
− xi−1(dx/y3) 7→ [xi−1(dx/y3)]

Lemma 3.3.

(i) (Kedlaya) Let m > 2, S ∈ R[x] with deg(S) ≤ d− 1. Under RednA, let

S(dx/ym) ≡ T (x){(dx/y) m odd , (dx/y2) m even} T (x) ∈ K[x], deg(T ) < d

then p⌊logp(m−2)⌋T ∈ R[x].

(ii) Let S ∈ R[x] with deg(S) = m ≥ d− 1. Under RednB let

S(dx/y) ≡ T (x)(dx/y) T (x) ∈ K[x], deg(T ) < d− 1

then p⌊logp(2m−d+2)⌋T ∈ R[x]. If d is even, p⌊logp(m−(d/2)+1)⌋T ∈ R[x].

In either case, the d(
∑b

a Sr(x)y
r) differential giving the reduction can be chosen with puSr(x) ∈

R[x] ∀r for the same pu.

Proof. i) is just Lemma 2 of [Ked01]. Note that in the statement of that Lemma, logp(2m+1)

should be replaced by logp(2m − 1) (with m ≥ 1) and in the proof, every ±m as the upper or

lower limit of a sum should be replaced by ±(m− 1). The proof of the lemma works just as well

for d even or odd and the final statement about d(
∑b

a Sr(x)y
r) above is what is actually proven

in Lemma 2.

ii) This is essentially Lemma 3 of [Ked01] (or rather the corrected statement in the errata,

[Ked03]). As Kedlaya notes, ii) and the statement about d(
∑b

a Sr(x)y
r) follow in the same

way as part i) (but more easily). We have that S(dx/y) − d(
∑m+d−1

r=0 2arx
ry) = T (dx/y),

d(2xry) = ((d + 2r)xd+r−1 + . . .)(dx/y) and the coefficient of xs in T is zero for s ≥ d − 1.

Kedlaya’s argument - considering formal expansions of the differentials with respect to a local

parameter at one of the points at infinity - effectively shows that the largest power of p that

may occur in denominators is the largest power of p that can divide one of the d + 2r (rather

than their product). When d is even, it is only necessary to consider divisibility of (d/2) + r

since p is odd. �

Any element of Ω̃1
A†

K
/K

can be written uniquely in the form
∑+∞

−∞ Sn(x)y
ndx with deg(Sn) < d,

which we refer to as its standard expansion.
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Lemma 3.4.

(i) For all ω ∈ B2, the standard expansion of Fp∗ω is of the form
∑

n≥3Bn(x)(dx/y
n).

(ii) RednA on the
∑

n≥1 Sn(x)(dx/y
n) part of the standard expansion of Fp∗(x

i(dx/y)) (resp.

Fp∗(x
i(dx/y3))) gives a form which is a linear combination of elements of B1 (resp. B2)

with p-integral coefficients.

(iii) Consider the coefficients of the B1 expansion resulting from RednB on the
∑

n≥1 Sn(x)y
ndx

part of the standard expansion of Fp∗(x
i−1(dx/y)).

(a) If d = 2g + 1, then these coefficients are p-integral for i ≤ g and for i = g + r have

denominator bounded by p−⌊logp(2r−1)⌋.
(b) If d = 2g+2, then these coefficients are p-integral for i ≤ g+1 and for i = g+ r+1

have denominator bounded by p−⌊logp(r)⌋.

By part (i), we can use RednA to reduce Fp∗ω back to linear combinations of elements in B2

rather than descending to B1. This is what is meant in part (ii). In this way, we get a σp-linear

map (also denoted Fp∗) V2 → V2.

Proof. We have, for 1 ≤ i ≤ d− 1, k = 0 or 1,

Fp∗(x
i−1(dx/y2k+1)) = xp(i−1)y−(2k+1)p

(

1 + p
(

Qσp(xp)−(Q(x)p)
p

)

y−2p
)−(2k+1)/2

d(xp)

= pxpi−1y−(2k+1)p
(

1 + p{a1(x)y−2 + . . .+ ap(x)y
−2p}

)−(2k+1)/2
dx

= pxpi−1y−(2k+1)p
(

1 +
∑∞

n=1

(

−(2k+1)/2
n

)

pn{. . .}n
)

dx

= pxpi−1

(

∑

modd≥(2k+1)p p

⌈

m−p

2p

⌉

−k
bm(x)y−m

)

dx

with ai(x), bi(x) ∈ R[x] of degree less than d. Note that b(2k+1)p(x) = 1 and that {. . .}n when

expanded is then reduced to the form A1(x)y
−2+ . . .+Apn(x)y

−2pn with Ai(x) ∈ R[x] of degree

less than d.

When we multiply each term in the final sum by xpi−1 and reduce using the relation y2 = Q(x),

we see that the result is

Fp∗(x
i−1(dx/y2k+1)) =

∑

modd≥m0
cm(x)y−mdx

where

m0 ≥ (2k + 1)p− 2⌊(pi − 1)/d⌋ (1)

and each cm(x) ∈ pR[x]. Here we have used b(2k+1)p(x) = 1 to get pi− 1 rather than pi+ d− 2.

Furthermore,

cm(x) ∈ p

⌈

m−p

2p

⌉

+1−k
R[x] ∀m ≥ (2k + 1)p (2)

(i) When k = 1, by (1) with i = d− 1, m0 ≥ p+ 2 > 3.
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(ii) First note that for m < (2k + 1)p ≤ p2, logp(m − 2) < 2. From Lemma 3.3 and (2), we

see that it suffices to prove that
⌈

m− p

2p

⌉

+ 1− k − ⌊logp(m− 2)⌋ ≥ 0 ∀modd ≥ (2k + 1)p

For k = 0, the inequality with the floor and ceiling brackets removed holds for m > 2p+1 by

elementary calculus. For p ≤ m ≤ 2p + 1, it is clear.

For k = 1 and p ≥ 5, the inequality again holds for m ≥ 5p by calculus and for 3p ≤ m < 5p

it is clear.

For k = 1 and p = 3, the inequality holds for m ≥ 3p2+1 by calculus and for 3p ≤ m < 3p2+1

it is again easy to check directly.

(iii) Consider the pxpi−1pαbm(x)y−m terms that give contributions to the
∑

n≥1 sum. Ex-

pressing xpi−1bm(x) as ur(x)y
2r+. . . u0(x) with deg(ui) < d, we must have r ≥ (m−1)/2 and the

contribution will be expressible in the form S(dx/y) with deg(S) = pi−1+deg(bm)−d(m−1)/2.

This last expression must be greater than or equal to d−1 for non-trivial reduction under RednB.

For such m, writing dm for deg(bm), the above and Lemma 3.3 (ii) show that the power of p in

the denominator of the RednB reduction of the contribution from the index m term is bounded

above by

⌊logp(2pi−md+ 2dm)⌋ − 1− ⌈(m− p)/2p⌉ if d = 2g + 1

⌊logp(pi−m(d/2) + dm + 1)⌋ − 1− ⌈(m− p)/2p⌉ if d = 2g + 2

We have that dp = 0 (bp(x) = 1) and dm ≤ d − 1 for m ≥ p + 2. Since m ≥ p is odd, the

above expressions are maximal when m = p. (a) and (b) follow easily from this. �

The bounds in Lemma 3.4 (iii) for denominators in the reduction of Fp∗(x
i−1(dx/y)) are

sharp. The proof shows that the first term in the power series expansion pxpi−1(dx/yp) is the

only one that can contribute to the given maximal power of p and for a general Q it does indeed

lead to denominators equal to the bounds.

Thus, as is readily confirmed in practice by computer computations, we reach the following

Conclusion: When d = 2g+1 and p > 2g−1 or d = 2g+2 and p > g, the transformation matrix

M for Fp∗ w.r.t. basis B1 for H1
− is p-integral. When these equalities for p do not hold however,

for a general Q, entries in the lower rows of M have powers of p in the denominator given by

the bounds in the last part of Lemma 3.4.

On the other hand, Lemma 3.4 shows that RednA applied to Fp∗(ω) for ω ∈ B2 reduces back

to an expression that is always an R-linear combination of the elements of B2, so formally leads

to a p-integral transformation matrix M .

If B2 gives a basis for H1
−, then this M genuinely represents Fp∗ on that space and B2 can

replace B1 as the chosen basis for computations.

Even when B2 doesn’t give a basis, this M can still be used. The above shows that the kernel

of η and its image in H1
− are Fp∗- and hence also F∗-stable.
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The following result will be demonstrated in the next section.

Proposition 3.5.

(i) η is an isomorphism when d = 2g+1 but has a 1-dimensional kernel and cokernel when

d = 2g + 2.

(ii) In the latter case, F∗ is the identity on ker(η) and acts as multiplication by q on

H1
−/Im(η).

This justifies the adaptation of Kedlaya’s algorithm given in Section 2, which always works

with a p-integral M . In summary:

New Algorithm

• d = 2g + 1. If p ≥ 2g then the algorithm is unchanged. If p < 2g then the algorithm is

as before, but use differential basis B2 instead of B1.

• d = 2g + 2, p > g. Apply the algorithm as for odd d with differential basis B1. At the

end, remove a factor t− q from the characteristic polynomial of F∗.

• d = 2g + 2, p ≤ g. Formally apply the algorithm as for odd d with pseudo-basis B2. At

the end, remove a factor t− 1 from the characteristic polynomial of F∗.

Efficiency If N1 = ⌈(ng/2) + logp(2
(2g
g

)

)⌉ (q = pn) and N = N1 + ⌊logp(2N1)⌋ + 1, then esti-

mates using Lemma 3.4 and the Weil bound show that it suffices to compute (1 + (Qσ(xp) −
Q(x)p)y−2p)−(2k+1)/2 to accuracy pN in order that M is of sufficient p-adic accuracy to deter-

mine PC(t). Here, k = 0 if we use B1 and k = 1 for B2. Using k = 1 rather than k = 0 makes

virtually no difference in computational efficiency here, and the reduction of Fp∗(ω) back to a

linear combination of basis elements is in fact slightly better when using B2.

However, d = 2g + 2 rather than 2g + 1 does increase the size of the bases by 1 element,

meaning that one extra reduction of a Fp∗(ω) has to be performed. Also the (d − 1) × (d − 1)

matrix M , which has to be σ-powered to the nth power, has an extra row and column. This does

make a small difference (more so for smaller g), which makes it worth looking for a k-rational

root of Q(x) and moving that to ∞ to transform to d = 2g + 1. In general, though, no such

transformation is possible.

4. Proof of Proposition 3.5

Proposition 3.5 of the last section on the η map is proven in the following three lemmas.

Lemma 4.1. If d = 2g + 1 then η is an isomorphism onto H1
−.

If d = 2g + 2 then η has a one dimensional kernel generated by V (dx/y3) = d(−2S/y) where

V = SQ′ − 2S′Q and S = xg+1 + . . . ∈ K[x] is the unique monic degree g + 1 polynomial such

that V is of degree ≤ 2g.
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Proof. Using the fact that B1 is a basis for H1
− and the RednA formula, we see that an element

of the kernel of η corresponds to a differential of the form V (dx/y3) with deg(V ) ≤ d − 2 and

V = SQ′ − 2S′Q.

If V = arx
r+ . . . with r ≥ 0, ar 6= 0, then the leading term of SQ′−2S′Q is (d−2r)arx

d+r−1,

so d must equal 2r. So, d = 2g + 2 and r = g + 1. Normalising S so that its leading coefficient

is 1, it follows easily that its lower coefficients are completely determined by the condition on

deg(V ). Explicitly, if bi is the coefficient of xi in S, then the condition that the coefficient of

xd+i−1 in SQ′ − 2S′Q is zero, 0 ≤ i ≤ g, translates into

(2g + 2− 2i)bi = some linear combination of bj, j ≥ i+ 1

This determines the bi inductively and gives a unique S and V up to K-scaling. �

Lemma 4.2. When d = 2g + 2, F∗ acts trivially on ker(η).

Proof. From the last lemma, ker(η) is 1-dimensional and generated by ω = V (dx/y3) = d(−2S/y)

with S = xg+1 + . . . . As ker(η) is F∗-stable, ω is an eigenvector for F∗ with eigenvalue λ, say.

We must show that λ = 1.

Considering the images in H1
− and using Lemma 3.4 (ii), we get

F∗(ω) = λω − 2d(f) f =

∞
∑

r=1

Br(x)

y2r+1
∈ (A†

K)− ⇒ d(F

(

S

y

)

) = λd

(

S

y

)

+ d

(

B1

y3
+

B3

y5
. . .

)

So

F

(

S

y

)

= λ

(

S

y

)

+

(

B1

y3
+

B3

y5
. . .

)

∈ (A†
K)− (3)

In fact, this equality is true up to addition of a constant in K, but as both sides are in the −
eigenspace, the constant must be zero. The Bi here have degree < d.

Now, as in the proof of Lemma 3.4, we see that if the standard expansion of f ∈ A†
K is of the

form
∑

n≥3 an(x)/y
n, then Fp(f) has the same property.

Also, expanding S(xp) as ur(x)Q(x)r + . . .+u0(x) = ur(x)y
2r + . . .+u0(x) with deg(ui) < d,

we easily get that r = (p− 1)/2 and ur(x) = xg+1 + . . . .

Then, using Fp(1/y) = y−p(1+ a2(x)/y
2 + a4(x)/y

4 + . . .), we find that Fp(S/y) = S1(x)/y+

b3(x)/y
3 + . . . with S1(x) = xg+1+ . . .. Iterating, we see that the same holds for F (S/y). Then,

(3) implies that λ = 1. �

Lemma 4.3. When d = 2g + 2, F∗ acts on H1
−/Im(η) as multiplication by q.

Proof. We already know that Im(η) is an F∗-stable codimension 1 subspace of H1
− and that the

eigenvalues of F∗ on H1
− are q and the roots of PC(t), the numerator of the zeta-function of C.

We need to show that the eigenvalues of F∗ on Im(η) are precisely these latter roots.

We will prove the lemma by using an isomorphism to an odd degree model over an extension

Fqr of k where Q ∈ k[x] has a root. In fact, replacing F by F r corresponds to replacing the

basefield k = Fq by k1 = Fqr and the roots of PC/k1(t) are the rth powers of the roots of PC/k(t).
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These latter roots have absolute value qr/2 in every complex embedding whereas qr obviously

has absolute value qr. So we can assume that Q has a root in k.

First note that

Im(η) = {ω ∈ H1
− | Residue∞1(ω) = Residue∞2(ω) = 0}

as both sides of the equality have codimension 1 in H1
− and the LHS lies in the RHS (in fact,

all differentials of the form xi(dx/y3), i ≤ d− 2 are holomorphic at both points at infinity).

We can translate a root of Q(x) to zero by a x 7→ x − α translation (this changes the lift of

F but not Im(η)), so assume that Q(x) = x2g+2 + a2g+1x
2g+1 + . . .+ a1x ∈ k[X], a1 6= 0.

Let Q̃(X) = X2g+1 + (a2/a
2
1)X

2g + . . .+ (1/a2g+2
1 ).

The equation Y 2 = Q̃(X) defines a new smooth, odd-degree affine model for C and we have

Bk :=
k[X,Y, Y −1]

(Y 2 − Q̃(X))
→֒ Ak =

k[x, y, y−1]

(y2 −Q(X))
X 7→ 1/(a1x), Y 7→ y/(a1x)

g+1

[note: 1/(a1x) = (1/(a1y
2))(a1 + a2x + . . .) ∈ Ak]. Letting B† be the smooth lift of Bk corre-

sponding to the lift to R[X] of Q̃ with the coefficient lift compatible with that of Q, we get the

corresponding commutative diagram

B† −−−−→ A†

F (1)





y





yF (2)

B† −−−−→ A†

for some choice of q-Frobenius lifts F (1) and F (2). All maps commute with the automorphisms

induced by the hyperelliptic involution.

One easily sees that Ak = Bk[1/X]. The Main Theorem of [Mon68] implies that

H1(Bk;K) →֒ H1(Ak;K) = H1

with image the K-subspace of elements with residues 0 at ∞1 and ∞2, the images of points with

X = 0 under the automorphism of C induced from Bk →֒ Ak. [In fact, a bit of computation

verifies the residue condition directly from the explicit maps].

Thus Im(H1(Bk;K)−) = Im(η) and as we know that the eigenvalues of F∗ on H1(Bk;K)−

are the roots of PC(t) (the odd degree case), the result follows. �
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