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Abstract

In this paper we study the local behavior of an algebraic curve under a geometric
construction which is a variation of the usual offsetting construction, namely the
generalized offsetting process ([13]). More precisely, here we discuss when and how
this geometric construction may cause local changes in the shape of an algebraic
curve, and we compare our results with those obtained for the case of classical offsets
([4]). For these purposes, we use well-known notions of Differential Geometry, and
also the notion of local shape introduced in [4].

1 Introduction

The notion of generalized offset (see [12], [13] for a more formal definition of
this notion and a large study of algebraic and geometric properties) arises in
the literature as a generalization of usual offsets. In order to introduce this
notion, one may consider the following construction over a given algebraic
curve C: for every non-isotropic, regular point P ∈ C, take the normal line LP

to C at P , rotate it θ degrees, and consider the points P±d,θ lying on LP at
a distance d of P . Then the generalized offset Gd,θ(C) is the Zariski closure of
the set consisting of all the points P±d,θ computed this way. In this context,
the usual notion of offset (which corresponds to the case when θ defines a
rotation leaving LP invariant) is called the classical offset Od(C) of the curve
(see [7], [10], [11]). For example, in Figure 1 one has, for different distances,
the classical and the generalized offsets for θ = π/4 of an ellipse. Notice that
this construction works over C; nevertheless, in the following we will assume
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that C is real, and we will focus on the real part of its generalized offset, for a
real distance and a real angle.
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Fig. 1. Classical (left) and Generalized (right) offsets to the ellipse for different
distances

Algebraic properties of generalized offsets have been considered in the litera-
ture (see [5], [6], [13], [14]). In this sense, a nice result is that properties like
the number of components, genus and therefore rationality, are invariant for
the angle θ; so, they are shared by all the generalized offsets (including the
classical offset) of a given curve. Thus, it is natural to wonder whether the
same happens when the shape of generalized offsets is considered. This paper
explores this problem from a local point of view.

Questions on the shape of classical offsets have already been analyzed (see [1],
[3], [4], [8], [9]). Moreover, in [4] local aspects on the shape of classical offsets
of possibly singular algebraic curves are studied. In that paper the notion of
local shape is introduced in order to locally describe the shape of a curve.
Basically, this notion describes the shape of a real branch of an algebraic
curve in the vicinity of a point. So, one may prove (see [3], [4]) that there are
four different behaviors that a real branch can exhibit, which can be found in
Figure 2 (see Section 2), corresponding to so-called local shapes (I), (II), (III),
(IV). Moreover, each of these possibilities has a characterization in terms of
places (see also Section 2 in this paper; for more information on the notion of
place, we refer the reader to [15]). Hence, given a geometric transformation like
classical or generalized offsetting, in order to analyze how the transformation
locally affects the curve one can take a generic place, compute the places it
gives rise to in the transformed object, and compare the local shapes of the
original and the final places. If all these local shapes coincide, then it means
that the transformation has not introduced local changes in the shape of the
curve; otherwise, some local change has occurred. Since this strategy can be
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applied at both regular and singular points, in particular the notion of local
shape gives us a way of analyzing the behavior at singularities. The notion of
local shape has also been used in [1] for addressing not only local, but also
global questions on the shape of classical offset curves.

Finally, the structure of the paper is the following. In Section 2 we provide the
necessary background for developing our results; in particular, the notion of
local shape is reviewed here. In Section 3 we address the behavior of regular
points under generalized offsetting processes; the results in this section are
proven by using elements of Differential Geometry, without making use of the
notion of local shape. In Section 4, we use the notion of local shape for giving
a more complete description of the phenomenon, including the behavior at
singularities. In Section 5, we summarize the main results in the paper and we
provide a comparison between the local properties of the shapes of classical
and non-classical generalized offsets.

Acknowledgements.The author wishes to thank J. Rafael Sendra for suggesting
the problem.

2 Local Shape of an Algebraic Curve

In the following we work with an algebraic curve C different from a line, a
real distance d 6= 0, and a real angle θ. One may easily see that generalized
offsets to lines are also lines; therefore, for lines the analysis is trivial. Since
C is algebraic, around every real non-isolated point P ∈ C one can find at
least one local parametrization P(h) = (x(h), y(h)) where x(h), y(h) are real
analytic functions and P = P(0) = (x(0), y(0)). In the language of places (see
[15]) one says that P is the center of the place P(h). The functions x(h), y(h)
are called the coordinates or the components of the place, and are analytic in
a neighborhood I of 0. Now writing

x(h) = a0 + a1h + a2h
2 + · · · , y(h) = b0 + b1h+ b2h

2 + · · · ,

we represent by ordx the order of x(h), i.e. the least non-zero power of h
in the expression of x(h); similarly we introduce ordy. Moreover, we speak
of “real” places to denote places where the coefficients a0, a1, . . . , b0, b1, . . .,
perhaps after a change of parameter, are real numbers. Then we consider the
following definition.

Definition 1 Let P(h) be a real place of C. The signature of P(h) is defined as
the pair (p, q) where p is the first non-zero natural number such that the deriva-
tive P(p)(0) 6= ~0, and q > p is the first natural number such that P(p)(0),P(q)(0)
are linearly independent. We denote by sign(P(h)) the signature of P(h).

3



p
even

p
odd

q
even

q
odd

(I) (II)

(III) (IV)

Fig. 2. Local Shapes

Since C by hypothesis is not a line, the numbers p, q in Definition 1 always
exist. Now if sign(P(h)) = (1, q) then we say that P(h) is regular, otherwise
we say that it is singular. The center of a singular place is always a singular
point of C. Now, in [4] (see Proposition 3 there) it is proven that in a suitable
coordinate system, every real non-isolated point P ∈ C is the center of a real
place P(h) = (x(h), y(h)) of the type P(h) = (hp, βqh

q + · · ·) where (p, q) is
the signature of the place. If a place has this form, we say that it is in standard
form; notice that when the place is in standard form, ordx = p < ordy = q.
Furthermore, in [3], [4] it is shown that the local behavior of P(h) around its
center can be read from the signature, giving rise to the notion of local shape.
We recall this notion here.

Definition 2 Let P(h) be a real place of signature (p, q), centered at P ∈ C.
Then we say that:

(1) P(h) is a thorn (or it has local shape (I)) if both p, q are even.
(2) P(h) is an elbow (or it has local shape (II)) if p is odd, and q is even.
(3) P(h) is a beak (or it has local shape (III)) if p is even, and q is odd.
(4) P(h) is a flex (or it has local shape (IV)) if both p, q are odd.

In Figure 2 one can see the shape corresponding to each local shape up to
rotations. In each case, the center of the place is the intersection point of
the two dotted lines. Furthermore, in all cases the horizontal dotted line is
tangent to C in the direction of P(p)(0). We also note that if P(h) is regular,
then p = 1, and therefore the only possibilities for the local shape of P(h) are
(II) or (IV). Moreover, if p is even we say that the place is cuspidal.
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3 Behavior at regular points

In the rest of the paper, we will represent the generalized offset of C, for a
distance d 6= 0 and an angle θ, as Gd,θ(C); in particular, if θ = 0, π we have the
classical offset, Od(C). Moreover, for local aspects in the topology of classical
offsets we refer the reader to [4], [8], [9]. So, here we focus on generalized,
non-classical, offsets. Now along this section let P(h) = (x(h), y(h)) be a real
regular place of C. Since P(h) converges in a neighborhood I of 0, we can
regard (x(h), y(h)), with h ∈ I, as the parametrization of a regular curve;
moreover, we can assume that it has been reparametrized by the arc-length.
We will represent by r̄(h) the vector whose components are the coordinates
of P(h). Furthermore, we denote by r̄0(h) the vector whose components are
the coordinates of a place generated by P(h) in Gd,θ(C). Hence, denoting as
n̄ the normal vector to P(h) at its center (i.e. the normal vector to the curve
represented by P(h) at the point P0 = P(0)) and denoting the matrix defining
a rotation of angle θ as A, it follows that

r̄0 = r̄ + dAn̄

Now the first result, which shows an important difference between classical
and generalized offsets, is the following.

Theorem 3 The only generalized offset which may transform a regular place
into a singular offset place, is the classical offset. Therefore, the generalized,
non-classical, offset, never generates a cusp from a regular point of the original
curve.

Proof. Differentiating the equality r̄0 = r̄ + dAn̄ w.r.t. the arc-length and
using Frenet equations, it follows that

r̄′0 = (I + dkA) · r̄′

where k is the curvature of P(h) at its center. Now r̄′0 = ~0 iff r̄′ ∈ Ker(I+dkA).
However, det(I + dkA) = (1+ dkcosθ)2+ d2k2(sinθ)2. Then det(I + dkA) = 0
iff 1+ dkcosθ = 0 and simultaneously dksinθ = 0. Since we are assuming that
d 6= 0 and k 6= 0 (i.e. C is not a line) this holds iff sinθ = 0, i.e. when one is
working with the classical offset, and k = −1/d. In particular, if the offset is
non-classical then Ker(I + dkA) = {~0}; since we start from a regular place,
then r̄′ 6= ~0 and therefore r̄′0 6= ~0.

Remark 1 When the offset is classical, it is well-known that the tangents to
the curve and its offset are parallel at corresponding points. For the generalized
offset, the above expression r̄′0 = (I + dkA) · r̄′ tells us that this no longer
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happens; moreover, the tangent line to the generalized offset at a point Q is
not even the θ-rotation of the tangent line to C at the point P generating Q.

In Figure 3 one may see, for d = 1, the classical offset to the parabola y = x2,
and a detail of this offset showing two cusps; in Figure 4 one has the generalized
offset of the same curve, also for d = 1 and a very small angle, θ = π/50. The
reader may see in Figure 4 that in the generalized offset the cusps have been
replaced by rounded arcs.

–1
–0.8
–0.6
–0.4
–0.2

0

0.2
0.4
0.6
0.8

1
1.2
1.4

–1.5 –1 0.5 1 1.5

1

1.1

1.2

1.3

1.4

–0.2 –0.1 0 0.1 0.2

Fig. 3. Classical Offset to the parabola y = x2, d = 1 (left); detail (right)
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Fig. 4. Generalized Offset to the parabola y = x2, θ = π/50, d = 1 (left); detail
(right)

Now let us address the question of checking whether the local shape of regular
places is preserved or not by the generalized offsetting process (we say that
the local shape of a place is preserved, if the local shapes of the places that
it generates in the generalized offset coincide with the original local shape).
Since regular places are either elbows or flex points, the question reduces to
analyzing whether generalized offsets preserve flex points coming from regular
places. For the classical offsets the answer is “yes” (see [8]); however, in the
generalized, non-classical case, we will see that the answer is “no”. For this
purpose, we recall that the curvature at a regular flex point is 0. Hence, let k0
denote the curvature of Gd,θ(C) at the center of the place generated by P(h);
from the well-known formula of the curvature, we have that

k0 =
(r̄′0 × r̄′′0) · z̄

|r̄′0|3
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where z̄ = (0, 0, 1) is normal to the plane containing r̄′0 and r̄′′0 . Thus, the
following theorem holds.

Theorem 4 The regular points of C generating flex points of Gd,θ(C), satisfy

dk′sinθ + k(k2d2 + 2dkcosθ + 1) = 0

As a consequence, the generalized, non-classical, offset does not necessarily
preserve flex points.

Proof. Let us compute the numerator of the above expression for k0. In order
to do this, we have that r̄′0 = (I +dkA)r̄′ = r̄′+dk ·Ar̄′. Differentiating again,
we get

r̄′′0 = r̄′′ + dk′Ar̄′ + dkAr̄′′

Thus,

r̄′0 × r̄′′0 = dk′r̄′ ×Ar̄′ + r̄′ × r̄′′ + dkr̄′ ×Ar̄′′ + dkAr̄′ × r̄′′ + d2k2Ar̄′ × Ar̄′′

Notice that k′ (i.e. the derivative of the curvature w.r.t. the arc-length) exists
because since P(h) is regular, then k is an analytic function. Now since A
represents a rotation of angle θ then |Ar̄′| = |r̄′| = 1 (because we are assuming
that P(h) has been re-parametrized w.r.t. the arc-length), and |Ar̄′′| = |r̄′′|.
Moreover for the same reason the angle between, on one hand, the vectors
Ar̄′, r̄′, and on the other hand, the vectors Ar̄′′, r̄′′, is θ. Furthermore, if we
represent by α the angle between r̄′ and r̄′′, the angle between Ar̄′′ and r̄′ is
α + θ, and similarly the angle between Ar̄′ and r̄′′ is α− θ. Hence,

r̄′0 × r̄′′0 = dk′ sin θ · z̄ + r̄′ × r̄′′ + dk · |r̄′||r̄′′| sin(α + θ)z̄+

+dk · |r̄′||r̄′′| sin(α− θ)z̄ + d2k2r̄′ × r̄′′

Now, expanding sin(α + θ) and sin(α − θ), taking into account the formula
for k in terms of r̄′, r̄′′ and z̄, and computing the dot product with z̄, one gets
that

(r̄′0 × r̄′′0) · z̄ = dk′sinθ + k(k2d2 + 2dkcosθ + 1)

Now from Theorem 3 it holds that |r̄′0| 6= 0, and hence k0 = 0 iff dk′sinθ +
k(k2d2 + 2dkcosθ + 1) = 0; then, every point of C giving rise to a flex point
of the generalized offset fulfills this equality. Finally, notice that a regular flex
point of C satisfies that k = 0, but not necessarily that k′ = 0. So, such a point
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does not necessarily fulfills the condition in the statement of the theorem and
therefore flex points are not necessarily preserved.

In fact, in the next section we will see that generalized, non-classical, offsets
never preserve flex points (see Corollary 9). Also, observe that the condition
in Theorem 4 is not sufficient because the fact that k0 = 0 does not necessarily
imply that the point in Gd,θ(C) is a flex (it depends on the order of the first
non-vanishing derivative of k0).

Finally, we address the turning points (i.e. points of either horizontal or vertical
tangent) of the generalized, non-classical offset. In the classical case, it is well-
known that the tangents to C and Od(C) at corresponding points, are parallel;
hence, turning points of the offset are generated by turning points of the
original curve, and conversely. However, the following result shows that for
generalized, non-classical, offsets this property does not hold in general.

Theorem 5 Let Gd,θ(C) denote a generalized, non-classical offset of C. The
following statements are true:

(1) The points of Gd,θ(C) with vertical tangent, generated by regular points of C,
correspond to: (i) points of C with vertical tangent, where k = 0; (ii) points

of C, with k 6= 0, where the slope of the tangent equals −1 + dkcosθ

dksinθ
.

(2) The points of Gd,θ(C) with horizontal tangent, generated by regular points of
C, correspond to: (i) points of C with horizontal tangent, where k = 0; (ii)
points of C, with 1 + dkcosθ = 0, and horizontal tangent; (iii) points of C,
with 1 + dkcosθ 6= 0, where the slope of the tangent equals

dksinθ

1 + dkcosθ
.

Proof. From the proof of Theorem 3 it holds that the relationship between
the tangents of C and Gd,θ(C) at corresponding points is r̄′0 = (I + dkA) · r̄′.
In order to prove (1), one considers the first component of r̄′0, namely (1 +
dkcosθ)x′ + dksinθy′, and one imposes that it is 0. Hence, either k = 0 and

x′ = 0, or k 6= 0 and
y′

x′
= −1 + dkcosθ

dksinθ
(notice that d 6= 0 by hypothesis and

sinθ 6= 0 because the offset is not classical). Similarly for (2).

4 Local Shape of the Generalized, Non-classical, Offset

Along this section we consider a real place P(h) = (hp, βqh
q + ξrh

r + · · ·),
non-necessarily regular, a distance d 6= 0, and an angle θ 6= 0, π (i.e. we work
with a non-classical generalized offset; see [4] for a study of the classical case).
Moreover, we write a = cosθ, b = sin θ, and we represent the coordinates of a
place generated by P(h) = (x(h), y(h)) in Gd,θ(C) as (X(h), Y (h)). In order to
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analyze how the generalized offsetting process affects the local shape of P(h),
the idea is to compare the local shape of (X(h), Y (h)) with the original local
shape. For this purpose, we compute the generalized offset of P(h) for the
previously fixed d, θ. Thus, we have that:







X(h)

Y (h)





 =







x(h)

y(h)





± d · 1
√

x′(h)2 + y′(h)2
·







a −b

b a





 ·







−y′(h)

x′(h)







We recall from [4] that, performing computations with formal power series,

1
√

x′(h)2 + y′(h)2
=

1

hp−1
·
(

1

p
− q2β2

q

2p3
h2(q−p) + · · ·

)

Plugging this expression into the first equality and making computations, one
gets that, whenever ξr 6= 0,

X(h) = ∓db+ hp ∓ d
aqβq

p
hq−p ± db

q2β2
q

2p2
h2(q−p) ∓ d

arξr
p

hr−p + · · ·

and

Y (h) = ±da∓ d
bqβq

p
hq−p ± d

brξr
p

hr−p + · · ·

Moreover, in the special case when ξr = 0 (i.e. if P(h) = (hp, βqh
q)) one has

that

X(h) = ∓db+ hp ∓ d
aqβq

p
hq−p ± db

q2β2
q

2p2
h2(q−p) ∓ db

3q4β4
q

8p4
h4(q−p) + · · ·

and

Y (h) = ±da∓ d
bqβq

p
hq−p ∓ da

q2β2
q

2p2
h2(q−p) + βqh

q + · · ·

One may observe that the first order terms of X(h), Y (h) coincide in both
cases, ξr 6= 0 and ξr = 0. Furthermore, ordY = q − p. However, ordX =
min{p, q − p} and therefore it depends on the sign of (q − p) − p = q − 2p;
moreover, when q− 2p = 0 we also have to distinguish whether the coefficient

of hp in X(h), namely 1∓d
aqβq

p
, is equal to 0 or not. All these cases (q−2p >

0, q − 2p = 0, q − 2p < 0) and subcases will be present in our analysis.
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Furthermore, from Theorem 11 in [4] one may see that the case q − 2p > 0
happens iff the curvature vanishes at the center of the place, while the case
q − 2p < 0 occurs iff the curvature tends to infinity as the center of the place
is approached.

Also, in the following we separately address results that can be reached by
considering only the first order terms of X(h), Y (h) (see Subsection 4.1), and
results which require to consider also second order terms in X(h), Y (h) (see
Subsection 4.2). For the second type of results we will need to distinguish the
cases ξr 6= 0 or ξr = 0.

4.1 Results using a First-order Approximation

We start with the following result; this proposition shows that in some cases,
generalized offsetting processes smooth singularities, i.e. they transform sin-
gular places into regular ones. This phenomenon happens also for classical
offsets (see [4]).

Proposition 6 Let P(h) be a place of C with signature (p, q). If q−p = 1, then
P(h) generates regular offset places; as a consequence, if P(h) is cuspidal (i.e.
p is even) and q − p = 1, then its local shape is not preserved. Conversely, if
P(h) is singular and it is smoothed by the generalized, non-classical, offsetting
process (i.e. it generates regular places in the generalized offset), then q−p = 1.

Proof. Since ordY = q − p, if q − p = 1 we have that the places generated by
P(h) are regular. In particular, in that case these places cannot be cuspidal;
so, if P(h) is cuspidal and q−p = 1 its local shape is not preserved. Conversely,
if P(h) is singular then p > 1. Now if it generates regular places then either
ordX or ordY is equal to 1. Since ordX ≥ min{p, q − p}, if ordY = q − p > 1
then min{p, q − p} = 1, which is impossible because both p, q − p are greater
than 1. Thus we conclude that q − p = 1.

Using the results of Section 4 of [4], one may check that classical offsets also
smooth singular places iff q − p = 1. Now we consider the case q − 2p > 0.
In this case, p < q − p and therefore ordX = p. Hence, the following theorem
holds.

Theorem 7 Let P(h) be a place of C with signature (p, q), where q− 2p > 0.
Then, the following statements are true:

(i) If P(h) is singular, then it generates singular offset places.
(ii) The local shape of the offset places generated by P(h) behaves according to
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the following table:

p even p is odd

q even thorn flex

q odd beak elbow

As a consequence, when q − 2p > 0 the only places whose local shape is pre-
served are the cuspidal ones.

Proof. Since q − 2p > 0, then p < q − p and ordX = p; moreover, since
ordY = q − p then ordX < ordY . Hence, the signature of an offset place
generated by P(h) is (p0, q0) = (p, q − p). Now if P(h) is singular then p > 1;
therefore p0 > 1 and the offset place is singular. Moreover, the above table is
also derived from the fact that (p0, q0) = (p, q − p) . From this table one may
deduce that the local shape is preserved iff p is even.

Remark 2 Notice that when q − p = 1, q − 2p = 1 − p and since p ≥ 1, it
holds that q− 2p ≤ 0; hence, the case q− 2p > 0 cannot occur and we find no
contradiction between the first statement of Theorem 7 and Proposition 6.

So, we see that the case q − 2p > 0 is completely described just by using first
order terms. When q − 2p ≤ 0, the orders of X(h) and Y (h) are in general
both equal to q− p; so, denoting as (p0, q0) the signature of a place generated
by P(h), we have that while p0 = q − p, in order to compute q0 we need to
consider higher order terms. One may see that this situation is quite different
from the classical one, where first order terms are enough to provide a good
description of the cases q − 2p = 0 and q − 2p < 0 (see [4]). Nevertheless,
using just the relationship p0 = q− p, the following result concerning the case
q − 2p < 0 can be derived.

Proposition 8 Let P(h) be a place of C with signature (p, q), where q−2p <
0. If q is odd, then the local shape of P(h) is not preserved.

Proof. Since p0 = q − p then if p is even and q is odd, q − p is odd and the
local shape is not preserved. On the other hand, if p, q are both odd then q−p
is even and the local shape is not preserved, either.

Theorem 7 and Proposition 8 provide the following corollary on the non-
preservation of the flex points of C.

Corollary 9 The generalized, non-classical, offset never preserves flex points.

Proof. Let P(h) be a real place with signature (p, q), whose center is a flex
point. Then, from Definition 2 p, q are both odd. Hence q cannot be equal to
2p, i.e. either q−2p > 0 or q−2p < 0 hold. In the first case, the result follows
from Theorem 7; in the second case, the result follows from Proposition 8.
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In order to give a more complete description of the cases q − 2p = 0 and
q − 2p < 0, we need to take into account higher order terms in X(h). This is
considered in the next subsection.

Example 1 Consider the curve x3 − y2 = 0, and the place P(h) = (h2, h3)
centered at the origin. Here we have p = 2, q = 3, and therefore q − 2p < 0.
Since q is odd, from Proposition 8 we deduce that the local shape of P(h) is
not preserved by any generalized offset. In fact, since this place is cuspidal
and q− p = 1, from Proposition 6 it follows that P(h) generates regular offset
places. In Figure 5 one may see (in thick line) the generalized offset to the
curve for d = 1 and θ = π/4; here one may check that the generalized offset
contains no cusp.

Fig. 5. Generalized Offset to x3 − y2 = 0, θ = π/4, d = 1

4.2 Results using a Second Order Approximation

In this section we provide a more complete description of the phenomenon
when q− 2p ≤ 0. For this purpose, we consider a second order approximation
of X(h), Y (h). Furthermore, in the following we analyze in detail the case
q − 2p = 0. The analysis of the case q − 2p < 0 is similar; so, for this other
case we give the results without proofs, leaving them to the reader.

4.2.1 The case q − 2p = 0

We start assuming that ξr 6= 0; the case ξr = 0 will be addressed at the end
of the subsection. Now in this case we have that

X(h) =

(

1∓ d
aqβq

p

)

hp + · · ·

and therefore we have to distinguish whether 1∓d
aqβq

p
6= 0, or not; in the first

case ordX = p, while in the second case ordX > p. Furthermore, the following

12



lemma, concerning the curvature at the center of the considered place, will be
useful. Here we recall that a place P(h) can be taken as a parametrized curve
for h ∈ I, where I is an interval containing 0 where the components of the
place converge. So, plugging the coordinates of the place into the curvature
formula one obtains the function curvature. If P(h) is regular, then the re-
sulting function is analytic in I. The following lemma takes into consideration
not only this situation, but also the alternative one which arises when P(h) is
singular.

Lemma 10 Let P(h) = (hp, βqh
q+ξrh

r+· · ·) be a real place of C with q−2p =
0, and let P be the center of P(h). Then, the function curvature kh of P(h)
satisfies that:

(1) If p = 1 (i.e. the place is regular), then kh = 2βqh
q−2 + · · ·.

(2) If p > 1 (i.e. the place is singular), then

kh =



















2βq +
r(r − p)ξr

p2
hr−2p + · · · if h > 0

−2βq −
r(r − p)ξr

p2
hr−2p + · · · if h < 0

As a consequence, kh and the derivative k
(r−2p)
h are not continuous at h = 0;

however, |kh| and |k(r−2p)
h | have a removable discontinuity at h = 0 and

therefore they can be extended to functions k̂h, m̂h, respectively, continuous
at h = 0. In particular, these functions satisfy k̂h(0) = 2|βq|, m̂h(0) =
r(r − p)(r − 2p)!|ξr|

p2
.

Proof. The above expression for kh can be obtained by plugging the co-
ordinates of P(h) into the curvature formula and doing computations with
formal power series (see [4]), taking into account that (x′2(h) + y′(h)2)3/2 =
|h3p−3| · (p2 + O(h2p))3/2. For the second statement one studies limits at the
right and at the left of h = 0.

In the following we will use the notation k̃ = 2βq, and m̃ =
r(r − p)(r − 2p)!ξr

p2
;

since in this subsection we are working with a place P(h) satisfying that
q − 2p = 0, from Lemma 10 these quantities correspond to the right limits of
the curvature and of the (r − 2p)-derivative of the curvature, respectively, of

P(h) as one approaches its center. Using this notation,the expression 1∓d
aqβq

p

is equivalent to ±k̃ =
1

da
. Hence, the following theorem holds.

Theorem 11 Let P(h) = (hp, βqh
q+ ξrh

r+ · · ·) be a real place of C satisfying

13



that q − 2p = 0. If k̃ = ∓1/da, then the following behavior is obtained.

(1) r > 3p: preserved.
(2) r < 3p: preserved if and only if r, p are both even or both odd.

(3) r = 3p: if
b

2
· k̃2 − ap

r − p
· m̃

(r − 2p)!
6= 0, preserved.

Proof. Since k̃ = ∓1/da, the coefficient of hp in the x-coordinate X(h) of one
of the offset places generated by P(h), vanishes. Hence, for that place it holds
that ordX = min{2(q − p) = 2p, r − p}. Thus, in order to compute ordX we
have to discuss whether 2p is greater than r−p or not (i.e. whether r is greater
than 3p); moreover, in case that r = 3p, we also have to analyze whether the
coefficient of h2p vanishes or not. Now let (p0, q0) be the signature of the offset
place. Since q−2p = 0 it follows that ordY = q−p = p. Then if r > 3p we have
that ordY = p < ordX = 2p, and therefore (p0, q0) = (p, 2p) = (p, q); hence, the
local shape is preserved. If r < 3p then ordY = q−p = p < ordX = r−p (notice
that since p < q and q < r, then q−p = p < r−p); hence, (p0, q0) = (p, r−p)
and the local shape is preserved iff r, p are both even or both odd. Finally, if
r = 3p then

X(h) = ±d · 1
p
·
(

bq2β2
q

2p
− arξr

)

h2p + · · ·

From Lemma 10, one may check that the coefficient of h2p in X(h) vanishes

iff
b

2
· k̃2 − ap

r − p
· m̃

(r − 2p)!
= 0. Thus, if this does not happen then ordX =

2p = q and therefore (p0, q0) = (p, q); so, the local shape is preserved.

Similarly the following theorem holds.

Theorem 12 Let P(h) = (hp, βqh
q+ ξrh

r+ · · ·) be a real place of C satisfying
that q − 2p = 0. If k̃ 6= ±1/da, then:

(1) r > 3p: if a∓ dk̃(a2 − b2) 6= 0, preserved.

(2) r = 3p: if
k̃2

2
(a∓ dk̃(a2 − b2))− pb

r − p
· m̃

(r − 2p)!
6= 0, preserved.

(3) r < 3p: preserved if and only if r, p are both even or both odd.

Proof. We may observe that in this case ordX = ordY = q − p = p. More
precisely, it holds that

X(h) = ∓db+

(

1∓ d · aβq

p

)

hp ∓ db · q
2β2

q

2p2
h2(q−p) ∓ d · arξr

p
hr−p + · · ·

Y (h) = ±da∓ d · bqβq

p
hp ± d · brξr

p
hr−p ∓ da

q2β2
q

2p2
h2(q−p) + · · ·

14



These expressions can be written as

X(h) = u0 + u1h
p + bBh2(q−p) + aChr−p + · · ·

Y (h) = v0 + v1h
p + aBh2(q−p) + bChr−p + · · ·

where u0 = ∓db, v0 = ±da, B = ∓db · q
2β2

q

2p2
, etc. Now like in the previous

theorem, we have to discuss the value of min{2(q − p) = 2p, r − p}, which is
equivalent to discussing the value of min{r, 3p}. So, let us consider first that
min{2(q−p) = 2p, r−p} = 2(q−p), i.e. that r > 3p. Then, we can compute the
local shape of the place by directly applying Definition 1. For this purpose, we
write Q(h) = (X(h), Y (h)) and we represent by (p0, q0) its signature. Clearly
p0 = p; moreover, Q(p)(h) is parallel to (u1, v1). So, in order to determine q0
we have to find the least natural number, greater than p, so that Q(p)(h) and
Q(k)(h) are linearly independent. For k ∈ (p, 2(q−p)) it holds thatQ(p)(k) = ~0.
Hence, the smallest possible value for q0 is 2(q− p) = 2p = q. Moreover, since
B 6= 0, one may check that Q(2(q−p))(h) is parallel to (a, b). Then, if (u1, v1)
and (a, b) are not parallel, i.e. if u1a− v1b 6= 0, it holds that q0 = 2(q−p) = q,
and hence the local shape is preserved. Making computations, one can check
that the inequality u1a − v1b 6= 0 is equivalent to a ∓ dk̃(a2 − b2) 6= 0, i.e.
k̃ 6= ±a/d(a2 − b2). So, the first statement follows. For the other cases r = 3p,
r < 3p one also applies Definition 1 and similar reasonings.

Example 2 Consider the curve of equation x9 − y2 + 2yx2 − x4 = 0, which
contains the origin. A place of this curve centered at the origin is P(h) =
(h2, h4 + h9), which satisfies p = 2, q = 4 and therefore q − 2p = 0; moreover,
r = 9 > 3p = 6. Also, one may see that the absolute value of the curvature of
P(h) at h = 0 is |k| = 2. Hence, from Theorem 11 and Theorem 12 it follows
that in the following cases, the local shape is preserved: (i) when da 6= ±1/2;
(ii) when da = ±1/2, and a ∓ 2d(a2 − b2) 6= 0. For example, in Figure 6
one has (in thick line) the generalized offset for d = 1 and θ = π/4. Here
a = b =

√
2/2, and therefore a ∓ 2d(a2 − b2) = a 6= 0; in particular, one

may check that the local shape has been preserved (i.e. the cusp in the original
curve has generated two offset cusps of the same type).

Finally, the above results hold whenever ξr 6= 0. So, let us briefly address the
case when ξr = 0. In this case, we have that P(h) = (hp, βqh

q), with q = 2p.
Hence, changing the parameter we can write the place as P(h̄) = (x(h̄), y(h̄)),
and we see that it corresponds to a regular place locally describing a parabola.
Hence, by Theorem 4 in Section 3, it gives rise to regular offset places. Fur-
thermore, by applying Theorem 4 (or equivalently by doing computations
with places), one may see that the only cases when the local shape may not
be preserved fulfill 1 ∓ 4daβq + 4d2β2

q = 0; in this situation, flex points may
arise.
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Fig. 6. Generalized Offset to x9 − y2 + 2yx2 − x4 = 0, θ = π/4, d = 1

4.2.2 The case q − 2p < 0

In this section we provide the results without proofs; these are tedious and sim-
ilar to those in the preceding subsection, and are left to the reader. Moreover,

for simplicity here we use the notation ũ = qβq/p, and ṽ =
r(r − p)(r − 2p)!ξr

p2
,

analogous to the notation introduced in the preceding section. However, un-
like in the case q − 2p = 0, here these quantities do not have any specific
geometrical meaning. Finally, notice also that when q − 2p < 0 the center of
the place is singular; indeed, for regular places p = 1, and since q > p one gets
that q − 2p ≥ 0. So, the case q − 2p < 0 is only concerned with singularities.

We consider first the special case when ξr = 0. In this case, the following
theorem holds.

Theorem 13 Let P(h) = (hp, βqh
q) be a real place of C satisfying that q−2p <

0. If p 6= 2(q − p) or p = 2(q − p) but 1 ± dbũ2/2 6= 0, ±b + ũ2d/2 = 0, then
the local shape of P(h) is preserved.

In the more general case ξr 6= 0, the following result holds.

Theorem 14 Let P(h) = (hp, βqh
q+ ξrh

r+ · · ·) be a real place of C satisfying
that q − 2p < 0 and ξr 6= 0. Then, the local behavior of P(h) verifies the
following:

(1) If 2(q − p) < r − p, then:
a. If p < 2(q − p) the local shape is preserved iff p, q are both even.
b. If p ≥ 2(q − p) the local shape is preserved iff q is even.

(2) If 2(q − p) = r − p, then:
a. If p < 2(q − p) the local shape is preserved iff p, q are both even.
b. If p > 2(q − p) then:

b.1 If
bp

r − p

ṽ

(r − 2p)!
− a

2
ũ2 6= 0 and

b2 − a2

2
ũ2 − abp

r − p

ṽ

(r − 2p)!
6= 0, then

the local shape is preserved iff q is even.
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b.2 If
bp

r − p

ṽ

(r − 2p)!
− a

2
ũ2 = 0, the local shape is preserved iff q is even.

(c) If p = 2(q − p) then:

c.1 If 1± db
1

2
ũ2 ∓ da

p

r − p

ṽ

(r − 2p)!
6= 0 and ±bũ + d

1

2
(a2 − b2)ũ2 − 2da

bp

r − p

ṽ

(r − 2p)!
6= 0,

the local shape is preserved iff q is even.

c.2 If 1± db
1

2
ũ2 ∓ da

p

r − p

ṽ

(r − 2p)!
= 0 the local shape is preserved iff

q is even.
(3) If 2(q − p) > r − p, then:

a. If p < r − p, then the local shape is preserved iff p, q are both even.
b. If θ 6= π/2, then the local shape is preserved iff q is even and r, p are both

even or both odd.

c. If p = r−p, then if either 1∓ da
p

r − p

ṽ

(r − 2p)!
= 0, or 1∓ da

p

r − p

ṽ

(r − 2p)!
6= 0

and (daũ± 1) · p

r − p

ṽ

(r − 2p)!
6= 0, the local shape is preserved iff q is

even and r, p are both even or both odd.

5 Conclusions and Comparison between Classical and Non-Classical

Generalized Offsets

In the preceding sections we have analyzed local aspects on the shape of gen-
eralized offsets, both using tools coming from Differential Geometry and using
the notion of local shape. In this section, we summarize the main results we
have obtained in our analysis, and we compare them with the local properties
on the shape of classical offsets that are derived in [4] and [8].

Now the following table summarizes the most relevant properties concerning
local aspects of the classical offset shape; we refer the reader to [4], [8] for
further reading on them.
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Classical Offsets

Regular Points

Generate singular places when k = −1/d; cusps may arise

Flex points are preserved

Turning points are preserved

Tangents preserved

Singular Points

Smoothed iff q − p = 1

Singular flex points preserved when q − 2p > 0

q − 2p > 0 : preserved

q − 2p = 0 : if |k| 6= 1/d, preserved

q − 2p < 0 : preserved iff q is even.

The following table shows analogous properties for the generalized, non-classical
offset; these properties are derived from the results in this paper.

Non-Classical Generalized Offsets

Regular Points

Never generate singular places; cusps do not arise.

Flex points are never preserved.

Turning points are not preserved in general.

Tangents not preserved.

Singular Points

Smoothed iff q − p = 1.

Singular flex points never preserved.

q − 2p > 0 : preserved iff p even

q − 2p = 0 : distinguish |k| 6= 1/(dcosθ), or not; many subcases.

q − 2p < 0 : many subcases.

Hence, we observe a great number of differences between the local behavior
in the classical and the non-classical case, both at regular and singular points
(where the situation is far more intricate in the non-classical case).

References

[1] Alcazar J.G. (2008) Good Global Behavior of Offsets to Plane Algebraic Curves,
Journal of Symbolic Computation vol. 43, pp. 659-680.

18



[2] Alcazar J.G. (2008) Local Shape of Offsets to Implicit Algebraic Curves,
submitted.

[3] Alcazar J.G., Sendra J.R. (2006) Local Shape of Offsets to Rational Algebraic

Curves, Tech. Report SFB 2006-22 (RICAM, Austria)

[4] Alcazar J.G., Sendra J.R. (2007) Alcazar J.G., Sendra R. (2007) Local Shape

of Offsets to Algebraic Curves, Journal of Symbolic Computation vol. 42, pp.
338-351.

[5] Arrondo E., Sendra J., Sendra J.R. (1997). Parametric Generalized Offsets to

Hypersurfaces. Journal of Symbolic Computation vol. 23, pp. 267–285.

[6] Arrondo E., Sendra J., Sendra J.R. (1999). Genus Formula for Generalized

Offset Curves, Journal of Pure and Applied Algebra vol. 136, no. 3, pp. 199–
209.

[7] Farin G., Hoscheck J., Kim M-S. (2002). Handbook of Computer Aided

Geometric Design, North-Holland.

[8] Farouki R.T., Neff C.A. (1990). Analytic Properties of Plane Offset Curves,
Computer Aided Geometric Design vol. 7, pp. 83–99.

[9] Farouki R.T., Neff C.A. (1990). Algebraic Properties of Plane Offset Curves,
Computer Aided Geometric Design vol. 7, pp. 101–127.

[10] Hoschek J., Lasser D. (1993), Fundamentals of Computer Aided Geometric

Design. A.K. Peters Wellesley MA., Ltd.

[11] Pottmann H., Peternell M. (1998), A Laguerre Geometric Approach to Rational

Offsets. Computer Aided Geometric Design vol. 15, 223-249.

[12] Sendra J. (1999) Algoritmos efectivos para la manipulacion de offsets de

hipersuperficies, PhD Thesis, Universidad Politecnica de Madrid.

[13] Sendra J., Sendra J.R. (2000). Algebraic Analysis of Offsets to Hypersurfaces.
Mathematische Zeitschrift vol. 234, pp. 697–719.

[14] Sendra J., Sendra J.R. (2000). Rationality Analysis and Direct Parametrization

of Generalized Offsets to Quadrics. Applicable Algebra in Engineering,
Communication and Computing vol. 11, no. 2, pp. 111–139.

[15] Walker R. J. (1950). Algebraic Curves. Princeton University Press, Princeton.

19


	Introduction
	Local Shape of an Algebraic Curve
	Behavior at regular points
	Local Shape of the Generalized, Non-classical, Offset
	Results using a First-order Approximation
	Results using a Second Order Approximation

	Conclusions and Comparison between Classical and Non-Classical Generalized Offsets
	References

