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Abstract

We study the complexity of some fundamental operations for triangular sets in
dimension zero. Using Las-Vegas algorithms, we prove that one can perform such
operations as change of order, equiprojectable decomposition, or quasi-inverse compu-
tation with a cost that is essentially that of modular composition. Over an abstract
field, this leads to a subquadratic cost (with respect to the degree of the underlying
algebraic set). Over a finite field, in a boolean RAM model, we obtain a quasi-linear
running time using Kedlaya and Umans’ algorithm for modular composition.

Conversely, we also show how to reduce the problem of modular composition to
change of order for triangular sets, so that all these problems are essentially equivalent.

Our algorithms are implemented in Maple; we present some experimental results.

1 Introduction

Triangular sets (in dimension zero, in this paper) are families of polynomials with a simple
triangular structure, which turns out to be well adapted to solve many problems for systems
of polynomial equations. As a result, there is now a vast literature dedicated to algorithms
with triangular sets, their generalization to regular chains, and applications: without being
exhaustive, we refer the reader to [24, 3, 32, 23, 37, 38].

However, from the algorithmic point of view, many questions remain. Despite a growing
amount of work [31, 28, 8], the complexity of many basic operations with triangular sets
(such as set-theoretic operations on their zero-sets, change of variable order, or arithmetic
operations modulo a triangular set) remains imperfectly understood.

The aim of this paper is to answer some of these questions, by describing fast algorithms
for several operations with triangular sets, extending our previous results from [34]. In
particular, we will focus on the relationship between these problems and some classical
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operations on univariate and bivariate polynomials, called modular composition and power
projection. To describe these issues with more details, we need a few definitions.

1.1 Basic definitions

Triangular sets. Let K be our base field, and let X = X1, . . . , Xn be indeterminates over
K; we order them as X1 < · · · < Xn. A (monic) triangular set T = (T1, . . . , Tn), for this
variable order, is a family of polynomials in K[X] with the following triangular structure

T

∣∣∣∣∣∣∣
Tn(X1, . . . , Xn)

...
T1(X1),

and such that for all i, Ti is monic in Xi and reduced modulo 〈T1, . . . , Ti−1〉, in the sense that
deg(Ti, Xj) < deg(Tj, Xj) for j < i; in particular, T is a zero-dimensional Gröbner basis for
the lexicographic order induced by X1 < · · · < Xn. In all that follows, we will impose the
condition that K is a perfect field; often, we will also require that 〈T〉 is a radical ideal.

We write di = deg(Ti, Xi); d = (d1, . . . , dn) will be called the multidegree of T. Define
further RT = K[X]/〈T〉. Then, δT = d1 · · · dn is the natural complexity measure associated
to computations modulo 〈T〉, as it represents the dimension of the residue class ring RT

over K. This integer will be called the degree of T.
In all our algorithms, elements of RT are represented on the monomial basis BT =

{Xa1
1 · · ·Xan

n | 0 ≤ ai < di for all i}. Dually, all K-linear forms RT → K are represented by
their values on the basis BT.

Equiprojectable sets. Not every zero-dimensional radical ideal I in K[X] admits a tri-
angular set of generators: this is the case only when the zero-set V = V (I) ⊂ Kn

possesses a
geometric property called equiprojectability [4]. For the moment, we will simply give an idea
of the definition; proper definitions are in Section 4.

Roughly speaking, V is equiprojectable if all fibers of the projection V → Kn−1
have

the same cardinality, and similarly for the further projections to Kn−2
, . . . ,K. For instance,

of the following pictures, the left-hand one describes an equiprojectable set, whereas the
right-hand one does not (since the rightmost fiber has a larger cardinality than the others).
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The relationship with triangular representations is described in [4]: V is equiprojectable
if and only if its defining ideal I is generated by a triangular set (for this equivalence, it is
required that the base field be perfect).

Equiprojectable decomposition. Any finite set can be decomposed, in general not
uniquely, into a finite union of pairwise disjoint equiprojectable sets. At the level of ide-
als, this amounts to write a zero-dimensional radical ideal I as I = 〈T(1)〉∩ · · · ∩ 〈T(s)〉, with
all T(j) being triangular sets and all ideals 〈T(j)〉 being pairwise coprime. Of course, starting
from I in K[X], we want all T(j) to have coefficients in K as well.

To solve the non-uniqueness issue, the decomposition of I into an intersection of maximal
ideals may appear as a good candidate; however, it suffers from significant drawbacks. For
instance, computing it requires us to factor polynomials over K, or extensions of it: even if
we strengthen our model by requiring that K and its finite extensions support this operation,
it is usually prohibitively costly.

There exists another canonical way to find such a decomposition, called the equiprojectable
decomposition [15]. For instance, among its useful properties is the fact that it behaves well
under specialization: if K is the fraction field of a ring A such as A = k[Z1, . . . , Zr] or A = Z
and m is a maximal ideal of A, the equiprojectable decomposition of (I mod m) coincides with
the equiprojectable decomposition of I, reduced modulo m, for “most” maximal ideals m. We
refer to [15] for more precise statements; here, we simply point out that this property makes
it for instance possible to apply modular methods, such as Hensel lifting techniques [37, 38],
to recover the equiprojectable decomposition of I starting from that of (I mod m); the
decomposition of I into maximal ideals does not have this useful specialization property.

While the definition of the equiprojectable decomposition is technical, the idea is simple.
We will proceed geometrically: to obtain the equiprojectable decomposition of a finite set

V ⊂ Kn
, we first split it using the cardinality of the fibers of the projection Kn → Kn−1

.
Then we apply the same process to all the components we obtained, using the projection to

Kn−2
, and so on (again, we refer the reader to Section 4 for precise definitions). The following

picture (from [15]) shows the equiprojectable decomposition of the non-equiprojectable set
V of the former example.
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Each component of the equiprojectable decomposition is an equiprojectable set. As a
result, this construction allows us to represent an arbitrary finite set V , defined over K, by
means of a canonical family of triangular sets with coefficients in K, that depends only on
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the order < we have chosen on the variables. The collection of these triangular sets will thus
be denoted by D(V,<).

1.2 Our contribution

Our purpose is to give algorithms for various operations involving a triangular set, or a family
thereof. We will make these questions more precise below; for the moment, one should
have in mind problems such as modular arithmetic, computation of the equiprojectable
decomposition, or change of order on the variables.

Two central problems. The following two problems, called modular composition and
power projection, will be at the heart of our algorithms. Given a triangular set T in
K[X1, . . . , Xn], the general forms of these questions are the following.

• modular composition: given F in K[Y1, . . . , Ym], with deg(F, Yi) < fi for all i, and
(G1, . . . , Gm) in Rm

T , compute F (G1, . . . , Gm) ∈ RT

• power projection: given a linear form ` : RT → K, (G1, . . . , Gm) in Rm
T and bounds

f1, . . . , fm, compute `(Gc1
1 · · ·Gcm

m ), for all c1 < f1, . . . , cm < fm.

In both cases, we will write f = (f1, . . . , fm) and δf = f1 · · · fm, so that the size of the problem
is characterized by δf and δT. We will call (m,n) the parameters for these questions, and
max(δf , δT) the size. When T and G1, . . . , Gm are fixed, the two problems become linear in
respectively F and `; as it turns out, they are dual problems, as was observed by Shoup for
m = n = 1 [39].

The only cases we will need actually have parameters (m,n) in {1, 2}. Besides, we will
always suppose that δf ≤ δT, so that all costs can be measured in terms of δT only. However,
even in this simple situation, these questions have resisted many attempts.

As of now, no quasi-linear time algorithm is known in an algebraic complexity model
(say using an algebraic RAM, counting field operations at unit cost). Among the best

results known to us is that both operations can be done in time O(δ
(ω+1)/2
T ), where ω is

such that matrices over K of size n can be multiplied in time O(nω); we assume ω > 2,
otherwise logarithmic terms may appear. Using the exponent ω ≤ 2.38 from [13], this gives
the subquadratic estimate O(δ1.69T ).

For (m,n) = (1, 1), this claim follows from respectively Brent and Kung’s modular compo-
sition algorithm [10] and Shoup’s power projection algorithm [39], which is actually the trans-
pose of Brent and Kung’s. For power projection, extensions to parameters (m,n) = (1, 2) are
in [40, 25, 5], and the case (m,n) = (2, 2) is partially dealt with in [33]. For completeness, in
Section 2.1, we will give straightforward extensions of the Brent-Kung and Shoup algorithms
to all cases (m,n) ∈ {1, 2}, establishing the bound O(δ

(ω+1)/2
T ) claimed above.

We will thus write C : N → N to denote a function such that over any field, one can do
both modular composition and power projection in C(δT) base field operations, under the
assumptions that the parameters (m,n) are in {1, 2} and δf ≤ δT. We take C super-linear,
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in the sense that we require that C(d1 + d2) ≥ C(d1) + C(d2) holds for all d1, d2. Then, the
former discussion shows that we can take C(d) ∈ O(d(ω+1)/2) ⊂ O(d1.69).

Some further restrictions are imposed on the function C. As is now customary, we let M :
N→ N be such that over any ring, polynomials of degree less than d can be multiplied in M(d)
base ring operations; we make the standard superlinearity assumptions of [18, Chapter 8].
Using Cantor and Kaltofen’s algorithm [12], we can take M(d) in O(d log(d) log log(d)). Then,
to simplify several estimates, we also make the reasonable assumption that M(d) log(d) is in
O(C(d)); this is the case for M(d) quasi-linear and C(d) = d(ω+1)/2.

The Kedlaya-Umans algorithm and its applications. In a boolean model (using a
boolean RAM, with logarithmic cost for data access), and for K = Fq, it turns out that
one can do much better than in the algebraic model for modular composition and power
projection.

The best known result comes from Kedlaya and Umans’ work [26]: for n = 1, they show
how to solve both problems in δ1+εT log(q)1+o(1) bit operations, for all ε > 0. Their algorithm
uses modular techniques (transferring the problem over Fq to a problem over Z, and vice
versa), and the idea does not seem to extend easily to an arbitrary base field. In [34], we
described an extension of this result to any parameters (m,n) ∈ {1, 2}, with a running time
of δ1+εT O (̃log(q)) bit operations for any ε > 0; the O˜ notation indicates the omission of
polylogarithmic factors of the form log log(q)O(1).

In this paper, we will be interested in both models, algebraic and boolean. Now, for
a given algorithm, the cost analysis in the boolean model differs from the analysis in the
algebraic model (where we only count base field operations) by a few aspects. A minor issue
is that we should count the cost of fetching data (which grows like log(a), to access the
contents at address a). Another difference is that in the boolean model, we need to take
into account the boolean cost of operations in Fq: disregarding the cost of fetching data, any
arithmetic operations in Fq can be done in O (̃log(q)) bit operations, say log(q) log log(q)k

for some fixed k ≥ 0.
As a result, in what follows, in all rigor, we should prove most statements twice, once

in the algebraic complexity model and once in the boolean one. To avoid making the paper
excessively heavy, we will indeed state our main results twice, but all intermediate results and
proofs will be given for the algebraic model. There would actually be no major difference in
the boolean model, only some extra bookkeeping, on the basis of the remarks in the previous
paragraph.

Similarly to the algebraic case, Cbool will thus denote a function such that one can do
both modular composition and power projection over Fq using Cbool(δT, q) bit operations,
assuming that the parameters (m,n) are in {1, 2} and that δf ≤ δT. As before, we require
that Cbool(d1 + d2, q) ≥ Cbool(d1, q) + Cbool(d2, q) holds for all d1, d2, q. As in the algebraic
case, we will also assume that the cost of polynomial multiplication and related operations
can be absorbed into Cbool: explicitly, we require that for any function f(d) ∈ O (̃d), the
function f(d) log(q) log log(q)k is in O(Cbool(d, q)), where k is the constant introduced above.
The results of [34] imply that we can take Cbool(d, q) in d1+εO (̃log(q)) for any ε > 0.
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Main results. The questions we will consider are the following set-theoretic operations. In
all the following items, all triangular sets are supposed to generate zero-dimensional radical
ideals.

P1. Given triangular sets T(1), . . . ,T(`) and S(1), . . . ,S(r) in K[X1, . . . , Xn], for a variable
order <, and given a target variable order <′, compute the equiprojectable decompo-
sition

D
(
V (T(1)) ∪ · · · ∪ V (T(`))− V (S(1))− · · · − V (S(r)), <′

)
.

We let δ1 be the sum of the degrees of T(1), . . . ,T(`) and S(1), . . . ,S(r).

P2. Given a triangular set T in K[X1, . . . , Xn], for a variable order <, as well as F in RT

and a target variable order <′, compute the equiprojectable decompositions

D(V (T) ∩ V (F ), <′) and D(V (T)− V (F ), <′);

for every T′ in D(V (T) − V (F ), <′), compute also the inverse of F in RT′ . (Note
that even if F is only defined modulo 〈T〉, the two sets above are actually defined
unambiguously.) In this case, we let δ2 be the degree of T.

These questions are general enough to allow us to solve a variety of classical problems for
triangular sets. When the initial and target orders are the same, and when r = 0, the first
question amounts to compute the equiprojectable decomposition of a family of triangular
sets, which is a key subroutine in the algorithms of [15]. When the initial and target orders
are different, taking only a single triangular set T as input, the first question allows us to
perform a change of order on T, and to output a canonical family of triangular sets for the
target order. Taking the same order for input and output, the second operation allows us
to compute the quasi-inverse of a polynomial F modulo 〈T〉, which amounts to split V (T)
into its components where F vanishes, resp. is invertible. This is an important subroutine
for triangular decomposition algorithms [28].

With that being said, our first main results are the following:

Theorem 1. In an algebraic RAM complexity model, the following holds over any field K
of characteristic p:

• if p = 0 or p is greater than δ21, one can answer question P1 using an expected
O(nC(δ1)(n+ log(δ1))) base field operations;

• if p = 0 or p is greater than δ22, one can answer question P2 using an expected
O(nC(δ2)(n+ log(δ2))) base field operations.

In a boolean RAM complexity model, the following holds over any finite field Fq of charac-
teristic p:

• if p is greater than δ21, one can answer question P1 using an expected O(nCbool(δ1, q)(n+
log(δ1))) bit operations;
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• if p is greater than δ22, one can answer question P2 using an expected O(nCbool(δ2, q)(n+
log(δ2))) bit operations.

Using the estimates of the previous paragraphs, the former costs are O (̃n2δ
(ω+1)/2
1 ) and

O (̃n2δ
(ω+1)/2
2 ), and the latter are n2δ1+ε1 O (̃log(q)) and n2δ1+ε2 O (̃log(q)), for any ε > 0.

Since the input sizes are roughly proportional to δ1 (resp. δ2) field elements, this means that
with respect to δ1 (resp. δ2), we obtain a subquadratic running time in the algebraic model,
and a quasi-linear running time in the boolean model.

Before discussing further questions, we briefly comment on the assumption on the char-
acteristic of K. We do need 2, . . . , δ1 (resp. 2, . . . , δ2) to be invertible in K; otherwise, the
algorithm will not work. The stronger requirement that 2, . . . , δ21 (resp. 2, . . . , δ22) are units
allows us to find random elements in K that are “lucky” with large probability; if this as-
sumption does not hold, the algorithm may still succeed, but we lose the control on the
expected running time.

The basic idea of our algorithms is from [34]: we reduce everything to computations
with univariate polynomials, since most operations above will be easy to deal with in the
univariate case. To this end, we perform a change of representation between our input and
a univariate representation, by using repeatedly modular composition and power projection.

This raises the question of whether better algorithms may be possible, bypassing modular
composition and power projection. The following theorem essentially proves that this is not
the case, and that computing the equiprojectable decomposition is essentially equivalent to
modular composition or power projection, at least for the choice of parameter m = 1.

In what follows, let E : N2 → N be such that one can solve problem P1 above in E(n, δ1)
base field operations (in an algebraic model), for triangular sets in n variables. Then, our
second main result is the following.

Theorem 2. Let T be a triangular set in n variables, with n ∈ {1, 2}, that generates a
radical ideal. Then, we can compute modular compositions and power projections modulo
〈T〉 with parameters (1, n) and size δf ≤ δT in time 2E(4, δT) +O (̃δT).

In other words, if we are able to compute four-variate equiprojectable decompositions ef-
ficiently, we can compute modular compositions and power projections efficiently for some
small values of the parameters (which cover in particular the most useful case m = n = 1,
that is, computing F (G) mod T , for univariate polynomials F,G, T ). Note that an entirely
similar result holds for the boolean model as well.

Organization of the paper. Section 2 introduces most basic algorithms used in the paper:
a reminder on modular composition and power projection for triangular sets in one or two
variables, and conversions between univariate and triangular representations. Section 3 gives
an algorithm to compute the so-called φ-decomposition of a zero-dimensional algebraic set V ,
that is, a decomposition according to the cardinalities of the fibers of a mapping φ : V → Km

.
We use this in Section 4 to prove Theorem 1; in that section, we also present experimental
results obtained with a Maple implementation. Finally, Section 5 proves Theorem 2.
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Previous work. Let us first review previous work for the questions we consider in the
algebraic complexity model.

For a triangular set T, some previous algorithms have costs of the form O (̃4nδT) for
multiplication in RT [31] or O (̃KnδT) for computing quasi-inverses in RT [16], for K a
large constant. For multiplication, some particular cases with a better cost are discussed
in [8]. An algorithm for regularization, a similar question to quasi-inverse, is given in [28,
29]; under a non-degeneracy assumption, its cost grows like

∑
2≤i≤n 2id1 · · · di−1di+1

i , up to
polylogarithmic factors. In particular, all these algorithms involve an extra factor of the
form Kn.

For change of order, previous work includes [9] (which covers more general questions,
e.g. in positive dimension), for which we are not aware of a complexity analysis. A close
reference to our work is [33]: the results in that paper are restricted to the bivariate case,
but use similar techniques; our algorithms are actually a generalization of those in [33].

It is worth discussing in some detail a natural approach to change of order, based on
resultant computations. In the simplest case of bivariate systems, changing the order in a tri-
angular set (T1(X1), T2(X1, X2)) can be done by first computing the resultant res(T1, T2, X1),
so as to eliminate X1 — this would of course be only the first step of the algorithm, since we
would also have to deal with X2. Still, already this first step may be costly, since the best
algorithm we are aware of takes time O (̃d21d2), which can be as large as O (̃δ2T). An exten-
sion to triangular sets in more variables could be done along the lines of [28, 29]; roughly
speaking, it may induce costs similar to the one seen above for regularization.

For the problem of computing the equiprojectable decomposition (or more generally, for
our question P1), we are not aware of previous complexity results.

In the boolean model, relying on the results by Kedlaya and Umans mentioned above,
we showed in [34] that it is possible to answer some of our questions in n2δ1+εT O (̃log(q))
bit operations, for any fixed ε > 0 (note that exponential terms of the form Kn have
disappeared). Those results addressed multiplication in RT and some restricted forms of
inversion and change of order, but did not consider any issues related to equiprojectable
decomposition.

2 Notations and known results

In this section, we first recall a few results from the literature, and describe algorithms for
bivariate modular composition and power projection (thereby proving the claim made in
the introduction regarding the cost of these operations in an algebraic model). In a second
subsection, we discuss the representation of zero-dimensional algebraic sets by means of
univariate representations, and give some basic algorithms for this data structure.

2.1 Basic algorithms

In this subsection, we let A denote either K[X1] or K[X1, X2] and we consider a triangular set

T in A; we write as usual RT = A/〈T〉 and we let V be the zero-set of T, in either K or K2
.
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We will describe a few useful algorithms for computing in RT; most of them actually extend
to A = K[X1, . . . , Xn], but the costs would then involve an extra factor of the form Kn, for
some constant K.

In all this subsection, we will assume that the characteristic of K is equal to 0 or greater
than δT.

Multiplication and transposed multiplication. Using univariate multiplication, we
can do the following in O(M(δT)) operations in K:

• modular multiplication: given A,B ∈ RT, compute AB ∈ RT

• transposed multiplication: given a linear form ` : RT → K and A ∈ RT, compute the
linear form A · ` : RT → K defined by (A · `)(B) = `(AB).

See for instance [19] and [33] for a proof.

Modular composition. In this paragraph, we discuss modular composition with param-
eters (m,n), with m = 2: given F ∈ K[Y1, Y2], with deg(F, Y1) < f1 and deg(F, Y2) < f2,
and given G1, G2 in RT, this amounts to compute F (G1, G2) ∈ RT. For (m,n) = (1, 1), that
is, with F univariate and T = (T1) ∈ K[X1], the best-known algorithm is due to Brent and
Kung [10]. We present here a straightforward generalization, under the simplifying assump-
tion that f1f2 ≤ δT. Note that solving this problem for m = 2 actually also solves it for
m = 1, by taking f2 = 1.

We let ε1, ε
′
1 and ε2, ε

′
2 be positive integers such that ε1ε

′
1 ≥ f1 and ε2ε

′
2 ≥ f2 (to be

specified below), and we decompose F into “rectangular slices” of the form

F =
∑

i1<ε1,i2<ε2

Fi1,i2(Y1, Y2)Y
ε′1i1
1 Y

ε′2i2
2 ,

with each Fi1,i2 in K[Y1, Y2] and satisfying deg(Fi1,i2 , Y1) < ε′1 and deg(Fi1,i2 , Y2) < ε′2. Then,
we have

F (G1, G2) =
∑

i1<ε1,i2<ε2

ϕi1,i2γ
i1
1 γ

i2
2 ,

with ϕi1,i2 = Fi1,i2(G1, G2), γ1 = G
ε′1
1 and γ2 = G

ε′2
2 , all equalities being modulo 〈T〉. This

gives the following algorithm:

1. Compute all powers Gj1
1 G

j2
2 mod 〈T〉, for j1 < ε′1, j2 < ε′2, γ1, as well as γ2. This costs

a total of ε′1ε
′
2 multiplications in RT (one per monomial).

2. We deduce all ϕi1,i2 by linear algebra: given (i1, i2), ϕi1,i2 = Fi1,i2(G1, G2) mod 〈T〉 is
obtained by doing the matrix-vector product MGVi1,i2 , where MG is the matrix of size
(δT× ε′1ε′2) that contains the coefficients of all Gj1

1 G
j2
2 mod 〈T〉 (in columns) and Vi1,i2

is the column-vector of coefficients of Fi1,i2 ; to do it for all (i1, i2), we end up doing one
matrix product of size (δT × ε′1ε′2)× (ε′1ε

′
2 × ε1ε2).
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3. We eventually get F (G1, G2) mod 〈T〉 by using Horner’s scheme twice: first, to com-
pute

ϕi1 =
∑
i2<ε2

ϕi1,i2γ
i2
2 mod 〈T〉, i1 < ε1;

this is done with ε2 − 1 multiplications modulo 〈T〉. Then to compute

F (G1, G2) mod 〈T〉 =
∑
i1<ε1

ϕi1γ
i1
1 .

The total is ε1ε2 − 1 multiplications modulo 〈T〉.

In total, we do at most ε1ε2 + ε′1ε
′
2 multiplications modulo 〈T〉 and a matrix product of

size (δT × ε′1ε
′
2) × (ε′1ε

′
2 × ε1ε2). We take ε1 ' ε′1 ' f1

1/2 and ε2 ' ε′2 ' f2
1/2, and we

write ϕ = f1f2. Then, we end up with O(ϕ1/2) multiplications modulo 〈T〉 and a matrix
product of size (δT × ϕ1/2) × (ϕ1/2 × ϕ1/2). Since by assumption ϕ = O(δT), the cost is

O(M(δT)δ
1/2
T + δ

(ω+1)/2
T ), which is O(δ

(ω+1)/2
T ).

Power projection. Next, we present an algorithm to solve the power projection problem
for parameters (m,n), with m = 2. Recall that power projection takes as input a linear form
` ∈ R∗T, G1 and G2 in RT, some bounds (f1, f2), and outputs the sequence (`(Gi1

1 G
i2
2 mod

〈T〉))i1<f1,i2<f2 .
For parameters (m,n) = (1, 1), the algorithm is due to Shoup [40] and an extension to

n = 2 is due to Kaltofen [25]; these algorithms are dual to Brent-Kung’s algorithm. As
for modular composition, we present a straightforward generalization to m = 2, with the
assumption f1f2 ≤ δT. The algorithm is obtained by simply transposing steps 2 and 3 of
the modular composition algorithm (step 1 is kept as a preprocessing phase), so the cost
estimate is therefore the same.

Let ε1, ε
′
1, ε2, ε

′
2 be as above, and let again γ1 = G

ε′1
1 mod 〈T〉 and γ2 = G

ε′2
2 mod 〈T〉. For

i1 < ε1 and i2 < ε2, let
`i1,i2 = (γi11 γ

i2
2 ) · `,

where the “dot” denotes transposed multiplication. It follows that for j1 < ε′1 and j2 < ε′2,
we have

`i1,i2(G
j1
1 G

j2
2 mod 〈T〉) = `(γi11 γ

i2
2 G

j1
1 G

j2
2 mod 〈T〉)

= `(G
ε′1i1+j1
1 G

ε′2i2+j2
2 mod 〈T〉).

Thus, we compute all `i1,i2(G
j1
1 G

j2
2 mod 〈T〉), for i1 < ε1, i2 < ε2, j1 < ε′1 and j2 < ε′2, as

this gives us the values we need.

1. First, we compute all powers Gj1
1 G

j2
2 mod 〈T〉, with j1 < ε′1 and j2 < ε′2. This costs

ε′1ε
′
2 − 1 multiplications modulo 〈T〉. We need as well γ1 and γ2, for two extra multi-

plications.

2. Then, we compute the linear forms `i1,i2 incrementally by `i1+1,i2 = γ1 · `i1,i2 and
`i1,i2+1 = γ2 · `i1,i2 ; each of them takes one transposed multiplication.
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3. We finally compute all `i1,i2(G
j1
1 G

j2
2 mod 〈T〉) by computing the matrix productMLMG,

where MG is the same (δT× ε′1ε′2) matrix as in the modular composition case, and ML

is the (ε1ε2 × δT) matrix giving the coefficients of the `i1,i2 .

In total, we do ε1ε2+ε′1ε
′
2 (transposed) multiplications modulo 〈T〉 and a matrix product

of size (ε1ε2 × δT) × (δT × ε′1ε′2). Let ϕ = f1f2. With ε1 ' ε′1 ' f1
1/2 and ε2 ' ε′2 ' f2

1/2,
we end up with 2ϕ1/2 (transposed) multiplications modulo 〈T〉 and a matrix product of size

(ϕ1/2 × δT) × (δT × ϕ1/2). Since ϕ = O(δT), the cost is O(M(δT)δ
1/2
T + δ

(ω+1)/2
T ), which is

O(δ
(ω+1)/2
T ).
Together with the former algorithm for modular composition, this shows indeed that we

can take C(d) in O(d(ω+1)/2), as claimed in the introduction.

Trace and characteristic polynomial. For A ∈ RT, we let τ(A) ∈ K and χA ∈ K[X]
be respectively the trace and characteristic polynomial of the multiplication-by-A endomor-
phism of RT. We discuss briefly how to compute these objects.

The trace τ : RT → K is actually a K-linear form. Using fast multiplication, it is possible
to determine its values on the monomial basis BT of RT using O(M(δT)) operations [33].

Since RT is a reduced algebra, by [14, Prop. 4.2.7] (sometimes called Stickelberger’s
Theorem), we have

χA =
∏
x∈V

(X − A(x)). (1)

We can compute χA using power projection (this is well-known, see e.g. [35] for a presentation
of this algorithm in a more general context). We start by computing the values of the trace τ
on the monomial basis BT. By power projection, we can then compute the traces τ(Ai), for
i = 0, . . . , δT − 1, which are the power sums of χA. By our assumption on the characteristic
of K, we can then use Newton iteration (for the exponential of a power series) to deduce the
characteristic polynomial χA of A in time O(M(δT)), see [10, 36]. By our assumption that
M(d) log(d) = O(C(d)), we deduce that the power projection is the dominant part of this
algorithm, so the total cost is O(C(δT)).

Inverse modular composition. A second use of trace formulas is an inverse modular
composition. Given A and B in RT, we want to compute a polynomial U ∈ K[X], if it
exists, such that B = U(A) in RT. In [34], following ideas from [39, 35], we recall an
algorithm that computes a polynomial U in time O(C(δT)), such that if B can indeed be
written as a polynomial in A, then B = U(A); note that the analysis uses the assumption
that M(d) log(d) is in O(C(d)), and our assumption on the characteristic of K. Verifying
whether B = U(A) can be done for another modular composition, so the total time is
O(C(δT)).

2.2 Univariate representations

We next turn to questions related to the representation of zero-dimensional algebraic sets.
We have already introduced triangular representations; in this subsection, we will discuss
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univariate representations, which rely on the introduction of a linear combination of all
variables, and for which most of our questions are easy to solve.

In all that follows, the degree deg(V ) of a zero-dimensional algebraic set V simply denotes
its cardinality.

Definition. Let V ⊂ Kn
be a zero-dimensional algebraic set of degree δ, defined over K,

and let I be its defining ideal.
A univariate representation U = (P,U, µ) of V consists of a polynomial P ∈ K[X], a

sequence of polynomials U = (U1, . . . , Un) ∈ K[X], with deg(Ui) < deg(P ) for all i, as well
as a linear form µ = µ1X1 + · · ·+ µnXn with coefficients in K, such that

ΨU : K[X]/I → K[X]/〈P 〉
X1, . . . , Xn 7→ U1, . . . , Un

µ1X1 + · · ·+ µnXn ←[ X
(2)

is an isomorphism: this allows one to transfer most algebraic operations to the ring K[X]/〈P 〉,
where arithmetic is easy. In particular, the definition implies that P is squarefree, and that
it is the characteristic polynomial of µ in K[X]/I. Thus, we have

P =
∏
x∈V

(X − µ(x))

and xi = Ui(µ(x)) for all x = (x1, . . . , xn) in V and i ≤ n.
This kind of representation is familiar: up to a few differences, it is used for instance in

[20, 2, 35, 21, 22].
We will call a linear form µ = µ1X1 + · · · + µnXn a separating element for V if for

all distinct x,x′ in V , µ(x) 6= µ(x′). One easily sees that µ is separating if and only if V
admits a univariate representation of the form U = (P,U, µ), if and only if the characteristic
polynomial P of µ in K[X]/I is squarefree. This characterization implies the following well-
known lemma.

Lemma 1. If the characteristic of K is at least δ2, and if µ1, . . . , µn are chosen uniformly
at random in S = {0, . . . , δ2−1}, the probability that µ = µ1X1 + · · ·+µnXn be a separating
element for V is at least 1/2. The same remains true if µn is set to 1 and µ1, . . . , µn−1 are
chosen uniformly at random in S.

Proof. The above characterization implies that µ is separating if and only if (µ1, . . . , µn)
does not cancel the polynomial ∆ of degree δ(δ − 1)/2 defined by

∆(M1, . . . ,Mn) =
∏

x,x′∈V, x6=x′

(M1(x1 − x′1) + · · ·+Mn(xn − x′n)) .

The Zippel-Schwartz lemma implies that there are at most δ2n/2 roots of ∆ in Sn, and the
first statement follows. To get the second one, observe that ∆ is homogeneous, so we can
set Mn = 1 without loss of generality; the second statement follows.
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Useful algorithms. We conclude this section with a few algorithms for univariate repre-
sentations. Most of what is here is standard, or at least folklore, although the complexity
statements themselves may be new (e.g., one finds in [22] an equivalent of Lemma 2 below,
but with a quadratic running time).

Lemma 2. Given a univariate representation U = (P,U, µ) of an algebraic set V ⊂ Kn

defined over K, and a linear form ν = ν1X1 + · · · + νnXn with coefficients in K, one can
decide whether ν is a separating element for V , and if so compute the corresponding uni-
variate representation V = (Q,V, ν), in time O(nC(δ)), with δ = deg(V ), provided that the
characteristic of K is equal to 0 or greater than δ.

Proof. Let ΨU be as in Equation (2). We first compute N = ΨU (ν) = ν1U1 + · · · + νnUn;
this takes only O(nδ) operations.

Next, we compute the characteristic polynomial Q of N in K[X]/〈P 〉; as mentioned
before, ν is a separating element for V if and only if Q is squarefree. We have seen that
computing Q takes time O(C(δ)); testing squarefreeness takes time O(M(δ) log(δ)), which is
by assumption O(C(δ)).

When µ is separating, we can use the algorithm for inverse modular composition, to find
polynomials V1, . . . , Vn such that Ui = Vi(N) mod Q holds for all i; then, we have found
V = (Q, (V1, . . . , Vn), ν). In view of the results recalled in Subsection 2.1 on inverse modular
composition, the total time is O(nC(δ)).

Lemma 3. Given univariate representations U = (P,U, µ) and V = (Q,V, ν) of two alge-
braic sets V ⊂ Kn

and W ⊂ Kn
defined over K, one can compute univariate representations

of either V ∪W or V −W in expected time O(nC(δ)), with δ = deg(V ) + deg(W ), provided
that the characteristic of K is equal to 0 or greater than δ2.

Proof. The following process is repeated until success. We pick a random linear form λ =
λ1X1 + · · · + λnXn with coefficients in S = {0, . . . , δ2 − 1}, and apply the algorithm of
Lemma 2 to (U , λ) and (V , λ). The cost of this step is O(nC(δ)). In case of success, we let
U ′ = (P ′,U′, λ) and V ′ = (Q′,V′, λ) be the resulting univariate representations of V and
W ; if either subroutine fails, we pick another λ.

At this stage, λ is separating for both V and W . Now, we compute the polynomial
S = gcd(P ′, Q′), as well as P ′′ = P ′/S and Q′′ = Q′/S. We also compute

U ′′i = U ′i mod P ′′, Ti = U ′i mod S, Wi = V ′i mod S, V ′′i = V ′i mod Q′′

for all i. Using fast GCD and fast Euclidean division, this can be done in timeO(M(δ) log(δ)+
nM(δ)), which is negligible compared to the cost of the first step.

These polynomials will allow us to determine whether λ is a separating element for
V ∪W . This is the case if and only if for any common root α of P ′ and Q′, the equalities
U ′i(α) = V ′i (α) hold for all i ≤ n, that is, if Ti = Wi holds for all i. Doing this test takes time
O(nδ); if not all equalities hold, we pick another λ. Note that if λ is separating for V ∪W ,
it is separating for V −W .
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Assuming λ is a separating element for V ∪W , we obtain a univariate representation
for V ∪ W by computing (P ′′SQ′′, (E1, . . . , En), λ), where Ei is obtained by applying the
Chinese Remainder Theorem to (U ′′i , Ti, V

′′
i ) and moduli (P ′′, S,Q′′), for all i. Computing

these polynomials takes time O(nM(δ) log(δ)), which is again O(nC(δ)). Similarly, we obtain
a univariate representation for V −W as (P ′′, (U ′′1 , . . . , U

′′
n), λ).

By Lemma 1, we expect to test O(1) choices of λ (precisely, at most 2) before finding a
suitable one. As a consequence, the expected running time is O(nC(δ)).

To conclude this section, we mention the following result about conversions between
univariate and triangular representations.

As a preliminary, remember that if U = (P,U, µ) is a univariate representation of an
algebraic set V , there exists an isomorphism ΨU : K[X]/I(V )→ K[X]/〈P 〉. If furthermore
the defining ideal of V admits a triangular set of generators T for some variable order <, we
also have K[X]/I(V ) ' RT. As a result, there exists change-of-basis isomorphisms

ΦT,U : K[X]/〈P 〉 → RT and ΨT,U : RT → K[X]/〈P 〉,

which will be useful in the sequel.

Lemma 4. Let V ⊂ Kn
be an algebraic set of degree δ, defined over K, and let I ⊂

K[X1, . . . , Xn] be its defining ideal; suppose that the characteristic of K is equal to 0 or
greater than δ2. Let finally < be an order on the variables X1, . . . , Xn and suppose that I is
generated by a triangular set T for the variable order <. Then the following holds:

• Given a univariate representation U = (P,U, µ) of V , one can compute the triangu-
lar set T in expected time O(n2C(δ)). Given A in K[X]/〈P 〉, one can then compute
ΦT,U (A) ∈ RT in time O(nC(δ)).

• Given T, one can compute a univariate representation U = (P,U, µ) of V in expected
time O(n2C(δ)). Given A in RT, one can then compute ΨT,U (A) ∈ K[X]/〈P 〉 in time
O(nC(δ)).

Proof. We will merely describe the main ideas, so as to highlight the roles of modular com-
position and power projection. Details are given in [34, Section 5.3 and 6.3], together with
worked-out examples (the complexity analysis there is given in the boolean model, but carries
over to the algebraic model without difficulty). In both directions, we proceed one variable
at a time.

• In the first direction, we change (if needed) the linear form µ, so as to ensure that the
coefficient of Xn in µ is equal to 1; this is done in expected time O(nC(δ)) by means
of Lemmas 1 and 2. This mild condition is needed to apply the algorithm of [34]; we
still write the input U = (P,U, µ).

Then, we let µ′ = µ′1X1 + · · · + µ′n−2Xn−2 + Xn−1 be a random combination of
X1, . . . , Xn−1, with coefficients in {0, . . . , δ2 − 1}, whose coefficient in Xn−1 is 1. We
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can then replace the single polynomial Pn(X) = P (X) by a bivariate triangular set∣∣∣∣ Tn−1,n(X,Xn)
Pn−1(X),

where Pn−1 is the squarefree part of the characteristic polynomial of µ′1U1 + · · · +
µ′n−2Un−2 +Un−1 modulo Pn. As we go, we also compute expressions of U1, . . . , Un−1 as
polynomials in µ′, to allow the process to continue. In the second step, we introduce a
triangular set ∣∣∣∣∣∣

Tn−2,n(X,Xn−1, Xn)
Tn−2,n−1(X,Xn−1)
Pn−2(X)

in three variables X,Xn−1, Xn, and so on until we obtain T.

Using formulas from [33, 34], going from (Pn) to (Pn−1, Tn−1,n) is done by means of
power projections with parameters (1, 1) and (2, 1) and size δ = deg(Pn), as well as
inverse modular compositions, all computed modulo 〈Pn〉; the total time is O(nC(δ)).
The change of basis K[X]/〈Pn〉 → K[X,Xn]/〈Pn−1, Tn−1,n〉 is done by means of a
modular composition with parameters (1, 2) and size δ = deg(Pn), computed modulo
〈Pn−1, Tn−1,n〉; it takes time O(C(δ)).

The further steps are done in the same manner. For instance, going from (Pn−1, Tn−1,n)
to (Pn−2, Tn−2,n−1, Tn−2,n) requires first to compute (Pn−2, Tn−2,n−1), similarly to what
we did in the first step. Then, we obtain Tn−2,n by applying the change of basis
K[X]/〈Pn−1〉 → K[X,Xn]/〈Pn−2, Tn−2,n−1〉 to all coefficients of Tn−1,n.

There are n such steps before we reach T; each takes an expected O(nC(δ)), so the
total time is an expected O(n2C(δ)).

Staring from A in K[X]/〈P 〉, we obtain its image in RT by computing its represen-
tations in K[X,Xn]/〈Pn−1, Tn−1,n〉, and so on. Each conversion is done as above by
means of modular compositions with parameters (1, 2) and takes time O(C(δ)); the
total number of operations is thus O(nC(δ)).

• To compute a univariate representation starting from a triangular set T = (T1, . . . , Tn),
we follow the same process backward. Starting from (Tn,1, . . . , Tn,n) = (T1, . . . , Tn), we
first work with (Tn,1, Tn,2), and find a univariate representation for these two polyno-
mials; this gives us the triangular set in n− 1 variables (Pn−1, Tn−1,3, . . . , Tn−1,n). We
continue until we reach a single polynomial Pn, which we will simply write P .

The polynomial Pn−1(X) is the characteristic polynomial of a random combination of
X1, X2 with coefficients in {0, . . . , δ2−1}, computed modulo 〈Tn,1, Tn,2〉; all other poly-
nomials Tn−1,j are obtained by applying the change-of-basis K[X1, X2]/〈Tn,1, Tn,2〉 →
K[X]/〈Pn−1〉.
This first step requires a power projection with parameters (1, 2), as well as modular
compositions with parameters (2, 1), and the cost is an expected O(nC(δ)). Since there
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are n such steps, the total cost is then an expected O(n2C(δ)). The change-of-basis
RT → K[X]/〈P 〉 is obtained similarly by means of modular compositions, and takes
time O(nC(δ)).

3 The φ-decomposition

In this section, we define the notions of φ-equiprojectable sets and φ-decomposition of a zero-
dimensional algebraic set V ⊂ Kn

, where φ is a mapping Kn → Km
. We then give an

algorithm to compute the φ-decomposition of V , by reducing again this problem to (mainly)
modular composition and power projection.

In what follows, we suppose that V is a zero-dimensional algebraic subset of Kn
of

cardinality δ, defined over K, and we let I ⊂ K[X] = K[X1, . . . , Xn] be its defining ideal.
We make the assumption that the characteristic of K is equal to 0 or greater than δ2.

We start with the definition of some counting functions. Let φ be a mapping Kn → Km
,

given by polynomials with coefficients in K. For x in V , we let c(V,x, φ) be the cardinality of
the set {x′ ∈ V, φ(x′) = φ(x)}: this is the number of points x′ in V such that φ(x′) = φ(x).
Then, we say that V is φ-equiprojectable if there exists a positive integer d such that for all
x in V , c(V,x, φ) = d.

In general, we should not expect V to be φ-equiprojectable. Then, we define

C (V, φ, r) = {x ∈ V, c(V,x, φ) = r};

this is the set of all x ∈ V with r points in their φ-fiber. Since V is finite, x 7→ c(V,x, φ)
takes only finitely many values on V , say r1 < · · · < rs. As a consequence, the sets

Vr1 = C (V, φ, r1), . . . , Vrs = C (V, φ, rs) (3)

form a partition of V ; by construction, all these sets are φ-equiprojectable. We will write

Dec(V, φ) = {Vr1 , . . . , Vrs},

and we will call this decomposition the φ-decomposition of V . Although it may not be clear
from our definition, all Vri are in fact defined over K.

Lemma 5. With notation as in (3), Vr1 , . . . , Vrs are defined over K.

Proof. We are going to prove that for any r ≥ 1,

C ′(V, φ, r) = {x ∈ V, c(V,x, φ) ≥ r}

is defined over K. Since C (V, φ, r) = C ′(V, φ, r)−C ′(V, φ, r+ 1), and since the set-theoretic
difference of two zero-dimensional algebraic sets defined over K is still defined over K, this
will be sufficient to establish our claim.
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Fix r ≥ 1, and let V (r) be the r-fold product V ×· · ·×V ⊂ Knr
; obviously, V (r) is defined

over K. Let (x1, . . . ,xr) be the coordinates on Knr
, where each xi has length n, and let

W (r) = V (r) − ∪1≤i<j≤r∆i,j,

where ∆i,j is defined by xi = xj. Again, W (r) is defined over K, and (x1, . . . ,xr) is in W (r)

if and only if all xi are in V and pairwise distinct. Finally, we define

Z(r) = W (r) ∩1≤i<j≤r V (φ(xi)− φ(xj));

then, C ′(V, φ, r) is the projection of Z(r) on the first factor Kn
, so it is indeed defined over

K, as claimed.

Before discussing an algorithm that computes Dec(V, φ), we prove a simple lemma that
will be used in the next section.

Lemma 6. Consider two mappings φ : Kn → Km
and ψ : Kn → Kp

, such that ψ = f ◦ φ,
for some mapping f : Km → Kp

, and suppose that V is φ-equiprojectable. Then any V ′ in
Dec(V, ψ) is both φ-equiprojectable and ψ-equiprojectable.

Proof. Let d be the common cardinality of the fibers of the restriction of φ to V . Let further
V ′ be in Dec(V, ψ), and let x be in V ′. We will show that c(V ′,x, φ) = d, thereby establishing
that V ′ is φ-equiprojectable (V ′ is ψ-equiprojectable by construction).

Remember that c(V ′,x, φ) is the cardinality of the fiber F ′ = {x′ ∈ V ′, φ(x′) = φ(x)}.
We claim that we actually have F ′ = F , with F = {x′ ∈ V, φ(x′) = φ(x)}. Since by
assumption |F | = d, proving F = F ′ is sufficient to prove that c(V ′,x, φ) = d.

Of course, F ′ is a subset of F . Conversely, let x′ be in F . Then, φ(x) = φ(x′) and
our assumption on φ and ψ implies that ψ(x) = ψ(x′). This implies that x′ is in V ′, as
claimed.

We now explain how to compute Dec(V, φ). For simplicity, we will assume that m ≤ n,
and that φ is a simple linear map (the algorithm would not be substantially different in
general, but a few extra terms could appear in the cost analysis).

Proposition 1. Consider an algebraic set V ⊂ Kn
defined over K and of degree δ, and a

univariate representation U = (P,U, µ) of V , and let Dec(V, φ) = {Vr1 , . . . , Vrs}. Suppose
that the following conditions are satisfied:

• the characteristic of K is equal to 0 or greater than δ2,

• φ is a linear map Kn → Km
, of the form φ(x1, . . . , xn) = (x1, . . . , xm).

Then we can compute univariate representations (Pk,Uk, µ)1≤k≤s of Vr1 , . . . , Vrs in expected
time O(C(δ)(n+ log(δ))).

The rest of this section is devoted to prove this proposition. In what follows, we write
W = φ(V ) and, for all k ≤ s, Wrk = φ(Vrk). We also write U = (U1, . . . , Un), with all
Ui in K[X]. Since for all x = (x1, . . . , xn) in V we have xi = Ui(µ(x)), we deduce that
φ(x) = (U1(µ(x)), . . . , Um(µ(x))) for x in V .
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Step 1. Choose a random linear form ν = ν1Y1+· · ·+νmYm with coefficients in {0, . . . , δ2−
1}, compute N = ν1U1 + · · · + νmUm, and compute the characteristic polynomial χN of N
in K[X]/〈P 〉. Computing N takes time O(nδ) and computing its characteristic polynomial
takes time O(C(δ)), see Subsection 2.1.

The linear form ν must be a separating element for W . To verify if this is the case,
we check whether U1, . . . , Um can be written as polynomials in N modulo P . This is done
using the algorithm for inverse modular composition, and takes time O(mC(δ)), which is
O(nC(δ)). Due to our assumption on the characteristic of K, we need to test an expected
O(1) choices of ν before finding a separating element, see Lemma 1.

Remark that for x in V , N(µ(x)) = ν1U1(µ(x)) + · · ·+ νmUm(µ(x)) = ν(φ(x)).

Step 2. Compute the squarefree decomposition of χN ; this takes times O(M(δ) log(δ)),
see [18, Chapter 14]. Using the previous notation, we claim this decomposition has the form

χN = Cr1
1 · · ·Crs

s , with Ck =
∏

y∈Wrk

(X − ν(y)).

Indeed, by Stickelberger’s Theorem, we have the factorization

χN =
∏

x∈V (X −N(µ(x)))

=
∏

x∈V (X − ν(φ(x))).

For y ∈ W , let r(y) be the cardinality of the fiber φ−1(y) ∩ V . Then we obtain the
factorization

χN =
∏

y∈W (X − ν(y))r(y)

=
∏

k≤s
∏

y∈Wrk
(X − ν(y))rk ,

since by construction the projections Wrk are pairwise disjoint. As ν is separating for W ,
the linear factors X − ν(y) are pairwise distinct, which proves our claim.

For future use, note that
∑

i≤s deg(Ci) ≤ δ, since χN = Cr1
1 · · ·Crs

s has degree δ.

Step 3. For k ≤ s, compute Pk = gcd(Ck(N), P ). We will prove at the end of the section
that this can be done in time O(C(δ) log(δ)). That proof will be somewhat lengthy; for the
moment, we will only prove that for k ≤ s, we have

Pk =
∏

x∈Vrk

(X − µ(x)). (4)

Both sides are squarefree (since they divide P ), so to prove our claim it is enough to prove
that the roots of Pk are exactly the values µ(x) for x in Vrk . As a preliminary remark, recall
that for all x in V , we have ν(φ(x)) = N(µ(x)).

• For x = (x1, . . . , xn) in Vrk , φ(x) is in Wrk so ν(φ(x)) is a root of Ck. By the remark
above, this shows that µ(x) is a root of Ck(N). But of course µ(x) is also a root of P ,
so µ(x) is a root of Pk.

18



• Conversely, consider a root α of Pk. Since any root of Pk is a root of P , α is of the
form µ(x) for some x in V . But by assumption α = µ(x) is also a root of Ck(N), which
means that ν(φ(x)) is a root of Ck. In particular, ν(φ(x)) is a root of no other Ck′ ,
because these polynomials are pairwise coprime. This implies that φ(x) belongs to no
other Wrk′

, so it must belong to Wrk ; thus, x is in Vrk .

Note also that we have P = P1 · · ·Ps, all Pk being pairwise coprime.

Step 4. For k ≤ s and j ≤ n, compute Uk,j = Uj mod Pk. This can be done in time
O(nM(δ) log(δ)) using fast multiple reduction [18, Chapter 10], which is O(nC(δ)). Writing
Uk = (Uk,1, . . . , Uk,n), Eq. (4) shows that for k ≤ s, (Pk,Uk, µ) is a univariate representation
of Vrk , so we are done.

Analysis of Step 3. Summing all the costs mentioned above gives the cost estimate
claimed in Proposition 1. All that is missing is to prove that, as announced, the cost of
computing the polynomials Pk of Step 3 is O(C(δ) log(δ)).

Recall that for all k ≤ s, Pk = gcd(Ck(N), P ). We cannot compute the polynomials
Ck(N), or even Ck(N) mod P , as there are too many of them: one easily sees that s could
be as large as

√
δ; each polynomial Ck(N) mod P requires to store δ field elements, so

computing all of them would take time at least δ1.5.
Therefore, we compute the Pk directly, using divide-and-conquer techniques. Given poly-

nomials A,Q ∈ K[X], we will write

Γ(A,Q) = gcd(A(N), Q) (5)

= gcd(A(N mod Q) mod Q, Q), (6)

so that the polynomials we want to compute are P1 = Γ(C1, P ), . . . , Ps = Γ(Cs, P ).
Assuming we know N mod Q, Definition (6) shows that we can compute Γ(A,Q) by

computing first A(N mod Q) mod Q, then taking its GCD with Q. Since by assumption
M(d) log(d) is O(C(d)), we can thus obtain Γ(A,Q) in time O(C(d)) by modular composition
and fast GCD, with d = max(deg(A), deg(Q)); we will call this the plain algorithm. In
particular, we could compute any Pk in time O(C(δ)). However, as we mentioned above,
computing all Pk directly in this manner incurs a cost of the form sC(δ), which is too much
for our purposes.

The key equality we will use is the following: for any polynomials A,B, we have

Γ(A,Q) = Γ(A,Γ(AB,Q)). (7)

Indeed, using Definition (5), the left-hand side reads

Γ(A,Q) = gcd(A(N), Q),

whereas the right-hand side is

Γ(A,Γ(AB,Q)) = gcd(A(N), gcd((AB)(N), Q));
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equality (7) follows from the fact that gcd(F1, G) = gcd(F1, gcd(F1F2, G)) holds for all
polynomials F1, F2, G.

We are now ready to explain how to complete Step 3. To simplify our presentation, we
will assume that s is a power of two, of the form s = 2w; when this is not the case, we can
complete C1, . . . , Cs by dummy polynomials Ck = 1, so as to replace s by the next power of
two, without affecting the asymptotic running time.

Step 3.1. We compute the subproduct tree (see details below) associated to C1, . . . , Cs.
From [18, Chapter 10], this can be done in time O(M(δ) log(δ)), since we have seen that∑

i≤s deg(Ci) ≤ δ. Using our assumption on M and C, this is in O(C(δ)).
At the top level of the subproduct tree, the root is labelled by K0,1 = C1 · · ·Cs; its two

children are labelled by K1,1 = C1 · · ·Cv and K1,2 = Cv+1 · · ·Cs with v = s/2, and so on.
For j = 0, . . . , w, the polynomials the jth level are written Kj,i, with i = 1, . . . , 2j, so that
Kj,i = Kj+1,2i−1Kj+1,2i. At the leaves, for j = w, we have Kw,i = Ci.

In what follows, we are going to compute all polynomials Γ(Kj,i, P ), for j = 0, . . . , w and
i = 1, . . . , 2j, in a top-down manner. At the leaves, for j = w, we will obtain the polynomials
Γ(Kw,i, P ) = Γ(Ci, P ) = Pi we are looking for.

Step 3.2. We compute
γ0,1 = Γ(K0,1, P )

using the plain algorithm, in time O(C(δ)), as well as N0,1 = N mod γ0,1 in time O(M(δ)),
by fast Euclidean division. The latter cost is negligible.

Step 3.3. For j = 0, . . . , w−1 and i = 1, . . . , 2j, assuming we know γj,i andNj,i = N mod γj,i,
we compute

γj+1,2i−1 = Γ(Kj+1,2i−1, γj,i) and γj+1,2i = Γ(Kj+1,2i, γj,i)

followed by

Nj+1,2i−1 = Nj,i mod γj+1,2i−1 and Nj+1,2i = Nj,i mod γj+1,2i.

Our claim is twofold: first, we will prove that γj,i = Γ(Kj,i, P ) for all j, i; second, we will
establish that the total running time is O(C(δ) log(δ)). Note that this is enough to finish the
proof of Proposition 1, since we have seen that for j = w, we have Γ(Kw,i, P ) = Pi.

The proof that γj,i = Γ(Kj,i, P ) is done by induction on j. By definition, this is true for
γ0,1; for j > 1, this follows from Equation (7), first taking A = Kj+1,2i−1, B = Kj+1,2i and
Q = P , then A = Kj+1,2i, B = Kj+1,2i−1 and Q = P . Since γj+1,2i−1 and γj+1,2i divide γj,i,
we can also prove by induction that Nj,i = N mod γj,i holds for all j, i.

It remains to do the cost analysis. Since Nj,i = N mod γj,i is known, we can indeed
compute γj+1,2i−1 and γj+1,2i from Kj+1,2i−1, Kj+1,2i and γj,i by the plain algorithm in time
O(C(dj,i)), where we write

dj,i = max(deg(Kj+1,2i−1), deg(Kj+1,2i), deg(γj,i)) ≤ max(deg(Kj,i), deg(γj,i)).
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The computation of Nj+1,2i−1 and Nj+1,2i can be done in time O(M(deg(γj,i))), which is
negligible by assumption. Hence, the total cost is, up to a constant factor,∑

j=0,...,w−1

∑
i=1,...,2j

C(max(deg(Kj,i), deg(γj,i))).

This admits the obvious upper bound∑
j=0,...,w−1

∑
i=1,...,2j

C(deg(Kj,i)) +
∑

j=0,...,w−1

∑
i=1,...,2j

C(deg(γj,i)).

Using the super-linearity of C, we obtain the upper bound∑
j=0,...,w−1

C

 ∑
i=1,...,2j

deg(Kj,i)

+
∑

j=0,...,w−1

C

 ∑
i=1,...,2j

deg(γj,i)

 .

To conclude the cost analysis, we will prove the inequalities∑
i≤2j

deg(Kj,i) ≤ δ and
∑
i≤2j

deg(γj,i) ≤ δ.

These inequalities imply a cost upper bound of the form
∑

j=0,...,w−1 C(δ), up to a constant
factor. The claim on the total cost follows, since w is in O(log(δ)).

• The first inequality
∑

i≤2j deg(Kj,i) ≤ δ is a straightforward consequence of the equal-
ity

∑
i≤2j deg(Kj,i) =

∑
i≤s deg(Ci), which itself follows from the definition of the

subproduct tree, and the fact that
∑

i≤s deg(Ci) ≤ δ.

• To obtain the second inequality
∑

i≤2j deg(γj,i) ≤ δ, we start by proving that for fixed
j, and for i 6= i′, γj,i and γj,i′ are coprime. Indeed, we have seen that

γj,i = gcd(Kj,i(N), P ),

where Kj,i has the form Kj,i =
∏

`∈κj,i C`. Here, κj,i is a set of indices which we will

not need to make explicit; however, for further use, we note that for i 6= i′, κj,i and
κj,i′ are disjoint. The factorization of Kj,i implies that

γj,i = gcd(
∏
`∈κj,i

C`(N), P ).

Recall now that the polynomials P` = gcd(C`(N), P ) are pairwise coprime; as a result,
the former equality gives

γj,i =
∏
`∈κj,i

gcd(C`(N), P ) =
∏
`∈κj,i

P`.

Since for fixed j the sets κj,i are pairwise disjoint, and since the polynomials P` are pair-
wise coprime, we deduce that for fixed j, the polynomials γj,i themselves are pairwise
coprime, as claimed.

Since by construction all γj,i divide P , the product
∏

i≤2j γj,i must divide P as well,
and the inequality

∑
i≤2j deg(γj,i) ≤ δ follows.
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4 Proof of Theorem 1

In this section, we prove Theorem 1. We start by defining equiprojectable sets and the
equiprojectable decomposition. The algorithms underlying Theorem 1 are then straightfor-
ward applications of the results of the previous section.

4.1 The equiprojectable decomposition

Let V ⊂ Kn
be a zero-dimensional algebraic set defined over K. We suppose that we are

given an order < on the variables; up to renaming them, we can suppose that the order is
simply X1 < · · · < Xn. For 1 ≤ i ≤ n, we define the projection

πi : Kn → Ki

x = (x1, . . . , xn) 7→ (x1, . . . , xi).

Then, we say that V is equiprojectable if it is πi-equiprojectable for i = 1, . . . , n; in other
words, V is equiprojectable if all fibers of π1 on V have a common cardinality δ1, all fibers
of π2 on V have a common cardinality δ2, etc.

In general, we should not expect V to be equiprojectable. There are potentially many
ways to decompose V into equiprojectable sets; the equiprojectable decomposition will be a
canonical partition of V into pairwise disjoint equiprojectable sets, that will all be defined
over K.

We will actually define a sequence Dec(V, i, <), for i = n, . . . , 1, which will all be partitions
of V , refining one another. At index n, we write Dec(V, n,<) = {V }. Then, for i < n,
assuming that we have defined

Dec(V, i+ 1, <) = {Vi+1,1, . . . , Vi+1,si+1
},

we obtain Dec(V, i, <) by computing the πi-decomposition of every element in Dec(V, i+1, <):

Dec(V, i, <) = ∪k≤si+1
Dec(Vi+1,k, πi),

which we rewrite as
Dec(V, i, <) = {Vi,1, . . . , Vi,si}.

An easy decreasing induction proves that for i = 1, . . . , n and k ≤ si, every Vi,k is πj-
equiprojectable for j = i, . . . , n:

• For i = n, Dec(V, n,<) is simply {V }, which is πn-equiprojectable (since πn is the
identity).

• For i < n, assuming that the claim holds for Dec(V, i+1, <), we prove it for Dec(V, i, <).
To do so, it is enough to take Vi+1,k in Dec(V, i + 1, <) and prove that every V ′ in
Dec(Vi+1,k, πi) is πj-equiprojectable, for j = i, . . . , n.

Obviously, V ′ is πi-equiprojectable. Besides, since by the induction assumption Vi+1,k is
πj-equiprojectable for j = i+1, . . . , n, Lemma 6 implies that V ′ is also πj-equiprojectable
for j = i+ 1, . . . , n.
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Taking i = 1, Dec(V, 1, <) is the equiprojectable decomposition of V ; we will actually denote
it by Dec(V,<). Dropping the subscript 1, we will write

Dec(V,<) = {V1, . . . , Vs}.

This is thus a decomposition of V into pairwise disjoint equiprojectable sets Vj.
Aubry and Valibouze proved in [4] that an algebraic set is equiprojectable if and only

if its defining ideal is generated by a triangular set. Besides, by Lemma 5, each Vj is
defined over K; thus, its defining ideal is generated by a triangular set T(j) in K[X]. As
said in the introduction, we will write D(V,<) to denote the collection of the triangular sets
{T(1), . . . ,T(s)}. In ideal-theoretic terms, the ideals 〈T(j)〉 are thus pairwise coprime, and
their intersection is the defining ideal I of V , so that K[X]/I ' RT(1) × · · · ×RT(s) .

The following proposition gives a cost estimate on the computation of the equiprojectable
decomposition, using a univariate representation as input.

Proposition 2. Let V ⊂ Kn
be a zero-dimensional algebraic set defined over K, of degree δ.

If the characteristic of K is equal to 0 or greater than δ2, given a univariate representation
U of V , we can compute D(V,<) = {T(1), . . . ,T(s)} in expected time O(nC(δ)(n+ log(δ))).
Besides, the following change of bases can be done in time O(nC(δ)):

• given A in K[X]/〈P 〉, compute its images (A1, . . . , As) in RT(1) × · · · ×RT(s);

• given (A1, . . . , As) in RT(1) × · · · ×RT(s), compute their preimage A in K[X]/〈P 〉.

Proof. Let us write as before Dec(V,<) = {V1, . . . , Vs}. The algorithm to compute D(V,<)
proceeds in two steps: first, we compute univariate representations of all Vj; secondly, we
convert them into triangular sets. As we go, we also explain how to perform the change of
basis from A to (A1, . . . , As), and back.

Step 1. Recall the definition of the sequence Dec(V, i, <): we have Dec(V, n,<) = {V }
and starting from

Dec(V, i+ 1, <) = {Vi+1,1, . . . , Vi+1,si+1
},

we set
Dec(V, i, <) = ∪k≤si+1

Dec(Vi+1,k, πi).

The first step of the algorithm follows the same loop, and computes univariate representations
of all Vi,k. We set Un,1 = U , and for i = n− 1, . . . , 1, we let Ui,1, . . . ,Ui,si be the univariate
representations obtained by applying the algorithm of Proposition 1 to Ui+1,1, . . . ,Ui,si+1

and
πi. If δi+1,k denotes the degree of Vi+1,k, applying the algorithm of Proposition 1 to Ui+1,k

and πi takes an expected time

O(C(δi+1,k)(n+ log(δi+1,k))).
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Using the super-linearity of C, and the fact that δi+1,1 + · · ·+ δi+1,si+1
= δ, the time spent at

index i is seen to be an expected O(C(δ)(n+ log(δ))). Summing over all i, the total time is
an expected

O(nC(δ)(n+ log(δ))).

Let P be the characteristic polynomial of U , and let P1, . . . , Ps1 be those of U1,1, . . . ,U1,s1 .
Since the separating elements of U and U1,1, . . . ,U1,s1 are the same, we have P = P1 . . . Ps1 .
The change of basis K[X]/〈P 〉 → K[X]/〈P1〉 × · · · ×K[X]/〈Ps1〉 is done by multiple reduc-
tion, and the inverse conversion is done using the Chinese Remainder Theorem. Using the
results of [18, Chapter 10], both conversions take time O(M(δ) log(δ)), which is O(C(δ)).

Step 2. Starting from U1,1, . . . ,U1,s1 , we now compute the corresponding triangular sets
T(1), . . . ,T(s). This is done by applying Lemma 4, which shows that we can compute each
triangular set T(j) in expected time O(n2C(δj)), where δj is the degree of Vj. Summing over
all j and using the super-linearity of the function C gives a total expected time of O(n2C(δ)).

Using the notation of Subsection 2.2, the conversion

K[X]/〈P1〉 × · · · ×K[X]/〈Ps1〉 → RT(1) × · · · ×RT(s)

and its inverse are done by applying

(ΦT(1),U1,1
, . . . ,ΦT(s1),U1,s1

) and (ΨT(1),U1,1
, . . . ,ΨT(s1),U1,s1

).

By Lemma 4, and using the super-linearity of C, each conversion takes time O(nC(δ)).

4.2 Solving question P1

We can now show how to solve question P1 stated in the introduction. Given triangular sets
T(1), . . . ,T(`) and S(1), . . . ,S(r) for an order <, and a target order <′, we want to compute
D(V,<′), with

V = V (T(1)) ∪ · · · ∪ V (T(`))− V (S(1))− · · · − V (S(r)).

We let δ be the sum of the degrees of T(1), . . . ,T(`) and S(1), . . . ,S(r) and we make the
assumption that the characteristic of K is equal to 0 or greater than δ2.

Our strategy is to reduce to univariate representations, perform the set theoretic opera-
tions on univariate polynomials, and finally compute the equiprojectable decomposition for
the new order.

Step 1. We compute univariate representations U1, . . . ,U` and V1, . . . ,Vr of respectively
V (T(1)), . . . , V (T(`)) and V (S(1)), . . . , V (S(r)). By Lemma 4, this can be done in expected
time

O
(
n2(C(δ1) + · · ·+ C(δ`) + C(δ′1) + · · ·+ C(δ′r))

)
,

where δi is the degree of T(i) and δ′i is the degree of S(i). Using the super-linearity of C, this
is seen to be an expected O(n2C(δ)).
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Step 2. We compute univariate representations U of V (T(1)) ∪ · · · ∪ V (T(`)) and V of
V (S(1)) ∪ · · · ∪ V (S(r)). The following divide-and-conquer process takes an expected time
O(nC(δ) log(δ)) to achieve this task.

We apply repeatedly the union algorithm of Lemma 3 to U1, . . . ,U`, respectively V1, . . . ,Vr.
To compute say U , we let `′ = d`/2e, and we compute recursively univariate representations
of

V (T(1)) ∪ · · · ∪ V (T(`′)) and V (T(`′+1)) ∪ · · · ∪ V (T(`));

then, these two univariate representations are merged by means of Lemma 3. The running
time analysis is the same as in the proof of Proposition 1: the divide-and-conquer structure
of the algorithm induces the loss of a logarithmic factor, as is the case for other algorithms
with the same structure [18, Chapter 10].

Step 3. By another application of Lemma 3 to U and V , this time for computing a set-
theoretic difference, we finally obtain a univariate representation W of V . This takes an
expected time O(nC(δ)).

Step 4. Starting from W , we compute D(V,<′) using the algorithm of Proposition 2. This
takes an expected time O(nC(δ)(n+ log(δ))).

The total cost of this algorithm is an expected O(nC(δ)(n + log(δ))), as claimed in
Theorem 1.

4.3 Solving question P2

Next, we show how to solve question P2 stated in the introduction. Given a triangular set
T in K[X1, . . . , Xn], for a variable order <, as well as F in RT and a target variable order
<′, we are to compute the equiprojectable decompositions

D(V (T) ∩ V (F ), <′) and D(V (T)− V (F ), <′),

as well as the inverse of F modulo each T′ in D(V (T)−V (F ), <′). We let δ be the degrees of
T and we make the assumption that the characteristic of K is equal to 0 or greater than δ2.

Our strategy is similar to the one of the previous subsection: we convert to a univariate
representation, operate with univariate polynomials, and convert back to triangular repre-
sentations.

Step 1. We compute a univariate representation U = (P,U, µ) of V (T) and F ? =
ΨT,U (F ). By Lemma 4, this can be done in expected time O(n2C(δ)).

Step 2. We compute P ′ = gcd(P, F ?) and P ′′ = P/P ′, as well as the inverse G? of F ?

modulo P ′′ (this inverse exists, since P is squarefree). This takes time O(M(δ) log(δ)), which
is O(C(δ)).

The roots of P ′ describe the points of V (T) where F vanishes; the roots of P ′′ describe
those where F is nonzero.
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Step 3. Writing U = (U1, . . . , Un), we compute U ′i = Ui mod P ′ and U ′′i = Ui mod P ′′ for
all i, and we define U ′ = (P ′, (U ′1, . . . , U

′
n), µ) and U ′′ = (P ′′, (U ′′1 , . . . , U

′′
n), µ). This takes

time O(nM(δ)), which is negligible compared to the cost of Step 1.
Note that U ′ is a univariate representation of V (T)∩V (F ), and that U ′′ is a univariate

representation of V (T)− V (F ).

Step 4. Starting from U ′ and U ′′ we compute the equiprojectable decompositions D(V (T)∩
V (F ), <′) and D(V (T)− V (F ), <′) using the algorithm of Proposition 2. This takes an ex-
pected time O(nC(δ)(n + log(δ))). Besides, using the second part of Proposition 2, we can
compute the image of G? in each RT′ , for T′ in D(V (T) − V (F ), <′). This image is the
inverse of F in RT′ .

As for question P2, the total cost of this algorithm is an expected O(nC(δ)(n+ log(δ))),
as claimed in Theorem 1.

4.4 Experimental results

This section reports on experimental results obtained with a Maple implementation of the
algorithms of Subsection 4.2 and 4.3.

Our implementation supports inputs with coefficients in finite fields of the form Fp, p
prime. This is the most natural choice, since over base fields such as Q or rational function
fields, the cost of arithmetic operations in the base field cannot be assumed to be constant.
For inputs defined over e.g. Q, the natural approach would be to use modular methods, using
for instance lifting techniques (for which the equiprojectable decomposition is particularly
well suited, as we pointed out in the introduction).

Over base fields such as Fp, we have two choices for modular composition and power
projection: algorithms following Brent and Kung’s idea, as described in Section 2.1, or the
extension of the Kedlaya-Umans algorithm given in [34]. Unfortunately, even though the
latter is asymptotically better, the large constants hidden in the O˜ notation make it inferior
for the range of degrees we consider. Thus, our implementation relies on the Brent-Kung
approach.

Other than modular composition and power projection, our algorithms use only uni-
variate and bivariate polynomial arithmetic. As a result, they were implemented using the
modp1 functions, which provide fast implementations of arithmetic operations in Fp[X], for
p a word-size prime.

The following timings are obtained using Maple 15 on an 2.8 GHz AMD Athlon II X2
240e processor. The base field is Fp, with p = 962592769. All timings are in seconds, and
all computations were interrupted whenever they used 2Gb of RAM or more.

Our first experiments concern the particular case of question P1, where the input and
the target order are the same, and r = 0. In other words, we take as input some triangular
sets T(1), . . . ,T(`) for an order <, and we compute the equiprojectable decomposition of

V (T(1)) ∪ · · · ∪ V (T(`)),
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Table 1: Timings for equiprojectable decomposition

n d δ us Maple
3 2 4 0.03 0.03
3 3 10 0.07 0.12
3 4 20 0.12 0.52
3 5 35 0.22 1.6
3 6 56 0.44 4.2

n d δ us Maple
4 2 5 0.06 0.05
4 3 15 0.2 0.4
4 4 35 0.3 2.1
4 5 70 0.8 8.4
4 6 126 1.9 40

n d δ us Maple
5 2 6 0.09 0.08
5 3 21 0.37 0.96
5 4 56 0.81 6.5
5 5 126 2.4 45
5 6 252 9.5 512

n d δ us Maple
6 2 7 0.15 0.13
6 3 28 0.5 2.1
6 4 84 1.8 19
6 5 210 8.2 300
6 6 462 49 5885

for the same order. In Table 1, we shows comparisons with the function EquiprojectableDe-

composition of the RegularChains library [27], which has similar specifications (we are not
aware of other implementations of such an algorithm).

In each sub-table, the number n of variables is fixed; we show timings for the equipro-
jectable decompositions of sets of points of cardinality δ; the column d gives an upper bound
on all di that appear as main degrees in the triangular sets in the output. In almost all cases,
our implementation does better than the built-in function; the fact that we are relying on
the modp1 functions is certainly a key factor for this.

Our second experiments address inverse computation modulo a triangular set, which is
a particular case of question P2: the input and the target order are the same, and (by
construction of our examples), no splitting occurred. In other words, we take as input a
triangular set T and F ∈ RT, invertible in RT; we output the inverse of F in RT.

In Table 2, we give examples for various situations: n denotes the number of variables
and d is such that the input triangular set has multidegree (d, . . . , d), of length n; thus, its
degree δ is dn.

We show comparisons with the function Inverse of the RegularChains library. This
function may induce splittings; if we wanted the same output as in our implementation, we
would also have to perform a recombination after the call to Inverse (we did not include
this step in the timings). As in the previous example, our code usually does better.

We also include timings obtained by using the C modpn library [30], which can be called
from a Maple session. Obviously, we expect this compiled library to be much faster than our
interpreted code; however, timings are sometimes within a factor of 10 or less, which we see
as a sign that our implementation performs well. Note that modpn relies on FFT techniques,
as a result, only those finite fields Fp with suitable roots of unity are supported (the field Fp
in our examples is one of them).
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Table 2: Timings for inversion in RT

n d δ us Inverse modpn

3 2 8 0.04 0.3 0.01
3 3 27 0.06 1.4 0.01
3 4 64 0.14 5.2 0.02
3 5 125 0.24 6.1 0.05
3 6 216 0.75 21 0.06

n d δ us Inverse modpn

4 2 16 0.07 1.1 0.01
4 3 81 0.2 4.8 0.06
4 4 256 1 600 0.1
4 5 625 5.3 10536 0.8
4 6 1296 23 > 2 Gb 1.2

n d δ us Inverse modpn

5 2 32 0.14 210 0.03
5 3 243 1 1576 0.42
5 4 1024 1.5 > 2 Gb 1.2
5 5 3125 151 > 2 Gb 24
5 6 7776 1007 > 2 Gb 37

n d δ us Inverse modpn

6 2 64 0.3 > 2 Gb 0.1
6 3 729 8.8 > 2 Gb 4.6
6 4 4096 273 > 2 Gb 18
6 5 15625 5099 > 2 Gb 661
6 6 46656 67339 > 2 Gb 1135

5 The converse reduction

This section is mostly independent from the other ones. In the previous sections, we used
modular composition and power projection as our basic subroutines, and reduced other
questions to these two operations. In this section, we will do the opposite, by reducing
modular composition and power projection to equiprojectable decomposition.

As mentioned in the introduction, modular composition and power projection are dual
problems. An algorithmic theorem called the transposition principle shows that an algorithm
for the former can be transformed into an algorithm for the latter, and conversely [11, 7]: this
result could in principle allow us to deal only with e.g. modular composition. However, it
applies only in a restricted computational model (using linear programs), which is not suited
to questions such as decompositions of triangular sets (which are inherently non-linear). As
a result, we give explicit reductions for both modular composition and power projection.

In the introduction, we defined E : N2 → N as a function such that one can solve problem
P1 (computing the equiprojectable decomposition of a family of triangular sets in n variables,
with sum of degrees δ) using E(n, δ) base field operations.

Recall then the statement of Theorem 2: we take (m,n) = (1, 1) or (m,n) = (1, 2), and
we let T be a triangular set in n variables that generates a radical ideal. Then, we can
compute modular compositions and power projections modulo 〈T〉 with parameters (m,n)
and size δf ≤ δT in time 2E(4, δT) +O (̃δT).

The two subsections address respectively modular composition and power projection. In
both cases, we can assume that n = 2, since any triangular set in one variable (that is, any
polynomial T1(X1)) can be seen as a triangular set in two variables, by adding a dummy
polynomial T2(X1, X2) = X2. Note that the proofs would generalize to computations in
more than two variables, and would involve terms of the form E(n+ 2, δT).
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5.1 Modular composition

Following the previous discussion let thus T = (T1, T2) be a triangular set in K[X1, X2], G in
RT, and F in K[Y ], of degree deg(F ) ≤ δT. We show here how to compute K = F (G) ∈ RT,
using change of order as our main subroutine.

Consider the triangular set (for the order X1 < X2 < Y )

T′

∣∣∣∣∣∣
Y −G(X1, X2)
T2(X1, X2)
T1(X1);

let V ⊂ K3
be its zero-set, and let us compute D(V,<′), where <′ is the order Y <′ X1 <

′ X2.
We obtain a family of triangular sets U(1), . . . ,U(N) of the form

U(i)

∣∣∣∣∣∣
Ui,2(Y,X1, X2)
Ui,1(Y,X1)
Ri(Y ).

Let now I be the ideal generated by the polynomials (which do not form a triangular set,
since the first polynomial is not reduced)∣∣∣∣∣∣∣∣

Z − F (Y )
Y −G(X1, X2)
T2(X1, X2)
T1(X1).

After reduction, we see that I is generated by the triangular set (for the order X1 < X2 <
Y < Z)

T′′

∣∣∣∣∣∣∣∣
Z −K(X1, X2)
Y −G(X1, X2)
T2(X1, X2)
T1(X1),

where K is the polynomial we want to compute. On the other hand, the construction of the
triangular sets U(i) shows that I is the intersection of the ideals generated by the triangular
sets V(i) (for the order Y <′ X1 <

′ X2 <
′ Z) given by

V(i)

∣∣∣∣∣∣∣∣
Z − Fi(Y )
Ui,2(Y,X1, X2)
Ui,1(Y,X1)
Ri(Y ),

with Fi = F mod Ri. The algorithm is then the following:

• First, we compute all triangular sets U(i). Since T′ generates a radical ideal, this can
be done in E(3, δT) ≤ E(4, δT) base field operations (obviously, E(n, δ) ≤ E(n′, δ) holds
for all n ≤ n′, as can be seen by using n′−n dummy polynomials to obtain a triangular
set in n′ variables).
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• Next, we compute all triangular sets V(i). This requires us to compute all Fi. Since
deg(F ) ≤ δT, and since the sum of the degrees of the Ri is at most δT as well, all Fi can
be computed in time O(M(δT) log(δT)) using fast multiple reduction [18, Chapter 10].

• Finally, we compute T′′, and thus K, by computing the equiprojectable decomposition
of V (V(1)) ∪ · · · ∪ V (V(N)), for the order X1 < X2 < Y < Z. Again, this takes time
E(4, δT).

The total time is at most 2E(4, δT) +O(M(δT) log(δT)), which fits into the claimed bound.

5.2 Power projection

We will now prove the second part of Theorem 2, dealing with power projection. Let thus
T = (T1, T2) be a triangular set in K[X1, X2] that generates a radical ideal, let G be in RT,
and let ` : RT → K be a K-linear form. Given an integer f ≤ δT, we show here how to
compute the values `(Gc), for 0 ≤ c < f . We start with a folklore lemma involving univariate
computations only.

Univariate computations. Let A be a ring, F a monic polynomial of degree d in A[X],
and R the free A-module A[X]/〈F 〉, with the (classes of) 1, X, . . . , Xd−1 as a basis. In
this context, the trace τ : R → A is still well-defined, with τ(A) being the trace of the
multiplication map by A in R. For A ∈ R and ` an A-linear form R→ A, the A-linear form
A · ` is defined as before, by (A · `)(B) = `(AB).

Lemma 7. Suppose that the derivative ∂F/∂X of F is invertible in R, with inverse G.
Given G, and given an A-linear form ` : R→ A, we can compute A in R such that ` = A · τ ,
using O(M(d)) operations in A.

Proof. Let us define another useful A-linear form, the residue ρ : R → A, by ρ(X i) = 0
for i < d − 1 and ρ(Xd−1) = 1. Given ` as above, it is known that there exists B such
that ` = B · ρ. Indeed, a straightforward computation shows that the values (B · ρ)(X i),
for i = 0, . . . , d − 1, are the coefficients of rev(B, d − 1)/rev(F, d) mod Xd, where for any
polynomial P ∈ A[X] and any d ≥ deg(P ), we write rev(P, d) = XdP (1/X). This implies
that given `, we can find the requested B by means of a power series multiplication modulo
Xd, which can be done in M(d) operations in A.

Furthermore, the Euler formula [17, Proposition 2.4] shows that τ = ∂F/∂X · ρ, so that
ρ = G · τ . With ` and B as above, this implies that we have ` = A · τ , with A = BG mod F .
Computing A thus takes another O(M(d)) operations in A, proving the lemma.

Bivariate computations. We will now apply the results of the former paragraph in a
bivariate context. The notation is the one introduced at the beginning of this subsection;
furthermore, we let tr : RT → K be the trace linear form. We also write d1 = deg(T1, X1)
and d2 = deg(T2, X2), so that δT = d1d2.
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Lemma 8. Given a K-linear form ` : RT → K, one can compute an element A ∈ RT such
that ` = A · tr in time O(M(d1)M(d2) log(d1) log(d2)).

Proof. Let us define ST = K[X1]/〈T1〉, so that we have RT = ST[X2]/〈T2〉. Let further
τ1 : ST → K and τ2 : RT → ST be the trace forms; thus, τ1 is K-linear, τ2 is ST-linear, and
we have tr = τ1 ◦ τ2.

First, we are going to factor ` : RT → K as ` = τ1 ◦ L, where L : RT → ST is a suitable
ST-linear form. Computing L amounts to compute λi2 = L(X i2

2 ), for i2 = 0, . . . , d2 − 1; the
condition defining L is equivalent to `(X i1

1 X
i2
2 ) = τ1(L(X i1

1 X
i2
2 )), for i1 = 0, . . . , d1 − 1 and

i2 = 0, . . . , d2 − 1. This can be rewritten as `(X i1
1 X

i2
2 ) = τ1(X

i1
1 λi2), by ST-linearity of L.

For a fixed i2 < d2, let `i2 be the K-linear form ST → K defined by `i2(A) = `(AX i2
2 ). Then,

the previous condition says that `i2 = λi2 · τ1.
Computing the linear forms `i2 is free (since their values on the canonical basis of ST are

simply values of `); then, finding λi2 is done by first inverting T ′1 modulo T1, and applying
Lemma 7 for the extension ST → K. The total time to computing all λi2 is thus O((log(d1)+
d2)M(d1)).

Now that we have written ` = τ1 ◦ L, we will apply Lemma 7 to L, for the extension
RT → ST. This requires us to invert ∂T2/∂X2 in RT; a quasi-linear time algorithm is given
in [1], with a cost O(M(d1)M(d2) log(d1) log(d2)). Once this is done, Lemma 7 gives us an
element A ∈ RT such that L = A · τ2 in time O(M(d1)M(d2)).

To summarize, we have written ` = τ1 ◦ L and L = A · τ2, so that `(B) = τ1(τ2(AB))
holds for all B ∈ RT. Since τ1 ◦ τ2 = tr, this implies that ` = A · tr.

Transposed multiple reduction. Our next ingredient is an algorithm for the following
operation. Consider some pairwise coprime monic polynomials R1, . . . , RN in K[X], and let
R = R1 · · ·RN .

We have already mentioned the multiple reduction map K[X]/〈R〉 → K[X]/〈R1〉× · · · ×
K[X]/〈RN〉; writing d = deg(R), this operation can be done in time O(M(d) log(d)). In this
paragraph, we will discuss the dual map. On input linear forms `i : K[X]/〈Ri〉 → K, this
dual map computes the linear form ` : K[X]/〈R〉 defined by

A 7→
∑
i≤N

`i(A mod Ri),

where all `i and ` are given by means of their values on the monomials bases of the respective
K[X]/〈Ri〉 and K[X]/〈R〉. In other words, it computes the values∑

i≤N

`i(X
j mod Ri),

for j = 0, . . . , d− 1. In [6], an algorithm called TSimulMod is given that solves this problem
in time O(M(d) log(d)). Computing the above values up to index e, for some e > d, can then
be done in time O(M(e)), see for instance [7].
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Conclusion. Let us return to the proof of Theorem 2. On input T = (T1, T2), G ∈ RT

and ` : RT → K, we will show how to compute the values `(Gc), for 0 ≤ c < δT. Using the
algorithm of Lemma 8, we can compute A ∈ RT such the values we want are of the form
tr(AGc), for 0 ≤ c < δT.

Let us introduce the triangular set (for the order X1 < X2 < Y < Z)

T′

∣∣∣∣∣∣∣∣
Z −G(X1, X2)
Y − A(X1, X2)
T2(X1, X2)
T1(X1),

and let its equiprojectable decomposition for the order Z <′ Y <′ X1 <
′ X2 be given by

triangular sets

U(i)

∣∣∣∣∣∣∣∣
Ui,2(Z, Y,X1, X2)
Ui,1(Z, Y,X1)
Si(Z, Y )
Ri(Z),

1 ≤ i ≤ N.

For i ≤ N , let τi : RU(i) → K be the trace modulo U(i). Since RT and RT′ are isomorphic
K-algebras, the traces in RT and RT′ coincide. Since 〈T′〉 is the intersection of the pairwise
coprime ideals 〈U(i)〉, it follows (for instance from Stickelberger’s Theorem) that for any
index c, we have

tr(AGc) =
∑
i≤N

τi(Y Z
c).

For i ≤ N , let `i be the linear form K[Z]/〈Ri〉 → K defined by `i(B) = τi(Y B). Then, one
sees that τi(Y Z

c) = `i(Z
c), so that we have

tr(AGc) =
∑
i≤N

`i(Z
c). (8)

Using this remark, we can now give the whole algorithm and its running time.

• First, we compute A ∈ RT such that ` = A · tr. By Lemma 8, this can be done in time
O(M(d1)M(d2) log(d1) log(d2)).

• Next, we compute the triangular sets U(i), i = 1, . . . , N . This takes time E(4, δT).

• The following step consists of computing the linear forms τi (by means of their values
on the canonical bases of the residue class rings RU(i)). We have seen in Subsection 2.1
that we can compute each of those in time O(M(δU(i))), so the total time is O(M(δT))
by the super-linearity of M.

• Knowing the linear forms τi, we can deduce `i by first computing all Y · τi (for a total
time of O(M(δT)) again), from which the values of `i on the basis of K[Z]/〈Ri〉 can be
read off.
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• Finally, we obtain tr(AGc), for c = 0, . . . , δT − 1, using Eq. (8) and the algorithm for
transposed multiple reduction; this takes time O(M(δT) log(δT)).

Taking a quasi-linear M, and summing all previous costs, the claim in Theorem 2 follows.
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for multiplication modulo triangular sets. Journal of Symbolic Computation. To appear.

[9] F. Boulier, F. Lemaire, and M. Moreno Maza. PARDI! In ISSAC’01, pages 38–47.
ACM, 2001.

[10] R. P. Brent and H. T. Kung. Fast algorithms for manipulating formal power series.
Journal of the ACM, 25(4):581–595, 1978.

33



[11] P. Bürgisser, M. Clausen, and M. A. Shokrollahi. Algebraic Complexity Theory. Springer,
1997.

[12] D. G. Cantor and E. Kaltofen. On fast multiplication of polynomials over arbitrary
algebras. Acta Informatica, 28(7):693–701, 1991.

[13] D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic progressions.
Journal of Symbolic Computation, 9(3):251–280, 1990.

[14] D. Cox, J. Little, and D. O’Shea. Using Algebraic Geometry. Springer, New York, 1998.
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