
ar
X

iv
:1

11
2.

45
23

v1
 [

cs
.C

G
]

 1
9

D
ec

 2
01

1

COMPLEXITY AND ALGORITHMS FOR EULER CHARACTERISTIC OF

SIMPLICIAL COMPLEXES

BJARKE HAMMERSHOLT ROUNE AND EDUARDO SÁENZ-DE-CABEZÓN

Abstract. We consider the problem of computing the Euler characteristic of an abstract sim-
plicial complex given by its vertices and facets. We show that this problem is #P-complete and
present two new practical algorithms for computing Euler characteristic. The two new algorithms
are derived using combinatorial commutative algebra and we also give a second description of them
that requires no algebra. We present experiments showing that the two new algorithms can be
implemented to be faster than previous Euler characteristic implementations by a large margin.

1. Introduction

The Euler characteristic of a topological space is an invariant used in a variety of contexts
such as category theory, algebraic geometry and differential geometry. In combinatorics, the Euler
characteristic of a simplicial complex is related to the Möbius function of a poset and the inclusion-
exclusion principle [16] and to valuations on simplicial complexes [12] to name but a few connections.

The reduced Euler characteristic of an abstract simplicial complex1 ∆ is

χ̃ (∆)
def

= −
∑

σ∈∆

(−1)|σ| = −f−1 + f0 − f1 + f2 − f3 + · · ·

where fi denotes the number of faces (elements) of dimension i in the complex.2 The dimension of

a face σ is dim(σ)
def

= |σ| − 1.
In Section 2 we prove that computing the Euler characteristic of a simplicial complex specified

by its vertices and facets is #P-complete, which is a formal way of stating that Euler characteristic
is a difficult computational problem. We also show that the problem of deciding if χ̃ (∆) = 0 is
not in NP unless #P is no harder than NP. This answers two open questions posed by Kaibel and
Pfetsch in their survey [11].

In Section 3 we introduce two new practical algorithms for computing Euler characteristic. These
two algorithms were conceived of in terms of combinatorial commutative algebra, and Section 3 is
written solely in terms of algebra. Section 4 independently describes the same two algorithms in
terms of simplicial complexes and without any reference to algebra. Section 5 describes how the al-
gebra was translated to simplicial complexes and how doing so brought up interesting mathematics.

Date: September 25, 2018.
1An abstract simplicial complex ∆ is a family of sets closed under taking subset, so if σ ∈ ∆ and τ ⊆ σ then

τ ∈ ∆. This is closely related to the notion of a simplicial complex which is a set of polyhedra with certain properties.
All complexes in this paper are abstract. See Section 4.1 for further background.

2The usual definition of Euler characteristic is χ(∆)
def
= f0 − f1 + f2 − f3 + · · · . The difference is that χ(∆) does

not count the empty set, while χ̃ (∆) does, so χ̃ (∆) = χ(∆) − 1. All Euler characteristics in this paper are χ̃ (∆)
rather than χ(∆) because that simplifies the formulas.

1

http://arxiv.org/abs/1112.4523v1

2 BJARKE HAMMERSHOLT ROUNE AND EDUARDO SÁENZ-DE-CABEZÓN

Finally, Section 6 presents experiments that show that the two new algorithms can be implemented
to be faster than previous Euler characteristic implementations by a large margin.

2. The Complexity of Euler Characteristic

We describe the complexity class #P and then prove that Euler characteristic is #P-complete.
This is a precise way of saying that Euler characteristic is a difficult computational problem. We
also consider the complexity of decision problems associated to Euler characteristic. See Section
4.1 for basic definitions relating to simplicial complexes.

The complexity of Euler characteristic has been studied before, but not of a simplicial complex
specified by its vertices and facets. It has been studied for the case of the input being a CW-complex
specified as a circuit [6] in the context of real valued computation and for the input being a sheaf
[1] in the context of algebraic geometry.

2.1. The complexity class #P. The complexity class #P is the set of counting problems asso-
ciated to decision problems in NP. For example the decision problem “does a logical formula have
some satisfying assignment of truth-values?” is in NP, while “how many satisfying assignments of
truth-values does a logical formula have?” is in #P. The former is called SAT while the latter is
called #SAT. A problem is #P-complete if it is in #P and any other problem in #P can be reduced
to it in polynomial time.

There is already a list of problems that are known to be #P-complete, which is very helpful
when proving that a new problem is #P-complete, as then a problem in #P is #P-complete if some
other #P-complete problem reduces to it. For example it is known that #SAT is #P-complete even
when restricted to formulas with two literals per clause and no negations [18]. A SAT formula is a
conjunction of clauses, where each clause is a disjunction of some number of literals. For example

(a ∨ ¬b) ∧ (a ∨ c) ∧ (¬b ∨ c),

where a, b and c are boolean variables. Here the satisfying truth assignments (a, b, c) are

{(0, 0, 1), (1, 0, 1), (1, 1, 0), (1, 1, 1)} .

The output for SAT with this formula as input is “yes” since there is a satisfying truth assignment.
The output for #SAT is “4”, since there are four satisfying truth assignments. The output for #SAT

does not include the satisfying truth assignments themselves, only the number of them.
The program for the rest of this section is to formally define a problem EulerChar in #P that

represents the Euler characteristic problem, and then to prove that EulerChar is #P-complete.

2.2. Euler Characteristic is in #P. The most straigtforward way to define EulerChar would
be to have the input be the facets and vertices of a simplicial complex ∆ and have the output be
simply χ̃ (∆). It is immediate that this could never be in #P because χ̃ (∆) can be negative while
#P is a class of counting problems so that their output must be a natural number.

To arrive at a satisfactory definition of EulerChar, the first step is to observe that

(1) χ̃ (∆) =
∑

σ∈∆

(−1)dim(σ) = #(odd faces)−#(even faces) .

Read # (odd faces) as “the number of odd faces of ∆”, where a set is odd if it has an odd number
of elements which is to say that its dimension is even. It is not hard to argue that counting the
number of even faces is a problem in #P, and that counting the number of odd faces is a problem
in #P as well. Unfortunately, we know of no theorem stating that a difference of two functions in
#P is again in #P. So we must find an alternative way to express the Euler characteristic.

COMPLEXITY AND ALGORITHMS FOR EULER CHARACTERISTIC OF SIMPLICIAL COMPLEXES 3

Let ∆ have n vertices. Then

(even faces) + # (even non-faces) = # (even sets) = 2n−1,

which together with Equation (1) implies that

χ̃ (∆) + 2n−1 = #(odd faces) + # (even non-faces) .

Consider the decision problem “does ∆ have an odd face or an even non-face?”. This problem
is in NP where a certificate of a “yes”-answer is any concrete odd face or even non-face. Define
EulerChar to be the counting version of this. The input is then the vertices and facets of ∆ and
the output is the number of odd faces and even non-faces, that is the output is χ̃ (∆) + 2n−1. We
can subtract 2n−1 in polynomial time, which justifies that EulerChar represents the problem of
computing the Euler characteristic of a simplicial complex.

We conclude that computing Euler characteristic is a problem in #P when expressed formally in
the form of the EulerChar problem.

2.3. Euler Characteristic is #P-complete. The main result in this section is Theorem 1 which
states that EulerChar is #P-complete. This is an example of the fact that even trivial problems
can have a counting version that is #P-complete. To see that the problem “does ∆ have an odd
face or an even non-face” is especially trivial, observe that only ∆ = ∅ fails to have the even face ∅.

Theorem 1. EulerChar is #P-complete. That is, the problem of computing the Euler characte-
ristic of a simplicial complex given by its vertices and facets is #P-complete.

Proof. We proved in Section 2.2 that EulerChar is in #P. We prove the statement of the theorem by
showing that the #P-complete problem #SAT reduces to EulerChar. We introduce an intermediate
problem IndepSum and prove that #SAT reduces to IndepSum and then that IndepSum reduces to
EulerChar. Given a SAT formula S, the combination of these two reductions yields a simplicial
complex ∆ such that χ̃ (∆) is the number of truth assignments that satisfy S.

We need to introduce some terminology. Let the parity sum of a set of sets S be P (S)
def

=
∑

s∈S(−1)|s|. For example the parity sum of a simplicial complex ∆ is P (∆) = −χ̃ (∆). Let G be
a simple graph with vertex set V . Then a set of vertices S ⊆ V is dependent if it contains both
endpoints of some edge of G. Otherwise S is independent.

We can now define the problem IndepSum. The input of IndepSum is the vertices and edges of a
graph G, and the output is the parity sum of the set of independent sets of G.

IndepSum reduces to EulerChar: Let G be a simple graph with vertex set V and define a
simplicial complex ∆ such that the facets of ∆ are the complements of the edges of G. Then a set
of vertices is a face of ∆ if and only if the complement contains an edge, that is if and only if the
complement is a dependent set of G.

If σ ⊆ V then let σ
def

= V \ σ be its complement. Let D be the set of dependent sets of G or
equivalently D = {σ |σ ∈ ∆}. Since (−1)|σ| = (−1)n(−1)|σ| and −χ̃ (∆) is the parity sum of the
faces of ∆, we get that

P (D) = (−1)nP (∆) = −(−1)nχ̃ (∆) .

Let I be the set of independent sets. Every set is either dependent or independent, so assuming
that V 6= ∅ we get that (P (V) is the set of all subsets of V)

P (I) + P (D) = P (I ∪D) = P (P (V)) = 0.

We conclude that P (I) = −P (D) = (−1)nχ̃ (∆) so that IndepSum reduces to EulerChar.

4 BJARKE HAMMERSHOLT ROUNE AND EDUARDO SÁENZ-DE-CABEZÓN

#SAT reduces to IndepSum: Let S be a SAT formula. We construct a graph G such that the
number of truth assignments that satisfy S equals (−1)n times the parity sum of the independent
sets of G.

Let v1, . . . , vn be the variables that appear in the formula S and let c1, . . . , ck be the clauses
that appear in S. For each variable vi we introduce a 3-clique with vertices Ti, Fi and Di. Here Ti

represents vi having the value true and Fi represents false. For each clause cj we introduce a vertex
Cj . If the literal vi appears in clause cj with no negation, then we add an edge between Ti and Cj .
If the literal ¬vi appears in clause cj then we add an edge between Fi and Cj . We claim that the
number of truth assignments that satisfy S equals (−1)n times the parity sum of the independent
sets of this graph G.

For concreteness, consider the SAT formula

(v1 ∨ ¬v2) ∧ (v1 ∨ v3) ∧ (¬v2 ∨ v3).

The graph that we construct based on this formula is shown in Figure 1.
Let A be the set of vertices named Di or Cj and let B be the set of vertices named Ti or Fj . Let

I be the set of independent sets of G and let IB be the set of independent sets that are subsets of

B. Define the function p : I → IB by p(d)
def

= d \A.
We are going to prove that i) if p−1(d) = {d} then |d| = n and ii) that the set of such d is in

bijection with the set of truth assignments that satisfy S. We are also going to prove iii) that if
p−1(d) 6= {d} then the parity sum P (p−1(d)) is zero. These three statements imply that

(satisfying truth assignments) = (−1)n
∑

d∈IB

P (p−1(d)) = (−1)nP (I),

where we use that
{

p−1(d)
}

d∈IB
is a partition of I. It only remains to prove i), ii) and iii).

i) If p−1(d) = {d} then |d| = n: Suppose that d ∈ IB such that p−1(d) = {d}. Pick some
variable vi. Then d ∪ {Di} is dependent since otherwise it would be an element of p−1(d). As Di

is only adjacent to Ti and Fi, it must be the case that d contains one of Ti and Fi. It cannot
contain both as there is an edge between them. If d contains Ti then we assign the value true to
vi and otherwise d contains Fi and we assign the value false to vi. In this way d encodes a truth
assignment to the variables of the formula S.

ii)
{

d ∈ Ib
∣

∣p−1(d) = {d}
}

is in bijection with the satisfying truth assignments of S:
Pick some clause cj . Then d ∪ {Cj} is dependent so d must contain some Ti or Fi that is adjacent
to Cj and this implies that the truth assignment that d represents satisfies the clause cj . This

D1

T1 F1

D2

T2 F2

D3

T3 F3

C1: v1 ∨ ¬v2 C2: v1 ∨ v3 C3:¬v2 ∨ v3

Figure 1. Illustration for the proof of Theorem 1.

COMPLEXITY AND ALGORITHMS FOR EULER CHARACTERISTIC OF SIMPLICIAL COMPLEXES 5

establishes a bijection between the set of d ∈ IB such that p−1(d) = {d} and the set of truth
assignments that satisfy S.

iii) if p−1(d) 6= {d} then P (p−1(d)) = 0: Let d ∈ Ib such that p−1(d) 6= {d}. Then we can
pick some vertex a ∈ A such that d ∪ {a} ∈ p−1(d). Then d does not contain any vertex that is
adjacent to a, and there are no edges between the elements of A, so if we let

E
def

=
{

h ∈ p−1(d) |a /∈ h
}

, F
def

=
{

h ∈ p−1(d) |a ∈ h
}

then h 7→ h ∪ {a} is a bijection from E to F so that P (F) = −P (E). As {E,F} is a partition of
p−1(d) we then get that P (p−1(d)) = P (E) + P (F) = 0. �

The Euler characteristic is the alternating sum of the entries of the f -vector, so Euler characte-
ristic reduces to f -vector. So we get the following result of Kaibel and Pfetsch [11] as a corollary.

Corollary 2. The problem of computing the f -vector of a simplicial complex given by its vertices
and facets is #P-hard.

2.4. Decision Problems. In this section we investigate the complexity of decision problems as-
sociated to Euler characteristic. Kaibel and Pfetsch pose the open problem of whether deciding
χ̃ (∆) = 0 lies in NP [11]. Theorem 3 answers this question in the negative unless #P is no harder
than NP. It is a central conjecture of computational complexity theory that #P is harder than NP.

Theorem 3. Let E0 be the problem of deciding if χ̃ (∆) = 0 where ∆ is a simplicial complex given
by its facets and vertices. Then E0 is co-NP-hard. Also, E0 does not lie in NP unless #P is no harder
than NP.

Proof. Let E< be as in Lemma 5 and assume that E0 is in NP. Then E< is in NP ∩ co-NP by
Lemma 5. This allows us to compute Euler characteristic in NP∩ co-NP using binary search. Euler
characteristic is #P-complete by Theorem 1, so then #P is no harder than NP ∩ co-NP.

E0 is co-NP-hard: Let S be a SAT formula. The proof of Theorem 1 constructs a simplicial
complex ∆ such that χ̃ (∆) is the number of satisfying truth assignments to S. So the NP-complete
problem SAT reduces to the decision problem χ̃ (∆) 6= 0. So the complement of E0 is NP-hard, which
implies that E0 is co-NP-hard. �

This leaves an open problem of whether E0 lies in co-NP, since Theorem 3 does not rule that
out. If E0 does lie in co-NP, it would then be proven that NP 6= co-NP unless #P is no harder than
NP since E0 would then lie in co-NP and not in NP. It is an open problem whether NP 6= co-NP.

Theorem 4. Let E>0 be the problem of deciding if χ̃ (∆) > 0 where ∆ is a simplicial complex
given by its facets and vertices. Then E>0 is #P-hard.

Proof. Let E> and E< be as in Lemma 5. The argument used to prove the equivalence of E0 and E=
in Lemma 5 also works to show that E>0 and E> are equivalent. Then in particular both E> and
E< reduce to E>0, so Euler characteristic reduces to E>0 using binary search. Euler characteristic
is #P-complete by Theorem 1 so then E>0 is #P-hard. �

Lemma 5. Consider the following decision problems, where ∆ is a simplicial complex given by its
facets and vertices and k is an integer,

E0 : χ̃ (∆) = 0, E< : χ̃ (∆) < k,

E= : χ̃ (∆) = k, E> : χ̃ (∆) > k.

If any one of these problems are in NP then they are all in NP ∩ co-NP. There are polynomial time
reductions in both directions between E0 and E= and between E< and E>.

6 BJARKE HAMMERSHOLT ROUNE AND EDUARDO SÁENZ-DE-CABEZÓN

Proof. E0 and E= are equivalent: Assume without loss of generality that ∆ 6= ∅. Use Lemma 6
to construct a polynomial size simplicial complex Γ such that χ̃ (Γ) = k− 1 and ∆∩Γ = {∅}. Then

Ψ
def

= ∆ ∪ Γ has χ̃ (Ψ) = χ̃ (∆) + χ̃ (Γ) + 1 = χ̃ (∆) + k so χ̃ (∆) = 0 if and only if χ̃ (Ψ) = k. This
gives a polynomial time reduction in both directions between E0 and E= and also shows that E0 is
in NP or co-NP if and only if E= is in NP or co-NP respectively.

E< and E> are equivalent: Let Γ be a simplicial complex such that χ̃ (Γ) = −1 and such that

the set of vertices of Γ is disjoint from the set of vertices of ∆. Let Ψ
def

= ∆ ⊕ Γ as in Theorem 15
whereby χ̃ (Ψ) = −χ̃ (∆). Then χ̃ (∆) < k if and only if χ̃ (Ψ) > −k. This gives a polynomial time
reduction in both directions between E< and E> and also shows that E< is in NP or co-NP if and
only if E> is in NP or co-NP respectively.

E= in NP ⇔ E< in NP: If E= is in NP then we can certify the exact value of χ̃ (∆), which will
also serve as a certificate for χ̃ (∆) > k. If E< is in NP, then so is E> in which case we can certify
that k − 1 < χ̃ (∆) < k + 1 which serves as a certificate of χ̃ (∆) = k.

If one problem is in NP, then they are all in co-NP: Assume that one of E0, E=, E< and
E> is in NP. Then we have shown that they are all in NP. So we know that E= is in NP, which
allows us to certify the exact value of χ̃ (∆). This also serves as a certificate for when χ̃ (∆) < k is
not true and when χ̃ (∆) = k is not true, so E< and E= are in co-NP. We have already proven that
this implies that E> and E0 are also in co-NP. �

Lemma 6 constructs a simplicial complex with a given Euler characteristic k such that the bit
size of the complex is bounded by a fixed polynomial in the bit size of the Euler characteristic which
is ⌈log k⌉. It is necessary to bound the bit size of the simplicial complex in this way since otherwise
the proof of Lemma 5 would not go through.

Lemma 6. Let k be an integer. Then there is a simplicial complex ∆ such that χ̃ (∆) = k and ∆
has no more facets and no more vertices than 2l2 + 3l+ 7 where l = ⌈log2(|k|)⌉ or l = 0 if k = 0.

Proof. The proof is based on inclusion-exclusion along with Theorem 15.

The case k = 0, 1: Let ∆0
def

= ∅ and ∆1
def

= 〈{t1} , {t2}〉.

The case k = 2n: Let n be a positive integer and define Γi
def

= 〈{xni1} , {xni2} , {xni3}〉. Let

Ψn
def

= Γ1 ⊕ · · · ⊕ Γn. We have χ̃ (Γi) = 2 so χ̃ (Ψn) = 2n. Also Ψn has 3n vertices and 3n facets.

The case k > 0: Write k = (bl · · · b0)2 in binary such that k =
∑l

n=0 bn2
n, bn ∈ {0, 1} and

bl 6= 0. This implies that l = ⌈log2(k)⌉.
Let W be a finite set of non-empty simplicial complexes with disjoint vertex sets. Then the

only face in more than one element of W is ∅, so χ̃ (∪W) =
∑

A∈W χ̃ (A) + |W | − 1. So for

W ′
n

def

= {Ψn |bn = 1} we have χ̃ (∪W ′
n) = k + |W ′

n| − 1. Let p
def

= |W ′
n|+ 1 and

Φ
def

= 〈{y1} . . . , {yp}〉 ⊕ 〈{a, b} , {a, c} , {b, c}〉 .

Then χ̃ (Φ) = (p− 1) ∗ (−1) = − |W ′
n| by Theorem 15. Observe that Φ has no more facets and no

more vertices than |W ′
n|+ 4 ≤ l + 4. Let Wn

def

= W ′
n ∪ {Φ} and ∆k

def

= ∪Wn. Then

χ̃ (∆k) = χ̃ (∪Wn) = (k + χ̃ (Φ)) + (|W ′
n|+ 1)− 1 = k.

Observe that ∆k has no more vertices and no more facets than

(l + 4) +

l
∑

n=0

3n = l + 4 +
3

2
(l(l + 1)).

COMPLEXITY AND ALGORITHMS FOR EULER CHARACTERISTIC OF SIMPLICIAL COMPLEXES 7

The case k < 0: Let Ω
def

= 〈{z1, z2} , {z1, z3} , {z2, z3}〉 and observe that χ̃ (Ω) = −1. Let

∆k
def

= Ω ⊕ ∆−k so that χ̃ (∆k) = −χ̃ (∆−k) = k. Observe that ∆k has no more vertices and no
more facets than

l + 4 +
3

2
(l(l+ 1)) + 3 =

3

2
l2 +

5

2
l + 7 ≤ 2l2 + 3l+ 7. �

3. Algebraic Algorithms for Euler Characterisic

In this section we describe two new algorithms for computing Euler characteristic of a simplicial
complex using algebraic techniques. In Section 4 we present these same two algorithms in the
language of simplicial complexes. This section is independent from Section 4 and it only uses
algebra.

More precisely the two algorithms we present in this section compute the coefficient of x
def

=
x1 · · ·xn in the multigraded Hilbert-Poincaré series numerator H (I) of a square free monomial
ideal I. In Section 5 we show that this is equivalent to computing the Euler characteristic of a
simplicial complex. For that reason we define

χ̃ (I)
def

= coefficient of x in H (I).

The summary of what Section 5 shows in detail is that given a simplicial complex ∆ we can define
a monomial ideal I such that χ̃ (I) = χ̃ (∆). Computing I from ∆ takes little time. See Section 5
for details on the relationship between the algebraic algorithms in this section and the simplicial
algorithms in Section 4.

3.1. Background and Notation. We work in a polynomial ring κ[x1, . . . , xn] over a field κ and
with variables x1, . . . , xn. A monomial ideal is a polynomial ideal generated by monomials. Let
I be a monomial ideal. Each monomial ideal has a unique minimal set of monomial generators
min (I). The exponent vector of a monomial m is a vector v such that m =

∏n
i=1 x

vi
i . A monomial

has full support if it is divisible by x. A monomial ideal has full support if lcm(min (I)) has full

support. The colon of two monomials a and b is a : b
def

= lcm(a,b)
b . The colon of a monomial ideal I

by a monomial a is

I : a = {m |ma ∈ I } = 〈m : a |m ∈ I and m is a monomial〉 .

The multigraded Hilbert-Poincaré series hilb (I) is the possibly infinite sum of standard mono-

mials of I, that is hilb (I)
def

=
∑

m/∈I m where the sum is taken over monic monomials m. The
multigraded Hilbert-Poincaré series can be written as a rational function

hilb (I) =
H (I)

(1− x1) · · · (1− xn)

where H (I) is a polynomial called the multigraded Hilbert-Poincaré series numerator.

3.2. Divide... Both algorithms we present are divide-and-conquer algorithms. They take a mono-
mial ideal I and split it into two simpler monomial ideals J and K such that χ̃ (I) = χ̃ (J)+ χ̃ (K).
This process proceeds recursively until all the remaining ideals are simple enough that they can be
processed directly.

Let p be a square free monomial and let I be a square free monomial ideal. The divide steps for
the two algorithms are derived from the equation

(2) hilb (I) = (hilb (I : p)) p+ hilb (I + 〈p〉) .

8 BJARKE HAMMERSHOLT ROUNE AND EDUARDO SÁENZ-DE-CABEZÓN

By giving these three Hilbert-Poincaré series the same denominator (1 − x1) · · · (1 − xn), we get a
similar equation for the Hilbert-Poincaré series numerators

H (I) = (H (I : p)) p+H(I + 〈p〉) .

By considering the coefficient of x on both sides, we then get that

χ̃ (I) = χ̃ ((I : p)p) + χ̃ (I + 〈p〉) .

It would simplify this expression if we could write χ̃ (I : p) instead of χ̃ ((I : p)p). This does not
work directly since in general χ̃ (I : p) will be zero since I : p will not have full support. We are

working within a polynomial ring R
def

= κ[x1, . . . , xn]. We will argue that if we change the ring that
I : p is embedded in, then it becomes true that χ̃ (I : p) = χ̃ ((I : p)p).

Since the variables that divide p do not appear in min (I : p) we can embed I ′
def

= I : p into a

ring R′ def

= κ[P] where P
def

= {xi |xi does not divide p}. Let x′ def

= ΠP = x

p be the product of the

variables in R′. Then χ̃ (I ′) = χ̃ ((I : p)p) so we consider I : p to be embedded in R′, which gives
us the final equation behind splitting

(3) χ̃ (I) = χ̃ (I : p) + χ̃ (I + 〈p〉) .

There are two different algorithms for Hilbert-Poincaré series that are based on Equation (2). We
present two analogous algorithms for Euler characteristic that are based on Equation (3).

The Hilbert-Poincaré series algorithm due to Bigatti, Conti, Robbiano and Traverso [5, 4] uses
Equation (2) directly as we have written it. It is a divide-and-conquer algorithm that splits a
monomial ideal I into the two simpler monomial ideals I : p and I+ 〈p〉. We call this algorithm the
BCRT algorithm for Hilbert-Poincaré series. In analogy with that algorithm, we propose a BCRT
algorithm for Euler characteristic that uses Equation (3) directly as written – it splits I into the two
simpler ideals I : p and I + 〈p〉. We call it the algebraic BCRT algorithm for Euler characteristic.

We call the p in Equation (3) the pivot. Section 3.5 explores strategies for selecting pivots.
There is also a Hilbert-Poincaré series algorithm due to Dave Bayer and Michael Stillman [3]

that we will call the DBMS algorithm for Hilbert-Poincaré series. It is based on writing Equation
(2) as

hilb (I + 〈p〉) = hilb (I)− hilb (I : p) .

Given an ideal J , the idea is to choose p ∈ min (J) and let I
def

= 〈min (J) \ {p}〉 such that

hilb (J) = hilb (I + 〈p〉) = hilb (I)− hilb (I : p) .

In this way J splits into the two simpler ideals I and I : p. In the same way, we can rewrite
Equation (3) as

(4) χ̃ (J) = χ̃ (I + 〈p〉) = χ̃ (I)− χ̃ (I : p) .

We propose a DBMS algorithm for Euler characteristic that uses this equation to split J into I and
I : p. We call it the algebraic DBMS algorithm for Euler characteristic. Note that the pivots in the
DBMS algorithm are minimal generators of the ideal, which would not make sense for the BCRT
algorithm.

3.3. ... and Conquer. A square free monomial ideal I is a base case for both algorithms when
Theorem 7 applies. Note that the improvements in Section 3.6 enables further base cases.

Theorem 7. Let I be a square free monomial ideal. Then

(1) if I does not have full support then χ̃ (I) = 0,

COMPLEXITY AND ALGORITHMS FOR EULER CHARACTERISTIC OF SIMPLICIAL COMPLEXES 9

(2) if I has full support and the minimal generators min (I) of I are pairwise prime monomials
then χ̃ (I) = (−1)|min(I)|,

(3) if I has full support and |min (I)| = 2 then χ̃ (I) = 1.

Proof. (1): All the monomials with non-zero coefficient in H (I) can be written as lcm(M) for some
M ⊆ min (I). If I does not have full support then neither does any monomial of the form lcm(M).
Then x must have a zero coefficient since it has full support.

(2): If the elements of min (I) are relatively prime then H (I) =
∏

m∈min(I)(1−m). As the ideal

has full support we then get that x = Πm∈min(I)m so the coefficient of x is (−1)|min(I)|.

(3): If {a, b}
def

= min (I) and g
def

= gcd(a, b) then I = g 〈c, d〉 where c
def

= a : g and d
def

= b : g. As c
and d are relatively prime by construction, we get that

H (I) = gH(〈c, d〉) = g(1− c)(1 − d) = cdg − cg − dg + g.

So the coefficient of x = cdg in H (I) is 1. �

These base cases improve on the ones for the Hilbert-Poincaré series algorithms in that they
apply more often and can be processed more quickly. For example the Hilbert-Poincaré series
algorithms as well have a base case when the elements of min (I) are relatively prime, but it takes
exponential time to process that base case since

∏

m∈min(I)(1 −m) can have 2|min(I)| terms. Here

all that is required is to determine if |min (I)| is even or odd. The base case when I does not have
full support does not exist for the Hilbert-Poincaré series algorithms.

3.4. Termination and Complexity. It is clear that the DBMS algorithm terminates since |min (I)|
decreases strictly at each step. For the BCRT algorithm, termination requires that we choose the
pivots p such that 1 6= p /∈ I since otherwise we get an infinite number of steps from I = I : p or
I = I + 〈p〉.

If we cannot choose a p such that 1 6= p /∈ I then I = 〈1〉 which is a base case. If 1 6= p /∈ I and I
has full support, then I (I+ 〈p〉 and I (I : p. So if the BCRT algorithm does not terminate then
there would be an infinite sequence of strictly increasing ideals in contradiction to the fact that the
ambient polynomial ring is Noetherian. So both algorithms terminate.

We have seen that the DBMS algorithm gets rid of at least one minimal generator at each step.
The BCRT algorithm gets rid of at least one variable at each step if the pivot is chosen to be a
single variable xi. It is immediate that xi is not a variable of I : xi. To see that xi can also be
removed from I+ 〈xi〉, observe that the only minimal generator that is divisible by xi is xi itself, so
xi is (I + 〈xi〉)-independent from the other variables and so can be removed using the independent
variables technique from Section 3.6.

Since the Euler characteristic problem is #P-complete we expect both algorithms to run in at least
single exponential time. Using the transpose technique from Section 3.6, we can interchange the

number of variables n with the number of minimal generators |min (I)|. So if l
def

= min(n, |min (I)|)
then both the BCRT and DBMS algorithms have O(q2l) asymptotic worst case time complexity
where q is a polynomial. So both algorithms run in single exponential time. We expect that a more
careful analysis could reduce the base of the exponential.

3.5. Pivot Selection. We have proven that the BCRT and DBMS algorithms terminate in a finite
amount of time. To be useful in practice, the amount of time until termination should be small
rather than just finite. The strategy used for selecting pivots when splitting an ideal has a significant
impact on performance. We describe several different pivot selection strategies here and compare
them empirically in Section 6.

10 BJARKE HAMMERSHOLT ROUNE AND EDUARDO SÁENZ-DE-CABEZÓN

A popular variable is a variable that divides a maximum number of minimal generators of the
ideal. In other words, a popular variable xi maximizes |min (I) ∩ 〈xi〉|. A rare variable is a variable
xi that minimizes |min (I) ∩ 〈xi〉| with the constraint that xi /∈ min (I).

If there are several candidate pivots that fit a given pivot selection strategy, then the pivot used
is chosen in an arbitrary deterministic way among the tied candidates.

BCRT Pivot Selection Strategies. Recall that BCRT pivots p satisfy 1 6= p /∈ I.

popvar: The pivot is a popular variable.
rarevar: The pivot is a rare variable.
random: The pivot is a random variable e such that e /∈ min (I).
popgcd: Let xi be a popular variable. The pivot is the gcd of three minimal generators

chosen uniformly at random among those minimal generators that xi divides.

The strategies popvar and popgcd have been found to work well for the BCRT algorithm for
Hilbert-Poincaré series, so we also try them here. rarevar and random have been included to have
something to compare to.

DBMS Pivot Selection Strategies. Recall that DBMS pivots are elements of min (I).

rarevar: The pivot is a minimal generator divisible by a rare variable.
popvar: The pivot is a minimal generator divisible by a popular variable.
maxsupp: The pivot is a minimal generator with maximum support.
minsupp: The pivot is a minimal generator with minimum support.
random: The pivot is a minimal generator chosen uniformly at random.
rarest: The pivot is a generator that is divisible by a maximum number of rare variables.

Break ties by picking the generator that is divisible by the maximum number of second-
most-rare variables and so on.

raremax: The pivot is chosen according to rarevar where ties are broken according to
maxsupp.

3.6. Improvements. We present several improvements to the DBMS and BCRT algorithms.

Independent Variables. We say that two subsets A,B ⊆ {x1, . . . , xn} are I-independent if min (I)
is the disjoint union of min (I ∩ κ[A]) and min (I ∩ κ[B]). This is another way of saying that the
minimal generators of I can be partitioned into two subsets such that every generator in one set is
relatively prime to every generator from the other set. If A and B are I-independent then

hilb (I) = hilb (I ∩ κ[A]) · hilb (I ∩ κ[B]) .

This is a standard technique for computing Hilbert-Poincaré series [3, 5, 15], and it applies to
computing Euler characteristic as well since

χ̃ (I) = χ̃ (I ∩ κ[A]) · χ̃ (I ∩ κ[B]) .

The existence of an I-independent pair (A,B) can be determined in nearly linear time [15], and
such a pair can cut down on computation time dramatically. However, independence rarely occurs
for large random ideals and detecting it does take some time, so this technique is not worth it unless
there is some reason to suspect that it will apply to a given ideal.

COMPLEXITY AND ALGORITHMS FOR EULER CHARACTERISTIC OF SIMPLICIAL COMPLEXES 11

Eliminate Unique Variables. Suppose xi divides only one minimal generator p ∈ min (J). Use
Equation (4) with p as the pivot to get that

χ̃ (J) = χ̃ (I + 〈p〉) = χ̃ (I)− χ̃ (I : p) = −χ̃ (I : p) ,

since χ̃ (I) = 0 as no generator of I is divisible by xi so I does not have full support.

Transpose Ideals. Let M be a matrix whose entries are 0 or 1. Each row of M is then a 0-1 vector
that we can interpret as the exponent vector of a square free monomial. Define 〈M〉 to be the
monomial ideal generated by the monomials whose exponent vectors are the rows of M . On the
other hand, given a square free monomial ideal I, we can take the exponent vectors of the minimal
generators of I and put them in a matrix. Define MI to be that matrix. We label the rows of
MI with the elements of min (I) and we label the columns of MI with the variables in the ambient
polynomial ring of I. Let the transpose ideal IT of I be the ideal generated by the transpose of the

matrix of I, so trans (I)
def

=
〈

MI
T
〉

.
Theorem 8 states that χ̃ (I) = χ̃ (trans (I)), so we can transpose the ideal without changing the

Euler characteristic. The BCRT algorithm is more sensitive to the number of variables than it is
to the number of generators, so it can be beneficial to transpose the ideal if it has fewer generators
than variables. The DBMS algorithm is opposite of this in that it is more sensitive to the number
of generators than the number of variables.

Another situation where transposing can be beneficial is in the case where a column of MI

dominates another column. If we take the transpose, those two columns will become generators
and the dominating generator will not be minimal. When we then take the transpose again, we
will have fewer variables than we started with. This process can repeat itself several times as the
removal of dominating columns from the matrix can cause rows to be dominating, and removing
those dominating rows can then cause yet more columns to become dominating.

Theorem 8. If I is a square free monomial ideal then χ̃ (I) = χ̃ (trans (I)).

Proof. The proof is by induction on the number of variables n. Let I be a square free monomial
ideal. Choose a variable xi and let

J
def

= 〈min (I) \ 〈xi〉〉 = 〈m ∈ min (I) |xi does not divide m 〉 .

The plan of the proof is to show that

(5) χ̃ (I) = χ̃ (I : xi)− χ̃ (J : xi)

and that

(6) χ̃ (trans (I)) = χ̃ (trans (I : xi))− χ̃ (trans (J : xi)) .

Recall that we embed I : xi and J : xi in a subring that does not have the variable xi, so the result
follows from these two equations by applying the induction assumption to I : xi and J : xi. It only
remains to prove Equation (5) and Equation (6).

Equation (5): Equation 3 with xi as the pivot implies that

χ̃ (I) = χ̃ (I : xi) + χ̃ (I + 〈xi〉) .

Now J does not have full support and I + 〈xi〉 = J + 〈xi〉, so we get by Equation (4) that

χ̃ (I + 〈xi〉) = χ̃ (J + 〈xi〉) = χ̃ (J)− χ̃ (J : xi) = −χ̃ (J : xi) .

Equation (6): This part of the proof is easier to follow by the reader drawing pictures of the
matrices involved. Let v be column xi of MI . Then the entries of v are indexed by min (I) and if

12 BJARKE HAMMERSHOLT ROUNE AND EDUARDO SÁENZ-DE-CABEZÓN

m ∈ min (I) then vm = 1 if and only if xi|m. Let A be the result of removing column xi from MI .

Then
〈

MI
T
〉

=
〈

AT
〉

+ 〈xv〉 so Equation (4) implies that

χ̃ (trans (I)) = χ̃
(〈

MI
T
〉)

= χ̃
(〈

AT
〉

+ 〈xv〉
)

= χ̃
(〈

AT
〉)

− χ̃
(〈

AT
〉

: xv
)

.

The colon I : xi corresponds to removing column xi of MI so 〈A〉 = I : xi. The colon can also
reduce the number of minimal generators, so MI:xi

can have fewer rows than A does. However,
those extra rows are exponent vectors of non-minimal generators so they do not impact 〈A〉. Then
Lemma 9 implies that

χ̃ (trans (I : xi)) = χ̃ (trans (〈A〉)) = χ̃
(〈

AT
〉)

.

It now suffices to prove that trans (J : xi) =
〈

AT
〉

: xv. Let B be the result of removing column
xi of MI and also those rows m ∈ min (I) such that vm = 1. We see that MJ is MI with the same
rows removed as for B. Doing a colon by xi removes column xi so J : xi = 〈B〉.

It remains to prove that
〈

BT
〉

=
〈

AT
〉

: xv. Observe that
〈

AT
〉

: xv removes those columns

m ∈ min (I) of AT where vm = 1 which are the same columns that are removed from BT . Both
AT and BT have had row xi removed so

〈

AT
〉

: xv =
〈

BT
〉

. We have proven that

trans (J : xi) = trans (〈B〉) =
〈

BT
〉

=
〈

AT
〉

: xv

where trans (〈B〉) =
〈

BT
〉

depends on the observation that no row of B dominates any other. �

Lemma 9. If 〈A〉 = 〈B〉 then χ̃
(〈

AT
〉)

= χ̃
(〈

BT
〉)

for matrices A and B.

Proof. Assume without loss of generality that no row of B dominates any other. Then A has all
the rows that B does and also some additional non-minimal rows. Assume by induction that there
is only one additional row r. Let d be some other row of A that is dominated by r. Then d and r
contribute variables vd and vr to the ambient ring of

〈

AT
〉

. We get by Equation 3 that

χ̃
(〈

AT
〉)

= χ̃
(〈

AT
〉

: vr
)

+ χ̃
(〈

AT
〉

+ 〈vr〉
)

.

All generators of
〈

AT
〉

that are divisible by vd are also divisible by vr, so
〈

AT
〉

+ 〈vr〉 does not

have full support at vr so χ̃
(〈

AT
〉

+ 〈vr〉
)

= 0. Therefore we have that

χ̃
(〈

AT
〉)

= χ̃
(〈

AT
〉

: vr
)

= χ̃
(〈

BT
〉)

,

where we are using that the colon
〈

AT
〉

: vr corresponds to removing row r from A. �

Base Case for |min (I)| = 3. Assume that all unique variables have been eliminated, that I has full
support and that |min (I)| = 3. Then every variable xi divides 2 or 3 elements of min (I). We can
ignore the variables that divide all 3 minimal generators as they make no difference to the Euler
characteristic. For every minimal generator there must be at least one variable that does not divide
it. So after removing repeated variables by taking the transpose twice, we see that I must have the
same Euler characteristic as 〈xy, xz, yz〉. So χ̃ (I) = 2.

Partial Base Case for |min (I)| = 4. Suppose that |min (I)| = 4, that every variable divides exactly
two elements of min (I) and that the number of variables is 4. Then χ̃ (I) = −1. There should be
more rules like this, though identifying them by hand is laborious and error prone.

Make a Table. It would be beneficial for each small k to perform a computer search to make a
table of all ideals I with |min (I)| = k up to reordering of the variables and the various techniques
for simplifying an ideal that we have presented. Then the Euler characteristic of ideals with few
generators could be computed through a table look-up.

COMPLEXITY AND ALGORITHMS FOR EULER CHARACTERISTIC OF SIMPLICIAL COMPLEXES 13

Data Structures. The exponents of I are all 0 or 1, so we can pack 32 or 64 exponents into a single
32 or 64 bit machine word, and in that representation many operations become much faster. We
used this standard technique in our implementation and while the general concept is simple we
warn that the implementation details are tricky.

For sparse or complement-of-sparse exponent vectors, it might pay off to only record the zero
entries and one entries respectively, though this is not something that we have pursued.

4. Simplicial Algorithms for Euler Characteristic

In this section we present two algorithms for Euler characteristic that work directly with simplicial
complexes. These two algorithms are equivalent to the monomial ideal based algorithms from
Section 3. We introduce the simplicial versions from the ground up, so this section is independent
from Section 3 and does not use any algebra. See Section 5 for more on the connection between
the algebraic and simplicial versions of the two algorithms.

4.1. Background and Notation. In the introduction we wrote that a simplicial complex is a
finite set of sets that is closed under subset. We are going to set up an algebra-simplicial dictionary,
and for that to work we associate a set of vertices to a simplicial complex. This way a simplicial
complex can have vertices that are not an element of any of its faces. Section 5.1 shows why this
is necessary. Definition 10 adds this vertex set structure to simplicial complexes.

Let P (V) be the set of all subsets of V for any set V .

Definition 10. Given a finite set V , a simplicial complex ∆ is a subset of P (V) that is closed
under taking subsets. In other words, ∆ is a set of subsets of V such that if σ ∈ ∆ and τ ⊆ σ then

τ ∈ ∆. The elements of ∆ are called faces and the elements of V∆
def

= V are called vertices of ∆.

The facets of ∆ are the maximal faces of ∆ with respect to inclusion. The set of facets is
denoted by fac (∆). The closure 〈D〉 of a set of sets D ⊆ P (V) is the smallest simplicial complex

that contains F , namely 〈F 〉
def

= ∪d∈DP (d). A simplicial complex is uniquely given by its facets

since ∆ = 〈fac (∆)〉. The complement σ of a set σ ⊆ V∆ is σ
def

= V∆ \ σ. Two sets σ, τ ⊆ V∆ are
co-disjoint if their complements are disjoint, or equivalently if σ ∪ τ = V∆. If τ ⊆ V∆ then

∆⊖ τ
def

= {σ ∈ ∆ |σ ∩ τ = ∅} = {σ \ τ |σ ∈ ∆} .

The vertex set of ∆⊖ τ is V∆⊖τ
def

= V∆ \ τ .
We will use that Euler characteristic respects inclusion-exclusion in the sense that

χ̃ (∆ ∪∆′) = χ̃ (∆) + χ̃ (∆′)− χ̃ (∆ ∩∆′) .

4.2. Divide... Both algorithms we present are divide-and-conquer algorithms. They take a simpli-
cial complex ∆ and split it into two simpler complexes ∆′ and ∆′′ such that χ̃ (∆) = χ̃ (∆′)+χ̃ (∆′′).
This process proceeds recursively until all the remaining complexes are simple enough that they
can be processed directly. Splitting (the divide step) is based on Theorem 11.

Theorem 11. If σ is a non-empty set of vertices then

χ̃ (∆) = χ̃ (∆⊖ σ) + χ̃ (∆ ∪ P (σ)) .

Proof. First observe that

∆ ∩ P (σ) = {τ ∈ ∆ |τ ⊆ σ } = {τ ∈ ∆ |τ ∩ σ = ∅} = ∆⊖ σ.

14 BJARKE HAMMERSHOLT ROUNE AND EDUARDO SÁENZ-DE-CABEZÓN

Euler characteristic respects inclusion-exclusion so then

χ̃ (∆ ∪ P (σ)) = χ̃ (∆) + χ̃ (P (σ))− χ̃ (∆ ∩ P (σ))

= χ̃ (∆)− χ̃ (∆⊖ σ) ,

where χ̃ (P (σ)) = 0 as σ is non-empty. �

In analogy with the algebraic BCRT algorithm from Section 3, we can use the equation in
Theorem 11 as written to split a simplicial complex ∆ into the simpler complexes ∆ ⊖ σ and
∆∪P (σ). We will refer to this algorithm as the simplicial BCRT algorithm. It is not immediately
clear that ∆ ⊖ σ and ∆ ∪ P (σ) are simpler than ∆ is. For now, consider that ∆ ⊖ σ has fewer
vertices if σ (V∆ and that ∆ ∪ P (σ) has fewer non-faces if σ /∈ ∆.

We call the σ in Theorem 11 the pivot. Section 4.5 explores strategies for selecting pivots.
We can also write the equation in Theorem 11 as

χ̃ (∆ ∪ P (σ)) = χ̃ (∆)− χ̃ (∆⊖ σ) .

Let D be a simplicial complex and let σ ∈ fac (D). If ∆
def

= 〈fac (D) \ {σ}〉 then

(7) χ̃ (D) = χ̃ (∆ ∪ P (σ)) = χ̃ (∆)− χ̃ (∆⊖ σ) .

In analogy with the algebraic DBMS algorithm from Section 3, we can use this equation to split a
simplicial complex D into the simpler complexes ∆ and ∆ ⊖ σ. We will refer to this algorithm as
the simplicial DBMS algorithm. Note that the pivots in the simplicial DBMS algorithm are facets
of the complex, which would not make sense for the simplicial BCRT algorithm.

4.3. ... and Conquer. A simplicial complex ∆ is a base case for both algorithms when Theorem
12 applies. The improvements in Section 4.6 enable further base cases.

Theorem 12. Let ∆ 6= ∅ be a simplicial complex. Then

(1) if ∆ is a cone then χ̃ (∆) = 0,
(2) if ∆ is not a cone and the facets of ∆ are pairwise co-disjoint then χ̃ (∆) = (−1)|fac(I)|,
(3) if ∆ is not a cone and |fac (I)| = 2 then χ̃ (∆) = 1.

Proof. (1): This is well known and not hard to prove.
(2): By induction on |fac (∆)| using Lemma 13.
(3): The two facets are co-disjoint when ignoring unused vertices. �

Lemma 13. Let D be a simplicial complex and let σ ∈ fac (D) such that σ 6= VD is co-disjoint to

every other facet of D. Then χ̃ (D) = −χ̃ (∆⊖ σ) where ∆
def

= 〈fac (D) \ {σ}〉.

Proof. Let v /∈ σ and τ ∈ fac (∆). Then v ∈ τ so ∆ is a cone and χ̃ (∆) = 0. By Theorem 11

χ̃ (D) = χ̃ (∆ ∪ P (p)) = χ̃ (∆)− χ̃ (∆⊖ σ) = −χ̃ (∆⊖ σ) . �

4.4. Termination and Complexity. It is clear that the simplicial DBMS algorithm terminates
since |fac (∆)| decreases strictly at each step. For the simplicial BCRT algorithm, termination
requires that we choose the pivots σ such that σ (V∆ and σ /∈ ∆ since otherwise we get an infinite
number of steps from ∆ = ∆⊖ σ or ∆ = ∆ ∪ P (σ)

If we cannot choose a σ such that σ (V∆ and σ /∈ ∆ then ∆ = P (V∆) which is a base case. If
we always choose pivots σ such that σ (V∆ and σ /∈ ∆ then termination of the simplicial BCRT
algorithm follows from the fact that either the number of vertices |V∆| or the number of non-faces

COMPLEXITY AND ALGORITHMS FOR EULER CHARACTERISTIC OF SIMPLICIAL COMPLEXES 15

∣

∣∆
∣

∣ = 2|V∆| − |∆| decreases between any two steps. In fact some consideration shows that
∣

∣∆
∣

∣

decreases strictly at each step.
We have seen that the DBMS algorithm gets rid of at least one facet at each step. The BCRT

algorithm gets rid of at least one vertex at each step if the pivot is chosen to be of the form σ
def

= {e}.
It is immediate that e is not a vertex of ∆⊖ σ. To see that e can also be removed from ∆ ∪ P (σ),
observe that σ is the only facet that does not contain e, so e is (∆ ∪ P (σ))-independent from the
other vertices and so can be removed using the independent vertices technique from Section 4.6.

Since the Euler characteristic problem is #P-complete we expect both algorithms to run in at
least single exponential time. Taking nerves as described in Section 4.6, we can interchange the

number of vertices |V∆| with the number of facets |fac (∆)|. So if l
def

= min(|V∆| , |fac (∆)|) then both
the BCRT and DBMS algorithms have O(q2l) asymptotic worst case time complexity where q is
a polynomial. So both algorithms run in single exponential time. We expect that a more careful
analysis could reduce the base of the exponential.

4.5. Pivot Selection. We have proven that the BCRT and DBMS algorithms terminate in a finite
amount of time. To be useful in practice, the amount of time until termination should be small
rather than just finite. The strategy used for selecting pivots when splitting an ideal has a significant
impact on performance. We describe several different pivot selection strategies here and compare
them empirically in Section 6.

A rare vertex is a vertex that belongs to a minimum number of facets. A popular vertex is a

vertex e that is an element of a maximum number of facets with the constraint that {e} /∈ fac (∆).
If there are several candidate pivots that fit a given pivot selection strategy, then the pivot used

is chosen in an arbitrary deterministic way among the tied candidates.

BCRT Pivot Selection Strategies. Recall that BCRT pivots σ satisfy σ (V∆ and σ /∈ ∆.
The reason that some of these names seem opposite of their definition is that the names come

from the algebraic setting and the translation to simplicial complexes involves taking a complement.
For example a rare variable of an ideal translates to a popular vertex of the corresponding simplicial
complex.

popvar: The pivot is {e} for e a rare vertex.

rarevar: The pivot is {e} for e a popular vertex.

random: The pivot is {e} for e a random vertex such that {e} /∈ fac (∆).
popgcd: Let e be a rare vertex. The pivot is the union of three facets chosen uniformly at

random among those facets that do not contain e.

The simplicial BCRT algorithm presented here is based on the algebraic BCRT algorithm for
Hilbert-Poincaré series, and the strategies popvar and popgcd have been found to work well for
Hilbert-Poincaré series computation. So we also try them here. rarevar and random have been
included to have something to compare to.

DBMS Pivot Selection Strategies. Recall that DBMS pivots are elements of fac (∆).

rarevar: The pivot is a facet that does not contain some popular vertex.
popvar: The pivot is a facet that does not contain some rare vertex.
maxsupp: The pivot is a facet of minimum size.
minsupp: The pivot is a facet of maximum size.
random: The pivot is a facet chosen uniformly at random.

16 BJARKE HAMMERSHOLT ROUNE AND EDUARDO SÁENZ-DE-CABEZÓN

rarest: The pivot is a facet that lacks (does not contain) a maximum number of popular
vertices. Ties are broken by picking the facet that lacks the maximum number of second-
most-popular vertices and so on.

raremax: The pivot is chosen according to rarevar where ties are broken according to
maxsupp.

4.6. Improvements. We present several improvements to the DBMS and BCRT algorithms.

Independent Vertices. If ∆ and Γ are simplicial complexes with disjoint vertex sets V∆ and VΓ, then

∆⊕ Γ
def

= (∆× P (VΓ)) ∪ (P (V∆)× Γ).

So if ∆
def

= 〈{x} , {y}〉 and Γ
def

= 〈{a} , {b} , {c}〉 then

∆⊕ Γ = 〈{x, a, b, c} , {y, a, b, c} , {x, y, a} , {x, y, b} , {x, y, c}〉 .

Using Theorem 15 we can compute χ̃ (∆⊕ Γ) in terms of χ̃ (∆) and χ̃ (Γ). So if we are computing
χ̃ (Ψ) for a simplicial complex Ψ, then we could significantly simplify the task by finding simplicial
complexes ∆ and Γ such that Ψ = ∆⊕ Γ.

We say that two subsets A,B ⊆ VΨ are Ψ-independent if fac (Ψ) is the disjoint union of

FA
def

=
{

σ ∈ fac (Ψ)
∣

∣σ \A = A
}

and FB
def

=
{

σ ∈ fac (Ψ)
∣

∣σ \B = B
}

.

If Ψ = ∆⊕Γ then it is immediate that V∆ and VΓ are Ψ-independent. On the other hand, if A and
B are Ψ-independent, then Ψ = ∆⊕ Γ where

∆
def

= 〈FA〉 ⊖A and Γ
def

= 〈FB〉 ⊖B.

We have proven Theorem 14, which together with Theorem 15 generalizes Lemma 13.

Theorem 14. A simplicial complex Ψ can be written as Ψ = ∆ ⊕ Γ if and only if there is a
Ψ-independent pair (A,B).

Theorem 15. Let ∆ and Γ be simplicial complexes with disjoint non-empty vertex sets V∆ and
VΓ. Then

χ̃ (∆⊕ Γ) = χ̃ (∆) χ̃ (Γ) .

Proof. Choose any set D such that ∆ = 〈D〉. Then we get by inclusion-exclusion that

χ̃ (∆) = χ̃

(

⋃

σ∈D

P (σ)

)

=
∑

v⊆D

(−1)|v|+1χ̃

(

⋂

σ∈v

P (σ)

)

=
∑

v⊆D

(−1)|v|+1χ̃ (P (∩v)) .

Let F∆
def

= fac (∆)× {VΓ} and FΓ
def

= {V∆} × fac (Γ). Then ∆⊕ Γ = 〈F∆ ∪ FΓ〉 so in the same way
we get by inclusion-exclusion that

χ̃ (∆⊕ Γ) =
∑

v⊆F∆∪FΓ

(−1)|v|+1χ̃ (P (∩v))

=
∑

d⊆F∆

∑

g⊆FΓ

(−1)|d|+|g|+1χ̃ (P (∩(d ∪ g))) .

Let d′ ⊆ fac (∆) and g′ ⊆ fac (Γ) such that d = d′ ∪ VΓ and g = g′ ∪ V∆. We will prove that

(8) χ̃ (P (∩(d ∪ g))) = −χ̃ (P (∩d′)) χ̃ (P (∩g′)) .

COMPLEXITY AND ALGORITHMS FOR EULER CHARACTERISTIC OF SIMPLICIAL COMPLEXES 17

Since |d| = |d′| and |g| = |g′| we then get that

χ̃ (∆⊕ Γ) =
∑

d′⊆fac(∆)

∑

g′⊆fac(Γ)

(−1)|d
′|+|g′|χ̃ (P (∩d′)) χ̃ (P (∩g′))

=
∑

d′⊆fac(∆)

(−1)|d
′|+1χ̃ (P (∩d′))

∑

g′⊆fac(Γ)

(−1)|g
′|+1χ̃ (P (∩g′))

= χ̃ (∆) χ̃ (Γ) .

It only remains to prove Equation (8). Observe that χ̃ (P (τ)) = 0 if τ is non-empty and otherwise
χ̃ (P (τ)) = −1. So Equation (8) is equivalent to the statement that

∩(d ∪ g) = ∅ ⇔ ∩d′ = ∅ and ∩ g′ = ∅.

As every face in d contains VΓ and every face in g contains V∆, the only way for ∩(d ∪ g) to be
empty is if ∩d = VΓ and ∩g = V∆. The statement then follows from the observation that ∩d = VΓ

if and only if ∩d′ = ∅ and likewise ∩g = V∆ if and only if ∩g′ = ∅. �

Eliminate Abundant Vertices. Suppose e is an element of every facet of D except σ ∈ fac (D). Use
Equation (7) with σ as the pivot to get that

χ̃ (D) = χ̃ (∆ ∪ P (σ)) = χ̃ (∆)− χ̃ (∆⊖ σ) = χ̃ (∆⊖ σ) ,

since χ̃ (∆) = 0 as every facet of ∆ contains e so ∆ is a cone.

Take Nerves. The nerve of a simplicial complex ∆ is

nerve (∆)
def

= {v ⊆ fac (∆) |∩v 6= ∅} .

A complex and its nerve have the same homotopy type [10, Thm. 10], so χ̃ (∆) = χ̃ (nerve (∆)).
Taking the nerve corresponds to transposing the facet-vertex incidence matrix M . Taking the nerve
twice will remove dominated columns from M and then remove any dominated rows that might
have appeared. This process can continue as removing rows of M can cause yet more columns to
be dominated.

If no columns are dominated then taking the nerve once will exchange the number of vertices and
facets. The BCRT algorithm is more sensitive to the number of vertices than it is to the number
of facets, so it can be beneficial to do computations on the nerve if the complex has fewer facets
than vertices. The DBMS algorithm is opposite of this in that it is more sensitive to the number
of facets than the number of vertices.

Base Case for |fac (∆)| = 3. Assume that all abundant vertices have been removed, that ∆ is not
a cone and that |fac (∆)| = 3. Then every vertex that actually occurs in the complex is an element
of one facet. The nerve of the nerve of ∆ will then have the form 〈{a} , {b} , {c}〉. So χ̃ (∆) = 2.

Partial Base Case for |fac (∆)| = 4. Suppose that |fac (∆)| = 4, that every vertex is an element of
exactly two facets and that the number of vertices is 4. Then χ̃ (∆) = −1. There should be more
rules like this, though identifying them by hand is laborious and error prone.

Make a Table. It would be beneficial for each small k to perform a computer search to make a
table of all simplicial complexes ∆ with |fac (∆)| = k up to reordering of the vertices and the
various techniques for simplifying a simplicial complex that we have presented. Then the Euler
characteristic of simplicial complexes with few facets could be computed through a table look-up.

18 BJARKE HAMMERSHOLT ROUNE AND EDUARDO SÁENZ-DE-CABEZÓN

Data Structures. In our implementation we have represented a facet as a 0-1 vector, where we pack
32 or 64 entries into a single 32 or 64 bit word. Many operations are very fast in this representation.
While the general concept is simple we warn that the implementation details are tricky.

For sparse or complement-of-sparse vectors, it might pay off to only record the zero entries or
one entries respectively, though this is not something that we have pursued.

5. Ideals to Simplicial Complexes

In this section we describe in more detail how the simplicial algorithms in Section 4 are equivalent
to the algebraic algorithms in Section 3. We treat this topic in detail in part to support our claim
that the algebraic and simplicial algorithms are equivalent and in part because the algebra-simplicial
translation brings up interesting mathematics.

To set up the algebra-simplicial translation, let ∆ be a simplicial complex with vertices x1, . . . , xn

that are simultaneously the variables in a polynomial ring. The algebra-simplicial connection is via

the function φ from sets to monomials defined by φ (σ)
def

= Πσ. In other words, φ (σ) is the product
of variables (vertices) that are not in σ. So if n = 3 then φ (∅) = x1x2x3 and φ ({x1, x3}) = x2.

Extend φ from sets to simplicial complexes by φ (∆)
def

= 〈φ (σ) |σ ∈ ∆ 〉 . Then φ is a bijection
from the facets of ∆ to the minimal generators of φ (∆), so φ (∆) can be quickly computed given
∆. We can also describe φ (∆) as the Stanley-Reisner ideal of the Alexander dual of ∆, though we
will not use this alternative description of φ (∆) here.

The fundamental observation that we have been using is that χ̃ (φ (∆)) = χ̃ (∆) so that we can
compute χ̃ (∆) with monomial ideal methods on φ (∆).

Theorem 16. If ∆ is a simplicial complex then χ̃ (∆) = χ̃ (φ (∆)), where χ̃ (φ (∆)) is the coefficient
of x in the multivariate Hilbert-Poincaré series numerator H (I) of I.

Proof. The proof is based on a formula of Bayer concerning upper Koszul simplicial complexes.
Let m be a monomial and let I be a monomial ideal. Then the upper Koszul simplicial complex 3

[13, 2] of I at m is

∆I
m

def

=

{

σ ⊆ {x1, . . . , xn}

∣

∣

∣

∣

xm

Πσ
∈ I

}

.

The numerator of the multivariate Hilbert-Poincaré series of I is related to the Euler characteristics
of the Koszul complexes of I by the following formula due to Bayer [2, Proposition 3.2]

H (I)− 1 =
∑

v∈Nn

χ̃
(

∆I
xv

)

xv.

Since ∆
φ(∆)
x

= ∆, we get that

Coefficient of x in H (φ (∆)) = χ̃
(

∆φ(∆)
x

)

= χ̃ (∆) . �

5.1. The Inverse of φ. In Section 4.1 we modified the definition of a simplicial complex to have
an associated set of vertices so that a vertex need not actually appear in any of the faces of the
complex. Here we give an example that shows that this change is necessary for φ to be a bijection
between simplicial complexes and square free monomial ideals. In short, the vertex set definition
is necessary to preserve information about the variables in the ambient polynomial ring.

3This notion of Koszul complex is not to be confused with the chain complex notion of a Koszul complex.

COMPLEXITY AND ALGORITHMS FOR EULER CHARACTERISTIC OF SIMPLICIAL COMPLEXES 19

We have two functions φ, one that maps sets to square free monomials and one that maps

ideals to square free monomial ideals. They are defined by φ (v)
def

= Πv and φ (∆)
def

= 〈φ (v) |v ∈ ∆ 〉
respectively. The inverse of ∆ 7→ φ (∆) is given by

φ−1 (I) = {v ⊆ {x1, . . . , xn} |φ (v) ∈ I } .

We define the vertex set of φ−1 (I) to be the set of variables in the ambient ring of I, even if
some of those variables do not appear in any face of φ−1 (I). We give an example that shows that
∆ 7→ φ (∆) would not have an inverse if the vertex set of φ−1 (I) were the union of its faces.

Consider the ideal I
def

= 〈x1x2, x1x3〉 ⊆ κ[x1, x2, x3] and let ∆
def

= φ−1 (I) so that fac (∆) =
{{x3} , {x2}}. The question now is what the vertex set of ∆ is. The union of faces is {x2, x3} so if
that were the set of vertices then φ ({x2}) = x3 and φ ({x3}) = x2 so then φ

(

φ−1 (I)
)

= φ (∆) =
〈x3, x2〉 6= I. We observe that if the vertex set were the union of faces, then there would be no
simplicial complex ∆ such that φ (∆) = I. So φ would be a bijection not from simplicial complexes
to square free monomial ideals, but from simplicial complexes to square free monomial ideals with
the property that gcd(min (I)) = 1.

Using the definition that we have given, the vertex set of ∆ is still {x1, x2, x3} even though x1

does not appear in any face of ∆. With our definition φ does have φ−1 as an inverse, and indeed
we see that φ

(

φ−1 (I)
)

= φ (∆) = I.
Even if the input ideal I to the algebraic BCRT and DBMS algorithms has the property that

gcd(min (I)) = 1, the intermediate ideals that these algorithms generate do not necessarily have
that property. So if we had defined the vertex set to be the union of faces, then we would have had
to deal with this issue in some other way.

5.2. Divide... The algebra algorithms are based on Equation 3 which states that for monomials p

χ̃ (I) = χ̃ (I : p) + χ̃ (I + 〈p〉) .

The simplicial algorithms are based on Theorem 11 which states that for sets σ

χ̃ (∆) = χ̃ (∆⊖ σ) + χ̃ (∆ ∪ P (σ)) .

These two equations are equivalent since if ∆ = φ−1 (I) and σ = φ−1 (p) then

φ−1 (I : p) = ∆⊖ σ, φ−1 (I + 〈p〉) = ∆ ∪ P (σ) .

5.3. ... and Conquer. Theorem 7 specifies base cases for the algebra algorithms when

(1) I does not have full support,
(2) I has full support and the minimal generators min (I) are pairwise prime,
(3) I has full support and |min (I)| = 2.

Theorem 12 specifies base cases for the simplicial algorithms when

(1) ∆ is a cone,
(2) ∆ is not a cone and the facets of ∆ are pairwise co-disjoint,
(3) ∆ is not a cone and |fac (I)| = 2.

If ∆ = φ−1 (I) then the algebra and simplicial conditions are equivalent. To be more precise

(1) I has full support if and only if ∆ is not a cone,
(2) monomials a and b are relatively prime if and only if φ−1 (a) and φ−1 (b) are co-disjoint,
(3) |min (I)| = |fac (∆)|.

20 BJARKE HAMMERSHOLT ROUNE AND EDUARDO SÁENZ-DE-CABEZÓN

5.4. Termination and Complexity. The algebraic DBMS algorithm terminates as |min (I)| de-
creases strictly at each step. The simplicial DBMS algorithm terminates as |fac (∆)| decreases
strictly at each step. These reasons are equivalent when ∆ = φ−1 (I) as then |min (I)| = |fac (∆)|.

The algebraic BCRT algorithm terminates if the pivots p are chosen such that p 6= 1 and p /∈ I.
The simplicial BCRT algorithm terminates if the pivots σ are chosen such that σ (V∆ and σ /∈ ∆.
If ∆ = φ−1 (I) and σ = φ−1 (p) then these conditions are equivalent.

5.5. Pivot Selection. The pivot selection strategies that have the same name in the two sections
on pivot selection are equivalent. The main points in proving this are that for a monomial ideal I

and a simplicial complex ∆
def

= φ−1 (I)

• a variable xi is rare if and only if the vertex xi is popular,
• a variable xi is popular if and only if the vertex xi is rare,
• a minimal generator m has maximum support if and only if φ−1 (m) has minimum size,
• a minimal generator m has minimum support if and only if φ−1 (m) has maximum size.

5.6. Improvements. Let I be a square free monomial ideal and let ∆
def

= φ−1 (I). The two sections
on improvements present equivalent techniques in the same order.

Independent Variables — Independent Vertices. Let A and B be disjoint sets of variables. Let
I ⊆ κ[A] and J ⊆ κ[B]. Then I + J ⊆ κ[A ∪ B] and the algebraic section on independent
variables proves that χ̃ (I + J) = χ̃ (I) χ̃ (J). Furthermore, an ideal K can be written as a sum
I+J if and only if there are disjoint sets A and B such that min (K) is the union of min (K)∩κ[A]
and min (K)∩ κ[B]. In that case we say that A and B are K-independent and then K = I + J for

I
def

= 〈min (K) ∩ κ[A]〉 and J
def

= 〈min (K) ∩ κ[B]〉.
For the simplicial side of things, let ∆ and Γ be simplicial complexes such that the vertex sets

V∆ and VΓ are disjoint. Then

∆⊕ Γ
def

= (∆× P (VΓ)) ∪ (P (V∆)× Γ) and V∆⊕Γ
def

= V∆ ∪ VΓ

The simplicial section on independent vertices proves that χ̃ (∆⊕ Γ) = χ̃ (∆) χ̃ (Γ). Furthermore,
an ideal Ψ can be written as ∆⊕ Γ if and only if there are disjoint sets A and B such that fac (Ψ)
is the disjoint union of

FA
def

=
{

σ ∈ fac (Ψ)
∣

∣σ \A = A
}

and FB
def

=
{

σ ∈ fac (Ψ)
∣

∣σ \B = B
}

.

In that case Ψ = ∆⊕ Γ for ∆
def

= 〈FA〉 and Γ
def

= 〈FB〉.

Addition of ideals and ⊕ of simplicial complexes are equivalent. If ∆
def

= φ−1 (I) and Γ
def

= φ−1 (J)
then ∆ ⊕ Γ = φ−1 (I + J). Observe that we are using three different functions φ−1 here as the
ambient polynomial ring is different for each of them. Recall that the definition of φ−1 involves
taking a complement, and if v is a set of variables then the meaning of the complement v depends
on what the variables in the ambient polynomial ring are.

Independence of variables and vertices are also equivalent. If Ψ
def

= φ−1 (K) and A and B are sets
of variables/vertices, then A and B are K-independent if and only if A and B are Ψ-independent.

Let A and B be K-independent and let Ψ = φ−1 (K) so that A and B are also Ψ-independent.

Let ∆
def

= 〈FA〉 and Γ
def

= 〈FB〉. Let I
def

= 〈min (K) ∩ κ[A]〉 and J
def

= 〈min (K) ∩ κ[B]〉. Then
K = I + J and Ψ = ∆⊕ Γ. Furthermore, ∆ = φ−1 (I) and Γ = φ−1 (J).

The notion of I-independence is standard, though we have not been able to find any reference
in the literature to Ψ-independence or the operation ⊕ on simplicial complexes.

COMPLEXITY AND ALGORITHMS FOR EULER CHARACTERISTIC OF SIMPLICIAL COMPLEXES 21

Eliminate Unique Variables — Eliminate Abundant Vertices. A variable xi is unique in I if and
only if xi is an abundant vertex of ∆.

Transpose Ideals — Take Nerves. Both the nerve and the transpose of an ideal are transposing a
matrix where the columns are variables/vertices and the rows are generators/facets. One of these
matrices can be derived from the other by replacing all 0’s by 1 and simultaneously replacing all
1’s by 0. This shows that φ−1 (trans (I)) = nerve (∆).

As far as we know, the transpose operation has not been applied to monomial ideals before – we
are investigating if a monomial ideal and its transpose have any interesting relations between them
when the ideal is not square free.

Base Case for |min (I)| = 3 — Base Case for |fac (∆)| = 3. These are equivalent as |min (I)| =
|fac (∆)| and both base cases give the same Euler characteristic of 2.

Partial Base Case for |min (I)| = 4 — Partial Base Case for |fac (∆)| = 4. These are equivalent.

Make a Table. This is the same idea.

Data Structures. These are the same considerations. Sparse exponent vectors correspond to large
facets, while small facets correspond to mostly-one exponent vectors. In particular, it is not the
case that sparse exponent vectors correspond to small facets.

6. Empirical Evaluation of Euler Characteristic Algorithms

We have implemented the BCRT and DBMS algorithms for Euler characteristic in the program
Frobby [14]. In this section we explore the pivot selection strategies for both algorithms, and we
compare the BCRT and DBMS implementations to several other systems with Euler characteristic
functionality.

We use simplicial terminology in this section. To recover equivalent statements using algebraic
terminology read “monomial ideal” for “complex”, read “variables” for “vertices”, read “minimal
generators” for “facets”, read “having not full support” for “being a cone” and read “transpose”
for “nerve”.

We compare the following implementations, listed in alphabetical order.

Frobby version 0.9.0 [14]: Frobby is a free and open source system for computations on
monomial ideals. We have written a C++ implementation of the BCRT and DBMS algo-
rithms for Euler characteristic in Frobby. We ran Frobby with the option -minimal turned
on in Table 6 as all faces given in the input are facets.

GAP version 4.4.12 [9]: GAP is a free and open source system for computational discrete al-
gebra. It computes the Euler characteristic of a complex by enumerating all faces. The im-
plementation is written in the GAP scripting language. We use the SCEulerCharacteristic
function from version 1.4.0 of the simpcomp package [7]. We extend the memory limit for
GAP to 2 GB.

Macaulay 2 version 1.4 [8]: Macaulay 2 is a free and open source computer algebra system.
It computes the Euler characteristic of a simplicial complex using the BCRT algorithm
for Hilbert-Poincaré series to get the f -vector. The time consuming parts of the code are
written in C++. Due to some inefficiencies in the SimplicialComplexes package it is faster
to compute the Euler characteristic using the poincare function directly on a monomial
ideal instead of going through a simplicial complex. We have used this faster method.

22 BJARKE HAMMERSHOLT ROUNE AND EDUARDO SÁENZ-DE-CABEZÓN

Sage version 4.7 [17]: Sage is a free and open source computer algebra system. It computes
the Euler characteristic of a simplicial complex by enumerating all faces of the complex.
The implementation is written in Python. We use the eulerCharacteristic function from
the SimplicialComplexes package.

We use the following complexes for the comparison.

random-a-b: A randomly generated complex with a vertices and b facets. The complex is
generated one facet at a time. A prospective facet σ is generated at random so that each
vertex has a 50% chance to be an element of σ. If σ is contained in or contains any previously
generated facet then σ is discarded and another prospective facet is generated in its stead.

We generated these example using the genideal action of Frobby.
nicgraph-a-b: The simplicial complex of all not b-connected graphs on a given set of a vertices.

Here we view each possible edge as a vertex of the simplicial complex. A graph is b-connected
if it is connected and it cannot be disconnected by removing b− 1 edges.

We genenerated these examples with the NotIConnectedGraphs function in Sage.
rook-a-b: The a× b chessboard complex.

Let V and W be sets of vertices such that |V | = a and |W | = b. A partial matching

between V and W is a set of pairs (v, w) with v ∈ V and w ∈ W such that each vertex
is in at most one pair. The set of partial matchings between V and W forms a simplicial
complex called the chessboard complex. It corresponds to ways of placing rooks on an a× b
chessboard so that no rook attacks any other rook.

We initially generated these examples with the ChessboardComplex function in Sage.
We could not generate large enough examples with that function so we added the same
functionality to Frobby and used that.

match-a: The matching complex on a vertices.
Let V be a set of vertices with |v| = a. A partial matching on V is a set of pairs {v, w}

for v, w ∈ V such that each vertex is in at most one pair. The set of partial matchings on
V forms a simplicial complex called the matching complex.

We initially generated these examples with the MatchingComplex function in Sage. We
could not generate large enough examples with that function so we added the same func-
tionality to Frobby and used that.

In all tables |V∆| refers to the number of vertices and |fac (∆)| refers to the number of facets.
OOM stands for “out of memory” and indicates that the computation was terminated due to the
program reporting an out of memory error. All experiments were run on an Intel R© CoreTM 2 Duo
CPU T7500 at 2.20GHz with 4GB of RAM running Mandriva Linux 2010.1.

We checked that all the programs gave the correct answer for every input. All times are the
median time of three runs. Time is in each case measured by the programs themselves, except for
Frobby that was timed using the Unix time command line utility. All times exclude the time taken
to start the program and read the input file, except for the Frobby times that do include startup
and input time. We had to cut out startup and input time as it was taking more time than the
Euler characteristic computation itself in some cases, and these experiments are not intended to be
about starting programs or reading input. We did not do this for Frobby as Frobby starts up and
reads input in a tiny fraction of the time taken for the Euler characteristic computation.

6.1. Pivot Selection Strategies for the BCRT and DBMS Algorithms. The BCRT and
DBMS algorithms are parameterized on a pivot selection strategy that determines which pivot to

COMPLEXITY AND ALGORITHMS FOR EULER CHARACTERISTIC OF SIMPLICIAL COMPLEXES 23

|V∆| |fac (∆)| random popvar rarevar popgcd

4000 20 0.05 0.05 0.06 0.06
6000 20 0.07 0.07 0.07 0.07
8000 20 0.09 0.09 0.08 0.09
10000 20 0.11 0.11 0.11 0.12
4000 30 3.70 2.31 5.73 9.83
6000 30 4.84 3.25 6.31 13.41
8000 30 5.87 4.18 7.61 15.56
10000 30 7.25 5.34 9.59 20.53

20 4000 0.13 0.12 0.12 0.24
20 6000 0.24 0.24 0.22 0.45
20 8000 0.37 0.37 0.36 0.65
20 10000 0.55 0.55 0.52 0.95
30 4000 4.11 2.63 5.78 14.53
30 6000 6.04 4.06 7.69 22.01
30 8000 7.48 5.37 9.11 28.85
30 10000 9.48 6.99 10.83 33.41
100 100 7.07 1.38 40.15 166.56
120 120 32.01 5.92 170.28 2109.31
140 140 130.44 23.19 740.48 >7200
160 160 491.43 89.87 2729.22 >7200
180 180 1497.50 261.09 >7200 >7200
200 200 4965.33 796.03 >7200 >7200
220 220 >7200 1756.16 >7200 >7200
240 240 >7200 5051.55 >7200 >7200

Table 1. BCRT pivot selection strategies. All times are in seconds.

use at each step. We compare the strategies described in Section 3.5/Section 4.5 on a battery of
randomly generated complexes.

BCRT Pivots. Table 1 shows that popvar is the best BCRT pivot selection strategy for these
randomly generated complexes. popvar is already faster for the simpler ideals and its lead over the
other strategies increases with the number of facets and especially with the number of vertices.

random: This strategy is here to be able to tell if the other strategies are better or worse
than a random choice of vertex.

popvar: We believe that popvar performs well because a rare vertex e gives ∆ ∪
〈

{e}
〉

as

few facets as possible.
rarevar: rarevar does the opposite of what popvar does. It is never far ahead and is mostly

significantly behind popvar. For the balanced examples it is much worse than even a
random choice of vertex.

popgcd: popgcd works well for the Hilbert-Poincaré series algorithms that the algorithms we
present here are based on. However, the data shows that it is often significantly worse than
choosing a random vertex when it comes to computing Euler characteristics.

24 BJARKE HAMMERSHOLT ROUNE AND EDUARDO SÁENZ-DE-CABEZÓN

DBMS Pivots. Table 2 shows that raremax is the best DBMS pivot selection strategy for these
randomly generated complexes.

random: This strategy is here to be able to tell if the other strategies are better or worse
than a random choice of pivot.

raremax: raremax combines the benefits of removing a facet that lacks a popular vertex with
the benefit of removing a small facet. Table 2 shows that this combination is better than
the pure strategies rarevar and maxsupp.

rarest: We believe that rarest performs well because removing facets that lack popular
vertices tends to create complexes that are close to being a cone.

rarevar: rarevar is almost as good as rarest, which is reasonable since rarest is a more
sophisticated way of breaking ties in rarevar.

popvar: popvar does the opposite of what rarevar does, so it is reasonable that it does
poorly.

maxsupp: We believe that maxsupp performs better than random because removing small
facets tends to create complexes that are close to being a cone.

minsupp: minsupp performs worse than random, confirming that it is beneficial to select
small pivots.

6.2. Variations of the BCRT and DBMS Algorithms. Table 3 and Table 4 show times for
the pivot selection strategies when the nerve technique from Section 3.6/Section 4.6 is turned off.
First of all we observe that turning the nerve technique off does not change the ranking of the pivot
selection strategies. Furthermore, we see that without nerves the BCRT algorithm is much more
sensitive to the number of vertices while the DBMS technique is much more sensitive to the number
of facets. The nerve technique hides this sensitivity as it allows to interchange the number of facets
and the number of vertices, so the DBMS algorithm can adjust the input to make the number of
facets less than the number of vertices and vice versa for the BCRT algorithm.

An alternative to the nerve technique is to use a hybrid approach where the BCRT algorithm
is used for ideals with more facets and the DBMS algorithm is used for ideals with more vertices.
If we compare the tables we see that the DBMS algorithm with the nerve technique turned on is
faster than the hybrid approach even for ideals with more facets than vertices, so in this experiment
the hybrid approach is inferior to the nerve technique.

6.3. Comparison of Euler Characteristic Implementations. Table 6 compares several imple-
mentations of Euler characteristic algorithms. This also serves as a comparison of the algorithms
used by these implementations. Evaluating the practicality of an algorithm as opposed to an im-
plementation is difficult because quality of implementation has a significant effect on performance
yet quality of implementation cannot easily if at all be measured or corrected for.

An example of an implementation (as opposed to algorithm) difference is that Frobby and
Macaulay 2 are written in C++ that compiles to native code while Gap and Sage do not compile
to native code due to the languages that they are written in.4 While the choice of implementation
language can make a significant difference for performance, the magnitude of the differences in
Table 6 is so large that choice of language is unlikely to be the main factor in our estimation.

4Sage does have modules written in Cython which is similar to Python but that does compile to native code.
Many components of both Sage and Gap are written in native languages such as C and C++. However, that is not
the case for the Euler characteristic components of Gap and Sage. Parts of Macaulay 2 are written in the interpreted
Macaulay 2 language, but the Hilbert-Poincaré series code is written in C++.

COMPLEXITY AND ALGORITHMS FOR EULER CHARACTERISTIC OF SIMPLICIAL COMPLEXES 25

|V∆| |fac (∆)| random popvar maxsupp rarest raremax minsup rarevar

4000 20 0.07 0.06 0.06 0.04 0.04 0.08 0.04
6000 20 0.08 0.08 0.07 0.06 0.06 0.09 0.05
8000 20 0.09 0.09 0.08 0.07 0.07 0.11 0.07
10000 20 0.11 0.11 0.10 0.09 0.09 0.15 0.10
4000 30 4.53 4.46 2.36 1.14 1.06 13.34 1.24
6000 30 5.96 6.77 3.58 1.47 1.46 15.62 1.63
8000 30 7.83 8.28 4.46 1.97 1.90 21.17 2.26
10000 30 10.50 10.18 5.64 2.59 2.53 27.11 3.24

20 4000 0.19 0.18 0.16 0.12 0.12 0.22 0.12
20 6000 0.32 0.31 0.29 0.23 0.24 0.39 0.24
20 8000 0.48 0.48 0.46 0.37 0.37 0.57 0.38
20 10000 0.66 0.65 0.63 0.52 0.54 0.74 0.54
30 4000 5.08 4.97 3.10 1.88 1.76 10.68 2.06
30 6000 7.70 7.44 4.81 2.97 2.85 16.25 3.29
30 8000 10.16 10.02 6.46 3.99 3.98 19.61 4.48
30 10000 12.63 13.17 8.90 5.00 4.98 25.35 5.58
100 100 5.89 5.84 1.29 1.05 0.79 40.83 1.13
120 120 25.42 26.19 5.79 4.72 3.44 173.82 5.06
140 140 108.40 119.19 22.43 18.43 13.03 749.66 21.34
160 160 427.46 464.28 87.13 69.92 49.59 2767.93 78.52
180 180 1291.26 1241.91 253.15 192.95 143.14 >7200 232.63
200 200 4211.65 4137.68 769.79 614.39 434.43 >7200 755.41
220 220 >7200 >7200 1704.65 1440.19 980.31 >7200 1665.74
240 240 >7200 >7200 4871.15 4022.04 2697.84 >7200 4811.50

Table 2. DBMS pivot selection strategies. All times are in seconds.

|V∆| |fac (∆)| random popvar rarevar popgcd

30 10000 7.50 5.36 9.35 30.24
10000 30 >7200 62.13 >7200 >7200
240 240 >7200 6961.76 >7200 >7200

Table 3. BCRT pivot selection strategies without nerves. All times are in seconds.

|V∆| |fac (∆)| random raremax rarest rarevar popvar maxsupp minsupp

30 10000 318.41 52.39 64.01 77.87 243.41 71.85 2382.40
10000 30 10.64 2.58 2.66 3.26 11.30 5.97 25.95
240 240 >7200 4184.07 6212.34 >7200 >7200 >7200 >7200

Table 4. DBMS pivot selection strategies without nerves. All times are in seconds.

26 BJARKE HAMMERSHOLT ROUNE AND EDUARDO SÁENZ-DE-CABEZÓN

We can draw the firm conclusion from Table 6 that the BCRT and DBMS algorithms presented
in this paper can be implemented to be faster on this set of complexes than all the other Euler
characteristic implementations that we have compared. We have found no faster Euler characteristic
implementations than these, so we believe that the comparison we have made is the most fair and
informative comparison that can be made using the implementations that exist today.

From Table 1, Table 2 and Table 6, we see that the DBMS algorithm is faster than the BCRT
algorithm for all the complexes when both algorithms use their best pivot selection strategy. So we
can recommend using the DBMS algorithm over the BCRT algorithm, even though the difference
is slight. The nerve technique is vital to make the DBMS algorithm always be faster – without it,
good performance could only be reached by implementing both algorithms and choosing which to
use based on the ratio of facets to vertices.

The implementations in Sage and GAP are based on enumerating faces. Table 5 shows the number
of faces of each complex, and there is a clear trend that the time taken by Sage and GAP is related
to the number of faces of the complex. In contrast the times for the implementations in Frobby

and Macaulay 2 do not have a clear relationship to the number of faces.
For example nicgraph-8-2 has 2928 times more faces than match-13 does, and as expected Sage

and GAP take much longer to compute the Euler characteristic of nicgraph-8-2 than of match-13.
In contrast Frobby computes the Euler characteristic of nicgraph-8-2 in 0.06s while it takes 7.84s
for match-13. So nicgraph-8-2 has 2928 times more faces than match-13 does yet it takes 260 times
less time to compute its Euler characteristic using Frobby. We give this as evidence that the time
taken by the BCRT and DBMS algorithms for Euler characteristic depends more on the structure
of the complex than on the number of faces of the complex.

We find that the performance of Frobby and Macaulay 2 in this comparison lends credence to
the idea of using algebraic formulations and implementations for combinatorial problems.

References

[1] E. Bach. Sheaf cohomology is #p-hard. Journal of Symbolic Computation, 27(4):429 – 433, 1999.

[2] Dave Bayer. Monomial ideals and duality. Never finished draft. See
http://www.math.columbia.edu/~bayer/vita.html, 1996.

[3] Dave Bayer and Mike Stillman. Computation of Hilbert functions. Journal of Symbolic Computation, 14(1):31–
50, 1992.

[4] Anna M. Bigatti. Computation of Hilbert-Poincaré series. Journal of Pure and Applied Algebra, 119(3):237–253,
1997.

[5] Anna Maria Bigatti, Pasqualina Conti, Lorenzo Robbiano, and Carlo Traverso. A “divide and conquer” algo-
rithm for Hilbert-Poincaré series, multiplicity and dimension of monomial ideals. In Applied algebra, algebraic
algorithms and error-correcting codes (San Juan, PR, 1993), volume 673 of Lecture Notes in Comput. Sci.,
pages 76–88. Springer, Berlin, 1993.

[6] Peter Bürgisser and Felipe Cucker. Counting complexity classes for numeric computations i: Semilinear sets.
SIAM J. Comput., 33(1):227–260, 2004.

[7] Felix Effenberger and Jonathan Spreer. simpcomp - a GAP toolkit for simplicial complexes, 2010.
[8] Daniel R. Grayson and Michael E. Stillman. Macaulay 2, a software system for research in algebraic geometry.

Available at http://www.math.uiuc.edu/Macaulay2/.
[9] The GAP Group. GAP – Groups, Algorithms, and Programming, 2008.

[10] Branko Grünbaum. Nerves of simplicial complexes. Aequationes Mathematicae, 4:63–73, 1970.
10.1007/BF01817747.

[11] Volker Kaibel and Marc E. Pfetsch. Some algorithmic problems in polytope theory. In Algebra, Geometry, and
Software Systems, pages 23–47, 2003.

[12] D. A. Klain and G-C. Rota. Introduction to geometric probability. Cambridge University Press, 1997.
[13] Ezra Miller and Bernd Sturmfels. Combinatorial Commutative Algebra, volume 227 of Graduate Texts in Math-

ematics. Springer, 2005.

http://www.math.columbia.edu/~bayer/vita.html
http://www.math.uiuc.edu/Macaulay2/

COMPLEXITY AND ALGORITHMS FOR EULER CHARACTERISTIC OF SIMPLICIAL COMPLEXES 27

Example Vertices Facets Faces χ̃ (∆)
rook-6-6 36 720 13,327 185
rook-7-7 49 5,040 130,922 -204
rook-8-8 64 40,320 1,441,729 -6,209
match-9 36 945 2,620 -28
match-10 45 945 9,496 -1,216
match-11 55 10,395 35,696 -936
match-12 66 10,395 140,152 12,440
match-13 78 135,135 568,503 23,672
nicgraph-7-2 21 217 1,014,888 -120
nicgraph-8-2 28 504 166,537,616 -720
nicgraph-9-2 36 1,143 50,680,432,112 -5,040
randomv20g100 20 100 86,116 -25
randomv20g500 20 500 227,792 1,166
randomv20g1000 20 1,000 287,689 -1,007
randomv25g100 25 100 1,223,224 -202
randomv25g500 25 500 3,628,979 -3,815
randomv25g1000 25 1,000 5,368,430 3,666

Table 5. Characteristics of the examples used in Table 6.

[14] Bjarke Hammersholt Roune. Frobby – a software system for computations with monomial ideals. Available at
http://www.broune.com/frobby/.

[15] Bjarke Hammersholt Roune. The slice algorithm for irreducible decomposition of monomial ideals. Journal of
Symbolic Computation, 44(4):358–381, April 2009.

[16] Richard P. Stanley. Enumerative Combinatorics, volume 1. Cambridge University Press, 1997.
[17] William Stein and David Joyner. SAGE: Open source mathematics software. Available at

http://www.sagemath.org/, 2005.
[18] Leslie G. Valiant. The complexity of enumeration and reliability problems. SIAM Journal on Computing,

8(3):410–421, 1979.

Cornell University, http://www.broune.com
E-mail address: bhroune@math.cornell.edu

Universidad de la Rioja, https://belenus.unirioja.es~esaenz-d
E-mail address: eduardo.saenz-de-cabezon@unirioja.es

http://www.broune.com/frobby/
http://www.sagemath.org/
http://www.broune.com
https://belenus.unirioja.es~esaenz-d

28 BJARKE HAMMERSHOLT ROUNE AND EDUARDO SÁENZ-DE-CABEZÓN

Frobby Frobby

Example DBMS BCRT Sage Macaulay 2 GAP

rook-6-6 0.01 0.01 1.04 0.24 0.13
rook-7-7 0.13 0.14 12.59 3.37 3.86

rook-8-8 2.43 6.39 >223.11* 58.16 >7200
match-9 0.00 0.00 0.16 0.13 0.08
match-10 0.02 0.01 0.69 0.29 0.12
match-11 0.21 0.15 2.90 2.41 6.97
match-12 0.33 0.47 12.31 8.32 9.15
match-13 7.84 11.26 >7200 101.49 2401.58
nicgraph-7-2 0.00 0.00 322.94 0.43 22.41
nicgraph-8-2 0.03 0.06 >7200 10.33 >7200
nicgraph-9-2 0.40 0.65 >7200 306.28 >7200
randomv20f100 0.00 0.00 11.37 0.07 0.42
randomv20f500 0.01 0.01 35.99 0.43 3.28
randomv20f1000 0.02 0.02 47.32 0.72 7.60
randomv20f100 0.00 0.00 322.80 0.37 58.17
randomv20f500 0.02 0.04 >7200 3.16 592.70
randomv20f1000 0.02 0.04 >7200 6.43 >7200

* Sage reports taking 223.11s on rook-8-8, but the actual time was in
excess of half an hour. The discrepancy persisted across several runs.
We do not know how to explain the discrepancy since the times that
Sage reports is usually in line with external measurements.

Table 6. Comparison of Euler characteristic implementations. All times are in seconds.

	1. Introduction
	2. The Complexity of Euler Characteristic
	2.1. The complexity class #P
	2.2. Euler Characteristic is in #P
	2.3. Euler Characteristic is #P-complete
	2.4. Decision Problems

	3. Algebraic Algorithms for Euler Characterisic
	3.1. Background and Notation
	3.2. Divide...
	3.3. ... and Conquer
	3.4. Termination and Complexity
	3.5. Pivot Selection
	3.6. Improvements

	4. Simplicial Algorithms for Euler Characteristic
	4.1. Background and Notation
	4.2. Divide...
	4.3. ... and Conquer
	4.4. Termination and Complexity
	4.5. Pivot Selection
	4.6. Improvements

	5. Ideals to Simplicial Complexes
	5.1. The Inverse of
	5.2. Divide...
	5.3. ... and Conquer
	5.4. Termination and Complexity
	5.5. Pivot Selection
	5.6. Improvements

	6. Empirical Evaluation of Euler Characteristic Algorithms
	6.1. Pivot Selection Strategies for the BCRT and DBMS Algorithms
	6.2. Variations of the BCRT and DBMS Algorithms
	6.3. Comparison of Euler Characteristic Implementations

	References

