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Abstract

Given a set of integers W , the Partition problem determines whether W can be divided into
two disjoint subsets with equal sums. We model the Partition problem as a system of polyno-
mial equations, and then investigate the complexity of a Hilbert’s Nullstellensatz refutation, or
certificate, that a given set of integers is not partitionable. We provide an explicit construction of
a minimum-degree certificate, and then demonstrate that the Partition problem is equivalent
to the determinant of a carefully constructed matrix called the partition matrix. In particu-
lar, we show that the determinant of the partition matrix is a polynomial that factors into an
iteration over all possible partitions of W .
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1. Introduction

The NP-complete problem Partition [12] is the question of deciding whether or not
a given set of integers W = {w1, . . . , wn} can be broken into two sets, I and W \ I,
such that the sums of the two sets are equal, or that

∑
w∈I w =

∑
w∈W\I w. Since it is

widely believed that NP 6= coNP, it is interesting to study various types of refutations,
or certificates for the non-existence of a partition in a given set W .

In this paper, we study the certificates provided by Hilbert’s Nullstellensatz (see [1,
2, 11, 18, 20] and references therein). Given an algebraically-closed field K and a set of
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polynomials f1, . . . , fs ∈ K[x1, . . . , xn], Hilbert’s Nullstellensatz states that the system
of polynomial equations f1 = f2 = · · · = fs = 0 has no solution if and only if there
exist polynomials β1, . . . , βs ∈ K[x1, . . . , xn] such that 1 =

∑s
i=1 βifi . We measure the

complexity of a given certificate in terms of the size of the β coefficients, since these are
the unknowns we must discover in order to demonstrate the non-existence of a solution
to f1 = f2 = · · · = fs = 0. Thus, we measure the degree of a Nullstellensatz certificate
as d = max{deg(β1), . . . ,deg(βs)}.

There is a well-known connection between Hilbert’s Nullstellensatz and a particular
sequence of linear algebra computations. These sequences have been studied from both
a theoretical perspective [5, 11], and a computational perspective [9, 10]. When the
polynomial ideal contains x2i − xi for each variable (thus forcing the variety to contain
only 0/1 points), these sequences have also been explored as algebraic proof systems [4,
6, 17, 21]. Additionally, D. Grigoriev demonstrates a linear lower bound for the knapsack
problem in [13] (see also [14]), and Buss and Pitassi [5] show that a polynomial system
loosely based upon the “pigeon-hole principle” requires a blog nc − 1 Nullstellensatz
degree certificate. However, when the system of polynomial equations f1, . . . , fs models
an NP-complete problem, the degree d is likely to grow at least linearly with the size
of the underlying NP-complete instance [19]. In other words, as long as P 6= NP, the
certificates should be hard to find (i.e., the size of the linear systems involved should
be exponential in the size of the underlying instance), and as long as NP 6= coNP, the
certificates should be hard to verify (i.e., the certificates should contain an exponential
number of monomials).

For example, consider the NP-complete problem of finding an independent set of size
k in a graph G. Recall that an independent set is a set of pairwise non-adjacent vertices.
This problem was modeled by Lovász [18] as a system of polynomial equations as follows:

x2i − xi = 0 , for every vertex i ∈ V (G) ,

xixj = 0 , for every edge (i, j) ∈ E(G) ,
and − k +

n∑
i=1

xi = 0 .

Clearly, this system of polynomial equations has a solution if and only the underlying
graph G has an independent of size k. For example, consider the Turán graph T (5, 3).
By inspection, we see that size of the largest independent set in T (5, 3) is two. Therefore,
there is no independent set of size three, and using the connection between Hilbert’s
Nullstellensatz and linear algebra (described more thoroughly in Sec 3), the authors of
[11] produce the following certificate:

1
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3 4

5
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6

(
x1 + x2 + x3 + x4 + x5

)
− 1

3

)
︸ ︷︷ ︸

β1

(x1 + x2 + x3 + x4 + x5 − 3) = 1 .

The combinatorial interpretation of this algebraic identity is unexpectedly clear: the size
of the largest independent set is the degree of the Nullstellensatz certificate (i.e., the
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largest monomial x1x2 corresponds to the maximum independent set formed by vertices
{1, 2}), and the coefficient β1 contains one monomial for each independent set in G. The
combinatorial interpretation of these certificates is proven in [11] by De Loera et al. only
in terms of monomials: the relationship between the numbers such as 1/3 and 1/6 and
the independent sets of the underlying graph is not clear.

In this paper, we model the Partition problem as a system of polynomial equations,
and then present a combinatorial interpretation of an associated minimum-degree Null-
stellensatz certificate. However, the focus of our combinatorial interpretation is not only
on the relationship between partitions and monomials, but also on the relationship be-
tween partitions and numeric coefficients (i.e., the numbers 1/3 and 1/6). In Section 2,
we present an algebraic model of the partition problem and describe a minimum-degree
Nullstellensatz certificate. In Section 3, we describe the connection between Hilbert’s
Nullstellensatz and linear algebra, leading to the construction of a square system of lin-
ear equations, forming what we call the partition matrix. In Section 4, we prove our main
result: the determinant of the partition matrix represents a brute-force iteration over all
the possible partitions of the set W , a polynomial we refer to as the partition polynomial.

We conclude our introduction with an example. Let W = {w1, w2, w3, w4}, and we see
that the determinant of the associated partition matrix is as follows:

det





w4 w3 w2 w1 0 0 0 0

w3 w4 0 0 w2 w1 0 0

w2 0 w4 0 w3 0 w1 0
w1 0 0 w4 0 w3 w2 0

0 w2 w3 0 w4 0 0 w1

0 w1 0 w3 0 w4 0 w2

0 0 w1 w2 0 0 w4 w3

0 0 0 0 w1 w2 w3 w4




=

(w1 + w2 + w3 + w4)(−w1 + w2 + w3 + w4)

(w1 − w2 + w3 + w4)(w1 + w2 − w3 + w4)

(−w1 + w2 − w3 + w4)(−w1 − w2 + w3 + w4)

(w1 − w2 − w3 + w4)(−w1 − w2 − w3 + w4) .

Thus, the determinant of the partition matrix is indeed a brute-force iteration over
every possible partition of W : the partition polynomial.

2. Partitions and a System of Polynomial Equations

The Partition problem determines if a given set of integers W = {w1, . . . , wn} can
be divided into two sets, I and W \ I such that

∑
w∈I w =

∑
w∈W\I w. In this section,

we describe a system of polynomial equations that models this question, and discuss the
degree and monomials in an associated minimum-degree Nullstellensatz certificate.

Proposition 1. Given a set of integers W = {w1, . . . , wn}, the following system of
polynomial equations

x2i − 1 = 0 , for 1 ≤ i ≤ n , and

n∑
i=1

wixi = 0 .

has a solution if and only if there exists a partition of W into two sets, I ⊆W and W \I,
such that

∑
w∈I w =

∑
w∈W\I w .

Proof: The variables xi can take on the values of ±1. Thus, we relate partitions to solu-
tions by placing integers wi with +1 xi values on one side of the partition and integers
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wi with −1 xi values on the other. 2

Let [n] denote the set of integers {1, . . . , n} and let Snk denote the set of k-subsets

of [n]. For S ∈ Snk , let xS denote the corresponding square-free monomial of degree

k in n variables. For example, given S = {1, 3, 4} ⊆ [5], the corresponding monomial

xS = x1x3x4. Additionally, let S
n\i
k denote the k-subsets of [n] \ i .

Theorem 2. Given a set of non-partitionable integers W = {w1, . . . , wn} encoded as

a system of polynomial equations according to Prop. 1, there exists a minimum-degree

Nullstellensatz certificate for the non-existence of a partition of W as follows:

1 =

n∑
i=1

( ∑
k even

k≤n−1

∑
S∈Sn\i

k

ci,Sx
S
)

(x2i − 1) +
(∑

k odd

k≤n

∑
S∈Sn

k

bSx
S
)( n∑

i=1

wixi

)
.

Moreover, every Nullstellensatz certificate for the system of equations defined by Prop. 1

contains one monomial for each of the odd parity subsets of each Snk , and one monomial

for each of the even parity subsets of each S
n\i
k .

Via Thm. 2, we see that the degree of the certificate is n for n odd, and n − 1 for n

even. Furthermore, by considering the monomials present in the certificate as identifying

the integers present on one side of a partition, we see that the monomials represent a

brute-force iteration over every possible partition of W . We note that we identify the

constant terms ci,∅ with the case of placing every integer on one side of the partition and

the empty set on the other. Thus, this result is similar to the independent set result (De

Loera et al., [11]) reviewed in the introduction. However, in this paper, we are interested

not only in a combinatorial interpretation of the monomials, but also in a combinatorial

interpretation of the unknowns ci,S , bS .

The proof of Thm. 2 is virtually identical to the proof of the independent set result

described in [11], with no new techniques or insights. The essential strategy of the proof is

to consider an arbitrary minimum-degree Nullstellensatz certificate, and then “reduce”

the certificate to a version containing only square-free monomials by adding and sub-

tracting different polynomials from the certificate (or taking the monomials modulo the

ideal). It is then possible to demonstrate that every square-free monomial representing

a partition must be present in the certificate; otherwise, the certificate would require an

infinite chain of higher and higher degree square-free monomials in order to simplify to

1. Since the technical details of this strategy were carefully presented in [11], we omit

the formal proof here and simply state Thm. 2 as a result.

Example 1. The set of integers W = {1, 3, 5, 2} is not partitionable. We encode this

problem as a system of polynomial equations as follows:

x21 − 1 = 0 , x22 − 1 = 0 , x33 − 1 = 0 , x24 − 1 = 0 , x1 + 3x2 + 5x3 + 2x4 = 0 .

Since W is not partitionable, this system of equations has no solution, and a Nullstel-
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lensatz certificate exists. Here is the minimum-degree certificate described by Thm. 2:

1 =

(
−

155

693
+

842

3465
x2x3 −

188

693
x2x4 +

908

3465
x3x4

)
(x2

1 − 1) +

(
−

1

231
+

842

1155
x1x3 −

188

231
x1x4

+
292

1155
x3x4

)
(x2

2 − 1) +

(
−

467

693
+

842

693
x1x2 +

908

693
x1x4 +

292

693
x2x4

)
(x2

3 − 1) +

(
−

68

693
−

376

693
x1x2

+
1816

3465
x1x3 +

584

3465
x2x3

)
(x2

4 − 1) +

(
155

693
x1 +

1

693
x2 +

467

3465
x3 +

34

693
x4 −

842

3465
x1x2x3

+
188

693
x1x2x4 −

908

3465
x1x3x4 −

292

3465
x2x3x4

)
(x1 + 3x2 + 5x3 + 2x4) .

Note that the coefficient for (x21 − 1) contains only even degree monomials that do not

contain x1 (similarly for (x22 − 1), etc.) and that the coefficient for (x1 + 3x2 + 5x3 +

2x4) contains every possible odd degree monomial in four variables. The combinatorial

interpretation of a number such as 34/693 is explicitly demonstrated in Ex. 7. 2

3. The Partition Matrix: Definition and Properties

In this section, we explore the well-known connection between Hilbert’s Nullstellensatz

and linear algebra, in terms of the minimum-degree certificate defined in Thm. 2:

1 =

n∑
i=1

( ∑
k even

k≤n−1

∑
S∈Sn\i

k

ci,Sx
S
)

(x2i − 1) +
( ∑

k odd

k≤n

∑
S∈Sn

k

bSx
S
)( n∑

i=1

wixi

)
.

We begin by defining graded reverse lexicographic order. We then construct a 2n−1×2n−1

square system of linear equations containing only the unknowns b. When ordered accord-

ing to graded reverse lexicographic order, this square matrix is known as the partition

matrix. We next prove a series of properties of the partition matrix (including symme-

try), and conclude by expressing the partition matrix as the sum of a very specific set of

permutation matrices. The properties of these permutation matrices allow for a simple

and elegant proof of the main result in Section 4.

3.1. Graded Reverse Lexicographic Order as a Tree

Since we are dealing only with square-free monomials, we define graded reverse lexi-

cographic order (denoted �D) as follows. Given S ∈ Snk , we represent S as a vector in

{0, 1}n (denoted vS) by setting vS [i] = 1 if i ∈ S and vS [i] = 0 otherwise. For example,

let S = {2, 3, 7} ∈ S7
3 . Then vS = {0, 1, 1, 0, 0, 0, 1}. Given distinct S ∈ Snk and S′ ∈ Snk′ ,

then S �D S′ in two cases: 1) if k > k′, or 2) if k = k′ and the right-most nonzero entry

of vS − vS′ is negative. For example, {2, 3, 4, 5} �D {1, 2, 5}, and {2, 3} �D {1, 4}.
In order to prove specific properties of the partition matrix, we use a slightly less com-

mon, recursive definition of graded reverse lexicographic order. First, we order the
(
n
n−1
)

subsets of [n] in lexicographic order, creating sets S1, . . . , Sn. Next, the sets S1, . . . , Sn
are iterated, and for each Si, the

(
n−1
n−2
)

subsets of Si are iterated in lexicographic order,

etc.. This order is pictorially represented as a tree in Ex. 2.

Example 2. Here we pictorially order the set of integers [5] according to �D.
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1234

123

12

1 2

13 23

3 4

14 24

124

234

24 34 15 25 35

124 134 234

1235

125 135

5

12345

35 45

1235

135 235

1245 1345

145 245 345

345 2345

45

Using this tree, if two sets S, S′ are from different levels in the tree with S higher
than S′, then S �D S′. For example, {1245} �D {234}. Additionally, if S, S′ are from
the same level in the tree but S appears further to the left than S′, then S �D S′. For
example, {23} �D {15}. Additionally, observe that if the even and odd cardinality subsets
of [5] are iterated in �D order, then the following pairing of even and odd subsets occurs:

12345 123 124 134 234 125 135 235 145 245 345 1 2 3 4 5

1234 1235 1245 1345 2345 12 13 23 14 24 34 15 25 35 45 ∅

Given a set S in the pairing diagram above, if 5 ∈ S, then S is paired with S \5. If 5 /∈ S,
then S is paired with S ∪ 5. This observation is proven in general in Prop. 3.2. 2

We refer to this tree as the order tree of [n]. If two sets S, S′ are children of the same
parent in the tree, we say that the sets are contained in the same block. For example,
{1, 2, 3} and {2, 3, 4} are in the same block, but {2, 3, 4} and {1, 2, 5} are not.

3.2. The Partition Matrix

In this section, we demonstrate how to extract a 2n−1×2n−1 matrix from the minimum-
degree certificate of Thm. 2. We begin by considering the coefficients of (x2i − 1):( ∑

k even

k≤n−1

∑
S∈Sn\i

k

ci,Sx
S
)

(x2i − 1) .

We observe that each monomial ci,Sx
S multiplies (x2i − 1), which implies that each ci,S

appears in two equations (one corresponding to the monomial xSx2i , and one correspond-
ing to the monomial −xS). Thus, the unknown ci,S appears in the first equation with a
positive coefficient, and the second equation with a negative coefficient. This allows us to
sum the two equations, and cancel the c unknowns in a cascading manner. For example,
there is always one equation for the constant term:

−c1,∅ − c2,∅ − · · · − cn,∅ = 1 .

Notice that this equation sums to one, since the Nullstellensatz certificate simplifies to
one. There is also always one equation for each x2i monomial:

biwi + ci,∅ = 0 . (1)

The biwi term appears in these equations since the product of( ∑
k odd

k≤n

∑
S∈Sn

k

bSx
S
)(
w1x1 + · · ·+ wnxn

)
,
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contributes the term bixi · wixi = biwix
2
i , among others. Notice that Eq. 1 sums to

zero, since every monomial other than the constant term must cancel in a Nullstellensatz

certificate. This set of n+ 1 equations yields the following subsystem:

−c1,∅ − c2,∅ − · · · − cn,∅ = 1 , (constant term)

b1w1 + c1,∅ = 0 , (x21)
...

...
bnwn + cn,∅ = 0 . (x2n)

Summing these n+ 1 equations together yields the following equation (in b only):

n∑
i=1

biwi = 1 .

In general, let S ⊆ [n] \ i be an even cardinality subset, and consider the two monomials

xSx2i and xS . Then, the following n−|S|+1 equations are always present in the extracted

linear system:

bS∪iwi + ci,S = 0 , (xSx2i ) , for each i /∈ S (2)∑
j∈S

bS\jwj −
∑
i/∈S

ci,S = 0 , (xS) .

Summing up these n−|S|+1 equations together yields the following equation (in b only):∑
j /∈S

bS∪jwj +
∑
j∈S

bS\jwj = 0 .

Definition 1. Given a set of integers W = {w1, . . . , wn}, the coefficient matrix of the

following square system of linear equations∑
j /∈S

bS∪jwj +
∑
j∈S

bS\jwj = 0 , for each S ∈
(
Snk \ ∅

)
with |S| even

n∑
i=1

biwi = 1 ,

defines a 2n−1×2n−1 matrix with columns indexed by the unknowns bS (corresponding to

the 2n−1 odd cardinality subsets of [n]), and rows indexed by the sets S (corresponding to

the 2n−1 even cardinality subsets of [n], including ∅). This matrix is the partition matrix,

denoted by Π(W ), with rows and columns ordered by graded reverse lexicographic order.

By studying Eq. 2, we see that each c unknown appears in exactly one equation along

with exactly one b unknown. Thus, solving for the b unknowns uniquely determines the

entire certificate, and determining whether or not a given set W is partitionable depends

entirely on the determinant of the partition matrix.

Example 3. Let W = {w1, w2, w3}. Via Thm. 2, the Nullstellensatz certificate is:

1 = (c1,∅ + c1,{23}x2x3)(x21 − 1) + (c2,∅ + c2,{13}x1x3)(x22 − 1) + (c3,∅ + c3,{12}x1x2)(x23 − 1)

+ (b1x1 + b2x2 + b3x3 + b123x1x2x3)(w1x1 + w2x2 + w3x3) .
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If W is not partitionable, there must exist an assignment to the unknowns c and b such
that the certificate simplifies to one. In other words, the following system of linear equa-
tions has a solution:

(x2
1) c1,∅ + b1w1 = 0 , (x2x3) −c1,{23} + b2w3 + b3w2 = 0 ,

(x2
2) c2,∅ + b2w2 = 0 , (x1x2x2

3) c3,{12} + b123w3 = 0 ,

(x2
3) c3,∅ + b3w3 = 0 , (x1x2

2x3) c2,{13} + b123w2 = 0 ,
(x1x2) −c3,{12} + b1w2 + b2w1 = 0 , (x2

1x2x3) c1,{23} + b123w1 = 0 ,

(x1x3) −c2,{13} + b1w3 + b3w1 = 0 , (constant term) −c1,∅ − c2,∅ − c3,∅ = 1 .

Following the simplifications described above, we extract a square system of linear equa-
tions that contain only the b unknowns from these equations:

b123w3 + b1w2 + b2w1 = 0 , S = {1, 2} , b123w2 + b1w3 + b3w1 = 0 , S = {1, 3} ,
b123w1 + b2w3 + b3w2 = 0 , S = {2, 3} , b1w1 + b2w2 + b3w3 = 1 . S = ∅ .

Ordering the columns as {b123, b1, b2, b3}, the partition matrix is as follows:

{1, 2}
{1, 3}
{2, 3}
∅

b123 b1 b2 b3
w3 w2 w1 0
w2 w3 0 w1

w1 0 w3 w2

0 w1 w2 w3


As a preview of our main result, we note that the determinant of this matrix is

(w1 + w2 + w3)(−w1 + w2 + w3)(w1 − w2 + w3)(−w1 − w2 + w3) ,

which represents a brute-force iteration over all of the possible partitions of the set W .
This will be formally defined as the partition polynomial in Sec. 4. 2

For the duration of this section, we collect a few essential facts about the partition
matrix Π(W ). We also provide a slightly larger example of the partition matrix to demon-
strate these properties.

Example 4. Given W = {w1, . . . , w5}, here is the 16× 16 partition matrix Π(W ).

12345 123 124 134 234 125 135 235 145 245 345 1 2 3 4 5

1234 w5 w4 w3 w2 w1 0 0 0 0 0 0 0 0 0 0 0

1235 w4 w5 0 0 0 w3 w2 w1 0 0 0 0 0 0 0 0

1245 w3 0 w5 0 0 w4 0 0 w2 w1 0 0 0 0 0 0

1345 w2 0 0 w5 0 0 w4 0 w3 0 w1 0 0 0 0 0

2345 w1 0 0 0 w5 0 0 w4 0 w3 w2 0 0 0 0 0

12 0 w3 w4 0 0 w5 0 0 0 0 0 w2 w1 0 0 0

13 0 w2 0 w4 0 0 w5 0 0 0 0 w3 0 w1 0 0

23 0 w1 0 0 w4 0 0 w5 0 0 0 0 w3 w2 0 0

14 0 0 w2 w3 0 0 0 0 w5 0 0 w4 0 0 w1 0

24 0 0 w1 0 w3 0 0 0 0 w5 0 0 w4 0 w2 0

34 0 0 0 w1 w2 0 0 0 0 0 w5 0 0 w4 w3 0

15 0 0 0 0 0 w2 w3 0 w4 0 0 w5 0 0 0 w1

25 0 0 0 0 0 w1 0 w3 0 w4 0 0 w5 0 0 w2

35 0 0 0 0 0 0 w1 w2 0 0 w4 0 0 w5 0 w3

45 0 0 0 0 0 0 0 0 w1 w2 w3 0 0 0 w5 w4

∅ 0 0 0 0 0 0 0 0 0 0 0 w1 w2 w3 w4 w5
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2

Proposition 3. Given W = {w1, . . . , wn}, the 2n−1 × 2n−1 partition matrix Π(W ) has
the following properties:

(1) The entry wi with i = {1, . . . , n} appears exactly once in each row and column.
(2) If row i is indexed by set S ⊆ [n] (with |S| even), and n ∈ S, then column i is

indexed by S \ n. If n /∈ S, then column i is indexed by S ∪ n.
(3) All diagonal entries of Π(W ) are equal to wn.
(4) Π(W ) is symmetric.

Proof of Prop. 3.1 : After inspecting the equation defining the partition matrix∑
j /∈S

bS∪jwj +
∑
j∈S

bS\jwj = 0 ,

where S represents an even cardinality subset of [n], it is evident that each row contains
exactly one entry for each wi. To see that each column also contains exactly one entry
wi with i = {1, . . . , n}, consider the column indexed by unknown bS′ where S′ ⊆ [n]
with odd cardinality. Then, for each j ∈ S′, the row indexed by S = S′ \ j contains wj .
Additionally, for each j /∈ S′, the row indexed by S = S′ ∪ j also contains wj . Thus, each
row and column contains exactly one entry wi for i = {1, . . . , n}. 2

As an example of Prop. 3.2, note that row {12} is paired with column {125}, and
column {1} is paired with row {15} in Ex. 4.
Proof of Prop. 3.2 : To prove this claim, suppose that we have the “order tree” Tn−1 for
the subsets of [n− 1]. In order to create the order tree Tn for the subsets of [n], we first
copy Tn−1 and add the integer n to each set, creating the tree Tn−1 ∪ n. We then join
the node in Tn−1 ∪ n indexed by {1 · · ·n} to the node in Tn−1 indexed {1 · · · (n − 1)}.
The resulting tree is the order tree for Tn. For example,

1234

123

12

1 2

13 23

3 4

14 24

124

15 25 35

1235

125 135

5

12345234

24 34

124 134 234

35 45

1235

135 235

1245 1345 23

145 245 345

345 2345

45

Since no set in Tn−1 contains the integer n and every set in Tn−1 ∪ n contains n, it
is easy to see that the even and odd sets are paired by inspecting how Tn−1 overlays on
top of Tn−1 ∪ n. Thus, the claim holds. 2

Proof of Prop. 3.3 : This result follows from the equations defining the partition matrix,
and also Prop. 3.2, which defines the row-column pairing of the diagonal element. 2

Proof of Prop. 3.4 : Consider an arbitrary row i indexed by a set Si, and let column i be
indexed by the set bi. In order to prove symmetry, we must show that row i is equal to
column i. By Prop. 3.2, n is either in Si or bi, but not both. Without loss of generality,
assume n ∈ Si and bi = Si\n (e.g. Si = {15} and bi = {1}). Suppose

(
Π(W )

)
ij

= wkj for

j < i. We must show that
(
Π(W )

)
ji

= wkj . Since j < i, kj /∈ Si, and column j is indexed

by bj = Si∪kj (e.g. in row {15}, w2 appears in column {125}). Since n ∈ (Si∪kj), row j
is indexed by Sj = (Si∪kj)\n (e.g. Sj = {12}). Then, Sj \kj = bi, and

(
Π(W )

)
ji

= wkj .
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Suppose i < j, and
(
Π(W )

)
ij

is again equal to wkj . Then kj ∈ Si, and column j is

indexed by bj = Si \ kj and row j is indexed by Sj = (Si \ kj) \ n (e.g., in row {15}, w1

appears in column {1}). But then Sj ∪ kj = bi, and
(
Π(W )

)
ji

= wkj .

A similar argument holds if n /∈ Si, but with the logic reversed. Since we have shown
that

(
Π(W )

)
ij

=
(
Π(W )

)
ji

. we have shown that the matrix is symmetric. 2

3.3. The Partition Matrix as a Sum of Permutation Matrices

We will now express the partition matrix in terms of a specific set of permutation ma-
trices, and then prove a series of properties about these particular permutation matrices.
Recall that the symmetric difference of two sets A and B (denoted as A∆B) is the set
of elements which are in either set A or B but not in their intersection. For example, the
symmetric difference {1, 2, 3}∆{3, 4} = {1, 2, 4}. By Prop. 3.4, every wk appears exactly
once in each row and column. Therefore, we can express Π(W ) as follows.

Definition 2. Given W = {w1, . . . , wn} and the corresponding partition matrix Π(W ),

let Π1, . . . ,Πn ∈ {0, 1}2
n−1×2n−1

be permutation matrices such that

(Πk)ij =

{
1 if

(
Π(W )

)
ij

= wk ,

0 otherwise .
, where 1 ≤ i, j ≤ 2n−1.

By this definition, it is clear that

Π(W ) =

n∑
k=1

wkΠk .

Example 5. Let W = {w1, . . . , w4}. Here we display the 8× 8 partition matrix Π(W ),
and the particular permutation matrix Π3. For convenience, we highlight the w3 entries
appearing in Π(W ).

Π(W ) =

123 124 134 234 1 2 3 4

1234 w4 w3 w2 w1 0 0 0 0

12 w3 w4 0 0 w2 w1 0 0

13 w2 0 w4 0 w3 0 w1 0

23 w1 0 0 w4 0 w3 w2 0

14 0 w2 w3 0 w4 0 0 w1

24 0 w1 0 w3 0 w4 0 w2

34 0 0 w1 w2 0 0 w4 w3

∅ 0 0 0 0 w1 w2 w3 w4

, Π3 =

123 124 134 234 1 2 3 4

1234 0 1 0 0 0 0 0 0

12 1 0 0 0 0 0 0 0

13 0 0 0 0 1 0 0 0

23 0 0 0 0 0 1 0 0

14 0 0 1 0 0 0 0 0

24 0 0 0 1 0 0 0 0

34 0 0 0 0 0 0 0 1

∅ 0 0 0 0 0 0 1 0
2

By Prop. 3.4, the matrix Π(W ) is symmetric. Therefore, each of the permutation
matrices Π1, . . . ,Πn is likewise symmetric, and the following proposition holds.

Proposition 4. Given W = {w1, . . . , wn} and the corresponding permutation matrices
Π1, . . . ,Πn, each of the following holds:

(1) Πn is the identity matrix ,
(2) For k = 1, . . . , n, Π2

k = I (the matrices are involutory) ,
(3) For k = 1, . . . , n− 1, Πk has ±1 eigenvalues, and Πn has all +1 eigenvalues.
(4) For k = 1, . . . , n, Πk is diagonalizable, and

10



(5) ΠkΠl = ΠlΠk (the permutation matrices Πk pairwise commute) .

Example 6. Given W = {w1, . . . , w5}, here is the 16× 16 partition matrix Π(W ). We
will show that

(
Π1Π3

)
({23},{125}) = 1 =

(
Π3Π1

)
({23},{125}) .

12345 123 124 134 234 125 135 235 145 245 345 1 2 3 4 5

1234 w5 w4 w3 w2 w1 0 0 0 0 0 0 0 0 0 0 0

1235 w4 w5 0 0 0 w3 w2 w1 0 0 0 0 0 0 0 0

1245 w3 0 w5 0 0 w4 0 0 w2 w1 0 0 0 0 0 0

1345 w2 0 0 w5 0 0 w4 0 w3 0 w1 0 0 0 0 0

2345 w1 0 0 0 w5 0 0 w4 0 w3 w2 0 0 0 0 0

12 0 w3 w4 0 0 w5 0 0 0 0 0 w2 w1 0 0 0

13 0 w2 0 w4 0 0 w5 0 0 0 0 w3 0 w1 0 0

23 0 w1 0 0 w4 0 0 w5 0 0 0 0 w3 w2 0 0

14 0 0 w2 w3 0 0 0 0 w5 0 0 w4 0 0 w1 0

24 0 0 w1 0 w3 0 0 0 0 w5 0 0 w4 0 w2 0

34 0 0 0 w1 w2 0 0 0 0 0 w5 0 0 w4 w3 0

15 0 0 0 0 0 w2 w3 0 w4 0 0 w5 0 0 0 w1

25 0 0 0 0 0 w1 0 w3 0 w4 0 0 w5 0 0 w2

35 0 0 0 0 0 0 w1 w2 0 0 w4 0 0 w5 0 w3

45 0 0 0 0 0 0 0 0 w1 w2 w3 0 0 0 w5 w4

∅ 0 0 0 0 0 0 0 0 0 0 0 w1 w2 w3 w4 w5

Observe that Π1

(
{23}, {123}

)
= 1 = Π3

(
{1235}, {125}

)
. Furthermore, observe that(

{1235}, {123}
)

indexes a diagonal element since {1235}∆{5} = {123} (by Prop. 3.2). For

the commuted multiplication Π3Π1, observe that Π3

(
{23}, {2}

)
= 1 = Π1

(
{25}, {125}

)
.

Furthermore, observe that
(
{25}, {2}

)
indexes a diagonal element since {25}∆{5} = {2}.

This is the technique used to prove Prop. 4.5. 2

Proof. Prop. 4.1 comes directly from the definition of the permutation matrices and Prop.
3.3. To see that the matrices are involutory (Prop. 4.2), recall that for any permutation
matrix P , PPT = I. In this case, since the matrices are symmetric, Πk = ΠT

k , and
thus Π2

k = I follows. For Prop. 4.3, since the matrices Πk are involutory, the minimal
polynomial is x2 − 1, and because the eigenvalues are roots of the minimal polynomial,
the eigenvalues are clearly ±1. Since Πn = I, the eigenvalues of Πn all clearly +1. For
Prop. 4.4, we observe that this is proven in [15], Theorem 6, pg. 204.

Finally, we must show that the matrices pairwise commute. We will show that, given
k1, k2 ∈ {1, . . . , n}, Πk1Πk2 = Πk2Πk1 . Since every row/column of Πk has exactly one
non-zero entry,

(
Πk1Πk2

)
ij

= 1 only when the non-zero entries are located in the same

row/column, respectively.
In particular, let Si index the i-th row of Π(W ), and let Sj index the j-th column

of Π(W ). For shorthand, we will denote
(
Πk

)
Si,Sj

as
(
Πk

)
ij

with 1 ≤ i, j ≤ 2n−1.

Then, the non-zero entries in row Si of Πk1 and column Sj in Πk2 can be expressed as
Πk1

(
Si, Si∆k1

)
= 1 = Πk2

(
Sj∆k2, Sj

)
(relevant to the product Πk1Πk2), and the non-

zero entries in row Si of Πk2 and column Sj in Πk1 can be expressed as Πk2

(
Si, Si∆k2

)
=

1 = Πk1

(
Sj∆k1, Sj

)
(relevant to the commuted product Πk2Πk1). This can be seen

by recalling the definitions of both the partition matrix and permutation matrices. We
observe that

(
Πk1Πk2

)
ij

= 1 if and only if {Sj∆k2, Si∆k1} indexes a diagonal entry,

11



and
(
Πk2Πk1

)
ij

= 1 if and only if {Sj∆k1, Si∆k2} indexes a diagonal entry. Therefore,

in order to show
(
Πk1Πk2

)
ij

=
(
Πk2Πk1

)
ij

, we simply observe that if {Sj∆k2, Si∆k1}
indexes a diagonal entry, then Sj∆k2∆n = Si∆k1 (by Prop. 3.2). However, if Sj∆k2∆n =
Si∆k1, then Sj∆k1∆n = Si∆k2, by the definition of the symmetric difference. Therefore,(
Πk1Πk2

)
ij

=
(
Πk2Πk1

)
ij

, and the matrices pairwise commute. 2

We pause to observe that the set of matrices {Π1, . . . ,Πn} has now been shown to be a
set of commuting, diagonalizable matrices. Recall that a set of matrices is simultaneously
diagonalizable if there exists a single invertible matrix P such that P−1AP is a diagonal
matrix for every A in the set. This allows us to recall the following well-known fact:

Proposition 5 ([16], pg. 64). A set (possibly infinite) of diagonalizable matrices is com-
muting if and only if it is simultaneously diagonalizable.

Having gathered together a series of facts about the partition matrix and the associated
permutation matrices, we now investigate the determinant of the partition matrix.

4. The Partition Matrix and Partition Polynomial

Given a square non-singular matrix A, Cramer’s rule states that Ax = b is solved by

xi =
det(A|ib)
det(A)

,

where A|ib is the matrix A with the i-th column replaced with the right-hand side vector
b. In Section 3, we extracted a 2n−1 × 2n−1 square linear system from the general linear
system constructed via the minimum-degree Nullstellensatz certificate described by Thm.
2. Here, we see by Cramer’s rule that the unknowns within that certificate are ratios
of two determinants. In this section, we show that the determinant of the partition
matrix is equivalent to a brute-force iteration over all the partitions of W . Therefore, the
denominator of any unknown in the certificate is a combinatorial representation of the
partition problem.

We observe that, in general, the linear system Ax = b may have a solution even if
det(A) = 0. However, in the case of the partition matrix, when we demonstrate that the
det(A) is equal to the partition polynomial, we will be demonstrating that Ax = b only
has a solution in the case when det(A) 6= 0.

Let {−1, 1}n be the set of all ±1 bit strings of length n. For S ∈ {−1, 1}n, let si
denote the i-th bit in the string S.

Definition 3. Given a set W = {w1, . . . , wn}, let∏
S∈{−1,1}n−1

(( n−1∑
i=1

siwi

)
+ wn

)
be the partition polynomial of W .

For example, let n = 5, and S ∈ {−1, 1}4 be S = “-1,1,-1,-1”. Then, S corresponds to
the −w1 +w2−w3−w4, and denotes a partition of W = {w1, . . . , w5}, with w5 fixed on
the “positive” side of the partition, and the other wi sorted according to sign.
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− +

w1 w5

w3 w2

w4

If this arrangement of wi is a partition of W , then −w1 +w2−w3−w4+w5 = 0. In this

way, any bitstring S ∈ {−1, 1}n−1 is equivalent to fixing wn on the “positive” side of

the partition, and then arranging the other wi on the “positive/negative” side, according

to sign. In this way, the partition polynomial represents an iteration over every possible

partition of W , avoiding double-counting by permanently fixing wn on the “positive”

side. If the set W is partitionable, one of bitstrings S will define a factor of the partition

polynomial that sums to zero. We will show that the determinant of the partition matrix

is the partition polynomial: therefore, if the determinant of the partition matrix is zero,

the linear system has no solution, and there is no Nullstellensatz certificate.

Example 7. In Ex. 1, we presented an actual minimum-degree certificate for the non-

partitionable set W = {1, 3, 5, 2} . We observe that

−51975 = (1 + 3 + 5 + 2)(−1 + 3 + 5 + 2)(1− 3 + 5 + 2)(1 + 3− 5 + 2)

(−1− 3 + 5 + 2)(−1 + 3− 5 + 2)(1− 3− 5 + 2)(−1− 3− 5 + 2) .

Via Cramer’s rule, we see that the unknown b4 is equal to

b4 =
−2550

−51975
=

34

693
,

which is indeed the value of unknown b4 as it appears in the certificate. 2

Example 8. Here is the determinant of the 8× 8 partition matrix Part4:

det





w4 w3 w2 w1 0 0 0 0

w3 w4 0 0 w2 w1 0 0

w2 0 w4 0 w3 0 w1 0

w1 0 0 w4 0 w3 w2 0

0 w2 w3 0 w4 0 0 w1

0 w1 0 w3 0 w4 0 w2

0 0 w1 w2 0 0 w4 w3

0 0 0 0 w1 w2 w3 w4




=

(w1 + w2 + w3 + w4)(−w1 + w2 + w3 + w4)

(w1 − w2 + w3 + w4)(w1 + w2 − w3 + w4)

(−w1 + w2 − w3 + w4)(−w1 − w2 + w3 + w4)

(w1 − w2 − w3 + w4)(−w1 − w2 − w3 + w4) .

Theorem 6. Given W = {w1, . . . , wn}, the determinant of the partition matrix of W is

the partition polynomial of W .

Proof. Since Π1, . . . ,Πn are a set of pairwise commuting diagonalizable matrices, via

Prop. 5, they are also simultaneously diagonalizable. Let P be the 2n−1 × 2n−1 matrix
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that simultaneously diagonalizes Π1, . . . ,Πn. Then

P−1Π(W )P = P−1

(
n∑
k=1

wkΠk

)
P =

n∑
k=1

wkP
−1ΠkP

=



∑n
k=1 wkλk,1 ∑n

k=1 wkλk,2
. . . ∑n

k=1 wkλk,2n−1


where λk,1, . . . , λk,2n−1 ∈ {−1, 1} are the eigenvalues of Πk. Then, we see

det
(
Π(W )

)
= det

(
P−1

)
det
(
Π(W )

)
det(P ) = det

(
P−1Π(W )P

)
=

2n−1∏
j=1

( n∑
k=1

wkλk,j

)
.

Therefore, we see that det
(
Π(W )

)
is a product of linear polynomials in wk with coeffi-

cients ±1, where the coefficient of wn is always +1.
In order to complete the proof, we must now show that every linear polynomial of

this form is present in the determinant (for example, for n = 3, the determinant is not
(w1 − w2 + w3)4). Thus, consider any linear polynomial

∑n
k=1 pkwk with pn = 1 and

pk = ±1, k = 1, . . . , n− 1, and assume this polynomial is not a factor of det
(
Π(W )

)
.

In order to derive a contradiction, set wk = −pk for k = 1, . . . , n− 1, and wn = n− 1.
Observe that W = {−p1,−p2, . . . ,−pn−1, n − 1} is partitionable, according to the sign
pattern of the pk: ∑

pk=+1

wk −
∑
pk=−1

wk =

n∑
k=1

pkwk = 0 .

However, for every other assignment of λn = 1, λk = ±1,
∑n
k=1 λkwk ≥ 1. Since∑n

k=1 pkwk is not a factor of det
(
Π(W )

)
, then det

(
Π(W )

)
6= 0 for this W . However,

we can now construct a Nullstellensatz certificate of non-partitionability, even though W
is partitionable, which is a contradiction. Since the linear factor was chosen at random,
each of the 2n−1 linear polynomials

∑n
k=1 pkwk, pk = ±1, pn = 1 must appear as a factor

of the determinant and

det
(
Π(W )

)
=

∏
P∈{−1,1}n−1

(( n−1∑
k=1

pkwk

)
+ wn

)
= the partition polynomial . 2

Remark 7. A short proof of Thm. 6 may also be derived using representation theory
of finite groups, essentially, applying [7, Thm. 2], as follows. The n − 1 non-identity
permutation matrices Π1,. . . , Πn−1 giving Π(W ) in Definition 2 generate an elementary
abelian 2-group E2n−1 of order 2n−1. It can be shown that E2n−1 acts fixed-point-free, i.e.
we have its regular representation. Thus, after the simultaneous diagonalization of the
Πj ’s, the diagonal entries of the transformed Π(W ) will be in 1-to-1 correspondence with
the irreducible representations of E2n−1 , which are encoded by the ±1-signs assigned to
Π1,. . . , Πn−1.

14



Acknowledgements

The authors would like to acknowledge the support of NSF DSS-0729251, NSF-CSSI-
0926618, DSS-0240058, the Rice University VIGRE program, and the Defense Advanced
Research Projects Agency under Award No. N66001-10-1-4040. Additionally, research on
this projected was supported in part by a grant from the Israel Science Foundation and
Singapore MOE Tier 2 Grant MOE2011-T2-1-090 (ARC 19/11). Finally, the authors
thank the editors and anonymous referees for their time, energy and insight.

References

[1] N. Alon, Combinatorial Nullstellensatz, Combinatorics, Probability and Computing,
8:7–29, 1992.

[2] N. Alon and S. Tarsi, Colorings and orientations of graphs, Combinatorica, 12:125–
134, 1992.

[3] E. Babson, S. Onn and R.R. Thomas, The Hilbert zonotope and a polynomial time
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