
ar
X

iv
:1

31
2.

17
80

v2
 [

cs
.S

C
]

 2
6

D
ec

 2
01

3

Special Algorithm for Stability Analysis

of Multistable Biological Regulatory Systems∗

Hoon Hong

Department of Mathematics, North Carolina State University, Raleigh NC 27695, USA

Xiaoxian Tang†, Bican Xia

LMAM & School of Mathematical Sciences, Peking University, Beijing 100871, China

Abstract

We consider the problem of counting (stable) equilibriums of an important family of
algebraic differential equations modeling multistable biological regulatory systems. The
problem can be solved, in principle, using real quantifier elimination algorithms, in par-
ticular real root classification algorithms. However, it is well known that they can handle
only very small cases due to the enormous computing time requirements. In this paper,
we present a special algorithm which is much more efficient than the general methods.
Its efficiency comes from the exploitation of certain interesting structures of the family of
differential equations.

Key words: quantifier elimination, root classification, biological regulation system, stabil-
ity

1 Introduction

Modeling biological networks mathematically as dynamical systems and analyzing the local
and global behaviors of such systems is an important method of computational biology. The
most concerned behaviors of such biological systems are equilibrium, stability, bifurcations,
chaos and so on.

Consider the stability analysis of biological networks modeled by autonomous systems of
differential equations of the form ẋ = f (u,x) where x = (x1, . . . , xn),

f (u,x) = (f1 (u, x1, . . . , xn) , . . . , fn (u, x1, . . . , xn))

and each fk (u, x1, . . . , xn) is a rational function in x1, . . . , xn with real coefficients and real
parameter(s) u. We would like to compute a partition of the parametric space of u such that,
inside every open cell of the partition, the number of (stable) equilibriums of the system is
uniform. Furthermore, for each open cell, we would like to determine the number of (stable)
equilibriums.

Such a problem can be easily formulated as a real quantifier elimination problem. It is well
known that the real quantifier elimination problem can be carried out algorithmically. [61, 18,
3, 46, 47, 48, 31, 33, 34, 20, 50, 51, 52, 7, 8, 9, 11, 12, 26, 16, 57, 58, 14, 42, 10, 15]. There are
several software systems such as QEPCAD [20, 35, 11, 13], Redlog [28], Reduce (in Mathematica)
[55, 56] and SyNRAC [1]. Hence, in principle, the stability analysis of regulation system the
above system can be carried out automatically using those software systems. However, it is also

∗This research was partly supported by US National Science Foundation Grant 1319632, China Scholarship
Council, and National Science Foundation of China Grants 11290141 and 11271034.

†Corresponding author

1

http://arxiv.org/abs/1312.1780v2

well known that the complexity [25, 7] of those algorithms are way beyond current computing
capabilities since those algorithms are for general quantifier elimination problems.

The stability analysis is a special type of quantifier elimination problem, in particular, real
root classification. Hence, it would be advisable to use real root classification algorithms [69, 70].
In fact, [62, 63], [65] and [66] tackled the stability analysis problem using DISCOVERER [67]1.
They were able to tackle a specialized simultaneous decision problem (n = 6 and c = 2) [22] in
55, 000 secs [66]. However, the real root classification software could not go beyond these, due
to enormous computing time/memory requirements.

In this paper, we consider the problem of counting (stable) equilibriums of an important
family of algebraic differential equations modeling multistable biological regulation systems,
called MSRS (see Definition 1). In fact, the family is a straightforward generalization of several
interesting classes of systems in the literature [22, 23, 24]. The family of differential equations
has the form ẋ = f (σ,x) where f is a real function determined by certain real functions l (z),
g (z), h (z) and P (x) and parameterized by a real parameter σ.

We present a special algorithm which is much more efficient than the general root classifi-
cation algorithm. The efficiency of the special algorithm comes from the exploitation of certain
interesting structures of the differential equation under investigation such as

(1) the eigenvalues of the Jacobian at every equilibrium are all real, see Theorem 1;

(2) every equilibrium of the system is made up of at most two components, see Theorem 2;

(3) the eigenvalues of the Jacobian at every equilibrium have certain structures (see Theo-
rems 3 and 4), aiding the determination of stability of an equilibrium (see Corollary 1).

The special algorithm can handle much larger system than the general root classification al-
gorithm. For example, it can handle a specialized simultaneous decision problem (n = 11 and
c = 8) in several seconds.

We remark that our work can be viewed as following the numerous efforts in applying
quantifier elimination to tackle problems from various other disciplines [44, 45, 30, 29, 43, 64,
39, 40, 71, 2, 62, 63, 17, 32, 65, 68, 54, 59, 66, 53].

The paper is organized as follows. Section 2 provides a precise statement of the problem.
Section 3 reviews a general algorithm based on real root classification. Section 4 proves several
interesting structures of the problem. Section 5 gives a special algorithm that exploits the
structure proved in Section 4. Section 6 presents the experimental timings and compares them
to those of a general algorithm.

2 Problem

In this section, we give a precise and self-contained description of the problem. First we
introduce a family of differential equations that we will be considering.

Definition 1 (MultiStable Regulatory System). A system of ordinary differential equations

dx1

dt
= f1 (σ, x1, . . . , xn)

...

dxn

dt
= fn (σ, x1, . . . , xn)

is called a multistable regulatory system (MSRS) if fk has the following form

fk (σ, x1, . . . , xn) = −l (xk) + σ
g (xk)

P (x1, . . . , xn) + h (xk)

where
1DISCOVERER was integrated later in the RegularChains package in Maple. Since then, there are several

improvements on the package from both mathematical and programming aspects [21]. One can see the command
RegularChains[ParametricSystemTools][RealRootClassification] in any version of Maple that is newer than
Maple 13.

2

1. σ is a positive parameter;

2. The function P is symmetric, that is,

P (x1, . . . xi, . . . , xj , . . . , xn) = P (x1, . . . xj , . . . , xi, . . . , xn)

for every i, j;

3. ∀k ∀(x1, . . . , xn) ∈ Rn
>0 P (x1, . . . , xn) + h (xk) > 0;

4. l (z) 6= 0 and for every σ ∈ R>0, the function

σ
g (z)

l (z)
− h (z)

has at most one extreme point on the intended domain of z.

Example 1. We present several examples of MSRS from cellular differentiation [22, 23, 24].
In fact, the above definition of MSRS is a straightforward generalization of those differential
equations.

1. Simultaneous decision [22].

dxk

dt
= −xk + σ

1

1 + Σn
m=1x

c
m − xc

k

where the quantities x1, ..., xn (∈ R>0) denote the concentrations of n proteins, c (∈ R>0)
the cooperativity, and σ (∈ R>0) the strength of unrepressed protein expression, relative
to the exponential decay. It is easy to verify that it is a MSRS with

l (z) = z, g (z) = 1, h (z) = −zc,

P (x1, . . . , xn) = 1 + Σn
m=1x

c
m.

The first graph in Figure 1 shows the graph of σ g(z)
l(z) − h (z) for c = 4 and σ = 1.

2. Mutual inhibition with autocatalysis [23].

dxk

dt
= −xk + α+ σ

xc
k

1 + Σn
m=1x

c
m

where the quantities x1, ..., xn (∈ R>0) denote the concentrations of n proteins, c (∈ R>0)
the cooperativity, σ (∈ R>0) the relative speed for transcription/translation, and α (∈
R≥0) the leak expression. It is easy to verify that it is a MSRS with

l (z) = z − α, g (z) = zc, h (z) = 0,

P (x1, . . . , xn) = 1 + Σn
m=1x

c
m.

The second graph in Figure 1 shows the graph of σ g(z)
l(z) −h (z) for α = 1, c = 2 and σ = 1.

3. bHLH dimerisation [23, 24].

dxk

dt
= −xk + σ

x2
k

K2

a2
t
(1 + Σn

m=1xm)
2
+ x2

k

where the quantities x1, ..., xn (∈ R>0) denote the concentrations of n proteins, σ (∈ R>0)
the relative speed for transcription/translation, K2 (∈ R>0) the binding constant, and at
(∈ R>0) the total quantity of activator. It is easy to verify that it is a MSRS with

l (z) = z, g (z) = z2, h (z) = z2,

P (x1, . . . , xn) =
K2

a2t
(1 + Σn

m=1xm)
2
.

The third graph in Figure 1 shows the graph of σ g(z)
l(z) − h (z) for σ = 1.

3

Figure 1: Graphs of σ g(z)
l(z) − h (z) for the models in Example 1

Definition 2 (Equilibrium). For given σ, an r ∈ Rn
>0 is called an equilibrium if

f1 (r) = · · · = fn (r) = 0.

Notation 1 (Jacobian). The Jacobian of f is denoted by

Jf =







∂f1
∂x1

· · · ∂f1
∂xn

...
. . .

...
∂fn
∂x1

· · · ∂fn
∂xn






.

Definition 3 (Stable). An equilibrium r is called stable (more precisely, locally asymptotically
stable) if all eigenvalues of Jf (r) have strictly negative real parts.

We are ready to state the problem that will be tackled in this paper. Informally, the problem
is as follows. For given polynomials l, g, h and P , we have a family of MSRS parameterized
by σ. We would like to find a partition of σ values into several intervals so that for all σ in
each interval the number of (stable) equilibriums is uniform. Furthermore, for each interval,
we would like to determine the number of (stable) equilibriums. Now let us state the problem
precisely.

Problem. Devise an algorithm with the following specification.

Input: f = (f1, . . . , fn) ∈ (Q (σ,x))
n
such that ẋ = f is a MSRS

Output:

B ∈ Z[σ],
I1, . . . , Iw−1 ∈ IQ>0 (that is, closed intervals with positive rational endpoints) and
(e1, s1) , . . . , (ew, sw) ∈ Z2

≥0

such that

∀j ∈ {1, . . . , w − 1}, B has one and only one real root, say σj , in Ij,

σ1 < · · · < σw−1, and

∀j ∈ {1, . . . , w} ∀v ∈ (σj−1, σj) Ev = ej ∧ Sv = sj

where

σ0 = 0, σw =∞,

Ev (Sv) denotes the number of (stable) equilibriums of ẋ = f (v,x)

Example 2. We illustrate the above input and output specification by an example, which is a
specific simultaneous decision model (n = 4 and c = 4) as shown in Example 1.

Input: f1, f2, f3, f4

where fk = −xk +
σ

1+x4
1+x4

2+x4
3+x4

4−x4
k

, k = 1, . . . , 4

4

Output:

B =
(

42755090541778564453125σ24+ · · · − 140737488355328
)

(σ − 4)
2
,

I1 = [54 ,
21
16], I2 = [4, 4],

(e1, s1) = (1, 1) , (e2, s2) = (9, 5) , (e3, s3) = (15, 4)

By Definition 1, the input system is

dxk

dt
= −xk +

σ

1 + x4
1 + x4

2 + x4
3 + x4

4 − x4
k

.

The meaning of the output is as follows. Let σ1 (≈ 1.303331342) be the unique positive root of
B (σ) = 0 in I1 and σ2 (= 4) be the unique positive root of B (σ) = 0 in I2. Then the system
has the following properties:

(1) if 0 < σ < σ1, then the system has exactly 1 equilibrium and the equilibrium is stable;

(2) if σ1 < σ < σ2, then the system has exactly 9 distinct equilibriums, 5 of which are stable;

(3) if σ2 < σ <∞, then the system has exactly 15 distinct equilibriums, 4 of which are stable.

3 Review of General Algorithm

In this section, we briefly review a general algorithm [62, 63, 65, 66] for stability analysis
based on real root classification. As stated in Section 1, the general algorithm works for systems
with rational functions and thus can be applied to solve the Problem posted in last section for
MSRS if all the involved functions, i.e., l, g, h, P , are polynomials.

Suppose we are given a system ẋ = f (σ,x) where

f (σ,x) = (f1(σ, x1, . . . , xn), . . . , fn(σ, x1, . . . , xn))

and each fk(σ, x1, . . . , xn) is a rational function. A sketch description of the general algorithm
may be as follows.

1. Equate the numerators of all fk(σ, x1, . . . , xn) to 0, yielding a system of polynomial equa-
tions. To simplify the notations, we still use {f1 = 0, . . . , fn = 0} to denote the equations.
Note that there may be some constraints on the system. For example, the denominators
of all fk should be nonzero, σ and some variables should be positive, and so on. Therefore,
we actually obtain a semi-algebraic system. Let us denote it by S.

2. Compute the Hurwitz determinants ∆1, . . . ,∆n of the Jacobian matrix Jf (σ,x). Let
det (λI − Jf (σ,x)) = bnλ

n + bn−1λ
n−1 + . . . + b0 (bn > 0), then ∆1, . . . ,∆n are defined

as the leading principal minors of



















bn−1 bn−3 bn−5 . . . bn−(2n−1)

bn bn−2 bn−4 . . . bn−(2n−2)

0 bn−1 bn−3 . . . bn−(2n−3)

0 bn bn−2 . . . bn−(2n−4)

0 0 bn−1 . . . bn−(2n−5)

...
...

...
...

...



















n×n

.

By the Routh-Hurwitz Critierion, an equilibrium r is stable if and only if

∆1(r) > 0 ∧ · · · ∧∆n(r) > 0.

Therefore, add the constraints ∆1 > 0, . . . ,∆n > 0 to S and obtain a new system T .

5

3. Compute the so-called border polynomial B(σ) of the system T . Simply speaking, B(σ)
is a polynomial in σ satisfying

[

∃x

(

f(σ,x) = 0 ∧ det (Jf (σ,x)) ·

n
∏

k=1

∆k(σ,x) = 0)

)]

=⇒ B (σ) = 0.

For more details on border polynomials, please refer to [69, 62].

4. Because there is only a single parameter σ, we can take a rational sample point vj in the
open interval (σj , σj+1) for all j (0 ≤ j ≤ w − 1) by isolating the distinct positive roots
σ1, . . . , σw−1 of B(σ) = 0, where σ0 = 0 and σw = +∞.

5. For each sample point vj , substitute vj for σ in S and T , respectively, yielding two
new constant systems S(vj) and T (vj). By real solution counting (or isolating) of S(vj)
and T (vj), respectively, we obtain the number of equilibriums and the number of stable
equilibriums of the original system at vj , respectively. By the property of B(σ), the
number of (stable) equilibriums of the original system at vj equals the number of (stable)
equilibriums of the original system at any σ ∈ (σj , σj+1).

In general, the Hurwitz determinants may be huge and thus computing them is very time-
consuming. Furthermore, huge Hurwitz determinants may cause it infeasible in practice to
compute the border polynomial of system T .

4 Structure

In this section, we describe certain special structures of the multi-stable regulatory system
that we will exploit in order to develop an efficient special algorithm. Before we plunge into
the details, we first provide an overview of the special structures:

(1) the eigenvalues of the Jacobian at every equilibrium are all real, see Theorem 1;

(2) every equilibrium of the system is made up of at most two components, see Theorem 2;

(3) the eigenvalues of the Jacobian at every equilibrium have certain nice structures, simpli-
fying the stability analysis, see Theorems 3 and 4 and Corollary 1.

Now, we plunge into the technical details. In the discussion below, when we say “(stable)
equilibrium”, we mean (stable) equilibrium of a MSRS ẋ = f (σ,x). We will use the following
notations throughout this section:

a (σ, z) = σ
g (z)

l (z)
− h (z) ,

Dk (x) = −
P (x) + h (xk)

l (xk)
.

It is easy to see that

fk (x) =
P (x)− a (σ, xk)

Dk (x)
.

Theorem 1 (Real eigenvalues). If r is an equilibrium, then every eigenvalue of Jf (r) is real.

Proof. Let r be an equilibrium and A = Jf (r). For every k, let

Nk(x) = P (x)− a (σ, xk) .

Then for any i, j,

Ai,j =















∂fi
∂xi

(r) i = j

∂Ni
∂xj

(r)Di(r)−Ni(r)
∂Di
∂xj

(r)

Di(r)
2 i 6= j

.

6

Since r is an equilibrium, we have Ni (r) = 0 for any i. Hence,

Ai,j =















∂fi
∂xi

(r) i = j

∂Ni
∂xj

(r)

Di(r)
i 6= j

=















∂fi
∂xi

(r) i = j

∂P
∂xj

(r)

Di(r)
i 6= j

.

Let E be the n× n diagonal matrix such that

Ei,i =
∂P
∂xi

(r)

Πk 6=iDk (r)
.

Let C = EA. Then for any i, j such that i 6= j, we have

Ci,j =Ei,iAi,j =
∂P
∂xi

(r)

Πk 6=iDk (r)
·

∂P
∂xj

(r)

Di (r)
=

∂P
∂xi

(r) ∂P
∂xj

(r)

Πn
k=1Dk (r)

,

Cj,i =Ej,jAj,i =

∂P
∂xj

(r)

Πk 6=jDk (r)
·

∂P
∂xi

(r)

Dj (r)
=

∂P
∂xj

(r) ∂P
∂xi

(r)

Πn
k=1Dk (r)

.

Thus Ci,j = Cj,i. Hence C is a real symmetric matrix.

Let λ be an eigenvalue of A and α a corresponding eigenvector, namely Aα = λα. Then
Cα = EAα = λEα. By taking conjugate transpose, we have

α∗C∗ = λ∗α∗E∗.

Since both E and C are real symmetric, we have α∗C = λ∗α∗E. Therefore, α∗Cα = λ∗α∗Eα

and hence
λα∗Eα = λ∗α∗Eα.

Since α∗Eα is non-zero, we have λ = λ∗. In other words, λ is real.

Theorem 2 (Structure of equilibrium). Let r = (r1, . . . , rn) be an equilibrium. The components
of r consist of at most two different numbers.

Proof. For every k, we have

fk (r) =
P (r)− a (σ, rk)

Dk (r)
= 0.

Thus
a (σ, r1) = · · · = a (σ, rn) = P (r) .

Note that, for every σ, the function a (σ, z) has at most one extreme point for z over R>0 by
Definition 1. Thus for every real number ̺, the equation a (σ, z) = ̺ has at most two different
positive solutions in z. Hence r1, . . . , rn consist of at most two different positive numbers.

From now on, we will say that an equilibrium r is diagonal if r1 = · · · = rn.

Theorem 3 (Characteristic polynomial for diagonal equilibrium). Let r be a diagonal equilib-
rium (q, . . . , q). Then

det (λI − Jf (r)) = (λ−G1)
n−1

(λ−G2) .

where
G1 = τ − ξ,

G2 = τ + (n− 1)ξ.

where again

τ =
∂fn

∂xn

(r) , ξ =

∂P
∂xn−1

Dn

(r) .

7

Proof. Note for any i, j,

fi(x1, . . . , xi, . . . , xj , . . . , xn) = fj(x1, . . . , xj , . . . , xi, . . . , xn),

P (x1, . . . , xi, . . . , xj , . . . , xn) = P (x1, . . . , xj , . . . , xi, . . . , xn).

Thus,

∂fi

∂xi

(x1, . . . , xi, . . . , xj , . . . , xn) =
∂fj

∂xj

(x1, . . . , xj , . . . , xi, . . . , xn),

∂P

∂xi

(x1, . . . , xi, . . . , xj , . . . , xn) =
∂P

∂xj

(x1, . . . , xj , . . . , xi, . . . , xn).

Hence,

∂fi

∂xi

(r) =
∂fi

∂xi

(q, . . . , q) =
∂fj

∂xj

(q, . . . , q) =
∂fj

∂xj

(r) ,

∂P

∂xi

(r) =
∂P

∂xi

(q, . . . , q) =
∂P

∂xj

(q, . . . , q) =
∂P

∂xj

(r) .

Note also for any i, j,

Di (r) = Di(q, . . . , q) = Dj(q, . . . , q) = Dj (r) .

Therefore

Jf (r) =











τ ξ . . . ξ

ξ τ . . . ξ
...

...
. . .

...
ξ ξ . . . τ











n×n

.

Note
Jf (r) = (τ − ξ) I + ξuTu.

where u =
[

1 · · · 1
]

. Hence,

det (λI − Jf (r))

= det
(

λI − (τ − ξ) I − ξuTu
)

= det
(

(λ− (τ − ξ)) I − ξuTu
)

= (λ− (τ − ξ))n det

(

I −
ξ

λ− (τ − ξ)
uTu

)

= (λ− (τ − ξ))
n

(

1−
ξ

λ− (τ − ξ)
uuT

)

(Sylvester’s determinant theorem)

= (λ− (τ − ξ))
n

(

1−
ξ

λ− (τ − ξ)
n

)

= (λ− (τ − ξ))n−1 (λ− (τ + (n− 1)ξ))

= (λ−G1)
n−1

(λ−G2) .

Theorem 4 (Characteristic polynomial for non-diagonal equilibrium). Let r be a non-diagonal
equilibrium. Let p and q appear in r respectively i times and n − i times, where 1 ≤ i ≤ ⌊n2 ⌋.
Then

det (λI − Jf (r)) = (λ−G1)
n−i−1 (λ−G2)

i−1 (
λ2 −G3λ+G4

)

,

where
G1 = τ − ξ,

G2 = β − γ,

G3 = β + τ + (i− 1) γ + (n− i− 1) ξ,

8

G4 = (β + (i− 1)γ) (τ + (n− i− 1) ξ)− i (n− i)µν,

where again

β =
∂f1

∂x1
(r) , τ =

∂fn

∂xn

(r) , γ =
∂P
∂x2

D1
(r) , ξ =

∂P
∂xn−1

Dn

(r) , µ =
∂P
∂xn

D1
(r) , ν =

∂P
∂x1

Dn

(r) .

Proof. Without loss of generality, suppose that r1 = · · · = ri = p and ri+1 = · · · = rn = q. By
symmetry, we have

Jf (r) =

[

E S

T F

]

n×n

,

where

E =











β γ . . . γ

γ β . . . γ
...

...
. . .

...
γ γ . . . β











i×i

F =











τ ξ . . . ξ

ξ τ . . . ξ
...

...
. . .

...
ξ ξ . . . τ











(n−i)×(n−i)

S = µ











1 1 . . . 1
1 1 . . . 1
...

...
. . .

...
1 1 . . . 1











i×(n−i)

T = ν











1 1 . . . 1
1 1 . . . 1
...

...
. . .

...
1 1 . . . 1











(n−i)×i

.

From Laplace’s Theorem, we have

det (λI − Jf (r)) = (−1)
2(1+2+...+i)

det (λI − E) det (λI − F) + Σi
k=1Σ

n−i
ω=1Mk,ωAk,ω ,

where Mk,ω is the minor of λI−Jf (r) consisting of the first i rows and the columns indexed by

1, 2, . . . , k − 1, k + 1, . . . , i, i+ ω

and Ak,ω is the cofactor of Mk,ω. By the same reasoning as that in the proof of Theorem 3, we
have

det (λI − E) = (λ− (β + (i− 1)γ)) (λ−G2)
i−1

and
det (λI − F) = (λ− (τ + (n− i− 1)ξ)) (λ−G1)

n−i−1
.

It is not difficult to check that

Mk,ω = (−1)
i−k+1

µ (λ−G2)
i−1

,

Ak,ω = (−1)
2(1+2+···+i)−k+2ω+i

ν (λ−G1)
n−i−1

.

Hence
det (λI − Jf (r)) = (λ−G1)

n−i−1
(λ−G2)

i−1 (
λ2 −G3λ+G4

)

.

Corollary 1 (Stability of equilibrium). Let r be an equilibrium. Then

(1) Case: r is diagonal (q, . . . , q). Then r is stable if and only if

G1 < 0 ∧G2 < 0,

where G1 and G2 are defined as in Theorem 3.

(2) Case: r is non-diagonal such that p appears once and q appears n− 1 times. Then

(2a) if n = 2, then r is stable if and only if

G3 < 0 ∧G4 > 0;

9

(2b) if n > 2, then r is stable if and only if

G1 < 0 ∧G3 < 0 ∧G4 > 0,

where G1, G3, G4 are defined as in Theorem 4.

(3) Case: r is non-diagonal such that p appears i times and q appears n − i times where
2 ≤ i ≤ ⌊n2 ⌋. Then r is stable if and only if

G1 < 0 ∧G2 < 0 ∧G3 < 0 ∧G4 > 0,

where G1, G2, G3, G4 are defined as in Theorem 4.

Proof.

(1) Case: r is diagonal (q, . . . , q). From Theorem 3, the eigenvalues of Jf (r) are

λ1 = · · · = λn−1 = G1,

λn = G2.

From Definition 3, the conclusion follows immediately.

(2) Case: r is non-diagonal such that p appears once and q appears n− 1 times.

(2a) If n = 2, from Theorem 4, λ1 and λ2, the eigenvalues of Jf (r), are the two solutions
of λ2 −G3λ+G4 = 0. Note

λ1 + λ2 = G3,

λ1λ2 = G4.

By Theorem 1, both λ1 and λ2 are real. Hence, λ1 < 0 and λ2 < 0 if and only if
λ1 + λ2 < 0 and λ1λ2 > 0. From Definition 3, the conclusion follows immediately.

(2b) If n > 2, from Theorem 4, the eigenvalues of Jf (r) are

λ1 = · · · = λn−2 = G1

and

λn−1 and λn are the two solutions of λ2 −G3λ+G4 = 0.

Note
λn−1 + λn = G3,

λn−1λn = G4.

By Theorem 1, both λn−1 and λn are real. Hence, λn−1 < 0 and λn < 0 if and
only if λn + λn−1 < 0 and λn−1λn > 0. From Definition 3, the conclusion follows
immediately.

(3) Case: r is non-diagonal such that p appears i times and q appears n − i times where
2 ≤ i ≤ ⌊n2 ⌋. From Theorem 4, the eigenvalues of Jf (r) are

λ1 = · · · = λn−i−1 = G1,

λn−i = · · · = λn−2 = G2

and

λn−1 and λn are the two solutions of λ2 −G3λ+G4 = 0.

Note
λn−1 + λn = G3,

λn−1λn = G4.

By Theorem 1, both λn−1 and λn are real. Hence, λn < 0 and λn−1 < 0 if and only if
λn + λn−1 < 0 and λn−1λn > 0. From Definition 3, the conclusion follows immediately.

10

5 Special Algorithm

In this section, we present algorithms for the problem posed in Section 2, that exploits
several special structures proved in Section 4. The description of the main algorithm is given
in Algorithm 1. It is high-level in that it does not specify implemental details. Below we will
explain the main ideas underlying the sub-algorithms and the main algorithm.

• Algorithm 5 (NonDiagonalEquilibrium): The correctness of the algorithm follows from
the symmetry of ẋ = f and Theorem 4.

• Algorithm 4 (DiagonalEquilibrium): The correctness of the algorithm follows from
the symmetry of ẋ = f and Theorem 3.

• Algorithm 3 (EquilibriumCounting): Given f satisfying the conditions in Definition 1,
and a real number v, we compute Ev (Sv), the number of (stable) equilibriums of ẋ =
f (v,x). To this purpose, we transform the n–dimensional system ẋ = f into several 2–
dimensional systems by Algorithms 4 and 5, determine the stability easily by Corollary 1
and count the number of (stable) equilibriums by symmetry. See more details below.

– Lines 1–3: We count the number of diagonal equilibriums and determine the sta-
bility of the diagonal equilibriums by Corollary 1-(1).

– Lines 5–13: We are preparing to count the number of non-diagonal equilibriums.
If i = 1 and n = 2, we determine the stability of a non-diagonal equilibrium by
Corollary 1-(2a). If i = 1 and n > 2, we determine the stability of a non-diagonal
equilibrium by Corollary 1-(2b). If i 6= 1, we determine the stability of a non-diagonal
equilibrium by Corollary 1-(3).

– Lines 14–17: We compute the number of (stable) equilibriums by combining the
results computed by Lines 5–13 together. In fact, by the symmetry of ẋ = f , for
every i (i = 1, . . . , ⌊n2 ⌋), if the system σ = v ∧F1 = 0∧F2 = 0∧ p 6= q has ẽi positive
solutions, then

(a) if i = n
2 , the system σ = v ∧F1 = 0∧F2 = 0∧ p 6= q is symmetric and thus ẽi is

even and the system ẋ = f has ẽi
2 ·
(

n
i

)

non-diagonal equilibriums.

(b) if i 6= n
2 , the system ẋ = f has ẽ ·

(

n
i

)

non-diagonal equilibriums.

Similarly, we count the number of stable equilibriums.

• Algorithm 2 (CriticalPolynomial): Given f satisfying the conditions in Definition 1,
we compute a polynomial B (σ) such that every “critical” σ value of the system ẋ = f is
a root of B (σ) = 0. By the “critical” values, we mean that the number of the (stable)
equilibriums of the system changes only when σ passes through those values. Note that
the number of the (stable) equilibriums changes only when an eigenvalue of the Jacobian
vanishes. In diagonal case, by Algorithm 4, an eigenvalue vanishes if and only if G1G2 = 0,
see Lines 1–2. In non-diagonal case, by Algorithm 5, if an eigenvalue vanishes then
G1G2G3G4 = 0, see Lines 4–5.

• Algorithm 1 (EquilibriumClassification (Special algorithm for MSRS)):

– Lines 1–3: By Algorithm 2, we computeB (σ) and isolate the real roots ofB (σ) = 0.
Note that for all σ in each open interval determined by B (σ) 6= 0, the number of
(stable) equilibriums is uniform. Thus we sample one rational number vi from each
open interval.

– Lines 5–14: In this loop, we compute ej (sj), the number of (stable) equilibriums
for σ = vj by Algorithm 3. We also collect all root isolation intervals containing the
“critical” σ values. Recall that a root of B may not be critical, although B vanishes
at every critical σ value. So we check whether a root of B (σ) = 0 is critical or not
by Lines 7–13.

Example 3. We will illustrate the algorithm on Example 2.

11

Algorithm 1: EquilibriumClassification (Special algorithm for MSRS)

Input:

f = (f1, . . . , fn) ∈ (Q (σ,x))
n
such that ẋ = f is a MSRS

Output:

B ∈ Z[σ],

I1, . . . , Iw−1 ∈ IQ>0, (that is, closed intervals with positive rational endpoints) and

(e1, s1) , . . . , (ew, sw) ∈ Z2
≥0

such that

∀j ∈ {1, . . . , w − 1}, B has one and only one real root, say σj , in Ij ,

σ1 < · · · < σw−1, and

∀j ∈ {1, . . . , w} ∀v ∈ (σj−1, σj) Ev = ej ∧ Sv = sj

where

σ0 = 0, σw =∞,

Ev (Sv) denotes the number of (stable) equilibriums of ẋ = f (v,x).

1 B ← CriticalPolynomial(f);
2 I1, . . . , Im ←real root isolation of B (σ) = 0 ∧ σ > 0;
3 v1, . . . , vm+1 ← rational points in each open interval of B (σ) 6= 0 ∧ σ > 0;
4 Intervals← empty list, Numbers← empty list;
5 for j from 1 to m+ 1 do
6 (ej , sj)← EquilibriumCounting(f , vj);
7 if j > 1 then
8 if ej = ej−1 and sj = sj−1 then
9 e←number of the equilibriums when B (σ) = 0 and σ ∈ Ij ;

10 s←number of the stable equilibriums when B (σ) = 0 and σ ∈ Ij ;
11 if e = ej and s = sj then
12 next;

13 Intervals← Append Ij−1 to Intervals;

14 Numbers← Append (ej, sj) to Numbers;

15 return B, Intervals,Numbers;

12

In Algorithm 1. Line 1, we compute B (σ) by Algorithm 2.

In Algorithm 2. Line 1, we call DiagonalEquilibrium(f1, f2, f3, f4), where

fk = −xk +
σ

1 + x4
1 + x4

2 + x4
3 + x4

4 − x4
k

, k = 1, . . . , 4,

and get











F (σ, q) = −q + σ
1+3q4

G1 (σ, q) = −1 +
4q4

1+3q4

G2 (σ, q) = −1−
12q4

1+3q4 .

In Algorithm 2. Line 2, we compute the projection of F = 0∧G1G2 = 0 on σ axe and
obtain B0 (σ) = σ − 4.

In Algorithm 2. Line 3, we start loop. Note that ⌊n2 ⌋ = 2, so i = 1, 2.

For i = 1, in Algorithm 2. Line 4, we call

NonDiagonalEquilibrium(f1, f2, f3, f4, 1)

and get











































F1 (σ, p, q) = −p+
σ

1+3q4

F2 (σ, p, q) = −q +
σ

1+p4+2q4

G1 (σ, p, q) = −1 +
4q4

1+p4+2q4

G2 (σ, p, q) = −1 +
4q3p
1+3q4

G3 (σ, p, q) = −2−
8q4

1+p4+2q4

G4 (σ, p, q) = 1 + 8q4

1+p4+2q4 −
48q4p4

(1+3q4)(1+p4+2q4)

.

Then in Algorithm 2. Line 5, we compute the projection of F1 = 0 ∧ F2 =
0 ∧G1G2G3G4 = 0 on σ axe and obtain

B1 = (σ − 4)(42755090541778564453125σ24+ · · · − 140737488355328).

For i = 2, in Algorithm 2. Line 4, we call

NonDiagonalEquilibrium(f1, f2, f3, f4, 2)

Algorithm 2: CriticalPolynomial

Input:

f = (f1, . . . , fn) ∈ (Q (σ,x))n such that ẋ = f is a MSRS

Output:

B ∈ Z[σ] such that if v is critical for MSRS (l, g, h, p, σ), then B (v) = 0

1 F,G1, G2 ← DiagonalEquilibrium(f);

2 Compute B0 such that
[

∃q(F = 0 ∧G1G2 = 0)
]

⇒ B0 (σ) = 0;
3 for i from 1 to ⌊n2 ⌋ do
4 F1, F2, G1, G2, G3, G4 ← NonDiagonalEquilibrium(f , i);

5 Compute Bi such that
[

∃p, q(F1 = 0 ∧ F2 = 0 ∧G1G2G3G4 = 0)
]

⇒ Bi (σ) = 0;

6 B ←
∏⌊n

2 ⌋
i=0 Bi;

7 return B;

13

Algorithm 3: EquilibriumCounting

Input:

f = (f1, . . . , fn) ∈ (Q (σ,x))
n
such that ẋ = f is a MSRS

v, a positive real number

Output:

(e, s) such that Ev = e ∧ Sv = s, where Ev (Sv) denotes the number of (stable)
equilibrium of ẋ = f (v,x).

1 F,G1, G2 ← DiagonalEquilibrium(f);
2 e←number of positive roots of σ = v ∧ F = 0;
3 s← number of positive roots of σ = v ∧ F = 0 ∧G1 < 0 ∧G2 < 0;
4 for i from 1 to ⌊n2 ⌋ do
5 F1, F2, G1, G2, G3, G4 ← NonDiagonalEquilibrium(f , i);
6 ẽ← number of positive solutions of σ = v ∧ F1 = 0 ∧ F2 = 0 ∧ p 6= q;
7 if i = 1 then
8 if n = 2 then
9 s̃←number of positive solutions of

σ = v ∧ F1 = 0 ∧ F2 = 0 ∧ p 6= q ∧G3 < 0 ∧G4 > 0
10 else
11 s̃←number of positive solutions of

σ = v ∧ F1 = 0 ∧ F2 = 0 ∧ p 6= q ∧G1 < 0 ∧G3 < 0 ∧G4 > 0 ;

12 else
13 s̃←number of positive solutions of

σ = v ∧ F1 = 0 ∧ F2 = 0 ∧ p 6= q ∧G1 < 0 ∧G2 < 0 ∧G3 < 0 ∧G4 > 0;

14 if i = n
2 then

15 e← e + ẽ
2 ·
(

n
i

)

, s← s+ s̃
2 ·
(

n
i

)

;
16 else
17 e← e + ẽ ·

(

n
i

)

, s← s+ s̃ ·
(

n
i

)

;

18 return (e, s);

Algorithm 4: DiagonalEquilibrium

Input:

f = (f1, . . . , fn) ∈ (Q (σ,x))
n
such that ẋ = f is a MSRS

Output:

F,G1, G2 ∈ Q (σ, q) such that for every σ ∈ R>0,

(1) r = (q, . . . , q) is an equilibrium if and only if F = 0

(2) if r = (q, . . . , q) is an equilibrium then the eigenvalues of Jf (r) are

λ1 = · · · = λn−1 = G1, λn = G2

1 Let l, g, h, P be the functions such that fk = −l (xk) + σ
g(xk)

P (x1,...,xn)+h(xk)
;

2 Dn ← −
P (x1,...,xn)+h(xn)

l(xn)
;

3 τ ← ∂fn
∂xn

, ξ ←
∂P

∂xn−1

Dn
, F ← f1;

4 G1 ← τ − ξ, G2 ← τ + (n− 1) ξ;
5 Replace x1, . . . , xn with q in F,G1, G2;
6 return F,G1, G2;

14

Algorithm 5: NonDiagonalEquilibrium

Input:

f = (f1, . . . , fn) ∈ (Q (σ,x))
n
such that ẋ = f is a MSRS

i, an positive integer such that 1 ≤ i ≤ ⌊n2 ⌋

Output:

F1, F2, G1, G2, G3, G4 ∈ Q (σ, p, q) such that for every σ ∈ R>0,

(1) r = (p, . . . , p, q, . . . , q) is an equilibrium and p appears i times if and only if
F1 = 0 ∧ F2 = 0

(2) If r = (p, . . . , p, q, . . . , q) is an equilibrium and p appears i times then the
eigenvalues of Jf (r) are as follows.

(a) if i = 1, then

λ1 = · · · = λn−2 = G1, λn−1 + λn = G3, λn−1λn = G4

(b) if i > 1, then

λ1 = · · · = λn−i−1 = G1, λn−i = · · · = λn−2 = G2,

λn−1 + λn = G3, λn−1λn = G4

1 Let l, g, h, P be the functions such that fk = −l (xk) + σ
g(xk)

P (x1,...,xn)+h(xk)
;

2 Dk ←
P (x1,...,xn)+h(xk)

l(xk)
for k = 1, n;

3 β ← ∂f1
∂x1

, τ ← ∂fn
∂xn

, γ ←
∂P
∂x2

D1
, ξ ←

∂P
∂xn−1

Dn
, µ←

∂P
∂xn

D1
, ν ←

∂P
∂x1

Dn
;

4 F1← f1, F2← fn, G1 ← τ − ξ, G2 ← β − γ;
5 G3 ← β + τ + (i− 1) γ + (n− i− 1) ξ;
6 G4 ← (β + (i− 1) γ) (τ + (n− i − 1) ξ)− i (n− i)µν;
7 Replace x1, . . . , xi with p and xi+1, . . . , xn with q in F1, F2, G1, G2, G3, G4;
8 return F1, F2, G1, G2, G3, G4;

15

and get










































F1 (σ, p, q) = −p+
σ

1+p4+2q4

F2 (σ, p, q) = −q +
σ

1+2p4+q4

G1(σ, p, p) = −1 +
4q4

1+2p4+q4

G2 (σ, p, q) = −1 +
4p4

1+p4+2q4

G3 (σ, p, q) = −2−
4p4

1+p4+2q4 −
4q4

1+2p4+q4

G4 (σ, p, q) =
(

−1− 4p4

1+p4+2q4

)(

−1− 4q4

1+2p4+q4

)

− 64q4p4

(1+p4+2q4)(1+2p4+q4)

.

Then in Algorithm 2. Line 5, we compute the projection of F1 = 0 ∧ F2 =
0 ∧G1G2G3G4 = 0 on σ axe and obtain

B2 = σ − 4.

In Algorithm 2. Line 6, let B = B0B1B2.

In Algorithm 1. Line 2, we isolate the positive roots of B (σ) = 0, obtaining

I1 = [
5

4
,
21

16
], I2 = [4, 4].

In Algorithm 1. Line 3, sample rational points from
(

0, 5
4

)

,
(

21
16 , 4

)

, and (4,∞), obtaining

v1 = 1, v2 = 2, v3 = 5.

In Algorithm 1. Line 5, we start the loop and compute the number of (stable) equilibriums
for very sample point.

For j = 1, in Algorithm 1. Line 6, call EquilibriumCounting(f1, f2, f3, f4, 1).

In Algorithm 3. Lines 1–3, compute the number of (stable) diagonal equilibriums
and initialize e1 = 1 (s1 = 1).

In Algorithm 3. Line 4, we enter the loop.

For i = 1, in Algorithm 3. Lines 5–6, compute the number of positive solu-
tions of

σ = 1 ∧ F1 = 0 ∧ F2 = 0 ∧ p 6= q,

obtaining 0.

For i = 2, in Algorithm 3. Lines 5–Line 6, compute the number of positive
solutions of

σ = 1 ∧ F1 = 0 ∧ F2 = 0 ∧ p 6= q,

obtaining 0.

So when σ = 1, there is only 1 equilibrium, that is the diagonal one, and it is stable.

Note we do not pass through Algorithm 1. Lines 8–13.

In Algorithm 1. Line 14, let Numbers = [(1, 1)].

For j = 2, call EquilibriumCounting(f1, f2, f3, f4, 2).

In Algorithm 3. Lines 1–3, compute the number of (stable) diagonal equilibriums
and initialize e2 = 1 (s2 = 1).

In Algorithm 3. Line 4, we enter the loop.

For i = 1, in Algorithm 3. Lines 5–6, compute the number of positive solu-
tions of

σ = 2 ∧ F1 = 0 ∧ F2 = 0 ∧ p 6= q,

obtaining 2. Then in Algorithm 3. Lines 13, compute the number of distinct
positive solutions of

σ = 2 ∧ F1 = 0 ∧ F2 = 0 ∧ p 6= q ∧G1 < 0 ∧G3 < 0 ∧G4 > 0,

obtaining 1.

16

For i = 2, in Algorithm 3. Lines 5–6, compute the number of positive solu-
tions of

σ = 2 ∧ F1 = 0 ∧ F2 = 0 ∧ p 6= q,

obtaining 0.

In Algorithm 3. Lines 14–17, let e2 = 1 + 2 ·
(

4
1

)

= 9 and s2 = 1 +
(

4
1

)

= 5.

So when σ = 2, there are 9 equilibriums and 5 stable equilibriums.

Since e1 6= e2, in Algorithm 1. Lines 8, 13 and 14, let Intervals = [I1] and let
Numbers = [(1, 1) , (9, 5)].

For j = 3, call EquilibriumCounting(f1, f2, f3, f4, 5).

In Algorithm 3. Lines 1–3, compute the number of (stable) diagonal equilibriums
and initialize e3 = 1 (s3 = 0).

In Algorithm 3. Line 4, we enter the loop.

For i = 1, in Algorithm 3. Lines 5–6, compute the number of positive solu-
tions of

σ = 5 ∧ F1 = 0 ∧ F2 = 0 ∧ p 6= q,

obtaining 2. Then in Algorithm 3. Lines 13, compute the number of distinct
positive solutions of

σ = 5 ∧ F1 = 0 ∧ F2 = 0 ∧ p 6= q ∧G1 < 0 ∧G3 < 0 ∧G4 > 0,

obtaining 1.

For i = 2, in Algorithm 3. Lines 5–6, compute the number of positive solu-
tions of

σ = 5 ∧ F1 = 0 ∧ F2 = 0 ∧ p 6= q,

obtaining 2. Then in Algorithm 3. Lines 11, compute the number of distinct
positive solutions of

σ = 5 ∧ F1 = 0 ∧ F2 = 0 ∧ p 6= q ∧G1 < 0 ∧G2 < 0 ∧G3 < 0 ∧G4 > 0,

obtaining 0.

In Algorithm 3. Lines 14–17, let e3 = 1 + 2 ·
(

4
1

)

+
2·(42)
2 = 15 and s3 =

(

4
1

)

= 4.

So when σ = 5, there are 15 equilibriums and 4 stable equilibriums.

Since e2 6= e3, in Algorithm 1. Lines 8, 13 and 14, let Intervals = [I1, I2] and let
Numbers = [(1, 1) , (9, 5) , (15, 4)].

Finally, the main algorithm outputs shown in Example 2.

6 Performance

In this section, we measure how much improvement is provided by the special algorithm
over the general algorithm. We use the model for simultaneous decision in Example 1 as a
benchmark. In order to measure the performance, we first need to fix the implemental details
of several steps. We have made the following choices.

(1) InAlgorithm 2. Lines 2 and 5 , we use the command BorderPolynomial in DISCOVERER

[67] to compute the projection of parametric polynomial equations, which is based on
triangular decomposition method.

(2) In Algorithm 3. Lines 2, 3, 6, 9, 11 and 13, we first cancel the denominators. It
is safe due to the condition (3) in Definition 1. Then we use RootFinding[Isolate] in
Maple16 to compute the real solutions of polynomial equations and inequations.

17

P
P
P
Pn

c
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

2
0.0 0.0 0.1 0.1 0.1 0.2 0.2 0.4 0.7 1.4 2.2 3.6 5.8 9.1 13.8
0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.2 0.3 0.7 1.1 1.6 2.6 4.2 5.9

3
0.0 0.0 0.1 0.1 0.2 0.3 0.5 0.9 1.9 3.2 6.3 10.4 19.4 29.3 53.9
0.1 1.7 96.9 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

4
0.0 0.1 0.1 0.2 0.3 0.7 1.3 2.4 4.7 9.1 16.7 28.6 51.4 85.5 129.7
0.1 3.1 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

5
0.0 0.1 0.1 0.2 0.4 0.7 1.6 2.9 6.2 11.5 22.5 36.7 67.8 110.6 192.4
0.2 0.1 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

6
0.1 0.1 0.1 0.2 0.6 1.3 2.6 5.0 10.1 18.8 36.2 65.6 111.9 192.1 289.2
0.3 16.7 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

7
0.1 0.1 0.1 0.3 0.6 1.3 3.1 5.7 11.6 22.0 42.4 70.9 134.6 220.4 354.3
0.1 177.7 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

8
0.1 0.1 0.2 0.3 0.7 1.7 3.7 8.3 16.7 31.9 59.7 107.2 185.1 296.9 510.4
∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

9
0.1 0.1 0.2 0.3 0.9 1.8 4.2 8.2 18.8 34.8 67.0 114.8 213.6 340.5 590.3
∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

10
0.1 0.2 0.2 0.3 0.9 0.9 1.8 11.0 21.6 47.6 88.8 149.4 266.8 453.5 703.0
∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

11
0.1 0.2 0.2 0.4 0.8 2.1 5.5 10.8 23.9 43.9 94.2 161.8 293.6 482.8 768.1
∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

12
0.1 0.2 0.3 0.4 1.0 2.3 6.7 13.6 29.1 58.2 102.0 204.7 359.5 604.9 1029.0
∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

13
0.1 0.2 0.4 0.4 1.0 2.5 6.7 15.1 33.5 67.6 133.6 207.0 414.7 662.5 1078.1
∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

14
0.1 0.2 0.3 0.6 1.1 2.6 7.0 15.9 37.1 74.8 143.4 259.6 415.7 812.0 1319.1
∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

15
0.1 0.2 0.3 0.6 1.1 2.7 7.0 16.4 39.4 78.3 151.1 274.8 501.3 731.3 1427.3
∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

Figure 2: Timings of the special algorithm (Algorithm 1) and the general algorithm

Figure 3: time – (n, c) of Algorithm 1

18

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

0 1 2 3 4 5 6 7

c

σ E1 E2

(1, 1)

(7, 4)

(7, 3)

(a) n = 3
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

0 1 2 3 4 5 6 7

c

σ E1 E2

(1, 1)

(9, 5)

(15, 4)

(b) n = 4

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

0 1 2 3 4 5 6 7

c

σ E1 E2 E3

(1, 1)

(11, 6)

(31, 6)

(31, 5)

(c) n = 5
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

0 1 2 3 4 5 6 7

c

σ E1 E2 E3

(1, 1)

(13, 7)

(43, 7)

(63, 6)

(d) n = 6

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

0 1 2 3 4 5 6 7 8 9 10

c

σ E1 E2E3E4

(1, 1)

(15, 8)

(57, 8)

(127, 8)

(127, 7)

(e) n = 7
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

0 1 2 3 4 5 6 7 8 9 10

c

σ E1 E2 E3 E4

(1, 1)

(17, 9)

(73, 9)

(185, 9)

(255, 8)

(f) n = 8

Figure 4: c–σ graphs for n = 3, 4, 5, 6, 7, 8

19

In the following, we provide the experimental results in three figures: Figure 2, Figure 3 and
Figure 4.

• Figure 2 provides the timing comparison of Algorithm 1 (Section 5) and the general
algorithm (Section 3) for n = 2, . . . , 15 and c = 1, . . . , 15. The top entries are the timings
in seconds for Algorithm 1 and the bottom entries are for the general algorithm. The
symbol ∞ means the computational time is greater than 1500 seconds (aborted). Both
programs were written in Maple and were executed on an Intel Core i7 processor (2.3GHz
CPU, 4 Cores and 8GB total memory).

Observe that Algorithm 1 performs much faster than the general algorithm for n ≥ 3.
As is pointed out by [66], when n > 5, it becomes expensive for the general algorithm to
compute the Hurwitz determinants and the sizes of these determinants are usually huge,
which leads to much difficulties of the subsequent computations. Moreover, when c is
relatively large, the real solution isolation of the general algorithm performs quite slowly,
even needs thousands of seconds for one sample point.

Note also that the special algorithm is a bit slower than the general algorithm when
n = 2. The main reasons are that the special algorithm benefit little from exploiting the
special structure and that the special algorithm pays the overhead cost for analyzing the
structure.

• Figure 3 provides the timings of Algorithm 1 as a graph over time and (n, c). By fitting,
we find that it is very close to the graph of

time ≈ 0.012 (n− 2) e0.6c.

Observe that the computational time is approximately linear with respect to n (the num-
ber of proteins) and exponential with respect to c (the cooperativity).

• Figure 4 provides, for n = 3, . . . , 8, the partition of the c-σ plane into several cells by
several curves Ei(c, σ) = 0. In each cell, the number of (stable) equilibriums is uniform
(presented in each cell). Note that Algorithm 1 can be applied to rational c values. For
each n, we computed all the critical σ values for different rational c values, obtaining
sufficiently many (c, σ) points. Then we obtained Ei by curve fitting.

Note that we are showing a complete answer to the multistability problem of the system
for the given n values. We also remark that the curve E⌈n

2 ⌉(c, σ) = 0 matches c − n +

1 −
(

c
σ

)
c

c+1 = 0. Note that only when (c, σ) is beyond the curve, the number of stable
equilibriums is n. Thus we have verified the following conjecture in [22] for n = 3, . . . , 8:

the system has exactly n stable equilibriums if and only if c− n+ 1−
(

c
σ

)
c

c+1 > 0.

From the computational results, one sees immediately that the equilibrium classifications of
MSRS also have certain special structures, with interesting biological implications. A detailed
analysis of the structures and their biological implications will be reported in a forthcoming
article.

References

[1] Anai, H., Yanami, H., 2003. SyNRAC: A maple-package for solving real algebraic con-
straints. Computational ScienceICCS. Springer Berlin Heidelberg, 828–837.

[2] Anai, H., Weispfenning, V., 2001. Reach Set Computations Using Real Quantifier Elimi-
nation, Springer Berlin Heidelberg.

[3] Arnon, D. S., Dennis, S., 1998. A cluster-based cylindrical algebraic decomposition algo-
rithm. J. Symb. Comput. 5 (1), 189–212.

20

[4] Arnon, D. S., Collins, G. E., McCallum, S., 1988. An adjacency algorithm for cylindrical
algebraic decompositions of three-dimenslonal space. J. Symb. Comput. 5 (1), 163–187.

[5] Arnon, D. S., Mignotte, M., 1988. On mechanical quantifier elimination for elementary
algebra and geometry. J. Symb. Comput. 5 (1), 237–259.

[6] Bank, B., Giusti, M., Heintz, J., Pardo, L.-M., 2004. Generalized polar varieties and effi-
cient real elimination procedure. Kybernetika. 40 (5), 519–550.

[7] Basu, S., Pollack, R., Roy, M.-F., 1996. On the combinatorial and algebraic complexity of
quantifier elimination. Journal of ACM. 43 (6), 1002–1045.

[8] Basu, S., Pollack, R., Roy, M.-F., 1999. Computing roadmaps of semi-algebraic

sets on a variety. Journal of the AMS. 3 (1), 55–82.

[9] Basu, S., Pollack, R., Roy, M.-F., 2006. Algorithms in Real Algebraic Geometry, Springer-
Verlag.

[10] Bradford, R., Davenport, J. H., England, M., McCallum, S., Wilson, D., 2013. Cylindrical
Algebraic Decompositions for Boolean Combinations. In: Proceedings of the International
Symposium on Symbolic and Algebraic Computation. ACM, 125–132.

[11] Brown, C. W., 2001. Improved projection for cylindrical algebraic decomposition. J. Symb.
Comput. 32 (5), 447–465.

[12] Brown, C. W., 2001. Simple CAD construction and its applications. J. Symb. Comput. 31
(5), 521–547.

[13] Brown, C. W., 2003. QEPCAD B: a program for computing with semi-algebraic sets using
CADs. ACM SIGSAM Bulletin. 37 (4), 97–108.

[14] Brown, C. W., 2012. Fast simplifications for Tarski formulas based on monomial inequali-
ties. J. Symb. Comput. 47 (7), 859–882.

[15] Brown, C. W., 2013. Constructing a single open cell in a cylindrical algebraic decomposi-
tion. In: Proceedings of the International Symposium on Symbolic and Algebraic Compu-
tation. ACM, 133–140.

[16] Brown, C. W., McCallum, S., 2005. On using bi-equational constraints in CAD construc-
tion. In: Proceedings of the International Symposium on Symbolic and Algebraic Compu-
tation. ACM, 76–83.

[17] Brown, C. W., Novotni, D., Weber, A., 2006. Algorithmic methods for investigating equi-
librium in epidemic modeling. J. Symb. Comput. 41 (11), 1157–1173.

[18] Collins, G. E., 1975. Quantifier Elimination for the Elementary Theory of Real Closed
Fields by Cylindrical Algebraic Decomposition. Lecture Notes In Computer Science,
Springer-Verlag, Berlin, 33, 134–183.

[19] Collins, G. E., 1998. Quantifier Elimination and Cylindrical Algebraic Decomposition.
Texts and Monographs in Symbolic Computation. Springer-Verlag, Ch. Quantifier elimi-
nation by cylindrical algebraic decomposition-20 years of progress.

[20] Collins, G. E., Hong, H., 1991. Cylindrical algebraic decomposition for quantifier elimina-
tion. J. Symb. Comput. 12 (3), 299–328.

[21] Chen, C., Davenport, J. H., May, J. P., Moreno Maza, M., Xia, B., Xiao, R., 2013.
Triangular decomposition of semi-algebraic systems. J. Symb. Comput. 49, 3–26.

[22] Cinquin, O., Demongeot, J., 2002. Positive and negative feedback: Striking a balance
between necessary antagonists. J. Theor. Biol. 216 (2), 229–241.

[23] Cinquin, O., Demongeot, J., 2005. High-dimensional switches and the modelling of cellular
differentiation. J. Theor. Biol. 233 (3), 391–411.

21

[24] Cinquin, O., Page, K. M., 2007. Generalized: Switch-like competitive heterodimerization
networks. Bulletin of Mathematical Biology. 69 (2), 483–494.

[25] Davenport, J. H., Heintz, J., 1988. Real quantifier elimination is doubly exponential. J.
Symb. Comput. 5 (1), 29–35.

[26] Dolzmann, A., Seidl, A., Sturm., T., 2004. Efficient projection orders for CAD. In: Pro-
ceedings of the International Symposium on Symbolic and Algebraic Computation. ACM,
111–118.

[27] Dolzmann, A., Sturm, T., 1997. Simplification of quantifier-free formulae over ordered
fields. J. Symb. Comput. 24 (2), 209–231.

[28] Dolzmann, A., Sturm, T., 1997. Redlog: Computer algebra meets computer logic. Acm
Sigsam Bulletin. 31 (2), 2–9.

[29] Dorato, P., Yang, W., Abdallah, C., 1997. Robust multi-objective feedback design by
quantifier elimination. J. Symb. Comput. 24 (2), 153–159.

[30] González-Vega, L., 1996. Applying quantifier elimination to the Birkhoff interpolation prob-
lem. J. Symb. Comput. 22 (1), 83–103.

[31] Grigoriev, D., 1988. Complexity of deciding tarski algebra. J. Symb. Comput. 5 (1-2),
65–108.

[32] Größlinger, A., Griebl, M., Lengauer, C., 2006. Quantifier elimination in automatic loop
parallelization. J. Symb. Comput. 41 (11), 1206–1221.

[33] Hong, H., 1990. An improvement of the projection operator in cylindrical algebraic de-
composition. In: Proceedings of the International Symposium on Symbolic and Algebraic
Computation. ACM, 261–264.

[34] Hong, H., 1990. Improvements in CAD–based Quantifier Elimination. PhD thesis. The
Ohio State University.

[35] Hong, H., 1992. Simple solution formula construction in cylindrical algebraic decomposition
based quantifier elimination. In: Proceedings of the International Symposium on Symbolic
and Algebraic Computation. ACM, 177–188.

[36] Hong, H., 1993. Quantifier elimination for formulas constrained by quadratic equations via
slope resultants. The Computer Journal. 36 (5), 440–449.

[37] Hong, H., 1993. Parallelization of quantifier elimination on a workstation network. AAECC-
10, LNCS. Springer Verlag, 673, 170–179.

[38] Hong, H., 1997. Heuristic search and pruning in polynomial constraints satisfaction. Annals
of Math. and AI. 19 (3–4), 319–334.

[39] Hong, H., Liska, R., Steinberg, S., 1997. Testing stability by quantifier elimination. J.
Symb. Comput. 24 (2), 161–187.

[40] Hong, H., Liska, R., Steinberg, S., 1997. Logic, Quantifiers, Computer Algebra and Stabil-
ity. SIAM News. 30 (6): 10.

[41] Hong, H., Safey El Din, M., 2009. Variant real quantifier elimination: Algorithm and
application. In: Proceedings of the International Symposium on Symbolic and Algebraic
Computation. ACM, 183–190.

[42] Hong, H., Safey El Din, M., 2012. Variant quantifier elimination. J. Symb. Comput. 47 (7),
883–901.

[43] Jirstrand, M., 1997. Nonlinear control system design by quantifier elimination. J. Symb.
Comput. 24 (2), 137–152.

[44] Lazard, D., 1988. Quantifier elimination: Optimal solution for two classical examples. J.
Symb. Comput. 5 (1), 261–266.

22

[45] Liska, R., Steinberg, S., 1993. Applying quantifier elimination to stability analysis of dif-
ference schemes. Comput. J. 36 (5), 497–503.

[46] McCallum, S., 1988. An improved projection operation for cylindrical algebraic decompo-
sition of three-dimensional space. J. Symb. Comput. 5 (1), 141–161.

[47] McCallum, S., 1999. On projection in CAD-Based quantifier elimination with equational
constraints. In: Proceedings of the International Symposium on Symbolic and Algebraic
Computation. ACM, 145–149.

[48] McCallum, S., 2001. On propagation of equational constraints in CAD-based quantifier
elimination. In: Proceedings of the International Symposium on Symbolic and Algebraic
Computation. ACM, 223–230.

[49] McCallum, S., Collins, G. E., 2002. Local box adjacency algorithms for cylindrical algebraic
decompositions. J. Symb. Comput. 33 (3), 321–342.

[50] Renegar, J., 1992. On the computational complexity and geometry of the first-order theory
of the reals. Part I: Introduction. Preliminaries. The geometry of semi-algebraic sets. The
decision problem for the existential theory of the reals. J. Symb. Comput. 13 (3), 255–299.

[51] Renegar, J., 1992. On the computational complexity and geometry of the first-order theory
of the reals. Part II: The general decision problem. Preliminaries for quantifier elimination.
J. Symb. Comput. 13 (3), 301–327.

[52] Renegar, J., 1992. On the computational complexity and geometry of the first-order theory
of the reals. Part III: quantifier elimination. J. Symb. Comput. 13 (3), 329–352.

[53] She, Z., Li, H., Xue, B., Zheng, Z., Xia, B., 2013. Discovering polynomial Lyapunov
functions for continuous dynamical systems. J. Symb. Comput. 58, 41–63.

[54] She, Z., Xia, B., Xiao, R., Zheng, Z., 2009. A semi-algebraic approach for asymptotic
stability analysis. Nonlinear Analysis: Hybird Systems. 3 (4), 588–596.

[55] Strzeboński, A., W., 2000. Solving algebraic inequalities. The Mathematica Journal. 7(4),
525–541.

[56] Strzeboński, A., W., 2005. Applications of algorithms for solving equations and inequalities
in Mathematica. In: Algorithmic Algebra and Logic, 243–247.

[57] Strzeboński, A. W., 2006. Cylindrical algebraic decomposition using validated numera-
torics. J. Symb. Comput. 41 (9), 1021–1038.

[58] Strzeboński, A. W., 2011. Cylindrical decomposition for systems transcendental in the first
variable. J. Symb. Comput. 46 (11), 1284–1290.

[59] Sturm, T., Weber, A., Abdel-Rahman, E. O., Kahoui, M. E., 2009. Investigating algebraic
and logical algorithms to solve hopf bifurcation problems in algebraic biology. Mathematics
in Computer Science. 2 (3), 493–515.

[60] Subramani, K., Desovski, D., 2005. Out of order quantifier elimination for Standard Quan-
tified Linear Programs. J. Symb. Comput. 40 (6), 1383–1396.

[61] Tarski, A., 1951. A Decision Method for Elementary Algebra and Geometry. University of
California Press.

[62] Wang, D., Xia, B., 2005. Stability analysis of biological systems with real solution clas-
sification. In: Proceedings of the International Symposium on Symbolic and Algebraic
Computation. ACM, 354–361.

[63] Wang, D., Xia, B., 2005. Algebraic analysis of stability for some biological systems. In:
Proceedings of the First International Conference on Algebraic Biology. Universal Academy
Press, 75–83.

23

[64] Weispfenning, V., 1997. Simulation and optimization by quantifier elimination. J. Symb.
Comput. 24 (2), 189–208.

[65] Niu, W., Wang, D., 2008. Algebraic approaches to stability analysis of biological systems.
Math. Comput. Sci. 1 (3), 507–539.

[66] Niu, W., 2012. Qualitative Analysis of Biological Systems Using Algebraic Methods. PhD
thesis. Université Pierre et Marie Curie.

[67] Xia, B., 2007. DISCOVERER: a tool for solving semi-algebraic systems. ACM Commun.
Comput. Algebra. 41 (3), 102–103.

[68] Xia, B., Yang L., Zhan, N., 2008. Program verification by reduction to semi-algebraic
systems solving. Leveraging Applications of Formal Methods, Verification Communications
in Computer and Information Science. 17, 277–291.

[69] Yang, L., Hou, X., Xia, B., 2001. A complete algorithm for automated discovering of a
class of inequality-type theorems. Sci. China F: Information Science. 44 (6), 33–49.

[70] Yang, L., Xia, B., 2008. Automated Proving and Discovering Inequalities (in Chinese).
Beijing, Science Press.

[71] Ying, J. Q., Xu, L., Lin, Z., 1999. A computational method for eetermining strong stabi-
lizability of n-D systems. J. Symb. Comput. 27 (5), 479–499.

24

	1 Introduction
	2 Problem
	3 Review of General Algorithm
	4 Structure
	5 Special Algorithm
	6 Performance

