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Abstract. We prove that the number of real intersection points of a
real line with a real plane curve defined by a polynomial with at most t
monomials is either infinite or does not exceed 6t− 7. This improves a
result by M. Avendano. Furthermore, we prove that this bound is sharp
for t = 3 with the help of Grothendieck’s dessins d’enfant.

1. Introduction

The problem of estimating the number of real solutions of a system of
polynomial equations is ubiquitous in mathematics and has obvious practi-
cal motivations. Fundamental notions like the degree or mixed volume give
good estimates for the number of complex solutions of polynomial systems.
However, these estimates can be rough for the number of real solutions when
the equations have few monomials or a special structure (see [10]). In the
case of a non-zero single polynomial in one variable, this is a consequence
of Descartes’ rule of signs which implies that the number of real roots is
bounded by 2t− 1, where t is the number of non-zero terms of the polyno-
mial. Generalizations of Descartes’ bound for polynomial and more general
systems have been obtained by A. Khovanskii [6]. The resulting bounds for
polynomial systems have been improved by F. Bihan and F. Sottile [3], but
still very few optimal bounds are known, even in the case of two polyno-
mial equations in two variables. Polynomial systems in two variables where
one equation has three non-zero terms and the other equation has t three
non-zero terms have been studied by T.Y. Li, J.-M. Rojas and X. Wang [8].
They showed that such a system, allowing real exponents, has at most 2t−2
non-degenerate solutions contained in the positive orthant. This exponen-
tial bound has recently been refined into a polynomial one by P. Koiran, N.
Portier and S. Tavenas [7]. The authors of [8] also showed that for t = 3
the sharp bound is five. Systems of two trinomial equations with five non-
degenerate solutions in the positive orthant are in a sense rare [5]. Later M.
Avendaño [1] considered systems of two polynomial equations in two vari-
ables, where the first equation has degree one and the other equation has t
non-zero terms. He showed that such a system has either an infinite num-
ber of real solutions or at most 6t− 4 real solutions. Here all solutions are
counted with multiplicities, with the exception of the solutions on the real
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coordinate axis which are counted at most once. This reduces to counting
the number of real roots of a polynomial f(x, ax + b), where a, b ∈ R and
f ∈ R[x, y] has at most t non-zero terms. The question of optimality was
not adressed in [1] and this was the motivation for the present paper. We
prove the following result.

Theorem 1.1. Let f ∈ R[x, y] be a polynomial with at most three non-
zero terms and let a, b be any real numbers. Assume that the polynomial
g(x) = f(x, ax + b) is not identically zero. Then g has at most 6t − 7 real
roots counted with multiplicities except for the possible roots 0 and −a/b that
are counted at most once.

At a first glance this looks as a slight improvement of the main result
of [1]. In fact, our bound is optimal at least for t = 3.

Theorem 1.2. The maximal number of real intersection points of a real line
with a real plane curve defined by a polynomial with three non-zero terms is
eleven.

Explicitly, the real curve with equation

(1.1) − 0, 002404xy18 + 29x6y3 + x3y = 0

intersects the real line y = x+ 1 in precisely eleven points in R2.
The strategy to construct this example is first to deduce from the proof

of Theorem 1.1 some necessary conditions on the monomials of the desired
equation. Then, the use of real Grothendieck’s dessins d’enfant [2, 4, 9]
helps to test the feasibility of certain monomials. Ultimately, computer
experimentations lead to the precise equation (1.1).

2. Preliminary results

We present some results of M. Avendaño [1] and add other ones. Con-

sider a non-zero univariate polynomial f(x) =
∑d

i=0 aix
i with real coeffi-

cients. Denote by V (f) the number of change signs in the ordered sequence
(a0, . . . , ad) disregarding the zero terms. Recall that the famous Descartes’
rule of signs asserts that the number of (strictly) positive roots of f counted
with multiplicities does not exceed V (f).

Lemma 2.1. [1] We have V ((x+ 1)f) ≤ V (f).

The following result is straighforward.

Lemma 2.2. [1] If f, g ∈ R[x] and g has t terms, then V (f+g) ≤ V (f)+2t.

Denote by N (h) the Newton polytope of a polynomial h and by
◦
N (h) the

interior of N (h).

Lemma 2.3. If f, g ∈ R[X], g has t terms and V (f + g) = V (f) + 2t, then

N (g) is contained in
◦
N (f).



REAL INTERSECTION POINTS OF A SPARSE PLANE CURVE WITH A LINE 3

Proof. Assume thatN (g) is not contained in
◦
N (f). Writing f(x) =

∑s
i=1 aix

αi

and g(x) =
t∑

j=1
bjx

βj with 0 ≤ α1 < · · · < αs and 0 ≤ β1 < · · · < βt, we get

β1 ≤ α1 or αs ≤ βt. Assume that β1 ≤ α1 (the case αs ≤ βt is symmetric).
Then, obviously

V (f(x) + g(x)) ≤ 1 + V (f(x) + g(x)− b1xβ1).

By Lemma 2.2 we have

V (f(x) + g(x)− b1xβ1) ≤ V (f) + 2(t− 1).

All together this gives V (f + g) ≤ 1 + V (f) + 2(t− 1) = V (f) + 2t− 1. �

Proposition 2.4. [1] If f ∈ R[x, y] has t non-zero terms, then

V (f(x, x+ 1)) ≤ 2t− 2.

Proof. Write f(x, y) =
∑n

k=1 ak(x)yαk , with 0 ≤ α1 < · · · < αn and ak(x) ∈
R[x]. Denote by tk the number of non-zero terms of ak(x). Define

fk(x, y) =

n∑
j=k

aj(x)yαj−αk , k = 1, . . . , n,

and fn+1 = 0. Then fk(x, x + 1) = (x + 1)αk+1−αkfk+1(x, x + 1) + ak(x)
for k = 1, . . . , n − 1 and fn(x, x + 1) = an(x). Therefore, V (fk(x, x +
1)) ≤ V (fk+1(x, x + 1)) + 2tk by Lemma 2.1 and Lemma 2.2. Finally,
V (f(x, x + 1)) ≤ V (f1(x, x + 1)) since f(x, x + 1) = (x + 1)α1f1(x, x + 1).
We conclude that V (f(x, x+ 1))) ≤ −2 + 2(t1 + · · ·+ tn) = 2t− 2. �

Proposition 2.5. Let f ∈ R[x, y] be a polynomial with t non-zero terms.

Write it as f(x, y) =
∑t

i=1 bix
βiyγi with 0 ≤ γ1 ≤ γ2 ≤ · · · ≤ γt. If

V (f(x, x+ 1)) = 2t− 2, then

N (bix
βi(x+ 1)γi) ⊂

◦
N (btx

βt(x+ 1)γt)

(in other words, βt < βi ≤ βi + γi < βt + γt) for i = 1, . . . , t− 1.

Proof. We use the proof of Proposition 2.4 keeping its notations. Write
f(x, y) =

∑n
k=1 ak(x)yαk with 0 ≤ α1 < · · · < αn and assume that V (f(x, x+

1)) = 2t− 2. It follows from the proof of Proposition 2.4 that

(2.1) V (fk(x, x+ 1)) = V (fk+1(x, x+ 1)) + 2tk , k = 1, . . . , n.

Recall that fk(x, x+1) = (x+1)αk+1−αkfk+1(x, x+1)+ak(x) for k ≤ n−1.

By Lemma 2.3 and (2.1) we get N (ak(x)) ⊂
◦
N ((x+1)αk+1−αkfk+1(x, x+1))

and thus

(2.2) N (ak(x)(x+ 1)αk) ⊂
◦
N ((x+ 1)αk+1fk+1(x, x+ 1))

for k = 1, . . . , n− 1. We now show by induction on n− k ≥ 1 that

(2.3)
◦
N ((x+ 1)αk+1fk+1(x, x+ 1)) ⊂

◦
N (an(x)(x+ 1)αn).
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Together with (2.2) this will imply N (ak(x)(x+ 1)αk) ⊂
◦
N (an(x)(x+ 1)αn)

for k = 1, . . . , n − 1, and thus N (bix
βi(x + 1)γi) ⊂

◦
N (btx

βt(x + 1)γt) for
i = 1, . . . , t − 1. For n − k = 1 the inclusion (2.3) is obvious. Since

fk(x, x+ 1) = (x+ 1)αk+1−αkfk+1(x, x+ 1) + ak(x) and N (ak(x)) ⊂
◦
N ((x+

1)αk+1−αkfk+1(x, x+1)), we get
◦
N (fk(x, x+1)) =

◦
N ((x+1)αk+1−αkfk+1(x, x+

1)). Assuming (2.3) is true for k (hypothesis induction), this immediately

gives
◦
N ((x+ 1)αkfk(x, x+ 1)) ⊆

◦
N (an(x)(x+ 1)αn) and thus (2.3) is proved

for k − 1. �

3. Proof of Theorem 1.1

We first recall the proof of the bound 6t − 4 in [1]. Let f(x, y) =∑t
i=1 bix

βiyγi ∈ R[x, y] be a polynomial with at most t non-zero terms,
and let a, b ∈ R. Set g(x) = f(x, ax + b). If a = 0 or b = 0, then f has at
most t non-zero terms and Descartes’ rule of signs implies that either g = 0
or g has at most 2t−1 ≤ 6t−4 real roots (counted with multiplicities except
for the possible root 0). If ab 6= 0, then the real roots of f(x, ax+ b) corre-

spond bijectively to the real roots of f(bx/a, b(x+ 1)) = f̂(x, x+ 1), where

f̂(x, y) =
∑t

i=1 bia
−βibβi+γixβiyγi . Since this bijection preserves multiplici-

ties and maps the possible roots 0 and −b/a of g to the roots 0 and −1 of

f̂(x, x+ 1), it suffices to consider the case a = b = 1, i.e. g(x) = f(x, x+ 1).
So we now consider g(x) = f(x, x+ 1). Assume that g 6= 0 and denote by d
the degree of g.

Descartes’ rule of signs and Proposition 2.4 imply that the number of
positive roots of g counted with multiplicities is at most 2t − 2. The
roots of g in ] − ∞,−1[ correspond bijectively to the positive roots of

g(−1 − x) = f(−1 − x,−x) =
∑t

i=1 bi(−1)βi+γixγi(x+ 1)βi . Therefore,
by Proposition 2.4 the number of roots (counted with multiplicities) of g in
]−∞,−1[ cannot exceed 2t−2. Finally, the roots of g in ]−1, 0[ correspond
bijectively to the positive roots of (x + 1)dg( −xx+1) = (x + 1)df( −xx+1 ,

1
x+1) =∑t

i=1 bi(−1)βixβi(x+ 1)d−βi−γi . Thus, by Proposition 2.4 there are at most
2t − 2 such roots. All together, this leads to the conclusion that g has at
most 3(2t− 2) + 2 = 6t− 4 real roots counted with multiplicities except for
the possible roots 0 and −1 that are counted at most once.

We now start the proof of Theorem 1.1. Set I1 =]0,+∞[, I2 =]−∞,−1[
and I3 =]− 1, 0[. For h ∈ R[x] define

VI1(h) = V (h) , VI2(h) = V (h(−1− x)) and

VI3(h) = V ((x+ 1)deg(h)h(
−x
x+ 1

)).

By Descartes’ rule of signs the number of roots of h in Ii does not exceed
VIi(h). To prove Theorem 1.1, it suffices to show that

(3.1) VI1(g) + VI2(g) + VI3(g) ≤ 3(2t− 2)− 3
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Define polynomials

h1(x) = xdh(
1

x
) , h2(x) = (x+ 1)dh(

−x
x+ 1

) and h3(x) = h(−1− x)

so that VI1(h1) = VI1(h), VI1(h2) = VI3(h) and VI1(h3) = VI2(h).

Lemma 3.1. For any i, j, k such that {i, j, k} = {1, 2, 3}, we have

VIi(hi) = VIi(h) and VIi(hj) = VIk(h)

Proof. We have h1(−x−1) = (−1)d(x+1)dh(− 1
x+1). Thus V (h1(−x−1)) =

V ((x−1 + 1)dh(− 1
x−1+1

)) = V ((x+1
x )dh(− x

x+1)) = V ((x+ 1)dh(− x
x+1)), and

we get VI2(h1) = VI3(h). We have (x + 1)dh1(− x
x+1) = (−x)dh(−1 − x−1)

from which we obtain VI3(h1) = VI2(h).

Equalities VI2(h2) = VI2(h) and VI3(h2) = VI1(h) follow from h2(−1−x) =
(−x)dh(−1− x−1) and (x+ 1)dh2(− x

x+1) = h(x).

Finally, VI2(h3) = VI1(h) comes from h3(−x − 1) = h(x) and VI3(h3) =
VI3(h) is a consequence of (x + 1)dh3(− x

x+1) = (x + 1)dh(− 1
x+1) and the

equality V ((x+ 1)dh(− 1
x+1)) = VI3(h) shown above. �

We now proceed to the proof of (3.1). We already know that VIi(g) ≤
2t − 2 for i = 1, 2, 3. If VIi(g) ≤ 2t − 3 for all i, then (3.1) is trivially true.
With the help of Lemma 3.1, it suffices now to show that if VI1(g) = 2t− 2
then VI2(g) ≤ 2t − 3, VI3(g) ≤ 2t − 3, and VI2(g) + VI3(g) < 2(2t − 3). So
assume VI1(g) = 2t− 2. Then by Proposition 2.5

(3.2) βt < βi ≤ βi + γi < βt + γt, , i = 1, . . . , t− 1.

We have g(−1 − x) =
∑t

i=1 bi(−1)βi+γixγi(x+ 1)βi . Recall that VI2(g) =
V (g(−x − 1)) ≤ 2t − 2 by Proposition 2.4. From (3.2), we get γt > γi for
i = 1, . . . , t − 1. It follows then from Proposition 2.5 that V (g(−x − 1)) ≤
2t− 3.

Write g(−1− x) = g̃(−x− 1) + bt(−1)βt+γtxγt(x+ 1)βt , and then g(−1−
x)(x + 1)−βt = g̃(−x − 1)(x + 1)−βt + bt(−1)βt+γtxγt . We note that (3.2)
implies βt < βi for i = 1, . . . , t − 1, so that both members of the previous
equality are polynomials. Moreover, from (3.2) we also get βi−βt+γi < γt,
and thus γt does not belong to the Newton polytope of the polynomial
g̃(−x−1)(x+1)−βt . It follows that V (g(−1−x)(x+1)−βt) ≤ V (g̃(−x−1)(x+
1)−βt) + 1. By Lemma 2.1 we have V (g(−1−x)) ≤ V (g(−x− 1)(x+ 1)−βt).
Therefore, V (g(−1− x)) ≤ V (g̃(−x− 1)(x+ 1)−βt) + 1. On the other hand
Proposition 2.4 yields V (g̃(−x− 1)(x+ 1)−βt) ≤ 2(t− 1)− 2 = 2t− 4.

Therefore, if V (g(−1−x)) = 2t−3, then V (g̃(−x−1)(x+1)−βt) = 2t−4,
and we may apply Proposition 2.5 to g̃(−x− 1)(x+ 1)−βt in order to get

(3.3) γi0 < γi ≤ γi + βi < γi0 + βi0 for all i = 1, . . . , t− 1 and i 6= i0,

where i0 is determined by βi0 ≥ βi for i = 1, . . . , t− 1.
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Starting with g1(x) = xdg(1/x) =
∑t

i=1 bix
d−βi−γi(x+1)γi instead of g in

the previous computation, we obtain that if V (g1) = 2t − 2 then VI2(g1) ≤
2t− 3 and if VI2(g1) = 2t− 3, then the substitution of d− βi − γi for βi in
(3.3) holds true:

(3.4) γi1 < γi ≤ d− βi < d− βi1 for all i = 1, . . . , t− 1 and i 6= i1,

where i1 is determined by d− βi1 − γi1 ≥ d− βi − γi for i = 1, . . . , t− 1.
On the other hand, V (g) = V (g1) and V (g1(−x− 1)) = VI2(g1) = VI3(g)

by Lemma 3.1. Thus if V (g) = 2t − 2 then VI3(g) ≤ 2t − 3 and if VI3(g) =
2t − 3, then formula (3.4) holds true. It turns out that (3.3) and (3.4)
are incompatible. Indeed, if (3.3) and (3.4) hold true simultaneously, then
i0 = i1 but then (3.4) implies that γi0 +βi0 < γi +βi for all 1, . . . , t− 1 with
i 6= i0 which contradicts (3.3). Consequently, if V (g) = VI1(g) = 2t−2, then
VI2(g) ≤ 2t− 3, VI3(g) ≤ 2t− 3 and VI2(g) + VI3(g) < 2(2t− 3).

4. Optimality

We prove that the bound in Theorem 1.1 is sharp for t = 3 (Theorem
1.2). We look for a polynomial P ∈ R[x, y] with three non-zero terms such
that P (x, x+ 1) has nine real roots distinct from 0 and −1. It follows from
the previous section that if such P exists then, either P (x, x+ 1) has three
roots in each interval I1, I2 and I3, or P (x, x + 1) has four roots in one
interval, three roots in another interval, and two roots in the last one. We
give necessary conditions for the second case, which thanks to Lemma 3.1
reduces to the case where P (x, x + 1) has four roots in I1 =]0,+∞[, three
roots in I3 =]− 1, 0[ and two roots in I2 =]−∞,−1[.

Multiplication of P by a monomial does not alter the roots of P (x, x+ 1)
in R \ {0,−1}, so dividing by the smallest power of x, we may assume that
P has the following form

P (x, y) = ayl1 + bxk2yl2 + xk3yl3 ,

where k2, k3, l1, l2, l3 are nonnegative integer numbers and a, b are real
numbers.

Lemma 4.1. If P (x, x+1) has four real positive roots, then k2 > 0, k3 > 0,
l1 > l2 + k2 and l1 > l3 + k3.

Proof. If P (x, x + 1) has four real positive roots, then V (P (x, x + 1)) =

4. Rewriting P (x, x + 1) =
∑3

i=1 bix
βi(x + 1)γi with 0 ≤ γ1 ≤ γ2 ≤ γ3,

Proposition 2.5 yields β3 < βi ≤ βi + γi < β3 + γ3 for i = 1, 2. Since k2

and k3 are nonnegative, we get β3 = 0, k2, k3 > 0 and β3 + γ3 = γ3 = l1, so
l1 > max(l2 + k2, l3 + k3). �

Since l1 > l2 and l1 > l3, we may divide P (x, x+1) by (x+1)l2 or (x+1)l3

to get a polynomial equation with the same solutions in R \ {0,−1}. So
without loss of generality we may assume that

(4.1) P (x, x+ 1) = a(x+ 1)l1 + bxk2(x+ 1)l2 + xk3 ,
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where k2, k3 > 0, l2 ≥ 0, l1 > k2 + l2 and l1 > k3.

Lemma 4.2. Assume that the polynomial (4.1) has four roots in I1, and
three roots in I3 or I2. Then k3 does not belong to the interval [k2, k2 + l2].
Moreover, we have a < 0 and b > 0.

Proof. We prove that if k2 ≤ k3 ≤ k2 + l2, then (4.1) has at most two roots
in I2 and in I3.

The roots in I2 are in bijection with the positive roots of

P (−x− 1,−x) = (−1)l1axl1 + (−1)k2+l2bxl2(x+ 1)k2 + (−1)k3(1 + x)k3 .

Recall that l2 ≥ 0. If k2 ≤ k3 ≤ k2 + l2 then Proposition 2.5 yields
V ((−1)k2+l2bxl2(x + 1)k2 + (−1)k3(1 + x)k3) ≤ 1. Now, since l1 > k2 + l2
and l1 > k3, we get V (P (−x− 1,−x)) ≤ 2, and thus (4.1) has at most two
roots in I2.

The roots in I3 are in bijection with the positive roots of

(1+x)l1P (
−x
x+ 1

,
−x
x+ 1

+1) = a+b(−1)k2xk2(1+x)l1−k2−l2+(−1)k3xk3(1+x)l1−k3

From k3 ≤ k2+l2, we get l1−k2−l2 ≤ l1−k3. Thus, Proposition 2.5 together
with k2 ≤ k3 yields V (b(−1)k2xk2(1+x)l1−k2−l2 +(−1)k3xk3(1+x)l1−k3) ≤ 1.
From k2, k3 > 0 we get V ((1 +x)l1P ( −xx+1 ,

−x
x+1 + 1)) ≤ 2, and thus (4.1) has

at most two roots in I3.
Finally, if (4.1) has four positive roots, then obviously ab < 0. If k3 does

not belong to [k2, k2 + l2] and a > 0, then V ((x+1)l1 +bxk2(x+1)l2 +xk3) =
V ((x+ 1)l1 + bxk2(x+ 1)l2) (recall that k2 ≤ k2 + l2 < l1). But the second
sign variation is a most two by Proposition 2.4. We conclude that a < 0
and b > 0. �

Lemma 4.3. Assume that the polynomial (4.1) has four roots in I1, two
roots in I2 and three roots in I3. Assume furthermore that k3 < k2. Then,
l1 is odd, k2 is odd, k3 is even and l2 is even.

Proof. Since (4.1) has exactly nine real roots counted with multiplicity, its
degree l1 is odd. We have already seen that if (4.1) has four roots in I1 =
]0,+∞[, two roots in I2 =] −∞,−1[ and three roots in I3 =] − 1, 0[, then
a < 0, b > 0, l1 > l2 and k3 /∈ [k2, k2 + l2]. Assume from now on that
k3 < k2.

Since (4.1) has two roots in I2 =]−∞,−1[, we have V (P (−x−1,−x)) ≥ 2,
where P (−x−1,−x) = (−1)k3(1+x)k3 +(−1)k2+l2bxl2(x+1)k2 +(−1)l1axl1 .
But since k3 < k2 ≤ k2 + l2 < l1, we get that (−1)k3 · (−1)k2+l2b < 0 and
(−1)k2+l2b · (−1)l1a < 0. Using a < 0 and b > 0, we obtain that k2 + l2 is
odd and k3 is even.

Since (4.1) has three roots in I3 =]−1, 0[, we have V ((1+x)l1P ( −xx+1 ,
−x
x+1 +

1)) ≥ 3, where (1 + x)l1P ( −xx+1 ,
−x
x+1 + 1) = a + b(−1)k2xk2(1 + x)l1−k2−l2 +

(−1)k3xk3(1 + x)l1−k3−l3 . We know that k3 is even and that b > 0. Thus in
order to get coefficients with different signs in b(−1)k2xk2(1 + x)l1−k2−l2 +
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(−1)k3xk3(1 + x)l1−k3−l3 , the integer k2 should be odd. Since we know that
k2 + l2 is odd, this gives that l2 is even. �

Assume now that (4.1) has four roots in I1, two roots in I2 and three
roots in I3. Then a < 0, b > 0 and k3 does not belong to [k2, k2 + l2] by
Lemma 4.2. Assume that k3 < k2. Then l1 is odd, k2 is odd, k3 is even and
l2 is even by Lemma 4.3. The roots of (4.1) are solutions to the equation

f(x) = −a, where f(x) = bxk2(1 +x)l2−l1 +xk3(1 +x)−l1 . Since the rational
function f has no pole outside {−1, 0}, by Rolle’s Theorem its derivative has
at least three roots in I1, one root in I2 and two roots in I3. We compute
that f ′(x) = 0 is equivalent to Φ(x) = 1, where Φ is the rational map

(4.2) Φ(x) =
−bxk2−k3(1 + x)l2A1(x)

A2(x)
,

with A1(x) = (k2 + l2 − l1)x + k2 and A2(x) = (k3 − l1)x + k3. From
0 < k3 < k2, l2 ≥ 0 and l1 > 0, we obtain that the roots of A1 and A2

satisfy 0 < k3
l1−k3 < k2

l1−k2−l2 . Moreover, the roots of Φ are −1 with even
multiplicity l2, 0 with odd multiplicity k2 − k3 and the positive root of A1

(which is a simple root of Φ). The poles of Φ are the positive root of A2 and
the point at infinity which has multiplicity deg(Φ)− 1 if we homogeinize Φ
into a rational map from the Riemann sphere CP 1 to itself.

=0

q

q

p

r

r

r

r

r

r

p =−1

p

Figure 1. Real dessin d’enfant for ϕ.

We find exact values of coefficients and exponents of (4.2) in the following
way. Note that the exponents of (4.2) are independent of l1. We first choose
small values k2 = 5, k3 = 2, l2 = 2 satisfying the above parity conditions.
Then, we look for a function

(4.3) ϕ(x) =
cx3(x+ 1)2(x− ρ1)

x− ρ2
,
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such that c is some real constant, 0 < ρ2 < ρ1 and ϕ(x) = 1 has three
solutions in I1, one solution in I2 and two solutions in I3.

The existence of such a function ϕ is certified by Figure 1 thanks to
Riemann Uniformization Theorem. Figure 1 represents the intersection of
the graph Γ = ϕ−1(RP 1) with one connected component of CP 1 \RP 1 (the
whole graph can be recovered from this intersection since it is invariant by
complex conjugation). Such a graph is called real dessin d’enfant (see [2, 4, 9]
for instance). Each connected component of CP 1\Γ (a disc) can be endowed
with an orientation inducing the order p < q < r for the three letters p, q, r
in its boundary so that two adjacent discs get opposite orientations. Choose
coordinates on the target space CP 1. Choose one connected component of
CP 1\Γ and send it homeomorphically to one connected component of CP 1\
RP 1 so that letters p are sent to (1 : 0), letters q are sent to (0 : 1) and letters
r to (1 : 1). Do the same for each connected component of CP 1\Γ so that the
resulting homeomorphisms extend to an orientation preserving continuous
map ϕ : CP 1 → CP 1. Note that two adjacent connected components of
CP 1 \ Γ are sent to different connected components of CP 1 \ RP 1. The
Riemann Uniformization Theorem implies that ϕ is a real rational map
for the standard complex structure on the target space and its pull-back
by ϕ on the source space. The degree of ϕ is half the number of connected
components of CP 1\Γ (a generic point on the target space has one preimage
in each component of CP 1 \ Γ with the correct orientation). The critical
points of ϕ are the vertices of Γ, and the multiplicity of each critical point is
half its valency. The letters p are the inverse images of (1 : 0), the letters q
are the inverse images of (0 : 1) and the letters r are inverse images of (1 : 1).
In Figure 1, we see three letters p on Γ, two of them being critical points
with multiplicities three and two respectively (the valencies are six and four,
recall that Figure 1 show only one half of Γ). We also see two letters q, one
of them being a critical point of multiplicity five. Choose coordinates on
the source space CP 1 so that the critical point p of multiplicity three has
coordinates (1 : 0), the other critical point p has coordinates (1 : −1) and
the critical point q is the point with coordinates (0 : 1). In standard affines
coordinates (for both the source and the target spaces) of the chart where
the first homogeneous coordinate does not vanish, any rational map whose
real dessin d’enfant is as depicted in Figure 1 is defined by (4.3). From
Figure 1, we see that 0 < ρ2 < ρ1 and that ϕ has the desired number of
inverse images (letters r) of 1 in each interval Ii.

Now we want to identify (4.3) and (4.2). Recall that k2 = 5, k3 = 2,

l2 = 2 are fixed. We look at the function x3(x+1)2(x−ρ1)
x−ρ2 , where ρ1 = k2

l1−k2−l2
and ρ2 = k3

l1−k3 , and increase l1 so that some level set of this function has
three solutions in I1, one solution in I2 and two solutions in I3. It turns
out that l1 = 17 is large enough and the level set gives the value 29 for b.
Finally, integrating Φ and choosing a = −0, 002404, we get

−0.002404(x+ 1)17 + 29x5(x+ 1)2 + x2
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for (4.1). This polynomial has fours roots in I1, two roots in I2 and three
roots in I3. This has been computed using SAGE version 6.6 which gives
the following approximated roots: 0.18859, 0.22206, 0.25196, 0.44416 in I1,
−3.96032, −1.15048 in I2, and −0.61459, −0.58528, −0.03594 in I3.

Multiplying this polynomial by x(x + 1) gives a polynomial of the form
P (x, x+ 1) (where P ∈ R[x, y] has three non-zero terms) having eleven real
roots.
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