
Journal of Symbolic Computation 86 (2018) 1–19
Contents lists available at ScienceDirect

Journal of Symbolic Computation

www.elsevier.com/locate/jsc

On Gröbner bases and Krull dimension of 

residue class rings of polynomial rings over 

integral domains

Maria Francis, Ambedkar Dukkipati
Dept. of Computer Science & Automation, Indian Institute of Science, Bangalore 560012, India

a r t i c l e i n f o a b s t r a c t

Article history:
Received 20 July 2016
Accepted 3 March 2017
Available online 24 March 2017

Keywords:
Gröbner bases over commutative rings
Krull dimension of residue class rings of 
polynomial rings over rings
Independent sets modulo an ideal

Given an ideal a in A[x1, . . . , xn] where A is a Noetherian integral 
domain, we propose an approach to compute the Krull dimension 
of A[x1, . . . , xn]/a, when the residue class ring is a free A-module. 
When A is a field, the Krull dimension of A[x1, . . . , xn]/a has sev-
eral equivalent algorithmic definitions by which it can be com-
puted. But this is not true in the case of arbitrary Noetherian rings. 
For a Noetherian integral domain A we introduce the notion of 
combinatorial dimension of A[x1, . . . , xn]/a and give a Gröbner ba-
sis method to compute it for residue class rings that have a free 
A-module representation w.r.t. a lexicographic ordering. For such 
A-algebras, we derive a relation between Krull dimension and com-
binatorial dimension of A[x1, . . . , xn]/a. An immediate application 
of this relation is that it gives a uniform method, the first of its 
kind, to compute the dimension of A[x1, . . . , xn]/a without hav-
ing to consider individual properties of the ideal. For A-algebras 
that have a free A-module representation w.r.t. degree compatible 
monomial orderings, we introduce the concepts of Hilbert function, 
Hilbert series and Hilbert polynomials and show that Gröbner basis 
methods can be used to compute these quantities. We then pro-
ceed to show that the combinatorial dimension of such A-algebras 
is equal to the degree of the Hilbert polynomial. This enables us 
to extend the relation between Krull dimension and combinatorial 
dimension to A-algebras with a free A-module representation w.r.t. 
a degree compatible ordering as well.

© 2017 Elsevier Ltd. All rights reserved.

E-mail addresses: mariaf@csa.iisc.ernet.in (M. Francis), ad@csa.iisc.ernet.in (A. Dukkipati).
http://dx.doi.org/10.1016/j.jsc.2017.03.003
0747-7171/© 2017 Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.jsc.2017.03.003
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jsc
mailto:mariaf@csa.iisc.ernet.in
mailto:ad@csa.iisc.ernet.in
http://dx.doi.org/10.1016/j.jsc.2017.03.003
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jsc.2017.03.003&domain=pdf


2 M. Francis, A. Dukkipati / Journal of Symbolic Computation 86 (2018) 1–19
1. Introduction

One of the fundamental problems in computational ideal theory is determining the dimension 
of an ideal, i.e. the Krull dimension of the k-algebra, k[x1, . . . , xn]/a. The dimension of an affine 
variety associated with an ideal a ⊆ k[x1, . . . , xn] is the Krull dimension of the affine k-algebra 
k[x1, . . . , xn]/a for an algebraically closed field k. Since the definition of Krull dimension does not 
lead to an algorithmic method to compute it, various alternate equivalent definitions have been pro-
posed. The Krull dimension of an affine k-algebra is equal to its transcendence degree, the degree 
of the Hilbert polynomial of a and the largest number of elements among the maximal set of inde-
terminates independent mod a (called the combinatorial dimension of k[x1, . . . , xn]/a) (Kreuzer and 
Robbiano, 2005). Gröbner basis based algorithms have been proposed to compute the degree of the 
Hilbert polynomial of a and the combinatorial dimension of k[x1, . . . , xn]/a (Mora and Möller, 1983;
Kredel and Weispfenning, 1988), thus providing an algorithmic framework for determining the Krull 
dimension of the affine variety associated with a. This paper studies the question of whether one 
can give Gröbner basis methods to compute the Krull dimension of A[x1, . . . , xn]/a, where A is a 
Noetherian integral domain, given that it has a free A-module representation w.r.t. some monomial 
order.

For any Noetherian commutative ring A, a necessary and sufficient condition for a finitely gener-
ated A-module A[x1, . . . , xn]/a to have a free A-module representation w.r.t. a monomial order has 
been studied in Francis and Dukkipati (2014). Here, we show that this characterization can be ex-
tended to A[x1, . . . , xn]/a that need not be finitely generated as an A-module.

Given an integral domain A and an A-algebra with a free A-module representation w.r.t. some 
monomial order, we study alternate algorithmic definitions for Krull dimension. We first extend the 
concept of combinatorial dimension to A-algebras. For an A-algebra with a free A-module representa-
tion w.r.t. a lexicographic ordering, we give a Gröbner basis algorithm for computing its combinatorial 
dimension. In affine k-algebras, the combinatorial dimension is equal to the Krull dimension. We de-
rive a relation between Krull dimension and combinatorial dimension for A-algebras that have a free 
A-module representation w.r.t. a lexicographic order. We also show that the concepts of Hilbert func-
tions, Hilbert series and Hilbert polynomial can be extended to A-algebras that have a free A-module 
representation w.r.t. a degree compatible ordering. We also give a Gröbner basis algorithm to com-
pute these quantities. For degree compatible orderings, we show that the combinatorial dimension of 
A[x1, . . . , xn]/a is equal to the degree of the Hilbert polynomial of a and therefore we have a Gröb-
ner basis algorithm to compute the combinatorial dimension. We also show how this can be used
to derive a relation between the Krull dimension of A[x1, . . . , xn]/a and the degree of the Hilbert 
polynomial of a. The concepts of combinatorial dimension and Hilbert polynomial are important be-
cause they give us a uniform method, independent of the ideal, to determine the Krull dimension of 
A[x1, . . . , xn]/a that has a free A-module representation w.r.t. either a lexicographic or a degree com-
patible monomial ordering. More importantly, these concepts allow for an algorithmic interpretation 
of the algebraic concept of Krull dimension for certain A-algebras.

The rest of the paper is organized as follows. In Section 2, we discuss the notations used in 
the paper. In Section 3, we extend the necessary and sufficient condition for the quotient ring 
A[x1, . . . , xn]/a, where A is a Noetherian commutative ring, to have a free A-module representation 
w.r.t. a monomial order to the infinite case. After this section, the paper restricts its study to residue 
class rings of polynomial rings over Noetherian integral domains. In Section 4, we define combina-
torial dimension for A-algebras, where A is a Noetherian integral domain. In Section 4.2, we give 
a Gröbner basis method to compute the combinatorial dimension of A[x1, . . . , xn]/a that has a free 
A-module representation w.r.t. a lexicographic ordering. For such A-algebras, we derive a relation be-
tween combinatorial dimension and Krull dimension in Section 5. In Section 5.2, we illustrate with 
examples how this relation gives an algorithmic method to determine the Krull dimension. We de-
fine Hilbert function, Hilbert series and Hilbert polynomial for A-algebras that have a free A-module 
representation w.r.t. a degree compatible monomial order in Section 6. We also give a Gröbner basis 
algorithm to compute these quantities. We then show in Section 6.2 that the combinatorial dimension 
of A-algebras with a free A-module representation w.r.t. a degree compatible monomial order is equal 
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to the degree of the Hilbert polynomial. This enables us to give a relation between the degree of the 
Hilbert polynomial and the Krull dimension of the corresponding residue class ring in Section 6.3.

2. Preliminaries

Throughout this paper, k denotes a field, Z the ring of integers and N the set of positive integers 
including zero. We use A to denote a Noetherian commutative ring. From Section 4 onwards, A is 
restricted to Noetherian integral domains. A polynomial ring in indeterminates x1, . . . , xn over A is 
denoted as A[x1, . . . , xn]. At times, we represent the indeterminates collectively as a set X and the 
corresponding polynomial ring as A[X]. We represent a monomial in x1, . . . , xn as xα where α ∈ Zn≥0. 
The monoid isomorphism between the set of all monomials in indeterminates x1, . . . , xn and Zn≥0
allows us to denote the set of all monomials as Zn≥0. A nonzero polynomial, f in x1, . . . , xn with 
coefficients from A is given by

f =
∑

α∈� f

aαxα,

where � f � Zn≥0 is a finite set and aα ∈ A \ {0}. We denote all the monomials of a polynomial f
as Mon( f ). We assume that there is a monomial order ≺ on the monomials in the indeterminates 
x1, . . . , xn . With respect to this monomial order, we have the leading monomial (lm≺), leading coeffi-
cient (lc≺), leading term (lt≺) and multidegree (multideg≺) of a polynomial f ∈ A[x1, . . . , xn], where 
multideg≺( f ) = max≺{α ∈ � f } and lt≺( f ) = lc≺( f )lm≺( f ) in A[x1, . . . , xn]. In certain scenarios, we 
also consider another concept of degree of a polynomial which we will denote as deg( f ). The de-
gree of a monomial xα , deg(xα) is the sum of its exponents. The degree of a polynomial, f is the 
maximum degree of the monomials in f , i.e.

deg( f ) = max{deg(xα) : xα ∈ Mon( f )}.
A degree compatible monomial ordering ≺ is a monomial ordering on A[x1, . . . , xn] such that two 
monomials xα , xα′

with xα ≺ xα′
satisfy deg(xα) ≤ deg(xα′

). For a degree compatible monomial or-
dering, the leading monomial will be a monomial with maximum degree. The leading term ideal (or 
initial ideal) of a set S ⊆ A[x1, . . . , xn], is 〈lt≺(S)〉 = 〈{lt≺( f ) | f ∈ S}〉. When there is no confusion 
regarding which monomial order to consider we omit the monomial order subscript ≺ from the no-
tations. For a free A-module M , the minimum cardinality of a basis of A is called its free rank and is 
denoted by FreeRankA(M).

3. Characterization of a free residue class ring of A[x1, . . . , xn]

Consider an ideal a in A[x1, . . . , xn] and let G = {gi : i = 1, . . . , t} be its Gröbner basis w.r.t. a mono-
mial order ≺. For each monomial xα , let J xα = {i : lm(gi) | xα, gi ∈ G} and I Jxα

= 〈{lc(gi) : i ∈ J xα }〉. We 
refer to I Jxα

as the leading coefficient ideal w.r.t. G . Let C Jxα
represent a set of coset representatives 

of the equivalence classes in A/I Jxα
. We use the same definitions as given in Adams and Loustaunau

(1994). Given a polynomial f ∈ A[x1, . . . , xn], let f =
m∑

i=1
ai xαi mod 〈G〉, where ai ∈ A, i = 1, . . . , m. If 

A[x1, . . . , xn]/〈G〉 is an A-module finitely generated by m elements, then corresponding to the coset 
representatives, C Jxα1

, . . . , C Jxαm , there exists an A-module isomorphism,

φ : A[x1, . . . , xn]/〈G〉 −→ A/I Jxα1
× · · · × A/I Jxαm

m∑
i=1

ai x
αi + 〈G〉 �−→ (c1 + I Jxα1

, · · · , cm + I Jxαm ),
(1)

where ci = ai mod I Jxαi
and ci ∈ C Jxαi

.
We refer to A/I Jxα1

× · · · × A/I Jxαm as the A-module representation of A[x1, . . . , xn]/a w.r.t. G (or 
w.r.t. ≺). If I J αi

= {0}, we have C J αi
= A, for all i = 1, . . . , m. This implies A[x1, . . . , xn]/a ∼= Am , i.e. 
x x
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A[x1, . . . , xn]/a has an A-module basis and it is free. We say that A[x1, . . . , xn]/a has a free A-module 
representation w.r.t. G (or w.r.t. ≺). If the A-module is infinitely generated, we say that it has a 
free A-module representation w.r.t. G (or equivalently w.r.t. ≺) if I Jxα

= {0} for all xα /∈ 〈lm(a)〉 and 
I Jxα

= A for all xα ∈ 〈lm(a)〉.
The necessary and sufficient condition for an A-module A[x1, . . . , xn]/a to have a free A-module 

representation w.r.t. G (or w.r.t. ≺) makes use of the concept of ‘short reduced Gröbner basis’ intro-
duced in Francis and Dukkipati (2014) which we briefly describe below.

Definition 3.1. Let a ⊆ A[x1, . . . , xn] be an ideal. Consider the isomorphism in (1). A reduced Gröbner 
basis (as defined in Pauer, 2007), G of a is called a short reduced Gröbner basis if for each xα ∈ lm(G), 
the number of elements in the generating set of the leading coefficient ideal of xα , I Jxα

in (1) is 
minimal.

One can define reduced Gröbner bases over rings exactly as that of fields but it may not exist in 
all the cases. The definition of reduced Gröbner basis given by Pauer (2007) ensures the existence of 
such a basis for every ideal in the polynomial ring.

A necessary and sufficient condition for a finitely generated A-module A[x1, . . . , xn]/a to have a 
free A-module representation w.r.t. G (or w.r.t. ≺) is given in Francis and Dukkipati (2014). One can 
easily extend this to residue class rings that are not finitely generated as shown below.

Lemma 3.2. Let a ⊆ A[x1, . . . , xn] be a non-zero ideal and let G be a short reduced Gröbner basis for a. All the 
leading coefficient ideals associated with G are either trivial or the entire ring A if and only if G is monic.

Proof. The proof is along the lines of Francis and Dukkipati (2014, Lemma 3.10). �
We now prove the necessary condition.

Theorem 3.3. Let a ⊆ A[x1, . . . , xn] be a non-zero ideal and let G be a short reduced Gröbner basis of a. If 
A[x1, . . . , xn]/a has a free A-module representation w.r.t. G (or w.r.t. ≺) then G is monic.

Proof. By definition, if A[x1, . . . , xn]/a has a free A-module representation w.r.t. G then I Jxα
= {0} for 

all xα /∈ 〈lm(a)〉 and I Jxα
= {1} for all xα ∈ 〈lm(a)〉. That is, all the leading coefficient ideals associated 

with G are either trivial or the entire ring, A. Therefore by Lemma 3.2, G is monic. �
The sufficient condition is subsumed by Francis and Dukkipati (2014, Theorem 3.8). We state the 

characterization result as follows.

Proposition 3.4. Let a ⊆ A[x1, . . . , xn] be a nonzero ideal. Let G be a short reduced Gröbner basis for a w.r.t. 
some monomial ordering ≺. Then, A[x1, . . . , xn]/a has a free A-module representation w.r.t. G (or ≺) if and 
only if G is monic.

Example 3.5. Let G = {3x, 5x} be the Gröbner basis of an ideal a in Z[x, y] w.r.t. a lexicographic 
ordering ≺ such that x ≺ y. We have I Jx = 〈3, 5〉 = 〈1〉. Therefore, Z[x, y]/〈3x, 5x〉 has a free A-module 
representation w.r.t. ≺. The short reduced Gröbner basis of a is given by Gred = {x}. It is monic and a 
Z-module basis of Z[x, y]/a is given by {1 + a, yn + a, n ∈N \ {0}}.

Note that if a Gröbner basis or reduced Gröbner basis of an ideal w.r.t. a monomial order ≺ is 
monic its short reduced Gröbner basis w.r.t. ≺ will also be monic, but not vice versa. Throughout 
this paper, we will assume that A[x1, . . . , xn]/a has a free A-module representation w.r.t. a monomial 
order or equivalently, w.r.t. any Gröbner basis corresponding to that monomial order.
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4. Combinatorial dimension of A[x1, . . . , xn]/a

In the rest of the paper we assume that A is a Noetherian integral domain. The Krull dimension 
of a ring is defined as the supremum of the lengths of all the chains of prime ideals in it. There are 
many alternate algorithmic definitions for the dimension of an affine k-algebra. All of them can be 
shown to be equivalent. On the other hand, for A-algebras these definitions are either not equivalent 
or not valid.

We define combinatorial dimension of A[x1, . . . , xn]/a, denoted by cdim(A[x1, . . . , xn]/a), in a man-
ner analogous to the definition of combinatorial dimension of k[x1, . . . , xn]/a (Kreuzer and Robbiano, 
2005).

Definition 4.1. Given a Noetherian integral domain A, let a ⊆ A[x1, . . . , xn] be an ideal. Let X ⊆
{x1, . . . , xn} be a set of indeterminates. The set X is said to be independent modulo a or an inde-
pendent set of indeterminates modulo a if a ∩ A[X] = {0}. The set X is called a maximal independent 
set modulo a if X is independent modulo a and there is no set Y ⊆ {x1, . . . , xn} independent mod-
ulo a with X � Y . The largest number of elements of a maximal independent set of indeterminates 
modulo a is called the combinatorial dimension of A[x1, . . . , xn]/a, denoted as cdim(A[x1, . . . , xn]/a).

4.1. Some properties of combinatorial dimension

The Krull dimension of A[x1, . . . , xn]/a, for an ideal a ⊆ A[x1, . . . , xn], is the maximal Krull di-
mension of an isolated prime ideal associated with a. Below we show that this result holds for 
combinatorial dimension as well.

Lemma 4.2. Let A be a Noetherian integral domain and a be an ideal in A[x1, . . . , xn]. Then
cdim(A[x1, . . . , xn]/a) is the maximum of cdim(A[x1, . . . , xn]/p), where p is an isolated prime ideal asso-
ciated with a.

Proof. We will denote cdim(A[x1, . . . , xn]/a) as d. Let p be an isolated prime ideal associated with 
a and S ⊆ X denote the maximal set of indeterminates that are independent modulo p. They are 
independent modulo a and therefore, d ≥ |S|. Conversely, let S ⊆ X be a maximal independent 
set of indeterminates modulo a such that |S| = d. Then M = A[S] \ {0} is multiplicatively closed 
and disjoint from a. There exists a prime ideal P, that contains a and does not meet M . Let 
p′ ⊆ P be the isolated prime ideal associated with a. S is independent modulo p′ . This implies
cdim(A[x1, . . . , xn]/p′) ≥ d. �

For a subset of indeterminates S , the set S represents the set of residue classes of S modulo the 
ideal a.

Proposition 4.3. Given a Noetherian integral domain A, let a ⊆ A[x1, . . . , xn] be a prime ideal. Then, all 
maximal sets of indeterminates independent modulo a have the same cardinality.

Proof. Since a is a prime ideal, A[x1, . . . , xn]/a is an integral domain. Let Quot(A[x1, . . . , xn]/a) rep-
resent the quotient field of A[x1, . . . , xn]/a. Let X = {x1, . . . , xn} and S ⊆ X be a set of indeterminates. 
S is independent modulo a if and only if S is algebraically independent in Quot(A[x1, . . . , xn]/a)
over A. Assume that there are maximal independent sets modulo a of different cardinalities. Let the 
two sets that are maximal independent modulo a be S ∪ {a} and S ∪ {b1, b2}. This implies S ∪ {a, b1}
and S ∪{a, b2} are dependent sets of indeterminates modulo a. Therefore, we have b1 is algebraic over 
Quot(A[S])(a) and a is algebraic over Quot(A[S])(b2). Therefore, b1 is algebraic over Quot(A[S])(b2), 
which is a contradiction to the independence of S ∪ {b1, b2} modulo a. �
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4.2. Gröbner basis method for computing combinatorial dimension for lexicographic orderings

We extend the concept of strongly independent indeterminates modulo a introduced in Kredel and 
Weispfenning (1988) for ideals in k[x1, . . . , xn], to polynomial rings over A.

Definition 4.4. Let S ⊆ X be a set of indeterminates and ≺ a monomial order in A[x1, . . . , xn]. Then, 
A[S/(X \ S)] denotes the following set,

A[S/(X \ S)] = { f ∈ A[x1, . . . , xn] : 0 �= f and lt( f ) ∈ A[S]}.
We say that S is strongly independent modulo a if A[S/(X \ S)] ∩ a = ∅.

Clearly, if S is strongly independent modulo a, then it is independent modulo a. But the converse 
is not true.

Lemma 4.5. Let a ⊆ A[x1, . . . , xn] be a proper ideal and ≺ be a monomial order in A[x1, . . . , xn]. Let S ⊆ X
be a set of indeterminates.

(i) If S is strongly independent modulo a w.r.t. ≺, then there exists an isolated prime ideal p associated with 
a such that S is also strongly independent modulo p w.r.t. ≺.

(ii) Let U = {S ⊆ X : S is strongly independent modulo a w.r.t. ≺} and U ′ = {S ⊆ X : there exists an isolated
prime ideal p associated with a such that S is strongly independent modulo p w.r.t. ≺}, then U = U ′ .

Proof.

(i) Let S be strongly independent modulo a. Let M = A[S/(X \ S)] \ {0} be a multiplicatively closed 
subset of A[x1, . . . , xn] disjoint to a. Then there exists a prime ideal P such that a ⊆ P and 
disjoint from M . Let p′ ⊆ P be an isolated prime ideal associated with a. Then S is strongly 
independent modulo p′ . Also, if S is maximal strongly independent modulo a, then for any S ⊆
S ′ ⊆ X , where S ′ is strongly independent modulo p′ , S ′ is strongly independent modulo a, so 
S ′ = S .

(ii) Clearly, U ′ ⊆ U and by (i), U ⊆ U ′ . �
We recall the concept of inessential set of indeterminates from Kredel and Weispfenning (1988). 

Let S ⊆ X be a set of indeterminates, f ∈ A[x1, . . . , xn] be a polynomial and ≺ be a monomial order 
in A[x1, . . . , xn]. We denote f S as the polynomial resulting from f by substituting 1 for all indeter-
minates from S in f . We say that S is inessential for f if for all terms t occurring in f , t S � lt( f )S .

Theorem 4.6. Let S ⊆ X, a be a prime ideal in A[x1, . . . , xn] and let ≺ be a monomial order such that 
A[x1, . . . , xn]/a has a free A-module representation w.r.t. ≺. Assume that S is independent modulo a and 
that for any x ∈ X \ S, there exists a polynomial fx ∈ A[S ∪ {x}/X \ (S ∪ {x})] ∩ a such that S is inessential 
for fx. Then S is maximal independent modulo a and |S| = cdim(A[x1, . . . , xn]/a).

Proof. For x ∈ X \ S , let dx be the degree of lt( fx) in x. Then dx � 0, for otherwise lt( fx)
S = 1 and so 

t S = 1 for all terms t occurring in fx , which implies fx ∈ A[S] which contradicts the independence of 
S modulo a. Let T be the set of all t ∈ Mon(A[x1, . . . , xn]) such that for every x ∈ X \ S , the degree of 
x in t is � dx .

Claim 1. For every t ∈ Mon(A[x1, . . . , xn]) \ T , there exists 0 �= p, p1, . . . , pm ∈ A[S], t1, . . . , tm ∈ T and 
f ∈ a such that pt = p1t1 + · · · + pmtm + f .

Proof of the claim. Assume the contradiction, that the claim fails for some t ∈ Mon(A[x1, . . . , xn]) \ T
and that t is ≺-minimal among the monomials with this property. Choose x ∈ X \ S such that the 
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degree d of t in x ≥ dx and let u = tx−d ∈ Mon(A[x1, . . . , xn]). fx can be written as pxdx − (p1t1 +
· · · + pmtm) with 0 �= p, p1, . . . , pm ∈ A[S], ti ∈ Mon(A[X \ S]), ti ≺ xdx , 1 ≤ i ≤ m. By multiplying with 
xd−dx u, we get

pt = xd−dx u fx − (p1t1xd−dx u + · · · + pmtmxd−dx u).

We have xd−dx u fx ∈ a and ti xd−dx u ≺ xdx xd−dx u = t for 1 ≤ i ≤ m. (Note that here we have two com-
parisons, one is the less than comparison, < based on the degrees of a variable in the monomials 
and the other is the comparison based on the monomial order, ≺.) Since t is ≺-minimal among the 
monomials that violate the claim, the claim is valid for all ti xd−dx u, 1 ≤ i ≤ m and therefore Claim 1
is valid for t as well, a contradiction.

Let Quot(A) represent the quotient field of the integral domain, A. Since A[x1, . . . , xn]/a has a 
free A-module representation w.r.t. ≺ we have A ∩ a = {0}. This implies Quot(A) ⊆ Quot(A)(S) �
Quot(A[x1, . . . , xn]/a). By Claim 1, Quot(A)[x1, . . . , xn]/a is finitely generated as a Quot(A)(S)-vector 
space by T . Each x, x ∈ X \ S is algebraic over Quot(A)(S). Since A ∩ a = {0}, this implies that for each 
x ∈ X \ S we can determine a f ∈ A[S ∪ {x}] ∩ a. Therefore, S is maximal independent modulo a and 
since a is a prime ideal, cdim(A[x1, . . . , xn]/a) = |S|. �
Definition 4.7 (Left Basic Set (LBS)). Let ≺ be a monomial order in A[x1, . . . , xn] and a be an ideal in 
A[x1, . . . , xn]. Given the set of indeterminates X , we define Sk ⊆ X , 0 ≤ k ≤ n inductively as

S0 = ∅

Sk+1 =

⎧⎪⎨
⎪⎩

Sk ∪ {xk} if Sk ∪ {xk} is strongly independent

modulo a w.r.t. ≺
Sk otherwise.

The set Sn is called the left basic set of a w.r.t. ≺.

Sn is maximal strongly independent modulo a w.r.t. ≺. For lexicographic orderings, as a conse-
quence of Theorem 4.6 we have the following result for prime ideals.

Corollary 4.8. Let a be a prime ideal in A[x1, . . . , xn] and ≺ be a lexicographic ordering such that 
A[x1, . . . , xn]/a has a free A-module representation w.r.t. ≺. If S is the left basic set of a w.r.t. ≺, then S
is maximal independent modulo a and so |S| = cdim(A[x1, . . . , xn]/a).

Proof. Since S is maximal strongly independent modulo a, for every x ∈ X \ S , there exists a polyno-
mial fx ∈ A[S ∪ {x}/X \ (S ∪ {x})] ∩ a. fx contains no y ∈ X such that x ≺ y since ≺ is a lexicographic 
order. Also for every monomial t ∈ Mon( fx), the degree of t in x is less than or equal to the degree of 
the leading term of fx in x. Therefore, lt( fx)

S ≥ t S for all terms in fx . Therefore, S is inessential for 
fx and we can apply Theorem 4.6 and |S| = cdim(A[x1, . . . , xn]/a). �

The idea can be extended to other proper ideals in A[x1, . . . , xn].

Theorem 4.9. Let a be a proper ideal in A[x1, . . . , xn] and ≺ be a lexicographic monomial order such that 
A[x1, . . . , xn]/a has a free A-module representation w.r.t. ≺. Let

d = max{|S| : S ⊆ X, S is maximal strongly independent modulo a w.r.t. ≺}.
Then, d = cdim(A[x1, . . . , xn]/a).

Proof. Since each S that is maximal strongly independent modulo a is independent modulo a we 
have cdim(A[x1, . . . , xn]/a) ≥ d. Pick an isolated prime ideal p associated with a such that
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cdim(A[x1, . . . , xn]/p) = cdim(A[x1, . . . , xn]/a).
Let S be the LBS of p. Then,

|S| = cdim(A[x1, . . . , xn]/p) = cdim(A[x1, . . . , xn]/a)
and S is strongly independent modulo p and therefore a and so d ≥ cdim(A[x1, . . . , xn]/a). �

Since strongly independent modulo a depends on the leading terms of an ideal, we explore its 
connections with Gröbner basis.

Theorem 4.10. Let ≺ be a monomial ordering in A[x1, . . . , xn] and S ⊆ X be a set of indeterminates. Let G be 
a Gröbner basis of an ideal, a ⊆ A[x1, . . . , xn] w.r.t. ≺. Then S is strongly independent modulo a w.r.t. ≺ if and 
only if A[S] ∩ lt(G) = ∅.

Proof. If for some g ∈ G , lt(g) ∈ A[S], then g ∈ A[S/(X \ S)] ∩ a and therefore S is not strongly 
independent modulo a. Conversely, assume there exists f ∈ A[S/(X \ S)] ∩ a, then there exists at least 
one g ∈ G such that lm(g) | lm( f ). Since lt( f ) ∈ A[S], lm(g) ∈ A[S]. �

We can construct the LBS of a w.r.t. ≺ from G by the following algorithm which is analogous to 
Kredel and Weispfenning (1988, Corollary 2.2).

Corollary 4.11. Let ≺ be a monomial order in A[x1, . . . , xn] and G be a Gröbner basis w.r.t. ≺ for an ideal 
a ⊆ A[x1, . . . , xn]. Algorithm 1 determines the left basic set of a w.r.t. ≺.

Algorithm 1 Finding the Left Basic Set of an ideal a in A[x1, . . . , xn].
Input G , Gröbner basis of a ⊆ A[x1, . . . , xn] w.r.t. ≺
Output S , Left Basic Set of a w.r.t. ≺.
S = ∅, U = {x1, . . . , xn}
while U �= ∅ do

Select x from U .
U = U \ {x}
if Mon(A[S] ∪ {x}) ∩ lt(G) = ∅ then

S = S ∪ {x}
end if

end while

Corollary 4.12. Let a ⊆ A[x1, . . . , xn] be an ideal such that A[x1, . . . , xn]/a has a free A-module representa-
tion w.r.t. some lexicographic ordering, ≺ and G be its monic short reduced Gröbner basis w.r.t. ≺. Let S ⊆ X
be a set of indeterminates such that

Mon(A[S]) ∩ lt(G) = ∅,

and S has the largest number of elements among all subsets of X that satisfy the above equation. Then S is 
maximal independent modulo a and |S| = cdim(A[x1, . . . , xn]/a).

Proof. This result is a direct consequence of Theorem 4.10 and Theorem 4.9. �
The above result gives us an algorithmic technique to determine the combinatorial dimension 

of A[x1, . . . , xn]/a. It involves computing a Gröbner basis w.r.t. a lexicographic ordering. Given a 
Noetherian integral domain A, we give below an explicit description of the algorithm to compute 
the combinatorial dimension of A-algebras A[x1, . . . , xn]/a, that have a free A-module representation 
w.r.t. a lexicographic ordering. The correctness of the algorithm follows from Corollary 4.12. It consists 
of two routines, Algorithm 2 and Algorithm 3, the latter of which is recursive. Algorithm 3 also deter-
mines the maximal independent set of indeterminates modulo a. This algorithm is along the lines of 
the algorithm described in Kredel and Weispfenning (1988, Section 3).
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Algorithm 2 Algorithm for finding the combinatorial dimension of A[x1, . . . , xn]/a for lexicographic 
orderings.

Input G , short reduced Gröbner basis of a ⊆ A[x1, . . . , xn] w.r.t. a lexicographic ordering ≺,
X = {x1, . . . , xn}
Output c, combinatorial dimension of A[x1, . . . , xn]/a
S , the maximal set of indeterminates independent modulo a.
if G is not monic then

Exit
end if
c = 0, S = ∅, U = X , M = ∅
{Calls the recursive algorithm}
M = Algorithm 3(G, S, U , M)

S = M
while M �= ∅ do

Select any M from M
M = M \ {M}
if c ≤ |M| then

c = |M|
end if

end while

Algorithm 3 Recursive algorithm for finding the maximal set of indeterminates independent modulo 
the ideal a ⊆ A[x1, . . . , xn] for lexicographic orderings.

Input G , Gröbner basis of a ⊆ A[x1, . . . , xn] w.r.t. a lexicographic ordering ≺,
S , set of indeterminates such that Mon(S) ∩ lt(G) = ∅,
U , a subset of the indeterminates set X ,
M, a set of already computed maximal sets S ′ with Mon(S ′) ∩ lt(G) = ∅.
Output M′ , the updated set of maximal set of indeterminates S ′ with Mon(S ′) ∩ lt(G) = ∅.
{Finding the maximal independent sets of indeterminates}
M′ = M
while U �= ∅ do

Select u from U
U = U \ {u}
if Mon(S ∪ {u}) ∩ lt(G) = ∅ then

M′ = Algorithm 3(G, S ∪ {u}, U , M′)
end if

end while
{Testing if S is already contained in some element of M′}
M′′ = M′ , t = 1
while M′′ �= ∅ and t = 1 do

Select M from M′′ , M′′ = M′′ \ {M}.
if S ⊆ M then

t = 0
end if

end while
if t = 1 then

M′ = M′ ∪ {S}
end if

The running time of the algorithm is exactly as that of computing the combinatorial dimension for 
fields except for the computation of short reduced Gröbner basis. The computation of short reduced 
Gröbner basis depends on the coefficient ring, A. When A = k or Z, the time complexity is doubly 
exponential (computation of a single Gröbner basis) and when A = k[y1, . . . , ym], the complexity is 
still doubly exponential but involves two Gröbner basis computations, first in k[y1, . . . , ym] and then 
in A[x1, . . . , xn].

5. Relation between Krull dimension and combinatorial dimension of A[x1, . . . , xn]/a

The results we derive in this section will also help us derive a relation between the degree of a 
Hilbert polynomial and Krull dimension (Section 6.3).
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Lemma 5.1. Let a ⊆ A[x1, . . . , xn] be an ideal and M be an A-algebra. Then there exists a homomorphism 
from A[x1, . . . , xn] to M[x1, . . . , xn]. Let ae represent the extension of the ideal a in M[x1, . . . , xn] under the 
homomorphism. We have

M ⊗A A[x1, . . . , xn]/a ∼= M[x1, . . . , xn]/ae.

Proof. Clearly, M[x1, . . . , xn]/ae is an A-module. Consider the following operation: for any f + a ∈
A[x1, . . . , xn]/a and g + ae ∈ M[x1, . . . , xn]/ae , let ( f + a)(g + ae) = f g + ae . It is well defined because 
a ⊆ ae . This implies M[x1, . . . , xn]/ae is an A[x1, . . . , xn]/a-module as well. We define the following 
homomorphism,

φ : A(A[x1,...,xn]/a×M) → M[x1, . . . , xn]/ae

φ(
∑
i∈�

(aix
αi + a,mi)) =

∑
i∈�

(aimix
αi + ae).

Note that φ is A-multilinear. Therefore, there exist the following homomorphisms,

ψ : A[x1, . . . , xn]/a⊗A M → M[x1, . . . , xn]/ae

and

π : A(A[x1,...,xn]/a×M) → A[x1, . . . , xn]/a⊗A M

such that φ = ψ ◦ π . Since φ is surjective, ψ is surjective too. Consider

ψ(
∑
i∈�

(aix
αi + a⊗A mi)) = 0.

We have∑
i∈�

(ai x
αi + a⊗A mi) =

∑
i∈�

(xαi + a⊗A aimi).

Now, π(
∑

i∈�(xαi + a, aimi)) = ∑
i∈�(xαi + a ⊗A aimi). This implies φ(

∑
i∈�(xαi + a, aimi)) = 0. Since 

xαi s are standard monomials, if the sum is equal to zero then each aimi = 0. Therefore, 
∑

i∈�(ai xαi +
a ⊗A mi) = 0 and ψ is injective. We have the following isomorphism,

M ⊗A A[x1, . . . , xn]/a ∼= M[x1, . . . , xn]/ae. �
Proposition 5.2. Let a ⊆ A[x1, . . . , xn] be an ideal such that it has a monic short reduced Gröbner basis, 
G = {g1, . . . , gt} w.r.t. some monomial order ≺. Let p � A be a prime ideal and k(p) (= Ap/pAp) be the 
residue field of p. Consider the ring homomorphism,

ν : A[x1, . . . , xn] −→ k(p)[x1, . . . , xn] (2)

such that ν(xi) = xi for xi ∈ {x1, . . . , xn} and for a ∈ A,

ν(a) =
{

0 for a ∈ p

a for a /∈ p.

If ae is the extension of a in k(p)[x1, . . . , xn], then ν(G) = {ν(g1), . . . , ν(gt)} is a Gröbner basis for ae .

Proof. If

〈lt(a)〉k(p)[x1, . . . , xn] = 〈lt(ae)〉,
then ν(G) = {ν(g1), . . . , ν(gt)} is a Gröbner basis of ae in k(p)[x1, . . . , xn]. Since G is a monic ba-
sis it also follows that ν(g), g ∈ G is monic and therefore ν(G) is a monic Gröbner basis for ae . We 
first show 〈lt(a)〉k(p)[x1, . . . , xn] ⊆ 〈lt(ae)〉. This is true for any ring homomorphism (Bayer et al., 1991, 
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Proposition 3.4). It is enough to show that each generator of 〈lt(a)〉k(p)[x1, . . . , xn] belongs to 〈lt(ae)〉. 
The generators of 〈lt(a)〉k(p)[x1, . . . , xn] are ν(lt( f )), f ∈ a. For each f ∈ a, either ν(lt( f )) = 0 if 
lc( f ) ∈ p or ν(lt( f )) = lt( f ) = lt(ν( f )) ∈ 〈lt(ae)〉, if lc( f ) /∈ p.

Let f ∈ ae and lt( f ) = cxα . We have

f =
t∑

i=1

ν(gi)bi, bi ∈ k(p)[x1, . . . , xn].

We claim that lt(g j) | xα for some j ∈ {1, . . . , t}. If not, for each lt(g j), b j = 0 since G is a monic short 
reduced Gröbner basis and ν(lt(gi)) = lt(gi) = lm(gi). Let g j ∈ G be such that lm(g j) | xα . Therefore, 
xα ∈ 〈lt(a)〉 and cxα ∈ 〈lt(a)〉k(p)[x1, . . . , xn]. We have ν(G) is a Gröbner basis for ae . �

Consider the ring homomorphism,

f : A −→ A[x1, . . . , xn]/a. (3)

We have the corresponding mapping associated with f ,

f ∗ : Spec(A[x1, . . . , xn]/a) −→ Spec(A). (4)

Consider a prime ideal p in A. The subspace f ∗−1(p) of Spec(A[x1, . . . , xn]/a) is naturally homeo-
morphic to Spec(k(p) ⊗A A[x1, . . . , xn]/a), where k(p) is the residue field of p, Ap/pAp (Atiyah and 
Macdonald, 1969, Exercise 3.21). That is, we have a homeomorphism between the set of primes of 
A[x1, . . . , xn]/a lying over p and Spec(k(p) ⊗A A[x1, . . . , xn]/a). By Lemma 5.1, we have

k(p) ⊗A A[x1, . . . , xn]/a ∼= k(p)[x1, . . . , xn]/ae. (5)

Theorem 5.3. Let a be a proper ideal in A[x1, . . . , xn] such that it has a monic Gröbner basis w.r.t. some 
monomial ordering. Let p be a prime ideal in A and let P be a prime ideal in A[x1, . . . , xn]/a such that P is 
maximal among the prime ideals lying over p. Then,

ht(P ) = ht(p) + kdim(k(p)[x1, . . . , xn]/ae),

where k(p) is the residue field of p and ae is the extension of the ideal, a under the ring homomorphism given 
by (2).

Proof. Consider the ring homomorphism given in (3),

f : A −→ A[x1, . . . , xn]/a.
Since a has a monic Gröbner basis w.r.t. some monomial ordering, A[x1, . . . , xn]/a is a free A-module. 
This implies f is a flat homomorphism of Noetherian rings and therefore we have from Matsumura
(1980, 13.B Theorem 19),

ht(P ) = ht(p) + kdim((A[x1, . . . , xn]/a)P ⊗ k(p)).

To ease the notation, we denote A[x1, . . . , xn]/a as A. The corresponding prime of A ⊗k(p) =Ap/pAp

is PAp/pAp. Let us denote this prime as P∗ . Then by Matsumura (1980, 13.A) we have that the local 
ring,

(A⊗ k(p))P∗ = AP ⊗ k(p).

Therefore,

kdim(AP ⊗ k(p)) = kdim((A[x1, . . . , xn]/a)P ⊗ k(p)) = ht(P∗).
Consider A[x1, . . . , xn]/a ⊗k(p). By (5), it is isomorphic to k(p)[x1, . . . , xn]/ae . All maximal ideals in the 
affine algebra k(p)[x1, . . . , xn]/ae are of the same height equal to kdim(k(p)[x1, . . . , xn]/ae). Therefore,

kdim((A[x1, . . . , xn]/a)P ⊗ k(p)) = kdim(k(p)[x1, . . . , xn]/ae),

and we have

ht(P ) = ht(p) + kdim(k(p)[x1, . . . , xn]/ae). �
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5.1. Krull dimension of A-algebras for lexicographic orderings

Proposition 5.4. Let a ⊆ A[x1, . . . , xn] be an ideal such that it has a monic short reduced Gröbner basis w.r.t. 
lexicographic ordering, ≺. Let p � A be a prime ideal and k(p) be the residue field of p (= Ap/pAp). Let ν be 
the ring homomorphism as described in Proposition 5.2 and ae be the extension of a in k(p)[x1, . . . , xn]. Then,

cdim(k(p)[x1, . . . , xn]/ae) = cdim(A[x1, . . . , xn]/a).

Proof. Let G be the monic short reduced Gröbner basis of a w.r.t. a lexicographic ordering ≺. From 
Proposition 5.2, we have that ν(G) is a monic Gröbner basis for ae and lt(G) = lt(ν(G)). Therefore, the 
set of indeterminates, S ⊆ X such that Mon(A[S]) ∩ lt(G) = ∅ is the same as the set of indeterminates, 
S ′ ⊆ X that satisfy Mon(k(p)[S ′]) ∩ lt(ν(G)) = ∅. Then by Corollary 4.12,

cdim(k(p)[x1, . . . , xn]/ae) = cdim(A[x1, . . . , xn]/a)
and hence the proof. �
Corollary 5.5. Let a ⊆ A[x1, . . . , xn] be a proper ideal such that A[x1, . . . , xn]/a has a free A-module repre-
sentation w.r.t. a lexicographic order ≺. Then,

kdim(A[x1, . . . , xn]/a) = kdim(A) + cdim(A[x1, . . . , xn]/a).

Proof. From Proposition 5.4, we have

cdim(k(p)[x1, . . . , xn]/ae) = cdim(A[x1, . . . , xn]/a).
When the coefficient ring is a field, kdim(k(p)[x1, . . . , xn]/ae) = cdim(k(p)[x1, . . . , xn]/ae). This implies 
that the equation in Proposition 5.3 becomes

ht(P ) = ht(p) + cdim(A[x1, . . . , xn]/a).
Since a is a proper ideal with a monic Gröbner basis, the mapping in (4), f ∗ : Spec(A[x1, . . . , xn]/a) −→
Spec(A), is surjective and we have

kdim(A[x1, . . . , xn]/a) = kdim(A) + cdim(A[x1, . . . , xn]/a). �
Given a Noetherian integral domain, using Corollary 5.5 we give a Gröbner basis algorithm to 

compute the Krull dimension of A-algebras, A[x1, . . . , xn]/a that have a free A-module representation 
w.r.t. a lexicographic ordering. This is listed in Algorithm 4. This algorithm calls Algorithm 2, which 
returns the maximal sets of indeterminates independent modulo a and the combinatorial dimension 
of the corresponding A-algebra.

Algorithm 4 Algorithm for finding the Krull dimension of A[x1, . . . , xn]/a for lexicographic orderings.
Input G , short reduced Gröbner basis of a ⊆ A[x1, . . . , xn] w.r.t. a lexicographic ordering, ≺,
dA , Krull dimension of the ring, A,
X = {x1, . . . , xn}
Output d, Krull dimension of A[x1, . . . , xn]/a.
if G is not monic then

Exit
end if
c = 0, S = ∅, t = 0, S = ∅
{Calls the combinatorial dimension algorithm}
S, c = Algorithm 2(G, X)

d = c + dA
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5.2. Examples

We illustrate below examples that compute the Krull dimension of residue class rings of polyno-
mial rings over a Noetherian integral domain, A using combinatorial dimension.

Example 5.6. Consider the ideal a = 〈xy, xz〉 ⊆ A[x, y, z] and the lexicographic ordering z ≺ y ≺ x. 
Consider the A-algebra A = A[x, y, z]/a. One way to determine the Krull dimension of A is given 
below. We have

kdim(A) = sup{kdim(A/P) :P minimal prime}.
Let P be a minimal prime of A. Then P = p/〈xy, xz〉 with p prime in A[x, y, z] and minimal over 
〈xy, xz〉. The associated isolated primes of 〈xy, xz〉 are 〈x〉 and 〈y, z〉. Then,

kdim(A) = sup{(kdim(A[x, y, z]/〈y, z〉),kdim(A[x, y, z]/〈x〉)}
= kdim(A) + 2.

We can also compute the Krull dimension using the relation we derived in the previous section. 
The short reduced Gröbner basis of a w.r.t. ≺ is {xy, xz} and it is monic and therefore A has a 
free A-module representation w.r.t. a lexicographic ordering. The cdim(A) = 2 since S = {y, z} is a 
maximal independent set of indeterminates modulo a. Therefore we have

kdim(A) = cdim(A) + kdim(A) = kdim(A) + 2.

Example 5.7. Consider the ideal a = 〈xy + 1〉 ⊆ A[x, y] and the lexicographic ordering y ≺ x. One can 
see that the A-algebra A = A[x, y]/a is isomorphic to the ring of Laurent polynomials with coeffi-
cients in A, A[x±1]. Therefore, the Krull dimension of A is equal to kdim(A[x±1]) = kdim(A) + 1.

We can use the relation we derived since A has a free A-module representation w.r.t. ≺. The 
cdim(A) = 1 with S = {x} a maximal independent set modulo the ideal. Therefore kdim(A) =
kdim(A) + 1.

Example 5.8. Let a = 〈x2 y +x +1, y3 + z+1〉 ⊆ A[x, y, z] be an ideal. To determine the Krull dimension 
of the A-algebra A = A[x, y, z]/a, we first compute the Gröbner basis of a w.r.t. the lexicographic 
ordering z ≺ y ≺ x. It is given by {y3 + z + 1, x2z + x2 − xy2 − y2, x2 y + x + 1}. It is monic and 
therefore we can apply the relation we derived. We construct the Left Basic Set w.r.t. ≺, S = {z}. 
Therefore, cdim(A) = |S| = 1. Therefore, kdim(A) = kdim(A) + 1.

Example 5.9. Let a = 〈x2 + 2x + 1, y3 + 2z + 1〉 ⊆ A[x, y, z] be an ideal. The Gröbner basis of a w.r.t. 
the lexicographic ordering z ≺ y ≺ x is {x2 + 2x + 1, y3 + 2z + 1}. It is monic and therefore we can 
apply the relation we derived to compute the Krull dimension of the A-algebra, A = A[x, y, z]/a. The 
LBS w.r.t. ≺, S = {z} and therefore, cdim(A) = |S| = 1 and kdim(A) = kdim(A) + 1.

Example 5.10. Let a = 〈x2 + zx, y + 6z〉 ⊆ Z[x, y, z] be an ideal. The Gröbner basis of a w.r.t. the 
lexicographic ordering z ≺ y ≺ x is {x2 + zx, y + 6z}. It is monic and therefore we can apply the 
relation we derived to compute the Krull dimension of the Z-algebra Z[x, y, z]/a. The LBS w.r.t. ≺, 
S = {z} and therefore, cdim(Z[x, y, z]/a) = |S| = 1 and kdim(Z[x, y, z]/a) = 2.

6. Hilbert polynomials in A[x1, . . . , xn]

6.1. Hilbert function and Hilbert series

Proposition 6.1. Let a ⊆ A[x1, . . . , xn] be an ideal such that it has a monic short reduced Gröbner basis, 
G = {g1, . . . , gt} w.r.t. a degree compatible monomial ordering. We denote A = A[x1, . . . , xn]/a. For d a non-
negative integer, we define
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A≤d = { f + a : f ∈ A[x1, . . . , xn],deg( f ) ≤ d}.
Then, A≤d is a finitely generated, free A-module.

Proof. Let a basis for A be given by the set, B = {xα + a : lm(gi) � xα}. Consider the following set, 
B(d) = {xα + a : xα + a ∈ B, deg(xα) ≤ d}.

Claim 2. B(d) is an A-module basis for A≤d.

Clearly, B(d) is a subset of A≤d . Consider f + a ∈ A≤d . Since deg( f ) ≤ d and we have a degree 
compatible ordering, lt( f ) ≤ d. This implies that f +a can be written as 

∑
xα+a∈B(d) ai(xα +a), ai ∈ A. 

Thus, B(d) generates A≤d . B(d) is linearly independent since it is a subset of the basis, B. We have, 
therefore, that A≤d is free and finitely generated. �

We refer to the size of B(d) as the free rank of A≤d and it is denoted as FreeRankA(A≤d). Note 
that any two bases for a free module over a commutative ring have the same cardinality.

Consider A = A[x1, . . . , xn]/a such that it has a free A-module representation w.r.t. a degree com-
patible monomial ordering. We define the Hilbert function, ha : Z≥0 → Z≥0 as

ha(d) = FreeRankA(A≤d).

The formal power series

Ha(t) =
∞∑

d=0

ha(d)td ∈ Z[[t]]

is called the Hilbert series of a.

Theorem 6.2. Let a ⊆ A[x1, . . . , xn] be an ideal such that A[x1, . . . , xn]/a has a free A-module representation 
w.r.t. a degree compatible ordering. Then,

Ha(t) = H〈lt(a)〉(t).

Proof. Let A = A[x1, . . . , xn]/a and G = {g1, . . . , gt} be a short reduced Gröbner basis of a w.r.t. a 
degree compatible ordering. Consider the following map for a specific set of coset representatives 
C Jxα

, xα ∈ Mon(A[x1, . . . , xn]), in A.

φ : A −→ A[x1, . . . , xn]
g + a �−→ ηG(g).

The map is well defined (Adams and Loustaunau, 1994, Lemma 4.3.3). For every d ∈ Z≥0, we have the 
restriction map,

φd : A≤d → A[x1, . . . , xn].
Let Vd ⊆ A[x1, . . . , xn] be the submodule spanned by all the monomials t with degree ≤ d and t /∈
〈lt(a)〉. Since all f ∈ Vd are in the normal form w.r.t. G , we get f = ηG( f ) = φd( f +a). Therefore, Vd ⊆
im(φd), the image of φd . Let f ∈ im(φd). This implies f = ηG(g) for some polynomial g ∈ A[x1, . . . , xn]
and Mon( f ) /∈ 〈lt(a)〉. We have that the degree of each monomial in f is less than d since the ordering 
is degree compatible. Therefore, f ∈ Vd and ha(d) = FreeRank(Vd). Note that the definition of Vd
depends only on the leading term ideal and therefore two ideals with the same leading term ideal 
will have the same Hilbert series. �

Algorithm 5 gives a Gröbner basis method to calculate the Hilbert series of an ideal in 
A[x1, . . . , xn].
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Algorithm 5 Computing the Hilbert series of an ideal a in A[x1, . . . , xn] when A[x1, . . . , xn]/a has a 
free A-module representation w.r.t. a degree compatible monomial ordering.

Input A degree compatible monomial ordering ≺,
G = {g1, . . . , gs}, a monic short reduced Gröbner basis of a based on the ordering, ≺.
Output Hilbert series Ha(t).
Let m1, . . . , ms be the leading monomials of G .
if s = 0 then

Return Ha(t) = 1
(1−t)n+1 .

else
J = 〈m2, · · · , ms〉 and
J ′ = 〈lcm(m1, m2), · · · , lcm(m1, ms)〉.

Compute H J (t) and H J ′ (t) by a recursive call of the algorithm.
Return

Ha(t) = 1 − tdeg(m1)

(1 − t)n+1
+ H J (t) − H J ′ (t).

end if

Proposition 6.3. Algorithm 5 terminates after finitely many steps and calculates Ha(t) correctly.

Proof. With the assumption that A[x1, . . . , xn]/a has a free A-module representation w.r.t. a de-
gree compatible monomial ordering, the proof is identical to that of fields (Kemper, 2011, Theo-
rem 11.9). �

The Hilbert–Serre theorem follows as a natural consequence of the above algorithm.

Theorem 6.4 (Hilbert–Serre theorem). Let a ⊆ A[x1, . . . , xn] be an ideal such that A[x1, . . . , xn]/a has a free 
A-module representation w.r.t. a degree compatible ordering. Then the Hilbert series of the ideal has the form

Ha(t) = a0 + a1t + · · · + aktk

(1 − t)n+1
,

with k ∈ Z≥0 and ai ∈ Z. Moreover, the Hilbert function ha(d) is a polynomial for large d. The polynomial

pa =
k∑

i=0

ai C(x + n − i,n) ∈Q[x]

called the Hilbert polynomial satisfies ha(d) = pa(d) for sufficiently large integer d.

Whenever the A-module A[x1, . . . , xn]/a has a free A-module representation w.r.t. a degree com-
patible monomial ordering all the properties of Hilbert functions for affine k-algebras hold here as 
well.

6.2. Relation between Hilbert polynomials and combinatorial dimension

Let a ⊆ A[x1, . . . , xn] be an ideal such that A[x1, . . . , xn]/a has a free A-module representation w.r.t. 
a degree compatible monomial ordering. We first show that the degree of the Hilbert polynomial is 
equal to its combinatorial dimension. A free A-module representation implies monic leading terms 
and this implies all the properties of Hilbert functions for leading term ideals follow exactly as that 
of fields. One such property is the equivalence of the combinatorial dimension of A[x1, . . . , xn]/〈lt(a)〉
and the degree of Hilbert polynomial of 〈lt(a)〉.

Theorem 6.5. If a ⊆ A[x1, . . . , xn] is an ideal such that A[x1, . . . , xn]/a has a free A-module representation 
w.r.t. a degree compatible monomial order, then the degree of the Hilbert polynomial of 〈lt(a)〉 is equal to the 
combinatorial dimension of A[x1, . . . , xn]/〈lt(a)〉.
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We will now show that for any arbitrary ideal a, cdim(A[x1, . . . , xn]/a) is equal to the degree of 
the Hilbert polynomial of a.

Theorem 6.6. Let a ⊆ A[x1, . . . , xn] be a proper ideal such that A[x1, . . . , xn]/a has a free A-module repre-
sentation w.r.t. a degree compatible ordering ≺. Then, cdim(A[x1, . . . , xn]/a) equals the degree of the Hilbert 
polynomial of a.

Proof. Let d denote the combinatorial dimension of a. Let the set {xi1 , . . . , xid } be a set of independent 
indeterminates modulo a of maximal cardinality. Let s be a non-negative integer. From Theorem 6.1, 
we have that Mon(A[xi1 , . . . , xid ])≤s is a linearly independent set of A≤s . Therefore, C(d + s, s) ≤ ha(s). 
Since the binomial coefficient is a polynomial function in s of degree d, the cdim(A[x1, . . . , xn]/a) is 
at most the degree of the Hilbert polynomial.

Let 〈lt(a)〉 be the leading term ideal of a w.r.t. ≺. If S = {xi1 , . . . , xik } ⊆ {x1, . . . , xn} is not in-
dependent modulo a, then there exists a non-zero polynomial f ∈ a ∩ A[xi1 , . . . , xik ]. We have
lm( f ) ∈ 〈lt(a)〉 ∩ A[xi1 , . . . , xik ]. This implies S is not independent modulo 〈lt(a)〉. Therefore, the set 
of independent indeterminates modulo 〈lt(a)〉 is a subset of the set of independent indeterminates 
modulo a. Therefore, cdim(A[x1, . . . , xn]/〈lt(a)〉) ≤ cdim(A[x1, . . . , xn]/a). By Theorem 6.2 and Theo-
rem 6.5, we have that the degree of the Hilbert polynomial is at most cdim(A[x1, . . . , xn]/a). �

This corollary directly follows.

Corollary 6.7. Given a proper ideal a ⊆ A[x1, . . . , xn] such that A[x1, . . . , xn]/a has a free A-module repre-
sentation w.r.t. a degree compatible ordering. If S is a set of maximal cardinality of indeterminates that are 
independent modulo 〈lt(a)〉, then S is a set of maximal cardinality of indeterminates that are independent 
modulo a. Also,

cdim(A[x1, . . . , xn]/a) = cdim(A[x1, . . . , xn]/〈lt(a)〉).

6.3. Krull dimension of A-algebras for degree compatible orderings

Proposition 6.8. Let a ⊆ A[x1, . . . , xn] be an ideal such that it has a monic short reduced Gröbner basis w.r.t. 
a degree compatible ordering ≺. Let p � A be a prime ideal and k(p) be the residue field of p (= Ap/pAp). Let 
ν be the ring homomorphism as described in Proposition 5.2 and ae be the extension of a in k(p)[x1, . . . , xn]. 
Then,

Hae (t) = Ha(t).

Proof. Let G be the monic short reduced Gröbner basis of a w.r.t. a lexicographic ordering ≺. From 
Proposition 5.2, we have that ν(G) is a monic Gröbner basis for ae and lt(G) = lt(ν(G)). Therefore, 
we have Hae (t) = H〈lt(a)〉(t). From Theorem 6.2 we have Hae (t) = H〈lt(a)〉(t) = Ha(t). �

In the case of A-algebras with a free A-module representation w.r.t. a lexicographic ordering, we 
have seen that cdim(k(p)[x1, . . . , xn]/ae) = cdim(A[x1, . . . , xn]/a) (Proposition 5.4). This is true in the 
case of A-algebras with a free A-module representation w.r.t. a degree compatible monomial ordering 
as well.

Proposition 6.9. Let a ⊆ A[x1, . . . , xn] be an ideal such that it has a monic short reduced Gröbner basis w.r.t. 
a degree compatible ordering, ≺. Let p � A be a prime ideal and k(p) be the residue field of p (= Ap/pAp). Let 
ν be the ring homomorphism as described in Proposition 5.2 and ae be the extension of a in k(p)[x1, . . . , xn]. 
Then,

cdim(k(p)[x1, . . . , xn]/ae) = cdim(A[x1, . . . , xn]/a).
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Proof. Let G be the monic short reduced Gröbner basis of a w.r.t. ≺. As shown previously, ν(G) is a 
monic Gröbner basis for ae and lt(G) = lt(ν(G)). From Proposition 6.8 we have deg(pae ) = deg(pa). 
From Theorem 6.6, cdim(A[x1, . . . , xn]/a) = deg(pa). Since over fields, cdim(k(p)[x1, . . . , xn]/ae) =
deg(pae ), we have

cdim(k(p)[x1, . . . , xn]/ae) = cdim(A[x1, . . . , xn]/a). �
Corollary 6.10. Let A[x1, . . . , xn]/a be a finitely generated A-algebra such that it has a free A-module repre-
sentation w.r.t. a degree compatible ordering ≺. Then,

kdim(A[x1, . . . , xn]/a) = kdim(A) + cdim(A[x1, . . . , xn]/a)
= kdim(A) + deg(pa).

Proof. The proof goes along the same lines as Proposition 5.4. From Proposition 6.9, we have

cdim(k(p)[x1, . . . , xn]/ae) = cdim(A[x1, . . . , xn]/a).
When the coefficient ring is a field, kdim(k(p)[x1, . . . , xn]/ae) = cdim(k(p)[x1, . . . , xn]/ae). This implies 
that the equation in Proposition 5.3 becomes

ht(P ) = ht(p) + cdim(A[x1, . . . , xn]/a).
Since a is a proper ideal with a monic Gröbner basis, the mapping in (4), f ∗ : Spec(A[x1, . . . , xn]/a) −→
Spec(A), is surjective and we have

kdim(A[x1, . . . , xn]/a) = kdim(A) + cdim(A[x1, . . . , xn]/a).
Since by Theorem 6.6, deg(pa) = cdim(A[x1, . . . , xn]/a), we have the result. �

We give below an algorithm (Algorithm 6) to compute the Krull dimension of certain A-algebras, 
A[x1, . . . , xn]/a, that have a free A-module representation w.r.t. a degree compatible ordering. The 
correctness of the algorithm follows from Corollary 6.10.

Algorithm 6 Algorithm for finding the Krull dimension of A[x1, . . . , xn]/a for degree compatible or-
derings.

Input G , short reduced Gröbner basis of a ⊆ A[x1, . . . , xn] w.r.t. a degree compatible monomial ordering, ≺,
dA , Krull dimension of A,
Output d, Krull dimension of A[x1, . . . , xn]/a.
if G is not monic then

Exit
end if
{Calls the Hilbert Serre algorithm}
Ha(t) = Algorithm 5(G, ≺)

{Ha(t) is of the form a0+a1t+···+aktk

(1−t)n+1 }

pa(x) = ∑k
i=0 ai C(x + n − i, n)

k = deg(pa)

d = k + dA

6.4. Examples

We give below examples that compute the Krull dimension of residue class rings of polynomial 
rings over a Noetherian integral domain A using Hilbert polynomials.

Example 6.11. Consider the ideal a = 〈xy, xz〉 ⊆ A[x, y, z] and the deglex ordering with z ≺ y ≺ x. 
Consider the A-algebra A = A[x, y, z]/a. The short reduced Gröbner basis of a w.r.t. ≺ is {xy, xz} and 
it is monic. Therefore A has a free A-module representation w.r.t. a degree compatible monomial 
ordering. By using the recursive algorithm Algorithm 5, we have
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Ha(t) = −t2 + t + 1

(1 − t)3

= 1 + 4t + 8t2 + 13t3 + · · ·
pa(x) = x2 + 5x + 2.

deg(pa) = 2.

Using Corollary 6.10, we have

kdim(A) = deg(pa) + kdim(A) = kdim(A) + 2.

Example 6.12. Consider the ideal a = 〈xy +1〉 ⊆ A[x, y] and deglex ordering with y ≺ x. We determine 
below the Krull dimension of the A-algebra A = A[x, y]/a. We have

Ha(t) = 1 − t2

(1 − t)3

= 1 + 3t + 5t2 + 7t3 + 9t4 + · · ·
pa(x) = 2x + 1.

deg(pa) = 1.

Therefore, kdim(A) = kdim(A) + 1.

Example 6.13. Let a = 〈x2 + zx, y +6z〉 ⊆ Z[x, y, z] be an ideal. The Gröbner basis of a w.r.t. the deglex 
ordering z ≺ y ≺ x is {x2 + zx, y + 6z}. We have

Ha(t) = t3 − t2 − t + 1

(1 − t)4

= 1 + 3t + 5t2 + 7t3 + · · ·
pa(x) = 2x + 1.

deg(pa) = 1.

Therefore, kdim(Z[x, y, z]/a) = kdim(Z) + 1 = 2.

7. Concluding remarks

As we can see from the examples given in this paper, to determine the Krull dimension of 
A[x1, . . . , xn]/a, previously, one had to exploit the individual properties of each ideal. In this paper, 
we derived a relation between combinatorial dimension and Krull dimension that gives us an algo-
rithmic method to compute the Krull dimension of the A-algebra provided it has a free A-module 
representation w.r.t. either a lexicographic or degree compatible monomial order. A natural question 
to ask is can we have the similar relation for other monomial orders. For polynomial rings over fields, 
the relation for all monomial orders is proved using Carrà Ferro (1987, Theorem 3.1). An affirmative 
answer seems likely for A[x1, . . . , xn] as well but we have yet to have a formal proof.

In Kredel and Weispfenning (1988), the authors conjecture that for a prime ideal a ⊆ k[x1, . . . , xn]
any maximal set of indeterminates strongly independent mod a is also maximal independent mod 
a and hence determines the dimension of k[x1, . . . , xn]/a. The conjecture was shown to be true 
in Kalkbrener and Sturmfels (1995). We conjecture the same for prime ideals in A[x1, . . . , xn]. In 
this paper, for a Noetherian integral domain A we have shown that the maximal strongly inde-
pendent set of indeterminates constructed from the left basic set w.r.t. a lexicographic ordering is 
also maximal independent mod a and equal to the combinatorial dimension of A[x1, . . . , xn]/a, when 
A[x1, . . . , xn]/a has a free A-module representation w.r.t. the ordering. We conjecture that for a prime 
ideal a ⊆ A[x1, . . . , xn], any maximal set of indeterminates strongly independent mod a is also maxi-
mal independent mod a. If this is true, then the cardinality of such a set determines the combinatorial 
and Krull dimension of A[x1, . . . , xn]/a.
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