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Abstract

Given a zero-dimensional ideal I in a polynomial ring, many computations start by finding
univariate polynomials in I . Searching for a univariate polynomial in I is a particular case
of considering the minimal polynomial of an element in P/I . It is well known that minimal
polynomials may be computed via elimination, therefore this is considered to be a “resolved
problem”. But being the key of so many computations, it is worth investigating its meaning,
its optimization, its applications (e.g. testing if a zero-dimensional ideal is radical, primary or
maximal). We present efficient algorithms for computing the minimal polynomial of an element
of P/I . For the specific case where the coefficients are in Q, we show how to use modular methods
to obtain a guaranteed result. We also present some applications of minimal polynomials, namely
algorithms for computing radicals and primary decompositions of zero-dimensional ideals, and
also for testing radicality and maximality.
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1. Introduction

This paper describes both theoretical and practical aspects of computing minimal
polyomials, with particular emphasis on our practical implementation in CoCoALib
(Abbott and Bigatti, 2019) and CoCoA (Abbott et al., 2019). It is organized into three
parts: computing minimal polynomials over Fp, computing minimal polynomials over Q,
and using minimal polynomials.

In linear algebra it is frequently necessary to use non-linear objects such as minimal
and characteristic polynomials since they capture fundamental information about endo-
morphisms of finite-dimensional vector spaces. It is well-known that if K is a field and
R is a zero-dimensional affine K-algebra (i.e. a zero-dimensional algebra of the form
R = K[x1, . . . , xn]/I) then R is a finite-dimensional K-vector space — e.g. see Propo-
sition 3.7.1 of (Kreuzer and Robbiano, 2008). Consequently, it is not surprising that
minimal and characteristic polynomials can be successfully used to detect properties
of R.

This point of view was taken systematically in the book by Kreuzer and Robbiano
(2016), where the particular importance of minimal polynomials (rather greater than
that of characteristic polynomials) emerged quite clearly. The book clarified one main
advantage of minimal polynomials over characteristic polynomials, namely that minimal
polynomials generalise to families of pairwise commuting endomorphisms, while charac-
teristic polynomials do not. The book also described several algorithms which use minimal
polynomials as a crucial tool. The approach taken there was a good source of inspiration
for our research, so we decided to delve into the theory of minimal polynomials, their
uses, and their applications.

Being such fundamental tools in linear algebra, minimal polynomials have played a
prominent role in several branches of research over the last two centuries. As a conse-
quence, it is impractical to track down all contributions to this theory. Two further sources
of particular inspiration were the paper by Lazard (1992), where minimal polynomials
were systematically used in the process of solving zero-dimensional systems of polynomial
equations, and the paper by Bostan et al. (2003), which contains a fine analysis of the
complexity of computing minimal polynomials.

Relevance to the SC2 community

It is not immediately apparent how minimal polynomials could be relevant to the SC2

community. However, our methods for computing them efficiently are very helpful for
solving polynomial systems, and are basic building blocks also for a number of other
applications in the SC2 community, as introduced in (Abbott and Bigatti, 2017).

For instance, one fundamental tool in the algebraic approach to tackling SC
2 prob-

lems is Cylindrical Algebraic Decomposition, often abbreviated to CAD (first introduced
in (Collins, 1975)). The software CArL/SMT-RAT by Kremer and Ábrahám (2018) em-
ploys Lazard’s variant of CAD (McCallum et al., 2017) which requires polynomial fac-
torization over algebraic field extensions. We use our efficient algorithms for minimal
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polynomials to compute quickly the primary decomposition of zero-dimensional ide-
als (see Section 4.5 and Table 5), which in turn give a good method for factorizing
polynomials over algebraic field extensions. We presented the relevant theory and our
CoCoALib implementation in (Abbott et al., 2018a); further background material is in
Section 5.3.B of (Kreuzer and Robbiano, 2016), Indeed, our CoCoALib implementation
is used by CArL/SMT-RAT.

Fundamentals of our approach
The first step of our approach was to devise and implement good algorithms for com-

puting the minimal polynomial of an element of R and that of a K-endomorphism of R
(see Algorithms 2.8, and 2.10). They are described in Section 2, and refine similar algo-
rithms examined in the book by Kreuzer and Robbiano (2016). They have been imple-
mented in CoCoALib (Abbott and Bigatti, 2019), and are accessible from CoCoA (Abbott et al.,
2019), as indeed are all other algorithms described in this paper. Although the theoretical
content of Section 2 is essentially elementary, many remarks on implementation details
are given to get the good performance shown in Table 1.

Efficient computation by modular techniques
Section 3 constitutes a contribution of great practical significance: it addresses the

problem of computing minimal polynomials of elements of an affine Q-algebra using a
modular approach. The technique of using modular reduction has a long tradition, see for
instance these articles by Pauer (2007), Winkler (1988), Gräbe (1988), Noro and Yokoyama
(1999), Noro and Yokoyama (2004), Noro and Yokoyama (2018), Aoyama and Noro (2018),
Noro (2002), Idrees et al. (2011) and Monagan (2004). Usually modular methods are as-
sociated with results which are correct only with high probability. In contrast, with the
approach we introduce here, the minimal polynomial is guaranteed to be correct (see
Remark 3.23).

Why might a modular approach be useful for computing minimal polynomials? Let us
have a look at an example. Let X = {p1, p2, p3, p4} be the set of the following four points in
A3

Q: p1 = (1, 3, 0), p2 = (1, 0, 4), p3 = (−5, 7, 1), p4 = (1, 0, 0). The vanishing ideal of X in
the polynomial ring P = Q[x, y, z] is I = 〈z2− 1

2x−4z+ 1
2 , yz+

7
6x− 7

6 , y
2+ 14

3 x−3y− 14
3 〉.

We take f = 2x2 + 3y4 + 5z6 ∈ P . Then the minimal polynomial of f̄ in P/I, i.e. the
lowest-degree, monic polynomial g(z) such that g(f) ∈ I, is z4−27987 z3+155510626 z2−
36732206532 z + 72842594440. Even in this “small” example, although both the ideal
and the element f have simple coefficients, the minimal polynomial has much larger
coefficients.

The modular approach tames the complexity of computing the big coefficients of such
polynomials. However, as always happens with a modular approach, various obstacles
have to be overcome — see for instance the discussion contained in (Abbott et al., 2017).
In particular, we deal with the notion of reduction of an ideal modulo p, and we do so by
introducing the notion of σ-denominator of an ideal (see Definition 3.6 and Theorem 3.7),
which enables us to surmount these obstacles. The reason why we introduce the σ-
denominator is that, for a given a term ordering, the reduced Gröbner basis of an ideal
is unique, so that the theoretical results do not depend on the generators of the ideal,
but just on the ideal itself.

Hand-in-hand with the modular approach go the notions of usable, good and bad
primes (see Definitions 3.17 and 3.18). We show that all but finitely many primes
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are good (see Theorem 3.20 and Corollary 3.21), and this paves the way to the con-
struction of the fundamental Algorithm 3.22. In the literature, several authors have
looked at various notions of bad reduction in similar contexts, see for instance the ar-
ticles by Noro and Yokoyama (2018), Pauer (2007), Winkler (1988) and Arnold (2003).
However, our approach is systematically tied to reduced Gröbner bases as computa-
tionally robust representations of ideals; we study more deeply this approach in the
preprint (Abbott et al., 2018b). The combination of the theoretical results explained in
this section with various implementation details lead to the good practical performance
as shown in Table 2. For example, the choice of larger “small primes” as moduli turned
out to be a winning strategy, namely with about 30 bits (on a 64-bit platform).

Uses of minimal polynomials: radical, primary decomposition

Section 4 shows how minimal polynomials can be successfully and efficiently used
to compute several important invariants of zero-dimensional affine K-algebras. More
specifically, in Subsection 4.1 we describe Algorithms 4.7 and 4.8 which show respectively
how to determine whether a zero-dimensional ideal is radical, and how to compute the
radical of a zero-dimensional ideal. In Subsection 4.2 we present several algorithms which
determine whether a zero-dimensional ideal is maximal or primary. The techniques used
depend very much on the field K. The main distinction is between small finite fields
and fields of characteristic zero or big fields of positive characteristic. In particular, it is
noteworthy that in the first case Frobenius spaces play a fundamental role — e.g. see
Section 5.2 of the book by Kreuzer and Robbiano (2016).

Finally, in Subsection 4.5 a series of algorithms (see Algorithms 4.24, 4.28, 4.29 and
4.30) describe how to compute the primary decomposition of a zero-dimensional affine
K-algebra. They are inspired by the content of Chapter 5 of (Kreuzer and Robbiano,
2016), but also present many novelties.

Implementation and timings

As already mentioned, all the algorithms described in this paper have been imple-
mented in CoCoA. Their merits are illustrated by the tables of examples contained in
Sections 2 and 3, and also at the end of Section 4. The examples were chosen to cover
a wide spectrum of zero-dimensional affine K-algebras; some are complete intersections,
and some are not. The experiments were performed on a MacBook Pro with Intel Core i7
processor (clocked at 2.9GHz), using our implementation in CoCoA 5.

At the request of the referees we supply comparative timings against two (free and
open-source) competitors, despite our reservations. But is our comparison really fair?
Both Singular (by Decker et al. (2019)) and Macaulay2 (by Grayson and Stillman (2019))
are advanced software systems which require months to learn thoroughly; for the com-
parison, we consulted their respective manuals, and chose what appear to be the most
relevant functions.

We tried to compute our examples with Macaulay2, but were unable to compute
them in a reasonable time. In contrast, we could compute most of the examples with
Singular. The results are in Table 5, and confirm the efficiency of our algorithms and
implementations (whose outputs, as already mentioned, are guaranteed to be correct).
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2. Computing Minimal Polynomials

Here we introduce the notation and terminology we shall use, and the definition of
minimal polynomial which is the fundamental object studied in this paper.

Let K be a field, let P = K[x1, . . . , xn] be a polynomial ring in n indeterminates, and
let Tn denote the monoid of power-products in x1, . . . , xn. Let I be a zero-dimensional
ideal in P ; this implies that the ring R = P/I is a zero-dimensional affine K-algebra,
hence it is a finite dimensional K-vector space. Then, for any f in P there is a linear
dependency mod I among the powers of f : in other words, there is a polynomial g(z) =
∑d

i=0 λiz
i ∈ K[z] which vanishes modulo I when evaluated at z = f .

Example 2.1. Let P = F101[x, y], I = 〈x2 − y, y2 − 2x − 4〉, and f = 5x − 3y. Then
g(z) = z4 + 18z2 + 48z − 23 ∈ K[z] is such that g(f) = f4 + 18f2 + 48f − 23 ∈ I, or
equivalently g(f̄) = 0 ∈ P/I. Moreover g(z) is the lowest degree monic polynomial with
this property.

Definition 2.2. Let K be a field, let P = K[x1, . . . , xn], and let I be a zero-dimensional
ideal. Given a polynomial f ∈ P , we have a K-algebra homomorphism K[z] → P/I given
by z 7→ f mod I. The monic generator of the kernel of this homomorphism is called the
minimal polynomial of f mod I (or simply “of f ” when the ideal I is obvious), and is
denoted by µf,I(z).

Remark 2.3. The particular case of µxi,I(xi), where xi is an indeterminate, is a very
important and popular object when computing: in fact µxi,I(xi) is the lowest degree
polynomial in xi belonging to I, that is I ∩K[xi] = 〈µxi,I(xi)〉.

Example 2.4. Let P = F101[x, y], I = 〈y3 − xy − 2y2 + y, xy2, x2 − x〉, and f = y.
Then µf,I(y) = y4 − 2y3 + y2 = y2·(y − 1)2.

Example 2.5. Let P = Q[x, y], I = 〈x2 − 1
7y

2 − 5, y2 + 4x − 7
2 〉, and f = 3x − 2y.

Then µf,I(z) = z4 + 24
7 z3 − 6527

49 z2 + 5868
7 z + 10967

28 . We will see in Example 3.24 how we
compute it with a modular approach.

For the basic properties of Gröbner bases we refer to Buchberger (1985) and Kreuzer and Robbiano
(2008). Let σ be a term-ordering on Tn, and let I be an ideal in the polynomial ring P .
It is known that NFσ,I(f), the σ-normal form of f with respect to I, does not depend
on which σ-Gröbner basis of I is used nor on which specific rewriting steps were used
to calculate it (see Proposition 2.4.7 in Kreuzer and Robbiano (2008)). If I is clear from
the context, we write simply NFσ(f).

Remark 2.6 (Elimination). A well-known method for computing the minimal polyno-
mial µf,I(z) is by elimination. One extends P with a new indeterminate to produce a
new polynomial ring R = K[x1, . . . , xn, z], then defines the ideal J = IR+ 〈z− f〉 in R,
and finally eliminates the indeterminates x1, . . . , xn.

However, even in the case where f is just an indeterminate, the algorithm which
derives from this approach is usually impractically slow on non-trivial examples; though
the performance could be improved by using FGLM (see Remark 2.13).
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Another way to compute µf,I(z) is via multiplication endomorphisms on P/I. Let
f ∈ P then we write ϑf̄ : P/I → P/I for the endomorphism “multiplication by f̄ ”. There
is a natural isomorphism between P/I and K[ϑf̄ | f̄ ∈ P/I] which associates f̄ with ϑf̄

(see Proposition 4.1.2 in Kreuzer and Robbiano (2016)).

Example 2.7 (Example 2.4 continued). Let P = F101[x, y], I = 〈y3 − xy − 2y2 +

y, xy2, x2 −x〉 and f = y. The given generators are a DegRevLex-Gröbner basis, thus a
quotient basis for P/I is QB = {1, y, y2, x, xy}, and the matrix for “multiplication by f̄ ”

with respect to the basis QB is A =

(

0 0 0 0 0
1 0 −1 0 0
0 1 2 0 0
0 0 0 0 0
0 0 1 1 0

)

. In CoCoA this can be computed via the

call MultiplicationMat(y, I, QB). Note that the matrix is computed by calculating
NFI(f · t) for all t ∈ QB (see Remark 2.11).

The minimal polynomial of f modulo I is the same as the minimal polynomial of the
endomorphism ϑf̄ . Thus, if the matrix A represents ϑf̄ with respect to some K-basis of
P/I, we can compute the minimal polynomial of A (and thus of ϑf̄ ) using the following
algorithm which is a refined version of Algorithm 1.1.8 in Kreuzer and Robbiano (2016).

Algorithm 2.8. MinPolyQuotMat

notation: Let P = K[x1, . . . , xn] with term-ordering σ

Input I, a zero-dimensional ideal in P , and a polynomial f ∈ P

1 compute GB, a σ-Gröbner basis for I;
from GB compute QB, the corresponding monomial quotient basis of P/I
(below we assume 1 is the first element in QB)

2 compute A, the matrix representing the map ϑf̄ w.r.t. QB

3 let v0 = (1 0 0 . . . )tr and L = {v0}
4 Main Loop: for i = 1, 2, . . . , len(QB) do

4.1 let vi = A · vi−1 (hence we have vi = Ai · v0)
4.2 is there a linear dependency vi =

∑i−1
j=0 cjvj with coefficients cj ∈ K?

4.2-yes return µf,I(z) = zi −∑i−1
j=0 cjz

j

4.2-no append vi to L

Output µf,I(z) ∈ K[z]

Example 2.9 (Example 2.7 continued). For i = 0, 1, . . . the vector of vi comprises the
coefficients of f̄ i with respect to the vector space basis (QB in the algorithm). Writing

these vectors as columns gives C =

1 0 0 0 0 0 ...
0 1 0 −1 −2 −3 ...
0 0 1 2 3 4 ...
0 0 0 0 0 0 ...
0 0 0 1 2 3 ...

. Note that the first 4 columns are

linearly independent, whereas the first 5 admit the relation f̄4 = 2f̄3 − f̄2, hence the
algorithm stops at the fourth iteration returning y4−2y3+y2. Notice that in this instance
the minimal polynomial has degree < degK(P/I), so it strictly divides the characteristic
polynomial.
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There is a still more direct approach. It comes from considering the very definition
of minimal polynomial: we look for the first linear dependency among the powers f̄ i in
P/I. Here we give a refined version of Algorithm 5.1.2 in Kreuzer and Robbiano (2016).

Algorithm 2.10. MinPolyQuotDef
notation: Let P = K[x1, . . . , xn] with term-ordering σ

Input I, a zero-dimensional ideal in P , and a polynomial f ∈ P

1 compute GB, a σ-Gröbner basis for I;
from GB compute QB, the corresponding monomial quotient basis of P/I

2 let f = NFσ,I(f)

3 let r0 = f0 (= 1) and L = {r0}
4 Main Loop: for i = 1, 2, . . . , len(QB) do

4.1 compute ri = NFσ,I(f · ri−1) (hence we have ri = NFσ,I(f
i))

4.2 is there a linear dependency ri =
∑i−1

j=0 cjrj with coefficients cj ∈ K?

4.2-yes return µf,I(z) = zi −∑i−1
j=0 cjz

j

4.2-no append ri to L

Output µf,I(z) ∈ K[z]

Remark 2.11 (MinPolyQuotMat vs. MinPolyQuotDef). Notice that algorithms
MinPolyQuotMat and MinPolyQuotDef essentially do the same computation: the
first using a matrix representation, and the second a polynomial representation. The
main intrinsic difference is that the first algorithm computes the normal forms when
constructing the multiplication matrix, whereas the second computes the normal forms
in the main loop.

Example 2.12 (Example 2.9 continued). In this algorithm we do not compute the
multiplication matrix, but we compute the normal forms of successive powers of f : hence
r0 = 1, r1 = NFI(f) = y, r2 = NFI(f · r1) = y2, r3 = NFI(f · r2) = xy + 2y2 − y,
r4 = NFI(f ·r3) = 2xy+3y2−2y, and so on. From these we implicitly construct the same
sequence of columns C, and thence obtain the same relation, µf,I(y) = y4 − 2y3 + y2.

Remark 2.13 (MinPolyQuotMat/Def vs. FGLM-Elimination). The performance
of the naive elimination algorithm (Remark 2.6) could be greatly improved using FGLM
(see Faugère et al. (1993)). Given a Gröbner basis of a zero-dimensional ideal, we can
compute an elimination Gröbner basis using linear algebra on the quotient basis. Note
that computing a Gröbner basis with respect to an elimination ordering produces the
desired minimal polynomial along with many other “superfluous” polynomials (which are
necessary to complete the Gröbner basis, and which typically have “uglier” coefficients
than the minimal polynomial). We can modify the FGLM–elimination process to stop
the Gröbner basis computation as soon as the minimal polynomial is found. The result
would then be effectively quite similar to the algorithms we presented above.

These two algorithms, MinPolyQuotMat and MinPolyQuotDef, are indeed quite
simple and natural, but we want to emphasize that a careful implementation is essential
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for making them efficient. The reward is performance which is dramatically better than
the naive elimination approach (see the timings in Subsection 2.1).

There are two crucial steps for achieving an efficient implementation.

Remark 2.14 (Linear Algebra). The common step in both algorithms is the search for
a linear dependency (in steps MinPolyQuotMat-4.2 and MinPolyQuotDef-4.2).
We implemented it incrementally in CoCoALib (Abbott and Bigatti, 2019) creating a
C++ object called LinDepMill. This object accepts vectors one at a time, and says
whether the last vector it was given is linearly dependent on the earlier vectors; if so,
then it makes available the representation of the last vector as a linear combination of the
earlier vectors. Internally, as new vectors are supplied, LinDepMill simply builds up and
stores a row-reduced matrix, and keeps track of the corresponding linear representations
in terms of the input row-vectors. Moreover, it is easy to implement this class in an
efficient way over a (small prime) finite field; in CoCoALib its core is the class LinDepFp
which uses machine integers. In our experiments, checking for the linear dependency now
represents 1 to 3% of the total computation time.

In contrast, the analogous check for the linear dependency over Q is intrinsically more
expensive, and represents most of the total time; this motivates our modular approach
presented in Section 3.

Remark 2.15 (Powers and normal forms). When computing over Fp the most expensive
parts of the algorithms is in the computation of the powers, and of the normal forms.

In step MinPolyQuotMat-4.1 and in step MinPolyQuotDef-4.1 we adopt an
incremental approach, and do not compute the powers Ai and f i: this is quite a simple
idea, but very important.

Having done that, and considering the computations over Fp, the most expensive op-
eration for MinPolyQuotDef is the normal form (in step 4.1), generally taking more
than 95% of the total time. On the other hand, for MinPolyQuotMat the most expen-
sive operation is the multiplication (in step 4.1), generally taking about 90–95% of the
time. The construction of the multiplication matrix in MinPolyQuotMat (in step 2)
requires several normal forms, but in our implementation, again using an incremental
approach, this generally takes less than 10% of the total time.

2.1. Timings: Computing Minimal Polynomials in Finite Characteristic

In this subsection we present some timings for the computation of minimal polynomials
of elements in zero-dimensional affine Fp-algebras.

The column Example gives the reference number to the examples listed below. The
column GB gives the times to compute the DegRevLex-Gröbner basis (in seconds); the
columns Def, Mat give the times (in seconds) of the computation of the algorithms 2.10
and 2.8, respectively. We implemented the algorithm MinPolyQuotMat both in dense
and in sparse representation (currently called MinPolyQuotDefLin). We give the timings
for the latter, which is up to twice as fast on the examples below.

Note that CoCoA, whenever computing the Gröbner basis G of an ideal I, stores G
within the representation of I. Considering that G is probably precomputed (for example,
to check whether I is zero-dimensional) the timings in Def, Mat do not include the GB
time.
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The column deg gives the degree of the answer, as an indication of the complexity of
the output.

As a comparison, we mention that the elimination algorithm in CoCoA takes about 50
and 90 seconds on the first two examples, and more than 10 minutes on all the others
(see Remark 2.6).

Table 1. Timings over prime finite fields

Example GB dimK MinPoly

deg Def Mat

time time time

2.16 f1 = t 0.38 501 501 1.86 3.75

f2 501 3.15 6.51

f3 500 4.49 7.98

2.17 f 0.00 720 720 2.43 12.29

2.18 f 0.17 593 590 4.60 10.02

2.19 f 0.01 464 462 0.90 3.10

2.20 f1 = z 0.00 880 11 0.00 0.02

f2 880 1.06 20.68

Example 2.16. The following is an example of a complete intersection in characteristic
101. Let P = F101[x, y, z, t]. Let g1 = xyzt− 18z3+16y2− 28t2− 33x, g2 = xyz3−x+ y,

g3 = x4+x2y− 21y3− 7t2− 25z, g4 = yt11+26x3+19z. Let I = 〈g1, g2, g3, g4〉, f1 = t,
f2 = 3z4 − 5y + x− t and f3 = 3y4z2 − y3zt− 12z4 − y3 + z2 − x.

Example 2.17. This is an example which uses the defining ideal of the splitting algebra
of a polynomial of degree 6.

We let P = F101[a1, a2, a3, a4, a5, a6], and for j = 1, . . . , 6 let sj be the elemen-
tary symmetric polynomial in the indeterminates a1, a2, a3, a4, a5, a6. Then the ideal
I = 〈s1, s2, s3, s4, s5 − 7, s6 − 1〉 is the defining ideal of the splitting algebra of the
polynomial x6 − 7x+ 1. We let f = a1 + 2a2 + 3a3 + 4a4 + 5a5 + 6a6

Example 2.18. This is an example of a complete intersection in “large” characteristic
p = 1000000007.

Let P = Fp[x, y, z, t], let g1 = x5yzt + z3 − y2 + 73t2 − 2x, g2 = xyz6 − x + y,

g3 = 2x4−x2y+34y3−7zt2, g4 = yt4+26x3+z. Let I = 〈g1, g2, g3, g4〉 and f = x2t+5y.

Example 2.19. This is an example of a non-radical ideal in characteristic p = 101 which
is not a complete intersection.

Let P = Fp[x, y, z], let g1 = (x7 − y− 3z)2, g2 = xy5 − 7z2 − 2, g3 = yz6 − x− z +14.
Then let J1 = 〈g1, g2, g3〉, let J2 = 〈x, y, z〉2, let I = J1 ∩ J2, and let f = x2 − 3xy − z.
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Example 2.20. This is an example in characteristic p = 23.
Let P = Fp[x, y, z], let f1 = z, f2 = 3x− 2y + 5z and I = 〈g1, g2, g3〉 where

g1 = y5 − 7y4 + 2y3 + 11y2 − y + 5,

g2 = z11 + 9z10 − 9z9 + 7z8 − 8z7 − 4z6 + 9z5 + z4 − 5z3 + 7z2 + z + 10,

g3 = x16 + 8x15 − 6x14 − 8x13 + 4x12 − 4x11 + 5x10 + 8x9 + 5x8 − 4x7+

5x6 + 2x5 − 7x4 + 4x3 + 10x2 + 3x+ 8

3. A Modular Approach for Minimal Polynomials

The topic of this section is to show how to compute the minimal polynomial of an
element of a zero-dimensional affine Q-algebra using a modular approach. In this section
we describe the necessary tools to achieve this goal.

Modular reduction is a very well-known technique, however there is no universal
method for addressing the specific problems of bad reduction arising in every application.
Our problem is no exception as we shall explain shortly.

Some results in this section are essentially known, for instance Theorem 3.7 is similar
to Theorem 1 in Winkler (1988). However, our idea is to stress the theoretical importance
of reduced Gröbner bases. The main reason is that, given a term ordering, the reduced
Gröbner basis of an ideal is unique, so that the theoretical results depend just on the
ideal, and not on the generators given.

In particular, we define the σ-denominator of an ideal (see Definition 3.4) and the
(p, σ)-reduction of an ideal (see Definition 3.9). Then we describe the relevant notions of
usable, good and bad primes (see Subsection 3.2) and, finally, we put it all together to
produce an algorithm which turns out to perform quite well (see Subsection 3.2).

3.1. Reductions of Ideals modulo p

The first matter to address is the following: given an ideal I in Q[x1, . . . , xn] what does
it mean to reduce I modulo a prime number p? Since there is no homomorphism from Q to
Fp, there is no immediate, universal answer to this question. This problem has attracted
a lot of attention over many years: various approaches can be found in Winkler (1988),
Pauer (2007), Gräbe (1988), Noro and Yokoyama (2018), Arnold (2003), Idrees et al.
(2011), Abbott et al. (2017) and Aoyama and Noro (2018). In this section we investigate
the problem, and provide a useful answer. We let P = Q[x1, . . . , xn], and let σ be term-
ordering on the power-products in P .

Definition 3.1. Let δ ∈ N be positive, we use the symbol Zδ to denote the localization
of Z by the multiplicative set generated by δ, i.e. the subring of Q consisting of
numbers represented by fractions of type a

δk
where a ∈ Z and k ∈ N. Beware: some

authors employ the notation Zp to mean the finite field of p elements, or for p-adic
numbers. If p is a prime number, we use the symbol Fp to denote the finite field Z/pZ.

Observe that Zδ depends only on the radical Rad(δ), i.e. the product of all primes
dividing δ. Furthermore, if δ1, δ2 ∈ N are two positive integers then Rad(δ1) divides
Rad(δ2) if and only if Zδ1 is a subring of Zδ2 .
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We start with the following lemma (see Remark 2.1 in Noro and Yokoyama (2018))
which tells us about the denominators which can appear in a normal form.

Lemma 3.2. Let δ ∈ N+, let I be a non-zero ideal in P , let G be its reduced σ-Gröbner
basis, and let f ∈ P . Assume that f and G have all coefficients in Zδ.
(a) Every intermediate step of rewriting f via G has all coefficients in Zδ.
(b) The polynomial NFσ(f) has all coefficients in Zδ.

Proof. If f = 0, the result is trivially true. So we now assume f 6= 0. If f can be reduced
by G then there exists τ ∈ Supp(f) such that τ = t · LTσ(g) for some g ∈ G and some
power-product t ∈ Tn. Let c be the coefficient of τ in f ; by hypothesis c ∈ Zδ. Then the
first step of rewriting gives f1 = f − c · t · g which has all coefficients in Zδ. We can now
repeat the same argument for rewriting f1, and so on. The final result, when no further
such rewriting is possible, is the normal form of f , and by this same argument it has all
coefficients in Zδ. Since G is a Gröbner basis the normal form is reached after a finite
number of reduction steps, and the result is independent of the choice of reducer at each
step. These considerations prove both claims. ✷

The following example illustrates the lemma.

Example 3.3. Let P = Q[x, y], let I = 〈f1, f2〉 where f1 = 3x3 − x2 + 1, f2 = x2 − y,
and let σ = DegRevLex. The reduced σ-Gröbner basis of I is G = {g1, g2, g3} where

g1 = y2 + 1
3x− 1

9y+
1
9 , g2 = xy− 1

3y+
1
3 , and g3 = x2 − y. We let f = y3 and note that

f, g1, g2, g3 ∈ Z3[x, y]. We have NFσ(f) = − 1
27x− 17

81y +
8
81 , and it is easy to check that

the explicit coefficients in the equality

f = NFσ(f) + (xy + 1
9x+ 1

3y − 8
27 ) g2 − (y2 + 1

9y) g3

are the coefficients of a sequence of rewriting steps from f to NFσ(f). As shown by the
lemma, they all lie in Z3.

This lemma prompts us to make the following definitions.

Definition 3.4. Let P = Q[x1, . . . , xn].
(a) Given a polynomial f ∈ P , we define the denominator of f , denoted by den(f),

to be 1 if f = 0, and otherwise the least common multiple of the denominators of
the coefficients of f .

(b) Given a non-zero ideal I in P , with reduced σ-Gröbner basis Gσ, we define the
σ-denominator of I to be denσ(I) = lcm{den(g) | g ∈ Gσ}.

(c) The greatest common divisor of denσ(I) where σ ranges over all term-orderings is
called the essential denominator of I.

The following easy example shows that the number δ introduced in Lemma 3.2 depends
on σ.

Example 3.5. Let P = Q[x, y, z], let I = 〈f〉 where f = 2x+3y+5z. Depending on the
term-ordering chosen, the number δ can be 2, 3 or 5. So we have den(f) = 1, denσ(I) = 2
with σ = DegRevLex, and the essential denominator of I is 1.

Now we need one more definition.
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Definition 3.6. Let δ be a positive integer, and p be a prime number not dividing δ.
We write πp to denote both the canonical homomorphism Zδ −→ Fp and its natural “co-
efficientwise” extensions to Zδ[x1, . . . , xn] −→ Fp[x1, . . . , xn]; we call them all reduction

homomorphisms modulo p.

The following theorem illustrates the importance of the σ-denominator of an ideal.

Theorem 3.7. (Reduction modulo p of Gröbner Bases)

Let I be a non-zero ideal in Q[x1, . . . , xn] with reduced σ-Gröbner basis G. Let p be a

prime number which does not divide denσ(I).

(a) The set πp(G) is the reduced σ-Gröbner basis of the ideal 〈πp(G)〉.
(b) The set of the residue classes of the elements in Tn\LTσ(I) is an Fp-basis of the

quotient ring Fp[x1, . . . , xn]/〈πp(G)〉.
(c) For every polynomial f ∈ Q[x1, . . . , xn] such that p 6 | den(f) we have the equality

πp(NFσ,I(f)) = NFσ,〈πp(G)〉(πp(f)).

Proof. We start by proving claim (a). Every polynomial g in G is monic, so πp(g) is
monic and LTσ(πp(g)) = LTσ(g). Next we show that πp(G) is a reduced σ-Gröbner
basis. Let the elements of the Gröbner basis be G = {g1, . . . , gs}. Let 1 ≤ i < j ≤ s and
let f0 = tjgi − tigj be the S-polynomial of (gi, gj). This S-polynomial rewrites to zero
via a finite number of steps of rewriting: fk+1 = fk − ck · tk · gik for k = 0, 1, . . . , r − 1.
Let δ = denσ(I), then f0 and every gi have all coefficients in Zδ. Lemma 3.2 implies that
each ck is in Zδ and that all coefficients of each fk are in Zδ.

We now show that the S-polynomial of the p-reduced pair (πp(gi), πp(gj)) rewrites to
zero via the set πp(G). First we see that πp(f0) = tjπp(gi) − tiπp(gj). Now applying πp

to each rewriting step we get πp(fk+1) = πp(fk) − πp(ck) · tk · πp(gik). If πp(ck)6=0,
this is a rewriting step for πp(fk), otherwise “nothing happens” and we simply have
πp(fk+1) = πp(fk).

This shows that all the S-polynomials of πp(G) rewrite to zero, and hence that πp(G)

is a σ-Gröbner basis. Finally we observe that Supp(πp(gi)) ⊆ Supp(gi) for all i = 1, . . . , s,
hence πp(G) is actually the reduced σ-Gröbner basis of the ideal 〈πp(G)〉.

As already observed, we have LTσ(gi) = LTσ(πp(gi)) for all i = 1, . . . , s, hence
claim (b) follows from (a).

For part (c) we let δ = lcm(den(f), denσ(I)). We use the same method as in the proof
of part (a) but starting with f0 = f . Once again all rewriting steps have coefficients in Zδ,
and applying πp to them we get either a rewriting step for πp(f) or possibly a “nothing
happens” step. Therefore the image of the final remainder πp(NF(f)) is the normal form
of πp(f). ✷

The following example illustrates some claims of the theorem.

Example 3.8. We continue the discussion of Example 3.3. We choose p = 2 and get
〈y2 + x + y + 1, xy + y + 1, x2 + y〉 as the (p, σ)-reduction of I. From Theorem 3.7 we
know that {y2+x+ y+1, xy+ y+1, x2+ y} is the reduced σ-Gröbner basis of 〈πp(G)〉.

Theorem 3.7, in particular claim (c), motivates the following definition.
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Definition 3.9. In the context of Theorem 3.7, let the reduced σ-Gröbner basis G be
{g1, g2, . . . , gs}. Then the ideal generated by the set πp(G) = {πp(g1), . . . , πp(gs)} in the
polynomial ring Fp[x1, . . . , xn] is called the (p, σ)-reduction of I, and will be denoted
by I(p,σ). Observe that if I is zero-dimensional so is I(p,σ).

The following example shows the necessity of considering the reduced Gröbner basis
in Theorem 3.7.

Example 3.10. Let P = Q[x], let a be the product of many primes, for instance the
product of the first 106 prime numbers, and let I = 〈ax, x2〉. The set S = {ax, x2} is a
Gröbner basis of I, while the set G = {x} is the reduced Gröbner basis of I. Reducing S

modulo p where p | a produces the ideal 〈x2〉, while reducing G produces the ideal 〈x〉.

We conduct a more thorough investigation into (p, σ)-reductions in Abbott et al.
(2018b).

3.2. Detection of Suitable Primes

For this entire subsection the ideal I will be zero-dimensional, and since in Theo-
rem 3.7.(b) we have seen that, for a suitable prime p, the set Tn\LTσ(I) can be mapped
both to a basis of of the ring Q[x1, . . . , xn]/I and also to a basis of Fp[x1, . . . , xn]/I(p,σ),
we are motivated to provide the following definition.

Definition 3.11. Let P = Q[x1, . . . , xn] with term-ordering σ. Let I be a zero-dimensio-
nal ideal in the ring P , with reduced σ-Gröbner basis G; let δ = denσ(I). Let the
tuple B = (t1, t2, . . . , td) = Tn\LTσ(I) with elements in increasing σ-order, so neces-
sarily t1 = 1 and d = dimK(P/I). We denote the natural image of B in Q[x1, . . . , xn]

by BQ and the natural image of B in Fp[x1, . . . , xn] by Bp. Recall that BQ in P/I

is a Q-basis of monomials for P/I , and by Theorem 3.7, that Bp is an Fp-basis for
Fp[x1, . . . , xn]/〈πp(G)〉 if p is a prime number which does not divide δ.

Let f ∈ Zδ[x1, . . . , xn]. We define the f-power matrix, MBQ
(f, r), to be the d×(r+1)

matrix whose j-th column (for j = 1, . . . , r+1) contains the coordinates of NFσ,I(f
j−1)

in the basis BQ. Similarly, we define the πp(f)-power matrix to be MBp
(πp(f), r) the

d× (r+1) matrix whose j-th column contains the coordinates of NFσ,I(p,σ)
(πp(f

j−1)) in
the basis Bp. We observe that these matrices depend on both σ and the corresponding
ideals.

The following proposition contains useful information about reduction of matrices.

Proposition 3.12. Let f ∈ P be a polynomial and let δ = den(f)· denσ(I).
(a) For every r, all the entries of the matrix MBQ

(f, r) are in Zδ.

(b) For every r, we have πp(MBQ
(f, r)) = MBp

(πp(f), r) for any prime p 6 | δ.

Proof. Claim (a) follows from Lemma 3.2 applied to f j for j = 0, 1, . . . , r. Claim (b)
follows directly from Theorem 3.7.(c). ✷
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3.2.1. Usable primes

We start this subsection with an elementary result which is placed here for the sake
of completeness.

Lemma 3.13. Let f, g ∈ Q[z] be monic polynomials such that g divides f , and let
δ ∈ N+. If f has coefficients in Zδ then also g has coefficients in Zδ.

Proof. By hypothesis we have a factorization f = gh in Q[z] for some monic h ∈ Q[z].
Set Df = den(f), Dg = den(g) and Dh = den(h); so each of Dff , Dgg and Dhh is a
primitive polynomial with integer coefficients. By Gauss’s Lemma (Dgg)(Dhh) = DgDhf
is a primitive polynomial with integer coefficients. Hence Df = ±DgDh; in particular
Dg|Df , and consequently Rad(Dg)|Rad(Df ). Since f ∈ Zδ[z] we have Rad(Df )|Rad(δ),
hence also Rad(Dg)|Rad(δ) which implies that g ∈ Zδ[z]. ✷

We now give a proposition which tells us which primes could appear in the denominator
of a minimal polynomial. In the following proposition we use Definition 3.4.(c).

Proposition 3.14. Let P = Q[x1, . . . , xn], let I be a zero-dimensional ideal in P , and
let f be a polynomial in P .
(a) for any term-ordering σ let δσ = den(f) · denσ(I) then the minimal polynomial

µf,I(z) has all coefficients in Zδσ ;
(b) let δ = den(f) ·D where D is the essential denominator of I, then µf,I(z) has all

coefficients in Zδ.

Proof. We prove claim (a). Let ϑf̄ be the Q-endomorphism of P/I given by multiplication
by f̄ . It is known that µf,I(z) = µϑf̄

(z) (see Remark 4.1.3.(a) in Kreuzer and Robbiano
(2016)). Let χϑf̄

(z) be the characteristic polynomial of the endomorphism ϑf̄ ; by defi-
nition χϑf̄

(z) = det(z id − ϑf̄ ). Next, let d = dimQ(P/I), let B = (1, t2, . . . , td) = Tn \
LTσ(I), let Id be the identity matrix of size d, and let MB(ϑf̄ ) be the matrix which repre-
sents ϑf̄ with respect to the basis B. Then we have det(z id−ϑf̄ ) = det(z Id−MB(ϑf̄ )).
The entries of MB(ϑf̄ ) are the coefficients of the representations of NFσ(tif) in the basis
B for all ti ∈ B. They are in Zδ by Lemma 3.2. So we have proved that χϑf̄

(z) ∈ Zδ[z].
From the Cayley-Hamilton Theorem we deduce that µϑf̄

(z) is a divisor of χϑf̄
(z). It

follows from Lemma 3.13 that also µϑf̄
(z) ∈ Zδ[z].

Claim (b) follows easily from claim (a) and the definition of essential denominator. ✷

Remark 3.15. To compute the essential denominator one needs know all the possible
reduced Gröbner bases of I, in other words one needs to compute the Gröbner Fan of I
(see Mora and Robbiano (1993)), but actually computing the fan is practicable only for
“fairly simple” ideals.

Example 3.16. Let P = Q[x, y] and I = 〈2x + 3y, y2 − 4〉. There are just two possible
Gröbner bases: {x+ 3

2y, y
2 − 4} and {y + 2

3x, x
2 − 9}. Hence the essential denominator

is gcd(2, 3) = 1.
Thus we know that the minimal polynomial of any polynomial with integer coefficients

has integer coefficients. For instance, let f = 23x+ 17y then µf,I(z) = z2 − 1225.

The conclusion of the proposition above motivates the following definition.
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Definition 3.17. Let f ∈ P be a polynomial, and let p be a prime number. Then p is
called a usable prime for f with respect to (I, σ) if it does not divide den(f)·denσ(I).
If I and σ are clear from the context, we say simply a usable prime. It follows from the
definition that, for a given input (f, I, σ), there are only finitely many unusable primes,
and it is easy to recognize and avoid them.

3.2.2. Good and Bad Primes
In this subsection we refine the definition of usable.

Definition 3.18. Let p be a usable prime for f with respect to (I, σ); consequently, by
Proposition 3.14, πp(µf,I(z)) is well-defined. We say that p is a good prime for f if
µπp(f),I(p,σ)

(z) = πp(µf,I(z)), in other words if the minimal polynomial of the p-reduction
of f modulo the (p, σ)-reduction of I equals the p-reduction of the minimal polynomial
of f modulo I over the rationals. Otherwise, it is called bad.

The following simple example illustrates how a prime can be bad even if it is usable.

Example 3.19. Let P = Q[x, y], let I = 〈x2, y2〉, and let f = x + y. The set {x2, y2}
is a reduced Gröbner basis of I for every term-ordering, B = (1, x, y, xy) is a quotient
basis of Q[x, y]/I regardless of term-ordering. Moreover we have den(f) · denσ(I) = 1
regardless of term-ordering, and thus every prime number is usable. Over Q we have

MB(f, 3) =

(

1 0 0 0
0 1 0 0
0 1 0 0
0 0 2 0

)

. Whence we deduce that µf,I(z) = z3. If we change the base field

to the finite field F2, we get MB(π2(f), 3) =

(

1 0 0 0
0 1 0 0
0 1 0 0
0 0 0 0

)

which shows that µf,I = z2. It is

easy to see that 2 is the only bad prime in this case.

Next we show that there are only finitely many bad primes.

Theorem 3.20. (Finitely many bad primes)
Let P = Q[x1, . . . , xn], let I be a zero-dimensional ideal in P , let σ be a term-ordering
on Tn, let f ∈ P , and p be a usable prime.
(a) Then πp(µf,I(z)) is a multiple of µπp(f),I(p,σ)

(z).
(b) There are only finitely many bad primes.
(c) The prime p is good if and only if deg(µπp(f),I(p,σ)

(z)) = deg(µf,I(z)).

Proof. To simplify the presentation we let µ(z) = µf,I(z) and µp(z) = µπp(f),I(p,σ)
(z).

Let µ(z)=zr+cr−1z
r−1+· · · c0, and set δ = den(f)·denσ(I). By Proposition 3.14 we have

µ(z) ∈ Zδ[z]. By the definition of minimal polynomial we have f r + cr−1f
r−1 + · · · c0 ∈ I.

Therefore we have an equality f r + cr−1f
r−1 + · · · c0 =

∑

higi for certain hi ∈ P where
{g1, . . . , gs} is the reduced σ-Gröbner basis of the ideal I. By Lemma 3.2 we know that
each hi ∈ Zδ. Since p is a usable prime, it follows from Proposition 3.14 that we can
apply πp to get

πp(f)
r + πp(cr−1)πp(f)

r−1 + · · ·+ πp(c0) =

s
∑

i=1

πp(hi)πp(gi)

which shows that πp(µ(f)) ∈ I(p,σ), and hence that πp(µ(z)) it is a multiple of µp(z). So
claim (a) is proved.
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To prove (b) and (c) it suffices to show that only a finite number of usable primes are
such that πp(µ(z)) is a non-trivial multiple of µp(z), and we argue as follows. Since r is
the degree of µ(z) we deduce that the matrix MBQ

(f, r−1) has rank r, hence there exists
an r×r-submatrix of MBQ

(f, r−1) with non-zero determinant; moreover this determinant
lies in Zδ, so can be written as a

δs
for some non-zero a ∈ Z and some s ∈ N. For any prime p

not dividing aδ, the matrix πp(MBQ
(f, r− 1)) has maximal rank: by Proposition 3.12 we

have πp(MBQ
(f, r− 1)) = MBp

(πp(f), r − 1). Hence for these primes the degree of µp(z)
is r, and the conclusion follows. ✷

The theorem tells us that bad primes are finite in number, and computations confirm
that they are very rare (e.g. none in the examples described in Subsection 3.4). There
appears to be no reasonable guaranteed way to detect bad primes, but the following
corollary tells how to easily detect relatively bad primes. Using this corollary we can still
be misled if there are several bad primes whose modular minimal polynomials all have
the same degree (theoretically this is possible, but almost never happens in practice).

Corollary 3.21. (Detecting some bad primes)
In the context of Theorem 3.20, let p1, p2 be two usable primes. Let µ1 = µπp1 (f),I(p1,σ)

(z)

and µ2 = µπp2(f),I(p2,σ)
(z) be the minimal polynomials of the respective modular reduc-

tions.
(a) If deg(µ1) < deg(µ2) then p1 is a bad prime.
(b) If deg(µ1) = dimK(P/I) then p1 is a good prime.

Proof. Claim (a) follows from parts (a) and (c) of Theorem 3.20. Claim (b) follows from
Theorem 3.20.(c) since dimK(P/I) is an upper bound for the degrees of the minimal
polynomials. ✷

3.3. The Algorithm

Using the results described so far we get the following algorithm. We emphasise a
particular aspect of our implementation, the choice of 30-bit primes (on a 64-bit plat-
form): this choice lets us use fast machine integer arithmetic while keeping the number
of iterations of the Main Loop close to minimal.

Algorithm 3.22. MinPolyQuotModular
notation: P = Q[x1, . . . , xn] with term-ordering σ

Input I, a zero-dimensional ideal in P , and a polynomial f ∈ P

1 compute the reduced σ-Gröbner basis of I
2 choose a usable prime p — see Definition 3.17.
3 compute fp = πp(f) and the ideal I(p,σ).
4 compute µp = µfp,I(p,σ)

∈ Fp[z], the minimal polynomial of fp.
5 let µcrt = µp and pcrt = p.
6 Main Loop:

6.1 choose a new usable prime p.
6.2 compute the minimal polynomial µp ∈ Fp[z].
6.3 if deg(µcrt) 6= deg(µp) then

6.3.1 if deg(µcrt) < deg(µp) then let µcrt = µp and pcrt = p.
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6.3.2 continue with next iteration of Main Loop
6.4 let p̃crt = p ·pcrt, and let µ̃crt be the polynomial whose coefficients are obtained

by the Chinese Remainder Theorem from the coefficients of µcrt and µp.
6.5 compute the polynomial µcalc ∈ Q[z] whose coefficients are obtained as the

fault-tolerant rational reconstructions of the coefficients of µ̃crt modulo p̃crt.
6.6 were all coefficients “reliably” reconstructed?

6.6-yes if µcalc(f) ∈ I then return µcalc

6.6-no let µcrt = µ̃crt and pcrt = p̃crt.
6.7 Continue with next iteration of Main Loop.

Output µcalc ∈ Q[z], the certified minimal polynomial µf,I .

Proof. The correctness and termination of this algorithm follow from Theorem 3.20, and
Corollary 3.21. In particular, note that under our hypothesis, all bad primes give poly-
nomials whose degree is too low. This means that if we have µcalc(f) ∈ I (checked in step
6.6-yes) then µcalc is indeed the minimal polynomial, and not a non-trivial multiple. ✷

Remark 3.23 (Certified answer). When execution enters Step 6.6-yes, the value of µcalc

is highly likely to be correct (and will surely be so when pcrt is large enough). Since
there is nevertheless a small chance of the answer being wrong, either because of a wrong
rational reconstruction, or because of a sequence of bad primes with compatible answers,
we verify it by explicitly checking that µcalc(f) ∈ I.

Some authors, when using modular methods in this area, give algorithms where the
answer is correct “with high probability”. However, we want to emphasise that our algo-
rithm guarantees that the answer is correct.

Example 3.24 (Example 2.5 continued). Let P = Q[x, y], I = 〈x2− 1
7y

2−5, y2+4x− 7
2 〉,

and f = 3x − 2y. Two computations modulo p1 = 1073741831, and p2 = 1073741833
give µp1 = z4 − 460175067z3 + 525914233z2 − 306782542z− 191739221 and µp2 = z4 −
153391687z3− 131478725z2− 460174233z− 421826757. Notice that they have the same
degree. Their CRT combination, modulo p̃crt = p1p2, is µ̃crt =
z
4 − 164703074540959457z3 + 352935159730627282z2 − 494109223622877543z + 123527305905719987

(in CoCoA this is computed by CRTPoly(mp1,p1, mp2,p2)). Its rational reconstruction
is µcalc = z4+ 24

7 z3− 6527
49 z2+ 5868

7 z+ 10967
28 (in CoCoA RatReconstructPoly(µcrt, pcrt)).

Then we verify that µcalc(f) ∈ I, and we may conclude that µcalc is indeed µf,I . Note
that the rational reconstruction algorithm requires a modulus a bit larger than might
seem necessary so that the reconstructed values are “reliable” (i.e. likely correct).

Remark 3.25 (Verification). Termination of the Main Loop in Algorithm 3.22 depends
on the test µcalc(g) ∈ I in step MinPolyQuotModular-6.6-yes; however evaluating
µcalc(g) modulo I is typically computationally expensive compared to the cost of a single
iteration. For this reason, in step MinPolyQuotModular-6.5 we use the fault-tolerant
rational reconstruction implemented in CoCoA (see Abbott (2017)) which gives also an
indication whether the reconstructed rational is “reliable” (i.e. heuristically probably
correct). This is a computationally cheap criterion which surely indicates “reliable” almost
as soon as p̃crt becomes large enough to allow correct reconstruction, while also almost
certainly indicating “not reliable” before then.
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Once a good prime has been picked, µcrt will have the correct degree, and thereafter
the degree check in step MinPolyQuotModular-6.3 ensures that only results from
good primes are used; in this situation our fault-tolerant reconstruction is equivalent to
Monagan’s MQRR (Monagan, 2004).

Even though it has happened only extremely rarely, we have encountered “reliable”
reconstructions which did not return the exact answer, so by default CoCoA truly verifies
that µcalc(g) is in I. Even if performed just once this operation may be quite costly, so we
also offer a partial verification: calling MinPoly(f,I,z,N) verifies for N random primes
p that πp(µcalc(πp(g)) is in I(p,σ) (in the timings table below, we check for 3 primes).

Remark 3.26 (No Gröbner basis). A disadvantage of Algorithm 3.22 is that it needs a
Gröbner basis over Q, requiring a potentially costly computation. We can make a faster
heuristic variant of the algorithm by working directly with the given generators for I.
Let G′ be the set of given generators. We shall skip all unusable primes which divide
den(G′).

In steps MinPolyQuotModular-3 and 4 we use the ideal 〈πp(G
′)〉 instead of I(p,σ).

In the Main Loop we skip step MinPolyQuotModular-6.3, since there are no guar-
antees on the degrees of bad µp. For instance, in Example 3.10, the minimal polynomial
of x modulo I = 〈ax, x2〉 modulo all “small” primes, is z2, instead of z.

Thus, we keep all the µp but when using the chinese remainder theorem to combine,
we take only those polynomials having the same degree as the current µp.

In step MinPolyQuotModular-6.6-yes we return directly µcalc skipping the check
that µcalc(g) is in I, since we cannot verify the answer because we want to avoid com-
puting Gröbner basis.

There are only finitely many primes giving a bad µp. We can see this by picking some
term-ordering σ, and tracing through the steps to compute the reduced σ-Gröbner basis
from the generators G′. Any prime which divides a denominator or a leading coefficient
at any point in the computation may give a bad µp; to these we add the (finitely many)
bad primes for that reduced Gröbner basis. All remaining primes will give a good µp.

In conclusion, what do we do in CoCoA? We recall that CoCoA, whenever computing
the Gröbner basis G of an ideal I, stores G within the representation of I. This means
that if G has already been computed (HasGBasis(I) gives true), then we can use it, and
the answer of MinPoly(f,I,z), is fully guaranteed. This happens in all the functions
described in Section 4.

In case of a direct call with no precomputed Gröbner basis the implementation of
MinPoly(f,I,z) follows Remark 3.26 (giving a warning, if the user sets high verbosity
with SetVerbosityLevel(80)). A partial verification is performed by MinPoly(f,I,z,N)

which verifies over N more primes.
In practice, we have observed no significant advantage in skipping the computation of

the Gröbner basis, but we keep this code for flexibility and further investigations.

3.4. Timings: Computing Minimal Polynomials over Q

In this subsection we present some timings for the computation of minimal polynomials
of elements in zero-dimensional affine Q-algebras.

The column Example gives the reference number to the examples listed below. The
column GB gives the times to compute the DegRevLex-Gröbner basis. Under the head-
ing MinPoly the column Q gives the times of the direct computation over Q using
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Algorithm 2.10) MinPolyQuotDef; under the sub-heading Modular the first sub-
column gives the times of the computation using Algorithm 3.22 MinPolyQuotMod-
ular (which internally uses MinPolyQuotDef for each modular computation) with
full verification over Q, i.e. checking that the reconstructed polynomial actually vanishes
on the input polynomial, while the second sub-column gives the time with a heuristic
verification over Fp for 3 random primes between 109 and 2 · 109; the third sub-column
(#p) gives the number of primes used for the reconstruction. In the tables, all times are
in seconds.

The columns coeff and deg give an indication of the size of the minimal polynomial:
the first expresses the maximum magnitude of the numerators and denominators of the
coefficients, and the second is the degree.

Remark 3.27. CoCoA also offers RingTwinFloat arithmetic, an implementation of heur-
istically guaranteed floating point numbers (Abbott, 2012). We have also tried our algo-
rithms using this representation of Q, but the modular approach gave us better timings.

Table 2. Timings over the rationals

Example GB dimK MinPoly

deg Q Modular coeff

Q-verif 3-verif

tot verif verif

time time time time time #p

3.28 f 0.15 117 116 > 600 15.25 4.55 0.26 64 10389, 10188

3.29 x 0.00 108 107 47.86 0.39 0.05 0.04 12 1093, 100

f 108 224.06 1.31 0.11 0.06 25 10210 , 100

3.30 f 0.00 144 144 > 600 3.77 0.21 0.17 38 10330 , 100

3.31 f 0.00 120 120 45.43 0.67 0.23 0.13 9 1064, 100

3.32 f 0.00 720 720 > 600 172.54 14.51 7.80 58 10503 , 100

3.33 z 0.00 230 230 233.24 0.39 0.10 0.09 5 1029, 104

3.34 z 0.42 149 149 89.32 11.30 10.42 0.30 7 1033, 1019

f 149 > 600 18.12 12.70 0.38 30 10234, 1019

3.35 f 0.33 55 55 5.33 0.67 0.24 0.03 15 10108, 1012

3.36 y 0.00 378 252 510.85 3.45 1.39 1.44 3 1011, 100

f 252 > 600 20.43 2.37 1.66 26 10222 , 100

Example 3.28. This is an example with no particular structure.
Let P = Q[x, y, z, t], let g1 = xyzt + 83x3 + 73y2 − 85z2 − 437t, g2 = x3zt + z − t,

g3 = zt2+76x+94y2−324z3−255t4, g4 = y2z+625x+26t3, and let I = 〈g1, g2, g3, g4〉.
Let f = t2 + 5z.
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The following two examples use ideals which are complete intersections; their reduced
Gröbner bases are straightforward to compute.

Example 3.29. Let P = Q[x, y, z, t], let g1 = x4 + 83x3 + 73y2 − 85z2 − 437t, g2 =
y3 − x, g3 = z3 + z − t, g4 = t3 − 324z2 + 94y2 + 76x. Let I = 〈g1, g2, g3, g4〉 and
f = 2x+ 3y − 4z + 12t.

Example 3.30. Let P = Q[x, y, z, t], let g1 = x4 + 83z3 + 73y2 − t2 − 437t, g2 =
y3 − z − t, g3 = z3 + x − t, g4 = t4 − 12z2 + 77y2 + 15x. Let I = 〈g1, g2, g3, g4〉 and
f = x− 3y − 12z + 62t.

Example 3.31. This is an example which uses the defining ideal of the splitting algebra
of a polynomial of degree 5.

We let P = Q[a1, a2, a3, a4, a5], and for j = 1, . . . , 5 let sj be the elementary sym-
metric polynomial in the indeterminates a1, a2, a3, a4, a5. Then we introduce the ideal
I = 〈s1, s2, s3, s4 + 1, s5 − 2〉 which is the defining ideal of the splitting algebra of the
polynomial x5 − x− 2. We let f = a1 + 2a2 + 3a3 + 4a4 + 5a5.

Example 3.32. This is an example which uses the defining ideal of the splitting algebra
of a polynomial of degree 6 (see also 2.17).

We let P = Q[a1, a2, a3, a4, a5, a6], and for j = 1, . . . , 6 let sj be the elementary sym-
metric polynomial in the indeterminates a1, a2, a3, a4, a5, a6. The ideal I = 〈s1, s2, s3, s4, s5−
7, s6 − 1〉 is the defining ideal of the splitting algebra of the polynomial x6 − 7x+ 1. We
let f = a1 + 2a2 + 3a3 + 4a4 + 5a5 + 6a6.

Example 3.33. In this example we let g1 = z7 − 3x − y, g2 = y5z − 5057x2 − 2,
g3 = x6y − x− z + 14, and I = 〈g1, g2, g3〉.

Example 3.34. In this example we let f1 = x5 − y − 3z, f2 = xy5 − 5057z2 − 2,
f3 = yz5−x−z+14 and J1 = 〈f1, f2, f3〉. Then we let g1 = x2−y−3z, g2 = xy−5z2−12,
g3 = z3−x− y+4 and J2 = 〈g1, g2, g3〉. Then we let I = J1 ∩J2. We do not give explicit
generators of I since they are cumbersome. Finally we let f = 7x− 5y + 2z.

Example 3.35. This is a simplified version of Example 3.34, in the sense that J2 and f
are the same. Instead we let f ′

1 = x3−y−3z, f ′
2 = xy3−5057z2−2, f ′

3 = yz4−x−z+14
and let J1 = 〈f ′

1, f
′
2, f

′
3〉.

Example 3.36. This is an example of a non-reduced Q-algebra. Let P = Q[x, y, z], and
g1 = (z7 − z − 1)2, g2 = (x2 − yz)3, g3 = x9 − x− 1; let I = 〈g1, g2, g3〉 and linear form
f = 2x− 5y + 7z.

Remark 3.37. From Table 2 it is clear that the least common denominators of the co-
efficients of the minimal polynomials are often quite small. This is a natural consequence
of Prop. 3.14.(b).

4. Uses of Minimal Polynomials

In this section we let K be a field of characteristic zero or a perfect field of characteristic
p > 0 having effective p-th roots, and let I be a zero-dimensional ideal in the polynomial
ring P = K[x1, . . . , xn]. We start the section by recalling a useful definition.
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Definition 4.1. Let f ∈ P be a non-zero polynomial with positive degree. We define
the square-free part, sqfree(f), to be the product of all distinct irreducible factors
of f (which are defined up to a constant factor). Equivalently, sqfree(f) is a generator
of the radical of the principal ideal generated by f . If f is univariate, and the coefficient
field has characteristic zero then sqfree(g) is g

gcd(g,g′) up to a constant factor; if the
characteristic is positive then we can use the algorithm described in Proposition 3.7.12
(Kreuzer and Robbiano, 2008).

In the next proposition we collect important results which will be used throughout
the entire section.

Proposition 4.2. Let K be a perfect field, let P = K[x1, . . . , xn], let I be a zero-
dimensional ideal in P , and let R = P/I.
(a) If K is infinite:

(a1) If I is radical, deg(µℓ,I(z)) = dimK(P/I) for the generic linear form ℓ ∈ P .

(a2) If I is maximal, ℓ̄ is a primitive element of the field P/I where ℓ ∈ P is the
generic linear form.

(b) If K is finite: if I is maximal, there exists f ∈ P such that f̄ is a primitive element
of the field P/I.

Proof. To prove claim (a) we observe that (a2) is a special case of (a1), hence we prove
(a1). Since I is radical and K is infinite, the Shape Lemma (e.g. see Theorem 3.7.25
in Kreuzer and Robbiano (2008)) guarantees the existence of a linear change of coordi-
nates which brings I into normal xn-position, hence after such a transformation the last
indeterminate has squarefree minimal polynomial of degree dimK(P/I). Equivalently,
the generic linear change of coordinates yields a situation where the minimal polynomial
of the last indeterminate is squarefree and has degree dimK(P/I). If I is maximal then
this polynomial is necessarily irreducible. This is exactly what Algorithm 4.16 tries to
achieve via randomization in step IsMaximal-5 (the Second Loop).

The proof of claim (b) follows from the well-known fact that the multiplicative group of
a finite field L = P/I is cyclic, so that if a is a generator of L\{0} we have L = K[a] which
implies that deg(µa,I(z)) = dimK(P/I). We then choose f ∈ P such that f̄ = a. ✷

The following example shows that if K is finite, and I is radical but not maximal then
it is possible that no element f ∈ P exists such that deg(µℓ,I(z)) = dimK(P/I).

Example 4.3. Let K = F2, let P = K[x, y], I = 〈x2 + x, y2 + y〉. Then we can write
I as an intersection of maximal ideals: I = M1 ∩ M2 ∩ M3 ∩ M4 where M1 = 〈x, y〉,
M2 = 〈x, y + 1〉, M3 = 〈x + 1, y〉, M4 = 〈x + 1, y + 1〉. So whatever element f ∈ P we
choose, we have deg(µf,I(z)) ≤ 2 while dimK(P/I) = 4.

4.1. IsRadical and Radical for a Zero-Dimensional Ideal

The goal of this subsection is to describe algorithms for checking if I is radical, and
for computing the radical of I. We need the following results.

Proposition 4.4. Let K be a perfect field, let P = K[x1, . . . , xn], let I be a zero-
dimensional ideal in P , let fi(xi) be such that I ∩K[xi] = 〈fi(xi)〉 for i = 1, . . . , n, and
let gi = sqfree(fi(xi)). Then we have the equality

√
I = I + 〈g1, . . . , gn〉.
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Proof. By Proposition 3.7.1 in Kreuzer and Robbiano (2008), the polynomials fi(xi) are
non-zero. Since the ideal J = I + 〈g1, . . . , gn〉 satisfies I ⊆ J ⊆

√
I , we have

√
J =

√
I.

By Proposition 3.7.9 in Kreuzer and Robbiano (2008) we have gcd(gi, g
′
i) = 1 for all i =

1, . . . , n, hence the conclusion follows from Seidenberg’s Lemma (see Proposition 3.7.15
in Kreuzer and Robbiano (2008)). ✷

Since I ∩K[xi] = 〈µxi,I(xi)〉, the above proposition can be rewritten as follows.

Corollary 4.5. Let K be a perfect field, let P = K[x1, . . . , xn], let I be a zero-dimen-

sional ideal in P , and let gi = sqfree(µxi,I(xi)). Then we have
√
I = I + 〈g1, . . . , gn〉.

The following proposition shows that in some cases it is particularly easy to show that
an ideal is radical.

Proposition 4.6. Let K be a perfect field, let I be a zero-dimensional ideal in the

polynomial ring P = K[x1, . . . , xn], and let f ∈ P . If the polynomial µf,I(z) is squarefree

and deg(µf,I(z)) = dimK(P/I) then I is a radical ideal.

Proof. Consider the K-algebra homomorphism αf : K[z]/〈µf,I(z)〉 → P/I sending z̄ 7→ f̄

which is injective by definition. Since dimK(K[z]/〈µf,I(z)〉)= deg(µf,I(z))= dimK(P/I),
then αf is also surjective and hence an isomorphism. By assumption, the polynomial
µf,I(z) is squarefree and hence P/I ∼= K[z]/〈µf,I(z)〉 is a reduced K-algebra which
means that I is a radical ideal. ✷

The following algorithm determines whether a zero-dimensional ideal is radical.

Algorithm 4.7. IsRadical0Dim

notation: K a perfect field and P = K[x1, . . . , xn]

Input I, a zero-dimensional ideal in P

1 compute d = dimK(P/I)

2 Main Loop: for i = 1, . . . , n do

2.1 compute µ = µxi,I

2.2 if µ is not square-free then return false

2.3 if deg(µ) = d then return true

3 return true

Output true/false indicating whether I is radical or not.

Proof. Clearly, the algorithm ends after a finite number of steps and its correctness
follows from Corollary 4.5 and Proposition 4.6 ✷

Similarly, we have an algorithm for computing the radical of a zero-dimensional ideal.
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Algorithm 4.8. Radical0Dim
notation: K a perfect field and P = K[x1, . . . , xn]

Input I, a zero-dimensional ideal in P

1 let J = I and compute d = dimK(P/J)

2 Main Loop: for i = 1, . . . , n do
2.1 compute µ = µxi,J

2.2 if µ is not square-free then
2.2.1 let µ = sqfree(µ)

2.2.2 let J = J + 〈µ(xi)〉
2.2.3 compute d = dimK(P/J)

2.3 if deg(µ) = d then return J

3 return J

Output J : the radical of I

Proof. Clearly, the algorithm ends after a finite number of steps and its correctness
follows from Proposition 4.6 and Corollary 4.5. ✷

Example 4.9. One might hope for a fast, randomized heuristic version of this algorithm:
instead of the Main Loop we pick a random linear form ℓ, and set µ = sqfree(µℓ,J), and
then update J = J + 〈µ(ℓ)〉. The example here shows that a single random linear form is
not always sufficient; indeed, for this example n linearly independent linear forms must
be used before the correct result is obtained.

Let K be a field, let P = K[x1, . . . , xn] with n ≥ 2, and let the ideal I = 〈x1, . . . , xn〉2.
Now let ℓ ∈ P be any non-zero linear form. Clearly µℓ,I(z) = z2. Hence 2 = deg(µℓ,I(z)) <
dim(P/I) = n+ 1, and adding 〈ℓ〉 to I does not yield 〈x1, . . . , xn〉.

Remark 4.10 (Timeout on Gröbner basis). In step Radical0Dim-2.2.3 we update the
value of d. In practice this step can be very costly. Since the purpose of d is to let the
algorithm finish before having completed all iterations of the Main Loop, and the since
update in step 2.2.3 must reduce the value of d, we can safely skip the update if the
computation of dimK(P/J) takes too long: in our implementation in CoCoALib we have
set a heuristic time limit for this step. In the worst case the algorithm simply performs all
iterations, even though theoretically it may have been able to stop at an earlier iteration.
The time limit we chose is equal to half the expected time for all the remaining minimal
polynomials, based on the average time for the first ones.

Example 4.11. Let I = 〈x3 + 2x2y − 2yz2, 5y4 − 4y3z + 3yz3, 5z4 + 3xy2 − 8yz2〉 ∈
Q[x, y, z]. We compute the radical of I quite quickly, ≈ 0.1s, by adding sqfree(µx,I(x)),
sqfree(µy,I(y)), sqfree(µz,I(z)). However, its Gröbner basis is much harder to compute
(≈ 10s):
{ x3 − 6228

3125
x2 − 6488

375
xy − 17648

375
y2 + 5502

625
xz + 67124

1875
yz − 1334032

28125
z2 − 17208

15625
x + 11169272

140625
y − 120856

3125
z,

x2y + 6903
6250

x2 + 3469
375

xy + 8224
375

y2 − 2976
625

xz − 66881
3750

yz + 681758
28125

z2 + 2079
31250

x − 5702572
140625

y + 12037
625

z,

xy2 − 6903
12500

x2 − 623
250

xy − 2368
375

y2 + 1488
625

xz + 7637
1500

yz − 36997
9375

z2 + 75909
62500

x + 294194
46875

y − 36889
6250

z,

y3 − 297
25000

x2 − 177
500

xy − 128
125

y2 − 144
625

xz + 119109
125000

yz + 110991
156250

z2 + 166419
3125000

x + 36036
390625

y + 2673
312500

z,

x2z + 1116
625

x2 + 212
25

xy − 8696
675

y2 + 1168
375

xz + 41912
3375

yz + 39034
1875

z2 − 1512
3125

x − 339056
9375

y − 17348
1125

z,
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xyz − 558
625

x2 − 106
25

xy − 64
25

y2 + 72
125

xz + 44
25

yz − 14368
1875

z2 + 5124
3125

x + 117536
9375

y − 1158
625

z,

y2z + 54
625

x2 + 3
25

xy − 32
25

y2 − 36
125

xz + 162
3125

yz + 21552
15625

z2 − 30258
78125

x − 52416
78125

y − 972
15625

z,

xz2 − 27
125

x2 − 22
5

xy − 16
5

y2 + 18
25

xz + 247
100

yz − 2773
375

z2 + 81
2500

x + 22832
1875

y − 66
25

z,

yz2 + 27
250

x2 + 3
5
xy − 8

5
y2 − 9

25
xz + 81

1250
yz + 1638

3125
z2 − 15129

31250
x − 13104

15625
y − 243

3125
z,

z3 + 27
200

x2 + 3
4
xy − 1519

1000
yz + 819

1250
z2 − 15129

25000
x − 3276

3125
y − 243

2500
z }

This shows the advantage of using the CoCoALib timeout mechanism to interrupt
step Radical0Dim-2.2.3 when it takes too long.

4.2. IsMaximal, and IsPrimary for a Zero-Dimensional Ideal

In this subsection, we describe methods for checking if a zero-dimensional ideal is pri-
mary or is maximal. To do this we use different strategies depending on the characteristic
of the base field. In particular, when K is a finite field with q elements we can use a spe-
cific tool, namely a K-vector subspace of R = P/I, called the Frobenius space of R.
The main property is that its dimension is exactly the number of primary components
of I. For the definition and basic properties of Frobenius spaces we refer to Section 5.2
in Kreuzer and Robbiano (2016). For convenience, we recall the definition here.

Definition 4.12. Let K be a finite field with characterstic p, and let q = pe be a power
of p. Let R = P/I be a zero-dimensional K-algebra.

(a) The map Φq : R → R defined by a 7→ aq is a K-linear endomorphism of R called
the q-Frobenius endomorphism of R.

(b) The fixed-point space of R with respect to Φq, namely the set {f ∈ R | f q−f = 0},
is called the q-Frobenius space of R, and is denoted by Frobq(R).

Remark 4.13. Note that here we define the generalized Frobenius endomorphism a 7→ aq

instead of the classical Frobenius endomorphism, a 7→ ap. The generalized endomorphism
is just the classical endomorphism iterated. In this article we shall always take q = #K.

The following proposition describes some features of minimal polynomials when the
zero-dimensional ideal I is primary or maximal.

Proposition 4.14. Let I be a zero-dimensional ideal in P = K[x1, . . . , xn].
(a) If I is primary then for any f ∈ P its minimal polynomial µf,I(z) is a power of an

irreducible polynomial.
(b) If I is maximal then for any f ∈ P its minimal polynomial µf,I(z) is irreducible.

Proof. We use the same argument as in the proof of Proposition 4.6, so that we get an
in injective K-algebra homomorphism K[z]/〈µf,I(z)〉 → P/I.

Now we prove claim (a). If I is primary then the only zero-divisors of P/I are nilpotent,
hence the same property is shared by K[z]/〈µf,I(z)〉 which implies that µf,I(z) is a power
of an irreducible element.

Analogously, if I is maximal then P/I is a field, hence K[z]/〈µf,I(z)〉 is an integral
domain which concludes the proof. ✷

We have a sort of converse of the above proposition.

Proposition 4.15. Let I be a zero-dimensional ideal in P = K[x1, . . . , xn], and let
f ∈ P be such that deg(µf,I(z)) = dimK(P/I).
(a) If µf,I(z) is a power of an irreducible factor then I is a primary ideal.
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(b) If µf,I(z) is irreducible then I is a maximal ideal.

Proof. As in the proof of Proposition 4.14 we have an injective K-algebra homomorphism
K[z]/〈µf,I(z)〉 → P/I. The assumption that deg(µf,I(z)) = dimK(P/I) implies that this
endomorphism is actually an isomorphism. Now if K[z]/〈µf,I(z)〉 has only one maximal
ideal, the same property is shared by P/I which implies that I is a primary ideal and
claim (a) is proved. Analogously, if K[z]/〈µf,I(z)〉 is a field, then also P/I is a field which
means that I is a maximal ideal. ✷

4.3. IsMaximal

Our next goal is to check whether an ideal I in P is maximal, and the following
algorithm provides an answer. Note that is a true algorithm when K is finite, whereas
the termination is only heuristically guaranteed when K is infinite.

Algorithm 4.16. IsMaximal
notation: K a perfect field and P = K[x1, . . . , xn]

Input I, an ideal in P

1 if I is not zero-dimensional, return false

2 compute d = dimK(P/I)

3 First Loop: for i = 1, . . . , n do
3.1 compute µ = µxi,I

3.2 if µ is reducible then return false

3.3 if deg(µ) = d then return true

4 if K is finite then
4.1 compute s = dimK(Frobq(P/I))

4.2 if s = 1 return true else return false

5 (else K is infinite) Second Loop: repeat
5.1 pick a random linear form ℓ ∈ P

5.1 compute µ = µℓ,I

5.2 if µ is reducible then return false

5.3 if deg(µ) = d then return true

Output true/false indicating the maximality of I.

Proof. Let us show the correctness. In step 3.2, if µ is reducible, we conclude from
Proposition 4.14.(b). In step 3.3, since µ is irreducible, if deg(µ) = d then we conclude
from Proposition 4.15.(b). If the First Loop completes without returning an answer, all
polynomials µxi,I(xi) are irreducible and belong to I, hence I is radical by Seidenberg’s
Lemma (see Kreuzer and Robbiano (2008), Proposition 3.7.15 and Corollary 3.7.16). Now
we know that I is radical, we examine the two cases below.

First we consider the case when K is finite. Then the ideal I is maximal if and
only if dimK(Frobq(P/I)) = 1 (see Kreuzer and Robbiano (2016), Theorem 5.2.4.(b)).
Therefore, when K is finite, steps 4.1 and 4.2 show that the algorithm is correct and
terminates.

Now we consider the case when K is infinite. In step 5.2 if the minimal polynomial µ
is reducible, Proposition 4.14.(b) tells us that I is not maximal. In step 5.3 we know
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that the polynomial µ is irreducible, so if deg(µ) = d, Proposition 4.15.(b) tells us that I
is maximal. We conclude that also in this case the algorithm is correct. Its termination
follows heuristically from Proposition 4.2.(a). ✷

Can we make this into a proper deterministic algorithm when K is infinite? The
following remark answers this question.

Remark 4.17. If K is infinite, we can substitute the Second Loop with a check that in
the special family of linear forms described in Lemma 2.1 in Rouillier (1999) there is one
whose minimal polynomial has degree d. In this way the algorithm becomes deterministic,
however the coefficients of the linear forms tend to become large and the computation
more expensive.

Remark 4.18. Since the computation of the Frobenius space in step IsMaximal-4.1
might be costly, one could be tempted to first try a few random linear forms (as in the
Second Loop). However, our experiments show that computing the minimal polynomial
for a random linear form has a computational cost very similar to that for the Frobenius
space, while potentially furnishing less information. In summary, there is no benefit from
inserting such a “heuristic step” just before IsMaximal-4.1.

4.4. IsPrimary for a Zero-Dimensional Ideal

The goal of this subsection is to check whether a zero-dimensional ideal I in P is
primary. The structure of the following algorithm is very similar to the structure of
Algorithm 4.16. In particular, it is important to observe that also in this case it is a
true algorithm when K is finite, whereas the termination is only heuristically guaranteed
when K is infinite.

Algorithm 4.19. IsPrimary0Dim
notation: P = K[x1, . . . , xn]

Input I, a zero-dimensional ideal in P

1 let J = I and compute d = dimK(P/J)

2 First Loop: for i = 1 to n do
2.1 compute µ = µxi,J

2.2 factorize µ
2.3 if µ is not a power of an irreducible factor return false
2.4 if deg(µ) = d then return true
2.5 if µ is not square-free then

2.5.1 let µ = sqfree(µ)
2.5.2 let J = J + 〈µ(xi)〉
2.5.3 compute d = dimK(P/J)
2.5.4 if deg(µ) = d then return true

3 if K is finite then
3.1 compute s = dimK(Frobq(P/I))

3.2 if s = 1 return true else return false

4 (else K is infinite) Second Loop: repeat
4.1 pick a random linear form ℓ ∈ P

26



4.2 compute µ = µℓ,J

4.3 if µ is reducible return false

4.4 if deg(µ) = d then return true

Output true/false indicating whether I is primary or not.

Proof. Let us show the correctness. In the First Loop we work with an ideal J such
that

√
J =

√
I, because of the change we might perform in step 2.5. In particular J is

primary if and only if I is primary. Moreover, at the end of the First Loop, J =
√
I by

Seidenberg’s Lemma (see the proof of Algorithm 4.16).
In step 2.3, if µ is not a power of an irreducible, we conclude from Proposition 4.14.(a).

In step 2.4, if deg(µ) = d and µ is a power of an irreducible we conclude from Proposi-
tion 4.15.(a).

If the First Loop completes without returning an answer, we know that J is radical,
and now examine the two cases.

First we look at the case when K is finite. As in the case of Algorithm 4.16, steps 3.1
and 3.2 guarantee the correctness and termination.

Now we look at the case when K is infinite. Since J is radical, checking that I is
primary is equivalent to checking that J is maximal. Now, step 4 does exactly the same
thing as step 5 of Algorithm 4.16 and the proof of the correctness is the same. Finally,
the termination follows heuristically from Proposition 4.2.(a). ✷

Remark 4.20. Much as we observed in Remark 4.10, the computation of dimK(P/J)
in step IsPrimary0Dim-2.5.3 can safely be skipped if it is too costly.

Remark 4.21. When K is infinite, to turn this heuristically terminating algorithm into
a true algorithm we can repeat the observations contained in Remark 4.17.

Remark 4.22. When K is finite, it would suffice to do simply steps IsPrimary0Dim-3.1
and IsPrimary0Dim-3.2 and conclude. However, our experiments suggest that nonethe-
less it is often faster to perform the First Loop, as it is quick and frequently determines
the result.

Here is an example which shows that the property of being primary depends strongly
on the base field.

Example 4.23. Let K be a field, let P = K[x], let f(x) = x4−10 x2+1 be the minimal
polynomial of

√
2 +

√
3, and let I = 〈f(x)〉. Now, if K = Q, we can easily check that

f(x) is irreducible, hence we deduce that I is a maximal ideal. Conversely, if K = Fp, it
is known that f(x) is reducible for every prime p, and hence I is not a primary ideal.

4.5. Primary Decomposition for a Zero-Dimensional Ideal

The theoretical background we shall use for computing primary decompositions of
zero-dimensional ideals in affine K-algebras is explained in Chapter 5 in Kreuzer and Robbiano
(2016). The main aim of this approach is to exploit our efficient algorithms for computing
minimal polynomials. Here we describe the algorithms implemented in CoCoA. In partic-
ular, we remark that the algorithms for characteristic 0 (or large positive characteristic)
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and for finite characteristic have the same structure except for the choice of a partially
splitting polynomial.

First we show how the partially splitting polynomial is chosen. The function looking for
a splitting polynomial has a First Loop over the indeterminates; if no splitting polynomial
was found, it then calls the characteristic-dependent algorithm.

In particular, if the input ideal I is primary, it returns a polynomial f such that µf,I

is a power of a single irreducible factor (together with the token TotalSplit). Otherwise
it returns a polynomial f such that µf,I has at least two irreducible factors (together
with the token PartialSplit).

The “strange-looking” values we return in step PDSplittingFiniteField-2 and step
PDSplitting-4-yes just emphasize that the ideal I is primary.

The three following functions reflect the implementation in CoCoA.

Algorithm 4.24. PDSplitting
notation: P = K[x1, . . . , xn]

Input I, a zero-dimensional ideal in P

1 compute d = dimK(P/I)

2 First Loop: for i = 1, . . . , n do
2.1 compute µi = µxi,I

2.2 factorize µi =
∏s

j µ
dj

ij

2.3 if deg(µi) = d then return (xi, {µdj

ij | j = 1, . . . , s}, TotalSplit)
2.4 if s > 1 then return (xi, {µdj

ij | j = 1, . . . , s}, PartialSplit)
3 if K is finite, return PDSplittingFiniteField(I)

4 IsPrimary0Dim(I)?
4-yes return (0, {z}, TotalSplit)
4-no return PDSplittingInfiniteField(I)

Output (f, factorization of µf,I , TotalSplit/PartialSplit)

Remark 4.25. In step PDSplitting-4 it would be more natural to check directly
IsMaximal(

√
I), since we have already computed all the µi we have practically “for

free”
√
I = I + 〈sqfree(µi) | i = 1, . . . , n〉; but calling IsMaximal entails a potentially

costly computation of a Gröbner basis for
√
I. In our tests IsPrimary0Dim(I) was

frequently significantly quicker. For instance, this is the case for Example 3.36.

The following algorithm makes a good use of Frobq(P/I), the Frobenius space of P/I.
Inspired by Gao et al. (2008), the detailed theoretical and computational aspects related
to this concept are described in Kreuzer and Robbiano (2016), Section 5.2.

Algorithm 4.26. PDSplittingFiniteField
notation: P = K[x1, . . . , xn], K a finite field
Input I, a zero-dimensional ideal in P

1 compute FrB a K-basis of Frobq(P/I) and let s = #(FrB)

2 if s = 1 then return (0, {z}, TotalSplit)
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3 pick a non-constant element f of the basis FrB

4 compute µ = µf,I

5 factorize µ =
∏

µj

6 if deg(µ) = s then return (f, {µj | j = 1, . . . , s}, TotalSplit)
7 return (f, {µj | j = 1, . . . , s}, PartialSplit)
Output (f, factorization of µf,I , TotalSplit/PartialSplit)

Remark 4.27. From Theorem 5.2.4 in Kreuzer and Robbiano (2016) we know that for
any zero-dimensional ideal I, f ∈ Frobq(P/I) if and only if µf,I factorizes into distinct
linear factors with multiplicity 1.

Algorithm 4.28. PDSplittingInfiniteField
notation: P = K[x1, . . . , xn], K an infinite field
Input I, a non-primary, zero-dimensional ideal in P

1 compute d = dimK(P/I)

2 Main Loop: repeat:
2.1 pick a random linear form ℓ ∈ P ;
2.2 compute µ = µℓ,I

2.3 factorize µ =
∏s

j µ
dj

j

2.4 if deg(µ) = d then return (ℓ, {µdj

j | j = 1, . . . , s}, TotalSplit)
2.5 if s > 1 then return (ℓ, {µdj

j | j = 1, . . . , s}, PartialSplit)
Output (ℓ, factorization of µℓ,I , TotalSplit/PartialSplit)

Now we are ready to see how the splittings are used to compute the primary decom-
position.

Algorithm 4.29. PrimaryDecompositionCore
notation: P = K[x1, . . . , xn]

Input I, a zero-dimensional ideal in P

1 let (f, {µ
dj
j | j=1, . . ., s}, TotalSplit/PartialSplit) be the output of PDSplitting(I)

2 if s = 1 then return ({I}, TotalSplit)
3 else return ({I+〈µj(f)

dj 〉 | j=1, . . ., s}, TotalSplit/PartialSplit)
Output ({J1, . . . , Js}, TotalSplit/PartialSplit) such that I = J1 ∩ · · · ∩ Js

Algorithm 4.30. PrimaryDecomposition0Dim
notation: P = K[x1, . . . , xn]

Input I, a zero-dimensional ideal in P

1 let ({J1, . . . , Js}, TotalSplit/PartialSplit)
be the output of PrimaryDecompositionCore(I)
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2 if it is TotalSplit, return {J1, . . . , Js}
3 Main Loop: for i = 1, . . . , s do

3.1 is Ji primary?
3.1-yes Deci = {Ji}
3.1-no Deci = PrimaryDecomposition0Dim(Ji) ←− recursive call

4 return Dec1 ∪ · · · ∪Decs
Output the primary decomposition of I

The column Example gives the reference number to the examples listed above. The
other columns give, respectively, the timings (in seconds) of the computation of the
algorithms 4.7, 4.16, 4.19, 4.8, and 4.30, and an indication of their answers.

Table 3. Using minimal polynomials – prime field

Example IsRadical IsMaximal IsPrimary Radical Primary Dec.

#Comp

2.16 2.51 false 2.50 false 2.52 false 13.70 2.53 5

2.17 0.02 true 0.00 false 0.00 false 0.02 1.12 144

2.18 4.37 false 6.63 false 5.95 false 23.60 6.01 8

2.19 0.64 false 0.48 false 0.68 false 3.99 3.84 6

2.20 0.01 true 16.19 true 15.90 true 0.01 16.10 1

Table 4. Using minimal polynomials – rationals

Example IsRadical IsMaximal IsPrimary Radical Primary Dec.

#Comp

3.28 18.08 false 4.67 false 4.30 false 22.91 54.33 2

3.29 0.46 false 0.36 false 0.36 false 0.49 3.30 2

3.30 0.87 false 0.70 false 0.46 false 1.55 1.11 2

3.31 0.01 true 1.38 true 2.61 true 0.01 1.95 1

3.32 0.03 true > 600 > 600 0.03 > 600

3.33 0.44 true 0.43 true 0.44 true 0.41 0.44 1

3.34 11.65 true 12.66 false 12.30 false 12.68 11.36 2

3.35 0.28 true 0.27 false 0.28 false 0.28 0.25 2

3.36 0.14 false 0.17 false 1.08 true 1.08 4.47 1
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Remark 4.31. For the example 3.32 we obtained minimal polynomials which are hard
to factorize (like the Swinnerton-Dyer polynomials): they have many low degree factors
modulo every prime we tried. The long computation times were due to the factorizer in
CoCoA.

4.6. Comparison with Singular

We present in Table 5 comparative timings of our implementation with Singular
(Decker et al., 2019); in Singular we used the functions radical and primdecGTZ. It
is clear that our implementation is usefully faster (and more reliable) in most cases; an
exception is the primary decomposition of example 3.34 where the actual computation
of the unverified result is fast, but the final verification takes more than 90% of the total
time (as shown in Table 2). We had hoped to include also a comparison with Macaulay2
(Grayson and Stillman, 2019), but were unable to get timings for most of the examples.

Table 5. Singular and CoCoA– time comparisons

Example Radical Primary Dec.

prime field Singular CoCoA Singular CoCoA

2.16 >600 13.70 (1) 7.87 2.53

2.17 0.01 0.02 1.00 1.12

2.18 p too large 23.60 p too large 6.01

2.19 4.91 3.99 1.62 3.84

2.20 0.01 0.01 98.15 16.10

Example Radical Primary Dec.

rationals Singular CoCoA Singular CoCoA

3.28 >600 22.91 151.48 54.33

3.29 2.17 0.49 7.24 3.30

3.30 40.78 1.55 16.41 1.11

3.31 0.01 0.01 crash 1.95

3.32 0.01 0.03 crash > 600

3.33 >600 0.41 (2) 3.62 0.44

3.34 116.29 12.68 3.82 11.36

3.35 0.86 0.28 0.11 0.25

3.36 93.83 1.08 >600 4.47

(1) possible overflow (2) overflow warning

5. Conclusion and future work

We have presented both theoretical and practical aspects of our implementations in
CoCoALib for computing minimal polynomials (over Fp). Then we presented an algo-
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rithm for computing minimal polynomials over Q based on a modular approach and
which guarantees correctness of the result. Finally we described several algorithms which
use minimal polynomials for various operations on zero-dimensional ideals (e.g. testing
if an ideal is radical, primary or maximal).

Our experiments have shown the potential of a good implementation, and how this
opens the way to new applications. For example in Abbott et al. (2018a), we use our
primary decomposition approach for factoring polynomials over algebraic field extensions
in advanced methods in the context of the SC2 community: it is proving to be useful in the
software CArL/SMT-RAT by Kremer and Ábrahám (2018) which implements Lazard’s
variant of Cylindrical Algebraic Decomposition.

On the theoretical side, we investigate more deeply the consequences of our new mod-
ular approach and apply it to general ideals in the preprint by Abbott et al. (2018b).
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