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Abstract

Based on a reduction processing, we rewrite a hypergeometric term
as the sum of the difference of a hypergeometric term and a reduced
hypergeometric term (the reduced part, in short). We show that when
the initial hypergeometric term has a certain kind of symmetry, the
reduced part contains only odd or even powers. As applications, we
derived two infinite families of super-congruences.

1 Introduction

In recent years, many super congruences involving combinatorial sequences
are discovered, see for example, Sun [16]. The standard methods for prov-
ing these congruences include combinatorial identities [18], Gauss sums [5],
symbolic computation [14] et al.

We are interested in the following super congruence conjectured by van
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Hamme [19]

p−1
2

∑

k=0

(−1)k(4k + 1)

(

(1/2)k
(1)k

)3

≡ (−1)
p−1
2 p (mod p3),

where p is a odd prime and (a)k = a(a + 1) · · · (a + k − 1) is the rising
factorial. This congruence was proved by Mortenson [13] Zudilin [21] and
Long [12] by different methods. Sun [17] proved a stronger version for prime
p ≥ 5

p−1
2

∑

k=0

(−1)k(4k + 1)

(

(1/2)k
(1)k

)3

≡ (−1)
p−1
2 p+ p3Ep−3 (mod p4),

where En is the n-th Euler number defined by

2

ex + e−x
=

∞
∑

n=0

En
xn

n!
.

A similar congruence was given by van Hamme [19] for p ≡ 1 (mod 4):

p−1
2

∑

k=0

(4k + 1)

(

(1/2)k
(1)k

)4

≡ p (mod p3).

Long [12] showed that in fact the above congruence holds for arbitrary odd
prime modulo p4. Motivated by these two congruences, Guo [8] proposed
the following conjectures (corrected version).

Conjecture 1.1 • For any odd prime p, positive integer r and odd in-
teger m, there exists an integer am.p such that

pr−1
2

∑

k=0

(−1)k(4k + 1)m
(

(1/2)k
(1)k

)3

≡ am,pp
r(−1)

(p−1)r
2 (mod pr+2).

(1.1)

• For any odd prime p > (m − 1)/2, positive integer r and odd integer
m, there exists an integer bm,p such that

pr−1
2

∑

k=0

(4k + 1)m
(

(1/2)k
(1)k

)4

≡ bm,pp
r (mod pr+3). (1.2)
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Liu [11] and Wang [20] confirmed the conjectures for r = 1 and some initial
values m. Jana and Kalita [10] and Guo [9] confirmed (1.1) for m = 3 and
r ≥ 1. We will prove a stronger version of (1.1) for the case of r = 1 and
arbitrary odd m and a weaker version of (1.2) for the case of r = 1 and
arbitrary odd m by a reduction process.

Recall that a hypergeometric term tk is a function of k such that tk+1/tk
is a rational function of k. Our basic idea is to rewrite the product of a
polynomial f(k) in k and a hypergeometric term tk as

f(k)tk = ∆(g(k)tk) + h(k)tk = (g(k + 1)tk+1 − g(k)tk) + h(k)tk,

where g(k), h(k) are polynomials in k such that the degree of h(k) is bounded.
To this aim, we construct x(k) such that ∆x(k)tk equals the product of tk
and a polynomial u(k) and that f(k) and u(k) has the same leading term.
Then we have

f(k)tk −∆x(k)tk = (f(k)− u(k))tk

is the product of tk and a polynomial of degree less than f(k). We call such
a reduction process one reduction step. Continuing this reduction process,
we finally obtain a polynomial h(k) with bounded degree. We will show that

for tk =
(

(1/2)k
(1)k

)r
, r = 3, 4 and an arbitrary polynomial of form (4k + 1)m

with m odd, the reduced polynomial h(k) can be taken as (4k + 1). This
enables us to reduce the congruences (1.1) and (1.2) to the special case of
m = 1, which is known for r = 1.

We notice that Pirastu-Strehl [15] and Abramov [1, 2] gave the mini-
mal decomposition when tk is a rational function, Abramov-Petkovšek [3,4]
gave the minimal decomposition when tk is a hypergeometric term, and
Chen-Huang-Kauers-Li [6] applied the reduction to give an efficient creative
telescoping algorithm. These algorithms concern a general hypergeometric
term. While we focus on a kind of special hypergeometric term so that the
reduced part h(k)tk has a nice form.

The paper is organized as follows. In Section 2, we consider the re-
duction process for a general hypergeometric term tk. Then in Section
3 we consider those tk with the property a(k) is a shift of −b(k), where
tk+1/tk = a(k)/b(k). As an application, we prove a stronger version of (1.1)
for the case r = 1. Finally, we consider the case of a(k) is a shift of b(k),
which corresponds to (1.2). In this case, we show that there is a rational
number bm instead of an integer such that (1.2) holds when r = 1.
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2 The Difference Space and Polynomial Reduction

Let K be a field and K[k] be the ring of polynomials in k with coefficients
in K. Let tk be a hypergeometric term. Suppose that

tk+1

tk
=

a(k)

b(k)
,

where a(k), b(k) ∈ K[k]. It is straightforward to verify that

∆k (b(k − 1)x(k)tk) = (a(k)x(k + 1)− b(k − 1)x(k))tk . (2.1)

We thus define the difference space corresponding to a(k) and b(k) to be

Sa,b = {a(k)x(k + 1)− b(k − 1)x(k) : x(k) ∈ K[k]}.

We see that for f(k) ∈ Sa,b, we have f(k)tk = ∆k(p(k)tk) for a certain
polynomial p(k) ∈ K[k].

Let N,Z denote the set of nonnegative integers and the set of integers,
respectively. Given a(k), b(k) ∈ K[k], we denote

u(k) = a(k)− b(k − 1), (2.2)

d = max{deg u(k),deg a(k)− 1}, (2.3)

and
m0 = − lc u(k)/ lc a(k), (2.4)

where lc p(k) denotes the leading coefficient of p(k).

We first introduce the concept of degeneration.

Definition 2.1 Let a(k), b(k) ∈ K[k] and u(k),m0 be given by (2.2) and
(2.4). If

degu(k) = deg a(k)− 1 and m0 ∈ N,

we say that the pair (a(k), b(k)) is degenerated.

We will see that the degeneration is closely related to the degrees of the
elements in Sa,b.
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Lemma 2.2 Let a(k), b(k) ∈ K[k] and d,m0 be given by (2.3) and (2.4).
For any polynomial x(k) ∈ K[k], let

p(k) = a(k)x(k + 1)− b(k − 1)x(k).

If (a(k), b(k)) is degenerated and deg x(k) = m0, then deg p(k) < d + m0;
Otherwise, deg p(k) = d+ degx(k).

Proof. Notice that

p(k) = u(k)x(k) + a(k)(x(k + 1)− x(k)).

If the leading terms of u(k)x(k) and a(k)(x(k+1)−x(k)) do not cancel, the
degree of p(k) is d + deg x(k). Otherwise, we have deg u(k) = deg a(k) − 1
and

lc u(k) + lc a(k) · deg x(k) = 0,

i.e., deg x(k) = m0.

It is clear that Sa,b is a subspace of K[k], but is not a sub-ring of K[k]
in general. Let [p(k)] = p(k) + Sa,b denote the coset of a polynomial p(k).
We see that the quotient space K[k]/Sa,b is finite dimensional.

Theorem 2.3 Let a(k), b(k) ∈ K[k] and d,m0 be given by (2.3) and (2.4).
We have

K[k]/Sa,b =







〈[k0], [k1], . . . , [kd−1], [kd+m0 ]〉, if (a(k), b(k)) is degenerated,

〈[k0], [k1], . . . , [kd−1]〉, otherwise.

Proof. For any nonnegative integer s, let

ps(k) = a(k)(k + 1)s − b(k − 1)ks.

We first consider the case when the pair (a(k), b(k)) is not degenerated.
By Lemma 2.2, we have

deg ps(k) = d+ s, ∀ s ≥ 0.

Suppose that p(k) is a polynomial of degree m ≥ d. Then

p′(k) = p(k)−
lc p(k)

lc pm−d(k)
pm−d(k) (2.5)

5



is a polynomial of degree less than m and p(k) ∈ [p′(k)]. By induction on
m, we derive that for any polynomial p(k) of degree ≥ d, there exists a
polynomial p̃(k) of degree < d such that p(k) ∈ [p̃(k)]. Therefore,

K[k]/Sa,b = 〈[k0], [k1], . . . , [kd−1]〉.

Now assume that (a(k), b(k)) is degenerated. By Lemma 2.2,

deg ps(k) = d+ s, ∀ s 6= m0 and deg pm0(k) < d+m0.

The above reduction process (2.5) works well except for the polynomials
p(k) of degree d+m0. But in this case,

p(k)− lc p(k) · kd+m0

is a polynomial of degree less than d + m0. Then the reduction process
continues until the degree is less than d. We thus derive that

K[k]/Sa,b = 〈[k0], [k1], . . . , [kd−1], [kd+m0 ]〉,

completing the proof.

Example 2.1 Let n be a positive integer and

tk = (−n)k/k!,

where (α)k = α(α + 1) · · · (α+ k − 1) is the raising factorial. Then

a(k) = k − n, b(k) = k + 1,

and
Sa,b = {(k − n) · x(k + 1)− k · x(k) : x(k) ∈ K[k]}.

We have
K[k]/Sa,b = 〈[kn]〉

is of dimension one.
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3 The case when a(k) = −b(k + α)

In this section, we consider the case when a(k) = −b(k + α) and b(k) has a
symmetric property. We will show that in this case, the reduction process
maintains the symmetric property. Notice that in this case

u(k) = a(k)− b(k − 1) = −b(k + α)− b(k − 1)

has the same degree as a(k), the pair (a(k), b(k)) is not degenerated.

We first consider the relation between the symmetric property and the
expansion of a polynomial.

Lemma 3.1 Let p(k) ∈ K[k] and β ∈ K. Then the following two state-
ments are equivalent.

(1) p(β + k) = p(β − k) (p(β + k) = −p(β − k), respectively).

(2) p(k) is the linear combination of (k−β)2i, i = 0, 1, . . . ((k−β)2i+1, i =
0, 1, . . ., respectively).

Proof. Suppose that

p(β + k) =
∑

i

cik
i.

Then
p(β − k) =

∑

i

ci(−k)i.

Therefore,

p(β + k) = p(β − k) ⇐⇒ c2i+1 = 0, i = 0, 1, . . . .

The case of p(β + k) = −p(β − k) can be proved in a similar way.

Now we are ready to state the main theorem.

Theorem 3.2 Let a(k), b(k) ∈ K[k] such that

a(k) = −b(k + α) and b(β + k) = ±b(β − k),

for some α, β ∈ K. Then for any non-negative integer m, we have

[(k + γ)2m] ∈
〈

[(k + γ)2i] : 0 ≤ 2i < deg a(k)
〉
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and
[(k + γ)2m+1] ∈

〈

[(k + γ)2i+1] : 0 ≤ 2i+ 1 < deg a(k)
〉

,

where

γ = −β +
α− 1

2
. (3.1)

Proof. We only prove the case of b(β+k) = b(β−k). The case of b(β+k) =
−b(β − k) can be proved in a similar way. By Lemma 3.1, we may assume
that

b(k) = br(k − β)r + br−2(k − β)r−2 + · · · + b0,

where r = deg a(k) = deg b(k) is even and br, br−2, . . . , b0 ∈ K are the
coefficients.

Since (a(k), b(k)) is not degenerated, taking

x(k) = xs(k) = −
1

2

(

k + γ −
1

2

)s

(3.2)

in Lemma 2.2, we derive that

ps(k) = a(k)xs(k + 1)− b(k − 1)xs(k) (3.3)

is a polynomial of degree s+ r. More explicitly, we have

ps(k) =
1

2

(

b(k + α)

(

k + γ +
1

2

)s

+ b(k − 1)

(

k + γ −
1

2

)s)

is a polynomial with leading term brk
s+r.

Notice that

ps(−γ + k) =
1

2

(

b(k + α− γ)

(

k +
1

2

)s

+ b(k − γ − 1)

(

k −
1

2

)s)

and

ps(−γ − k) =
1

2

(

b(−k + α− γ)

(

−k +
1

2

)s

+ b(−k − γ − 1)

(

−k −
1

2

)s)

=
(−1)s

2

(

b(−k + α− γ)

(

k −
1

2

)s

+ b(−k − γ − 1)

(

k +
1

2

)s)

.

Since b(β + k) = b(β − k), i.e., b(k) = b(2β − k), we deduce that

ps(−γ − k)

=
(−1)s

2

(

b(2β + k − α+ γ)

(

k −
1

2

)s

+ b(2β + k + γ + 1)

(

k +
1

2

)s)

.
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By the relation (3.1), we derive that

ps(−γ − k) = (−1)sps(−γ + k).

Suppose that p(k) is a linear combination of the even powers of (k + γ)
and deg p(k) ≥ r. By Lemma 3.1, we have p(−γ − k) = p(−γ + k) and thus

p′(k) = p(k)−
lc p(k)

br
· pdeg p(k)−r(k)

also satisfies p′(−γ−k) = p′(−γ+k) since deg p(k) and r are both even. It is
clear that p(k) ∈ [p′(k)] and the degree of p′(k) is less than the degree of p(k).
Continuing this reduction process, we finally derive that p(k) ∈ [p̃(k)] for
some polynomial p̃(k) with degree < r and satisfying p̃(−γ−k) = p̃(−γ+k).
Therefore,

[p(k)] ∈ 〈[(k + γ)2i] : 0 ≤ 2i < r〉.

Suppose that p(k) is a linear combination of the odd powers of (k + γ)
and deg p(k) ≥ r. Then we have p(−γ − k) = −p(−γ + k) and thus

p′(k) = p(k)−
lc p(k)

br
· pdeg p(k)−r(k)

also satisfies p′(−γ − k) = −p′(−γ + k). Continuing this reduction process,
we finally derive that

[p(k)] ∈ 〈[(k + γ)2i+1] : 0 ≤ 2i+ 1 < r〉.

This completes the proof.

We may further require to express [(k + γ)m] as an integral linear com-
bination of [(k + γ)i], 0 ≤ i < r when b(k) = (k + 1)r.

Theorem 3.3 Let

tk = (−1)k
(

(α)k
k!

)r

,

where r is a positive integer and α is a rational number with denominator
D. Then for any positive integer m, there exist integers a0, . . . , ar−1 and a
polynomial x(k) ∈ Z[k] such that

(2Dk +Dα)mtk =

r−1
∑

i=0

ai(2Dk +Dα)itk +∆k

(

2r−1(Dk)rx(2Dk)tk
)

.

Moreover, ai = 0 if i 6≡ m (mod 2).

9



Proof. We have
tk+1

tk
=

−(k + α)r

(k + 1)r
.

Let
a(k) = −(k + α)r and b(k) = (k + 1)r.

We see that it is the case of β = −1 and γ = α/2 of Theorem 3.2. From
(2.1), we derive that

∆k(k
rxs(k)tk) = ps(k)tk, (3.4)

where xs(k) and ps(k) are given by (3.2) and (3.3) respectively. Multiplying
(2D)s+r on both sides, we obtain

∆k(2
r−1(Dk)rx̃s(2Dk)tk) = p̃s(k

′)tk, (3.5)

where k′ = 2Dk +Dα,

x̃s(k) = −(k +Dα−D)s, (3.6)

and

p̃s(k) =
1

2
((k +Dα)r (k +D)s + (k −Dα)r (k −D)s) . (3.7)

Notice that x̃s(k), p̃s(k) ∈ Z[k] and p̃s(k) is a monic polynomial of degree
s+ r. Moreover, p̃s(k) contains only even powers of k or only odd powers of
k. Using p̃s(k) to do the reduction (2.5), we derive that there exists integers
cm, cm−2, . . . such that

p(k) = km − cmp̃m−r(k)− cm−2p̃m−r−2(k)− · · ·

becomes a polynomial of degree less than r. Clearly, p(k) ∈ Z[k]. Replacing
k by k′ and multiplying tk, we derive that

(k′)mtk = p(k′)tk+∆k(2
r−1(Dk)r(cmx̃m−r(2Dk)+cm−2x̃m−r−2(2Dk)+· · · )tk),

completing the proof.

As an application, we confirm Conjecture 6 of [11].

Theorem 3.4 Let

Sm =

p−1
2

∑

k=0

(−1)k(4k + 1)m
(

(1/2)k
(1)k

)3

.

10



For any positive odd integer m, there exist integers am and cm such that

Sm ≡ am

(

p(−1)
p−1
2 + p3Ep−3

)

+ p3cm (mod p4)

holds for any prime p ≥ 5.

Proof. Taking r = 3 and α = 1/2 in Theorem 3.3, there exist an integer am
and a polynomial qm(k) ∈ Z[k] such that

(4k + 1)mtk − am(4k + 1)tk = ∆k(32k
3qm(4k)tk),

where tk = (−1)k(12 )
3
k/(1)

3
k. Summing over k from 0 to p−1

2 , we derive that

Sm − amS1 = 32ω3qm(4ω)(−1)ω
(

(1/2)ω
(1)ω

)3

,

where ω = p+1
2 . Noting that

(1/2)ω
(1)ω

= p
1

p+ 1

p−1
2
∏

i=1

2i− 1

2i

and

1

p+ 1

p−1
2
∏

i=1

2i− 1

2i
=

1

p+ 1

p−1
2
∏

i=1

p− 2i

2i
≡ (−1)

p−1
2 (mod p),

we have
(

(1/2)ω
(1)ω

)3

≡ p3(−1)
p−1
2 (mod p4).

Hence
Sm − amS1 ≡ −32p3ω3qm(4ω) (mod p4)

Let cm = −4qm(2). We then have

Sm ≡ amS1 + p3cm (mod p4).

Sun [17] proved that for any prime p ≥ 5,

S1 ≡ (−1)
p−1
2 p+ p3Ep−3 (mod p4).

Therefore,

Sm ≡ am

(

p(−1)
p−1
2 + p3Ep−3

)

+ p3cm (mod p4).

Remark 1. The coefficient am and the polynomial qm(k) can be computed
by the extended Zeilberger’s algorithm [7].
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4 The case when a(k) = b(k + α)

We first give a criterion on the degeneration of (a(k), b(k)).

Lemma 4.1 Let a(k), b(k) ∈ K[k] such that a(k) = b(k + α). Suppose that
−(α+ 1) deg a(k) 6∈ N. Then (a(k), b(k)) is not degenerated.

Proof. Let r = deg a(k) = deg b(k) and

u(k) = a(k)− b(k − 1) = b(k + α)− b(k − 1).

It is clear that the coefficient of kr in u(k) is 0 and the coefficient of kr−1 in
u(k) is lc b(k) · (α+1)r. Since (α+1)r 6= 0, we derive that deg u(k) = r− 1.
Thus,

− lc u(k)/ lc a(k) = − lc u(k)/ lc b(k) = −(α+ 1)r.

Since −(α+ 1)r 6∈ N, the pair (a(k), b(k)) is not degenerated.

When a(k) is a shift of b(k), we have a result similar to Theorem 3.2.

Theorem 4.2 Let a(k), b(k) ∈ K[k] such that

a(k) = b(k + α) and b(β + k) = ±b(β − k),

for some α, β ∈ K. Assume further that −(α + 1) deg a(k) 6∈ N. Then for
any non-negative integer m, we have

(k + γ)2m ∈
〈

[(k + γ)2i] : 0 ≤ 2i < deg a(k)− 1
〉

and
(k + γ)2m+1 ∈

〈

[(k + γ)2i+1] : 0 ≤ 2i+ 1 < deg a(k)− 1
〉

,

where

γ = −β +
α− 1

2
.

Proof. The proof is parallel to the proof of Theorem 3.2. Instead of (3.2),
we take

x(k) = xs(k) =

(

k + γ −
1

2

)s

in Lemma 2.2. By Lemma 4.1, (a(k), b(k)) is not degenerated and

deg(a(k)− b(k − 1)) = deg a(k)− 1.

12



Hence the polynomial

ps(k) = a(k)xs(k + 1)− b(k − 1)xs(k)

satisfies
deg ps(k) = s+ deg a(k)− 1.

Moreover, we have

ps(−γ − k) = (−1)s+1ps(−γ + k),

so that the reduction process maintains the symmetric property. Therefore,
the reduction process continues until the degree is less than deg a(k)− 1.

Similar to Theorem 3.3, we have the following result.

Theorem 4.3 Let

tk =

(

(α)k
k!

)r

,

where r is a positive integer and α is a rational number with denominator
D. Suppose that −αr 6∈ N. Then for any positive integer m, there exist
integers a0, . . . , ar−2 and a polynomial x(k) ∈ Z[k] such that

(2Dk+Dα)mtk =
1

Cm

r−2
∑

i=0

ai(2Dk+Dα)itk+
1

Cm
∆k

(

2r−1(Dk)rx(2Dk)tk
)

,

where
Cm =

∏

0≤2i≤m−r+1

((αr +m− r + 1− 2i) ·D).

Moreover, ai = 0 if i 6≡ m (mod 2).

Proof. The proof is parallel to the proof of Theorem 3.3. Instead of (3.6)
and (3.7), we take

x̃s(k) = (k +Dα−D)s (4.1)

and

p̃s(k) =
1

2
((k +Dα)r (k +D)s − (k −Dα)r (k −D)s), (4.2)

so that (3.5) still holds. It is clear that x̃s(k), p̃s(k) ∈ Z[k]. But in this case,
p̃s(k) is not monic. The leading term of p̃s(k) is

(αr + s)D · ks+r−1.

13



Now let us consider the reduction process. Let p(k) ∈ Z[k] be a poly-
nomial of degree ℓ ≥ r − 1. Assume further that p(k) contains only even
powers of k or only odd powers of k. Setting

p′(k) = lc p̃ℓ−r+1(k) · p(k)− lc p(k) · p̃ℓ−r+1(k)

= (αr + ℓ− r + 1)D · p(k)− lc p(k) · p̃ℓ−r+1(k),

we see that p′(k) ∈ Z[k] and deg p′(k) < ℓ. Since p̃ℓ−r+1(k) contains
only even powers of k or only odd powers of k, so does p′(k). Therefore,
deg p′(k) ≤ ℓ− 2.

Continuing this reduction process until ℓ < r− 1, we finally obtain that
there exist integers cm, cm−2, . . . such that

Cmkm − cmp̃m−r+1(k)− cm−2p̃m−r−1(k)− · · · ,

is a polynomial of degree less than r−1 and with integral coefficients, where
Cm is the product of the leading coefficient of p̃m−r+1(k), p̃m−r−1(k), . . .

Cm =
∏

0≤2i≤m−r+1

((αr +m− r + 1− 2i)D) ,

as desired.

For the special case of tk = (1/2)4k/(1)
4
k, we may further reduce the factor

Cm.

Lemma 4.4 Let m be a positive integer and

tk =
(1/2)4k
(1)4k

.

• If m is odd, then there exist an integer c and a polynomial x(k) ∈ Z[k]
such that

(4k + 1)mtk =
c

C ′
m

(4k + 1)tk +
1

C ′
m

∆k

(

32k4x(4k)tk
)

,

where C ′
m = (m−1

2 )!.

• If m is even, then there exist integers c, c′ and a polynomial x(k) ∈ Z[k]
such that

(4k + 1)mtk =
1

C ′
m

(c+ (4k + 1)2c′)tk +
1

C ′
m

∆k

(

64k4x(4k)tk
)

,

where C ′
m = (m− 1)!!.
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Proof. This is the special case of Theorem 4.3 for α = 1/2 and r = 4.
Therefore, D = 2 and αr − r + 1 = −1.

We need only to show that the coefficients of p̃s(k) given by (4.2) is
divisible by 2 when s is odd and is divisible by 4 when s is even. Then
we may replace x̃s(k) given by (4.1) by x̃s(k)/4 and x̃s(k)/2 so that the
leading coefficient of p̃s(k) is reduced. Correspondingly, the product Cm of
the leading coefficients becomes

∏

0≤2i≤m−3

1

2
lc p̃m−3−2i(k) =

∏

0≤2i≤m−3

(m− 1− 2i) = (m− 1)!!, m even,

and
∏

0≤2i≤m−3

1

4
lc p̃m−3−2i(k) =

∏

0≤2i≤m−3

m− 1− 2i

2
=

(

m− 1

2

)

!, m odd.

Notice that

p̃s(k) =
1

2
((k + 1)4 (k + 2)s − (k − 1)4 (k − 2)s).

The coefficient of kj is

1− (−1)s−j

2

∑

0≤ℓ≤4, 0≤j−ℓ≤s

(

4

ℓ

)(

s

j − ℓ

)

2s−j+ℓ.

If j− ℓ < s, the corresponding summand is divisible by 2. If j− ℓ = s and ℓ
is even, then (−1)s−j = 1 and the coefficient is 0. Otherwise, ℓ = 1 or ℓ = 3,
and thus 4 |

(4
ℓ

)

. Therefore, the coefficient must be divisible by 2.

Now consider the case of s being even. If j−ℓ < s−1, the corresponding
summand is divisible by 4. Otherwise j − ℓ = s or j − ℓ = s − 1. We have
seen that if j − ℓ = s, then the coefficient is divisible by 4. If j − ℓ = s− 1.
Then

(

s

j − ℓ

)

= s and 2s−j+ℓ = 2.

Thus the summand is also divisible by 4.

Example 4.2 Consider the case of m = 11. We have

(4k + 1)11tk + 10515(4k + 1)tk = ∆k(32k
4p(k)tk)

where

p(k) =
1

5
(4k−1)8−

249

20
(4k−1)6+

20207

60
(4k−1)4−

89909

20
(4k−1)2+

524029

20
.
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As an application, we obtain the following congruences.

Theorem 4.5 Let m be a positive odd integer and µ = (m− 1)/2. Denote

Sm =

p−1
2

∑

k=0

(4k + 1)m
(

(1/2)k
(1)k

)4

.

Then there exists an integer am such that for each prime p > µ,

Sm ≡
am
µ!

p (mod p4).

Proof. By Lemma 4.4, there exist an integer am and a polynomial qm(k) ∈
Z[k] such that

(4k + 1)mtk −
am
µ!

(4k + 1)tk =
1

µ!
∆k

(

32k4qm(k)tk
)

,

where tk =
(

(1/2)k
(1)k

)4
. Summing over k from 0 to (p − 1)/2, we obtain

Sm −
am
µ!

S1 = 32ω4 qm(4ω)

µ!

(

(1/2)ω
(1)ω

)4

,

where ω = (p + 1)/2. When p > µ, 1/µ! is a p-adic integer and

(

(1/2)ω
(1)ω

)4

≡ 0 (mod p4).

Therefore,

Sm ≡
am
µ!

S1 (mod p4).

It is shown by Long [12] that

S1 ≡ p (mod p4),

completing the proof.

The integer am and the polynomial qm(k) can be computed by the ex-
tended Zeilberger’s algorithm.

By checking the initial values, we propose the following conjecture.
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Conjecture 4.6 For any positive odd integer m, the coefficient am/(m−1
2 )!

is an integer.
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