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Abstract

Based on a reduction processing, we rewrite a hypergeometric term
as the sum of the difference of a hypergeometric term and a reduced
hypergeometric term (the reduced part, in short). We show that when
the initial hypergeometric term has a certain kind of symmetry, the
reduced part contains only odd or even powers. As applications, we
derived two infinite families of super-congruences.

1 Introduction

In recent years, many super congruences involving combinatorial sequences
are discovered, see for example, Sun [16]. The standard methods for prov-
ing these congruences include combinatorial identities [18], Gauss sums [5],
symbolic computation [14] et al.

We are interested in the following super congruence conjectured by van
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Hamme [19]
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where p is a odd prime and (a)y = a(a+ 1)---(a + k — 1) is the rising
factorial. This congruence was proved by Mortenson [13] Zudilin [21] and
Long [12] by different methods. Sun [I7] proved a stronger version for prime
p=5

ES
Il

0

-1
(-1 p+p’Ey s (mod p),

. (12 )’
Z;(l)Mk+1)<(Uk>

where E,, is the n-th Euler number defined by
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A similar congruence was given by van Hamme [19] for p = 1 (mod 4):
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Long [12] showed that in fact the above congruence holds for arbitrary odd
prime modulo p*. Motivated by these two congruences, Guo [8] proposed
the following conjectures (corrected version).

p (mod p?’).

Conjecture 1.1 e For any odd prime p, positive integer r and odd in-
teger m, there exists an integer a, , such that
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e For any odd prime p > (m — 1)/2, positive integer r and odd integer
m, there exists an integer by, , such that
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Liu [II] and Wang [20] confirmed the conjectures for = 1 and some initial
values m. Jana and Kalita [I0] and Guo [9] confirmed (L.1]) for m = 3 and
r > 1. We will prove a stronger version of (LI for the case of » = 1 and
arbitrary odd m and a weaker version of ([2)) for the case of r = 1 and
arbitrary odd m by a reduction process.

Recall that a hypergeometric term tj, is a function of k such that ¢5.1/tx
is a rational function of k. Our basic idea is to rewrite the product of a
polynomial f(k) in k and a hypergeometric term ¢ as

F(B)t = A(g(k)te) + h(k)tk, = (9(k + D1 — g(k)tr) + h(k)tx,

where g(k), h(k) are polynomials in & such that the degree of h(k) is bounded.
To this aim, we construct z(k) such that Az(k)t; equals the product of ¢
and a polynomial u(k) and that f(k) and u(k) has the same leading term.
Then we have

f(R)tk — Ax(k)ty = (f (k) — u(k))tx

is the product of t; and a polynomial of degree less than f(k). We call such
a reduction process one reduction step. Continuing this reduction process,
we finally obtain a polynomial h(k) with bounded degree. We will show that

for ¢, = <%)T, r = 3,4 and an arbitrary polynomial of form (4k 4+ 1)™
with m odd, the reduced polynomial h(k) can be taken as (4k + 1). This
enables us to reduce the congruences (1) and (2] to the special case of

m = 1, which is known for r = 1.

We notice that Pirastu-Strehl [I5] and Abramov [I,2] gave the mini-
mal decomposition when ¢ is a rational function, Abramov-Petkovsek [3,/4]
gave the minimal decomposition when t; is a hypergeometric term, and
Chen-Huang-Kauers-Li [6] applied the reduction to give an efficient creative
telescoping algorithm. These algorithms concern a general hypergeometric
term. While we focus on a kind of special hypergeometric term so that the
reduced part h(k)t; has a nice form.

The paper is organized as follows. In Section 2, we consider the re-
duction process for a general hypergeometric term t;. Then in Section
3 we consider those t; with the property a(k) is a shift of —b(k), where
tg+1/tr = a(k)/b(k). As an application, we prove a stronger version of ([L.T])
for the case r = 1. Finally, we consider the case of a(k) is a shift of b(k),
which corresponds to (2. In this case, we show that there is a rational
number by, instead of an integer such that (L.2)) holds when r = 1.



2 The Difference Space and Polynomial Reduction

Let K be a field and K[k] be the ring of polynomials in k with coefficients
in K. Let t; be a hypergeometric term. Suppose that

ter1  a(k)

ty b(k)’
where a(k),b(k) € K[k]. It is straightforward to verify that
Ag (b(k — Dax(k)ty) = (a(k)x(k + 1) — b(k — D)z (k))ty. (2.1)
We thus define the difference space corresponding to a(k) and b(k) to be
Sap ={a(k)x(k+1) —b(k — 1)z(k): z(k) € K[k}

We see that for f(k) € S, we have f(k)ty, = Ap(p(k)ty) for a certain
polynomial p(k) € K[k].

Let N,Z denote the set of nonnegative integers and the set of integers,
respectively. Given a(k),b(k) € K[k], we denote

u(k) = a(k) — b(k — 1), (2.2)
d = max{deg u(k),dega(k) — 1}, (2.3)

and
mo = —lecu(k)/lca(k), (2.4)

where lc p(k) denotes the leading coefficient of p(k).

We first introduce the concept of degeneration.

Definition 2.1 Let a(k),b(k) € K[k] and u(k),mg be given by (Z2) and

e, If
degu(k) =dega(k) —1 and mgy €N,

we say that the pair (a(k),b(k)) is degenerated.

We will see that the degeneration is closely related to the degrees of the
elements in S, p.



Lemma 2.2 Let a(k),b(k) € K[k] and d,mq be given by [23]) and (2.4).
For any polynomial z(k) € K[k], let

p(k) =a(k)x(k+ 1) — b(k — 1)x(k).
If (a(k),b(k)) is degenerated and degx(k) = myg, then degp(k) < d + myg;
Otherwise, degp(k) = d + degz (k).

Proof. Notice that
p(k) = u(k)z(k) + a(k)(z(k + 1) — z(k)).

If the leading terms of w(k)z(k) and a(k)(z(k+1) —x(k)) do not cancel, the
degree of p(k) is d + degx(k). Otherwise, we have degu(k) = dega(k) — 1
and

lcu(k) +1ca(k) - degz(k) = 0,

ie., degz(k) = mo. 1

It is clear that S, is a subspace of K[k], but is not a sub-ring of K[k]
in general. Let [p(k)] = p(k) + Sqp denote the coset of a polynomial p(k).
We see that the quotient space K[k]/S, is finite dimensional.

Theorem 2.3 Let a(k),b(k) € K[k] and d,mq be given by [2.3) and (24).
We have
(K], (1], [RTT, [REE]), if (a(k), b(K)) is degenerated,

Kk|/Sqp =
[K]/ b {({ko]’ [k‘l], e [kd—1]>, otherwise.

Proof. For any nonnegative integer s, let
ps(k) = a(k)(k +1)° — b(k — 1)k°.
We first consider the case when the pair (a(k),b(k)) is not degenerated.
By Lemma 221 we have
degps(k) =d+s, Vs>0.
Suppose that p(k) is a polynomial of degree m > d. Then

le p(k)

p,(k) = p(k) - lem—d(k)

pm—d(k) (25)
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is a polynomial of degree less than m and p(k) € [p/(k)]. By induction on
m, we derive that for any polynomial p(k) of degree > d, there exists a

polynomial p(k) of degree < d such that p(k) € [p(k)]. Therefore,

K[k]/Sap = (K], [K'], ... k1))

Now assume that (a(k),b(k)) is degenerated. By Lemma [2.2]
degps(k) =d+s, Vs#mg and degpm,(k) <d+myo.

The above reduction process (2.5 works well except for the polynomials
p(k) of degree d + mg. But in this case,

p(k) —lep(k) - k™o

is a polynomial of degree less than d + mg. Then the reduction process
continues until the degree is less than d. We thus derive that

K[K]/Sap = (KL (K], [R91], [REF™)),

completing the proof. |

Example 2.1 Let n be a positive integer and
ty = (—n)i/K!,
where (@) = ala+1)--- (a+ k — 1) is the raising factorial. Then
alk)=k—n, bk)=Fk+1,

and
Sap={(k—n)-z(k+1)—k-z(k): (k) € K[k]}.

)

We have
K[k]/Sap = ([k"])

1s of dimension one.



3 The case when a(k) = —b(k + )

In this section, we consider the case when a(k) = —b(k + «) and b(k) has a
symmetric property. We will show that in this case, the reduction process
maintains the symmetric property. Notice that in this case

uw(k) =a(k) —b(k—1) = —b(k+a) — bk — 1)
has the same degree as a(k), the pair (a(k),b(k)) is not degenerated.

We first consider the relation between the symmetric property and the
expansion of a polynomial.

Lemma 3.1 Let p(k) € K[k] and f € K. Then the following two state-
ments are equivalent.
(1) p(B+k)=p(B—k) (p(B+ k) =—p(B— k), respectively).
(2) p(k) is the linear combination of (k— )%, i=0,1,... (k—B)%*!, i =
0,1,..., respectively).

Proof. Suppose that
pB+k) =) cik'.

Then
p(B—k) =3 ei(—k)
Therefore,
p(B+k)=p(B—k) < cois1=0,i=0,1,....
The case of p(8 + k) = —p(8 — k) can be proved in a similar way. 1

Now we are ready to state the main theorem.
Theorem 3.2 Let a(k),b(k) € K[k] such that
a(k) = —-blk+«a) and b(B+k)==xb(B—k),
for some a, B € K. Then for any non-negative integer m, we have

[(k+7)°™] € ([(k+7)*]: 0 < 2i < dega(k))
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and
[(k+~)*™H] e <[(k: + )20 < 20+ 1 < deg a(k‘)> ,

where
o — 1

=B+ (3.1)

Proof. We only prove the case of b(8+ k) = b(8 —k). The case of b(f+k) =
—b(B — k) can be proved in a similar way. By Lemma B}, we may assume
that

b(k) = by(k — B)" + by—a(k — B)" > + -+ + by,
where r = dega(k) = degb(k) is even and b,,b,_2,...,bp € K are the
coefficients.

Since (a(k),b(k)) is not degenerated, taking

z(k) = zs(k) = —% <k + - %) (3.2)
in Lemma [2.2] we derive that
ps(k) = a(k)zs(k +1) — bk — 1)zs(k) (3.3)
is a polynomial of degree s+ r. More explicitly, we have

ps(k‘):%<b(k‘+a) <k+fy+%>s+b(k~—1) <k+fy—%>s>

is a polynomial with leading term b,k57".

Notice that

= o (o ) k- e-2))

and
< —k+a—7) <—k+%>s+b(—k’—7—1)<_k_%>s>
RTINS}

Since b(8 + k) = b(8 — k), i.e., b(k) = b(28 — k), we deduce that

ps(_’y - k)

— (_21)8 <b(25—|—k’—a+7) (k—%>s+b(25+k+v+1) <k+%>>




By the relation (3.]), we derive that

ps(_/y - k) = (_1)81)3(_’7 + k)

Suppose that p(k) is a linear combination of the even powers of (k + 7)
and degp(k) > r. By Lemma B1] we have p(—y — k) = p(—v + k) and thus

 lep(k)

p/(k‘) = p(k) b, 'pdcgp(k)—r(k)

also satisfies p'(—y—k) = p/(—y+k) since deg p(k) and r are both even. It is
clear that p(k) € [p/(k)] and the degree of p/(k) is less than the degree of p(k).
Continuing this reduction process, we finally derive that p(k) € [p(k)] for
some polynomial p(k) with degree < r and satisfying p(—y—k) = p(—y+k).
Therefore,

[p(k)] € ([(k +7)*]: 0 < 2i <)

Suppose that p(k) is a linear combination of the odd powers of (k + 7)
and deg p(k) > r. Then we have p(—y — k) = —p(—vy + k) and thus

P = p0) ~ L 1 8)

also satisfies p'(—y — k) = —p/(—v + k). Continuing this reduction process,
we finally derive that

(k)] € ([(k+)*]:0<2i+1<7).
This completes the proof. 1

We may further require to express [(k 4+ )] as an integral linear com-
bination of [(k +7)%], 0 < i < r when b(k) = (k + 1)".

tr = (—1)" <%>T,

where r is a positive integer and « is a rational number with denominator
D. Then for any positive integer m, there exist integers ag,...,ar,—1 and a
polynomial x(k) € Z[k] such that

Theorem 3.3 Let

r—1
(2Dk + Do)™x =Y _ a;(2Dk + Da)'t), + Ay, (2" (Dk)"z(2Dk)ty,) .
=0

Moreover, a; =0 if i Zm (mod 2).



Proof. We have
tk+1 _ —(k + Oé)r
tr (lﬁ + 1)T '

Let
ak) =—(k+a)" and bk)=(k+1)".

We see that it is the case of § = —1 and v = a/2 of Theorem From
1), we derive that
Ak(kfxs(k)tk) = ps(k)tk7 (3'4)

where z4(k) and ps(k) are given by ([B.2) and (B.3]) respectively. Multiplying
(2D)**" on both sides, we obtain

AR(2"H(DE) Z5(2DE)t) = ps(K )t (3.5)
where k' = 2Dk + Da,
Zs(k) = —(k+ Da — D)?, (3.6)

and
palk) = % ((k+ Da) (k+D)* + (k= Da) (k=D)’).  (3.7)

Notice that zs(k),ps(k) € Z[k] and ps(k) is a monic polynomial of degree
s+r. Moreover, ps(k) contains only even powers of k or only odd powers of
k. Using ps(k) to do the reduction (Z3]), we derive that there exists integers
Cms Cm—2, - - . such that

p(k) =k"— Cmﬁm—r(k) - Cm—2ﬁm—r—2(kj) -

becomes a polynomial of degree less than r. Clearly, p(k) € Z[k]. Replacing
k by k' and multiplying t;, we derive that

(K™t = p(k )t 4+An(2 Y (DE) (cm@m—r (2DE)+Cm—2Fm—r—2(2Dk)+- - - )tr),
completing the proof. |

As an application, we confirm Conjecture 6 of [11].

Theorem 3.4 Let

1/2)i )’
(Dk ) '

S = i(—l)k(% +1)m (
k=0
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For any positive odd integer m, there exist integers a,, and ¢, such that
S = am (p(—l)% +p3Ep_3) + piem (mod p4)
holds for any prime p > 5.
Proof. Taking r = 3 and o = 1/2 in Theorem [3.3] there exist an integer a,,
and a polynomial ¢,,(k) € Z[k] such that
(4k + 1)t — apm(4k + Dty = Ap(32k3 ¢ (4K)ts),

where tj, = (—1)%(3)3/(1). Summing over k from 0 to p—gl, we derive that

3

where w = ’%1. Noting that

p—1
(1/2), 1 13[22'—1
M. p+1l] i
and
p—1 p—1
1 S 2i—1 1 Yrp—2 p—1
= =(-1) 2 d
p+1£[1 2i p+121;[1 5 = b2 (medp),
we have 5
1/2 p—1
<(({))w> =p*(-1)"T  (mod p*).
w
Hence

Sy — aS1 = —32p°w3 g (4w)  (mod p?)
Let ¢, = —4¢m(2). We then have
S = amS1 + piem (mod p4).
Sun [I7] proved that for any prime p > 5,
S1 = (—1)%]) +p3Ep_3 (mod p4).

Therefore,

S = G, <p(—1)p%1 —I—p?’Ep_g) —l—p30m (mod p4). ]

Remark 1. The coefficient a,, and the polynomial g,,(k) can be computed
by the extended Zeilberger’s algorithm [7].

11



4 The case when a(k) = b(k + «)

We first give a criterion on the degeneration of (a(k),b(k)).

Lemma 4.1 Let a(k),b(k) € K[k]| such that a(k) = b(k + «). Suppose that
—(a+1)dega(k) ¢ N. Then (a(k),b(k)) is not degenerated.
Proof. Let r = deg a(k) = degb(k) and

u(k) = a(k) — b(k —1) = b(k + a) — b(k — 1).

It is clear that the coefficient of " in u(k) is 0 and the coefficient of k"' in
u(k) is lcb(k) - (a4 1)r. Since (a+1)r # 0, we derive that degu(k) = r— 1.
Thus,

—lcu(k)/lca(k) = —lcu(k)/leb(k) = —(a + 1)r.

Since —(a + 1)r € N, the pair (a(k),b(k)) is not degenerated. |
When a(k) is a shift of b(k), we have a result similar to Theorem

Theorem 4.2 Let a(k),b(k) € K[k] such that
a(k) =b(k+«a) and b(B+Ek)==xb(B—k),

for some o, B € K. Assume further that —(a + 1)dega(k) ¢ N. Then for
any non-negative integer m, we have

(k+7)*™ € {[(k+7)%]: 0<2i < dega(k) — 1)
and
(k 4+ € ([(k+7)*™]: 0 < 2i + 1 < dega(k) — 1),
where

a—1
2

y=-F+

Proof. The proof is parallel to the proof of Theorem Instead of (3.2]),
we take

1 S
x(k) = zs(k) = <k +v - 5)
in Lemma By Lemma 1] (a(k),b(k)) is not degenerated and
deg(a(k) —b(k — 1)) = dega(k) — 1.

12



Hence the polynomial
ps(k) = a(k)xs(k+ 1) — b(k — 1)zs(k)

satisfies
deg ps(k) = s+ dega(k) — 1.

Moreover, we have
ps(=v = k) = (=1)"ps(—y + k),

so that the reduction process maintains the symmetric property. Therefore,
the reduction process continues until the degree is less than dega(k) — 1.

Similar to Theorem [3.3] we have the following result.

where r is a positive integer and « is a rational number with denominator
D. Suppose that —ar &€ N. Then for any positive integer m, there exist

Theorem 4.3 Let

integers ag, .. .,ar—o and a polynomial x(k) € Z[k] such that
1 =2 . 1
(2Dk+ Da)™t), = o 2 @i(2Dk+Da)'ty+ Ay (21 (Dk)"x(2Dk)ty,) ,
where
Cm = H ((ar+m—7r+1-2i)- D).
0<2i<m—r+1

Moreover, a; =0 if i Zm (mod 2).

Proof. The proof is parallel to the proof of Theorem B3l Instead of (B.0])
and (B.7), we take
7s(k) = (k + Da — D)* (4.1)
and
1

ps(k) = 5((k‘ + Da)" (k+ D)* — (k— Da)" (k — D)*), (4.2)

so that (B3] still holds. It is clear that zs(k), ps(k) € Z[k]. But in this case,
ps(k) is not monic. The leading term of py(k) is

(ar +s)D - kSt7—L,

13



Now let us consider the reduction process. Let p(k) € Z[k] be a poly-
nomial of degree ¢ > r — 1. Assume further that p(k) contains only even
powers of k or only odd powers of k. Setting

p'(k) =lcpr—rsa(k) - p(k) —lep(k) - po—riar (K)
= (ar+{L—r+1)D - p(k) — lep(k) - pe—r41(k),

we see that p/(k) € Z[k] and degp’(k) < (. Since py_,41(k) contains
only even powers of k or only odd powers of k, so does p/(k). Therefore,
degp/(k) <0 —2.

Continuing this reduction process until ¢ < r — 1, we finally obtain that
there exist integers ¢, ¢;_o2, ... such that

ka;m — Cmﬁm—r—l—l(k) - Cm—2ﬁm—r—1(k7) —

is a polynomial of degree less than r — 1 and with integral coefficients, where
Cyn, is the product of the leading coefficient of p,—ri1(k), Pr—r—1(k), . ..

Cm= JI (ar+m-r+1-2i)D),
0<2i<m—r+1

as desired. [
For the special case of t = (1/2)}/(1)}, we may further reduce the factor
Ch.

Lemma 4.4 Let m be a positive integer and

(1/2);
t = T
(D
e Ifm is odd, then there exist an integer ¢ and a polynomial x(k) € Z[k]
such that
1
(4k + 1)™t), = Ci,(zlk 1)t + A (32K (4R |

where Cp, = (Z51)1.

o Ifm is even, then there exist integers c, ¢’ and a polynomial x(k) € Z[k]
such that

1 1
(4k + 1)™t), = C—/(c + (4k +1)2)ty, + C—/Ak (64k*z(4k)ty) ,

where C), = (m — 1)!L.

14



Proof. This is the special case of Theorem B3] for « = 1/2 and r = 4.
Therefore, D =2 and ar —r+1 = —1.

We need only to show that the coefficients of ps(k) given by (4.2) is
divisible by 2 when s is odd and is divisible by 4 when s is even. Then
we may replace Z4(k) given by (@Il by Zs(k)/4 and Zs(k)/2 so that the
leading coefficient of ps(k) is reduced. Correspondingly, the product C,, of
the leading coefficients becomes

1
H ilcﬁm_g_gi(lﬁ) = H (m—1-=2i)=(m—1!, m even,
0<2i<m—3 0<2i<m—3

and

1 m—1—2 m—1
—1 Din—3—2i = = !7 .
H 1 lcP 3-92i(k) H 5 ( 5 > m odd

0<2i<m—3 0<2i<m—3
Notice that
1
ps(k) = 5((k‘ + DM (k+2)° = (k= 1)* (k- 2)%).

The coefficient of k7 is

1- (gl)s_j 3 (‘é) (j ° g) gs—i+

0<0<4, 0<j—<s
If j — £ < s, the corresponding summand is divisible by 2. If j — ¢ = s and ¢

is even, then (—1)*7/ = 1 and the coefficient is 0. Otherwise, ¢ =1 or £ = 3,
and thus 4 | (if). Therefore, the coefficient must be divisible by 2.

Now consider the case of s being even. If j —¥¢ < s—1, the corresponding
summand is divisible by 4. Otherwise j — ¢ =sor j — ¢ = s — 1. We have
seen that if j — ¢ = s, then the coefficient is divisible by 4. If j — ¢ = s — 1.

Then
<.S )zs and 2579t =9
j—4

Thus the summand is also divisible by 4. |

Example 4.2 Consider the case of m = 11. We have
(4k + 1)y, 4+ 10515(4k + 1)ty = Ap(32k*p(k)ty)

where
249

20207
20

524029
20

p(k) = %(41@—1)8 (4k—1)%+

15



As an application, we obtain the following congruences.

Theorem 4.5 Let m be a positive odd integer and u = (m — 1)/2. Denote

& (2
Sm—kZ:O(ALkJrl) <(1)k> .

Then there exists an integer a,, such that for each prime p > u,

am
Sm = ﬁp (mOd p4)'

Proof. By Lemma [.4] there exist an integer a,, and a polynomial ¢,,(k) €
Z[k] such that

m 1
(4k + 1)), — CL—'(ZUC 1)t = 1A (32K g (k)11 »

(/2 )* ; :
where t;, = < o ) . Summing over k from 0 to (p — 1)/2, we obtain

o 5, sl (02 '
m ,U' ’

p! (D
where w = (p+1)/2. When p > p, 1/u! is a p-adic integer and
(1/2)e ) ! 1
=0 (mod p").
(.
Therefore,
Sm = CL—"'LSl (mod p?).

It is shown by Long [12] that
S;=p (mod ph),

completing the proof. |

The integer a,, and the polynomial g,,(k) can be computed by the ex-
tended Zeilberger’s algorithm.

By checking the initial values, we propose the following conjecture.

16



Conjecture 4.6 For any positive odd integer m, the coefficient am/(mT_l)!
15 an integer.
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