
LEXICOGRAPHIC AND REVERSE LEXICOGRAPHIC
QUADRATIC GRÖBNER BASES OF CUT IDEALS

RYUICHI SAKAMOTO

Abstract. Hibi conjectured that if a toric ideal has a quadratic Gröbner basis,
then the toric ideal has either a lexicographic or a reverse lexicographic quadratic
Gröbner basis. In this paper, we present a cut ideal of a graph that serves as a
counterexample to this conjecture. We also discuss the existence of a quadratic
Gröbner basis of a cut ideal of a cycle. Nagel and Petrović claimed that a cut
ideal of a cycle has a lexicographic quadratic Gröbner basis using the results of
Chifman and Petrović. However, we point out that the results of Chifman and
Petrović used by Nagel and Petrović are incorrect for cycles of length greater than
or equal to 6. Hence the existence of a quadratic Gröbner basis for the cut ideal
of a cycle (a ring graph) is an open question. We also provide a lexicographic
quadratic Gröbner basis of a cut ideal of a cycle of length less than or equal to 7.

Introduction

A d×n integer matrix A = (a1,a2, . . . ,an) is called a configuration if there exists
a vector c ∈ Rd such that for all 1 ≤ i ≤ n, the inner product ai ·c is equal to 1. Let
K be a field and let K[x] = K[x1, x2, . . . , xn] be a polynomial ring in n variables.
For an integer vector α = (α1, α2, . . . , αd) ∈ Zd, we define the Laurent monomial
tα = tα1

1 t
α2
2 . . . tαd

d ∈ K[t±11 , t±12 , . . . , t±1d ] and K[A] = K[ta1 , ta2 , . . . , tan ]. Let π be
a homomorphism π : K[x] → K[A], where π(xi) = tai . The kernel of π is called
the toric ideal of A and is denoted by IA. It is known [13, 21] that IA is generated
by homogeneous binomials associated to the kernel of A. For a configuration A, let
KerZA = {b ∈ Zn | Ab = 0}. For each b = (b1, . . . , bn) ∈ KerZA, we define

fb =
∏
bi>0

xi
bi −

∏
bj<0

x
−bj
j ∈ K[x].

Then IA = 〈fb | b ∈ KerZA〉. Commutative algebraists are interested in the following
properties:

(1) The toric ideal IA is generated by quadratic binomials;
(2) The toric ring K[A] is Koszul;
(3) There exists a monomial order satisfying that a Gröbner basis of IA consists

of quadratic binomials.

The implication (3) ⇒ (2) ⇒ (1) is true, but both (1) ⇒ (2) and (2) ⇒ (3) are
false in general (for example, see [10, 14]). Several classes of toric ideals with lex-
icographic/reverse lexicographic quadratic Gröbner bases are known (for example,
see [4, 6, 15, 17, 18, 20]). In contrast, in [2, 3, 19], sorting monomial orders (which
are not necessarily lexicographic or reverse lexicographic) are used to construct a
quadratic Gröbner basis. The monomial orders appearing in the theory of toric
fiber products [23] constitute another example that is not necessarily lexicographic
or reverse lexicographic. The following conjecture was presented by Hibi.

2010 Mathematics Subject Classification. 13P10.
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Conjecture 0.1. Suppose that the toric ideal IA has a quadratic Gröbner basis.
Then IA has either a lexicographic or reverse lexicographic quadratic Gröbner basis.

In the present paper, we will present a cut ideal of a graph as a counterexample
to this conjecture.

Now, we define the cut ideal of a graph. Let G be a finite connected simple graph
with the vertex set V (G) = {1, 2, . . . ,m} and the edge set E(G) = {e1, e2, . . . , er}.
Given a subset C of V (G), we define a vector δC = (d1, d2, . . . , dr) ∈ {0, 1}r by

di =

{
1 |C ∩ ei| = 1 (ei = {j, k}),
0 otherwise.

We consider the configuration

AG =

δC1 δC2 · · · δCN

1 1 · · · 1

 ,

where {δC | C ⊂ V (G)} = {δC1 , δC2 , . . . , δCN
} and N = 2m−1. The toric ideal of

AG is called the cut ideal of G and is denoted by IG (see [22] for details). This
definition of the cut ideal is different from that in [22]. However, the two definitions
are equivalent. In fact, in [22] they say that “Indeed, the convex hull of the exponent
vectors φG is affinely isomorphic to Cut�(G).” Here Cut�(G) is the convex hull of
{δC | C ⊂ V (G)}. We illustrate this equivalence by an example.

Example 0.2. Let G be a cycle of length 4 with V (G) = {1, 2, 3, 4}, E(G) = {e1 =
{1, 2}, e2 = {2, 3}, e3 = {3, 4}, e4 = {1, 4}}. Then AG is

AG =


0 1 1 1 0 0 0 1
0 1 0 0 1 1 0 1
0 0 1 0 1 0 1 1
0 0 0 1 0 1 1 1
1 1 1 1 1 1 1 1

 .

Here, the i-th row of AG is indexed by the edge ei and the j-th column of AG is
indexed by the subset Cj ⊂ {1, 2, 3, 4}, where C1 = φ,C2 = {2}, C3 = {2, 3}, C4 =
{2, 3, 4}, C5 = {3}, C6 = {3, 4}, C7 = {4}, C8 = {2, 4}. On the other hand, in [22],
the cut ideal of G is defined as the kernel of homomorphism φG : K[q|1234, q2|134, q23|14,
q234|1, q3|124, q34|12, q4|123, q24|13]→ K[s12, s23, s34, s14, t12, t23, t34, t14] with

q|1234 7→ t12t23t34t14 q2|134 7→ s12s23t34t14

q23|14 7→ s12t23s34t14 q234|1 7→ s12t23t34s14

q3|124 7→ t12s23s34t14 q34|12 7→ t12s23t34s14

q4|123 7→ t12t23s34s14 q24|13 7→ s12s23s34s14.

So, the cut ideal defined in [22] is the toric ideal of the following configuration A′G:

s12
s23
s34
s14
t12
t23
t34
t14



0 1 1 1 0 0 0 1
0 1 0 0 1 1 0 1
0 0 1 0 1 0 1 1
0 0 0 1 0 1 1 1
1 0 0 0 1 1 1 0
1 0 1 1 0 0 1 0
1 1 0 1 0 1 0 0
1 1 1 0 1 0 0 0


,
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where j-th column is indexed by j-th element of (q|1234, q2|134, q23|14, q234|1, q3|124, q34|12,
q4|123, q24|13). We obtain the following matrix by elementary row operations from A′G:(

AG
O

)
,

where O is a 3× 8 zero-matrix. Therefore, KerZAG = KerZA
′
G. �

We introduce important known results on the quadratic Gröbner bases of cut
ideals. An edge contraction for a graph G is an operation that merges two vertices
joined by the edge e after removing e from G. A graph H is called a minor of the
graph G if H is obtained by deleting some edges and vertices and contracting some
edges. In this paper, Kn, Km,n, and Cn stand for the complete graph with n vertices,
the complete bipartite graph on the vertex set {1, 2, . . . ,m}∪{m+1,m+2, . . . ,m+n}
and the cycle of length n, respectively.

Proposition 0.3 ([8]). Let G be a graph. Then IG is generated by quadratic bino-
mials if and only if G is free of K4 minors.

Proposition 0.4 ([20]). Let G be a graph. Then K[AG] is strongly Koszul if and
only if G is free of (K4, C5) minors. In addition, if K[AG] is strongly Koszul, then
IG has a quadratic Gröbner basis.

Nagel and Petrović [11, Proposition 3.2] claimed that if G is a cycle, then IG has a
(lexicographic) quadratic Gröbner basis. However, [5, Propositions 2 and 3], which
are used in the proof of [11, Proposition 3.2], contain some errors. We will explain
this in Section 2. In contrast, the following problem is open.

Problem 0.5. Classify the graphs whose cut ideals have a quadratic Gröbner basis.

This paper comprises Sections 1 and 2. In Section 1, we show some results con-
cerning the existence of a lexicographic/reverse lexicographic quadratic Gröbner
basis of cut ideals. Then, we give a graph whose cut ideal is a counterexample to
Conjecture 0.1. In Section 2, we study the cut ideal of a cycle. First, we point out
an error in the lexicographic quadratic Gröbner basis of cut ideals of cycles given
in [5, Proposition 3] (and introduced in [11]). Finally, we construct a lexicographic
quadratic Gröbner basis of the cut ideal of a cycle of length ≤ 7.

1. Lexicographic and reverse lexicographic Gröbner bases

In this section, we present necessary conditions for cut ideals to have a lexi-
cographic/reverse lexicographic quadratic Gröbner basis. Using these results, we
present a graph whose cut ideal is a counterexample to Conjecture 0.1.

First, we study reverse lexicographic quadratic Gröbner bases of cut ideals. The
following was proved in [22, Theorem 1.3].

Proposition 1.1. Let G be a graph. Then the graph G is free of K5 minors and
has no induced cycles of length ≥ 5 if and only if there exists a reverse lexicographic
order such that the initial ideal of IG is squarefree.

Using that fact that AG is a (0, 1) matrix and Proposition 1.1, we are able to
prove the following.

Proposition 1.2. Suppose that a graph G has an induced cycle of length ≥ 5. Then
IG has no reverse lexicographic quadratic Gröbner bases.
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Proof. Suppose that IG has a reverse lexicographic quadratic reduced Gröbner basis
G. Any toric ideal is prime in general, and hence G consists of irreducible binomials.
Since AG is a configuration, G consists of homogeneous binomials. Moreover, since
AG is a (0, 1) matrix, there exist no nonzero binomials of the form x2i − xjxk in IG.
In fact, if x2i − xjxk 6= 0 belongs to IG, then 2δCi

= δCj
+ δCk

. However, this is
impossible since δCi

, δCj
, δCk

are (0, 1)-vectors. It therefore follows that the initial
ideal is generated by squarefree monomials. By proposition 1.1, G has no induced
cycle of length ≥ 5. �

Second, we study the lexicographic quadratic Gröbner bases of cut ideals. Let G
be a complete bipartite graph K2,3, as shown in Fig. 1. The configuration AG is

Figure 1. Complete bipartite graph K2,3.

AG =



0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 1 1 1 1 0 0 1 1 0 0 0 0 1 1
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 1 0 1 1 0 1 0 1 0 1 0 0 1 0 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1


.

Here, the i-th row of AG is indexed by the edge ei and the j-th column of AG is
indexed by the subset Cj ⊂ {1, 2, 3, 4, 5}, where C1 = ∅, C2 = {5}, C3 = {4}, C4 =
{4, 5}, C5 = {2, 3, 4, 5}, C6 = {2, 3, 4}, C7 = {2, 3, 5}, C8 = {2, 3}, C9 = {2, 4, 5}, C10 =
{2, 4}, C11 = {2, 5}, C12 = {2}, C13 = {3}, C14 = {3, 5}, C15 = {3, 4}, C16 = {3, 4, 5}.
The configuration AG has a symmetry group, called switching in [7], as follows.
Given subsets A,B ⊂ {1, 2, 3, 4, 5}, let A4B denote the symmetric difference (A ∪
B)\(A∩B) of them. From the general theory of cuts, for any C,C ′ ⊂ {1, 2, 3, 4, 5}, δC+
δC′ = δC4C′ in F6

2. Hence each C ⊂ {1, 2, 3, 4, 5} gives a permutation ψC on
(δC1 , · · · , δC16) defined by

ψC(δC1 , · · · , δC16) = (δCi1
, · · · , δCi16

),

where δCk
+ δC = δCik

in F6
2. The permutation ψC naturally induces an action on

K[x] by ψC(xk) = xik . SinceδC1 + δC · · · δC16 + δC

1 · · · 1


is obtained by elementary row operations fromδC1 · · · δC16

1 · · · 1

 ,
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their kernels are the same. Hence we have ψC(IG) = IG. We show that IG has no
lexicographic quadratic Gröbner bases by using these symmetries.

Proposition 1.3. The cut ideal of the complete bipartite graph K2,3 is generated by
quadratic binomials and has no lexicographic quadratic Gröbner bases.

Proof. Since K2,3 is free of K4 minors, IK2,3 is generated by quadratic binomials
according to Proposition 0.3. Let < be a lexicographic order on K[x]. Suppose that
the initial ideal of IK2,3 with respect to < is quadratic. Let M be the set of all
monomials in K[x] and let

S = {u ∈M | π(u) = t1t2t3t4t5t6t
2
7}.

Then we have

S = {x1x16, x2x15, x3x14, x4x13, x5x12, x6x11, x7x10, x8x9}.

For each element xix17−i ∈ S, ψCi
(xix17−i) = x1x16 for i = 2, . . . , 8. (For example,

ψC2(x2x15) = x1x16 for C2 = {5} since δC2 + δC2 = δC1 and δC15 + δC2 = δC16 in
F6
2.) Hence we may assume that x1x16 is the smallest monomial in S with respect

to <. It then follows that x1x16 /∈ in<(IK2,3). We now consider the following 8 cubic
binomials of IK2,3 :

f1 = x6x7x9 − x1x5x16,
f2 = x5x8x10 − x1x6x16,
f3 = x5x8x11 − x1x7x16,
f4 = x6x7x12 − x1x8x16,
f5 = x5x10x11 − x1x9x16,
f6 = x6x9x12 − x1x10x16,
f7 = x7x9x12 − x1x11x16,
f8 = x8x10x11 − x1x12x16.

Suppose that there exists a nonzero binomial x1xi−xjxk ∈ IK2,3 with i ∈ {5, . . . , 12}.
Then we have δCi

= δCj
+ δCk

. Since δCi
contains exactly 3 ones, so does δCj

+ δCk
.

It then follows that one of Cj and Ck is C1 and hence x1xi − xjxk = 0. Similarly,
suppose that there exists a nonzero binomial xix16−xjxk ∈ IK2,3 with i ∈ {5, . . . , 12}.
Then we have δCi

+ δC16 = δCj
+ δCk

. Since the sum of the components of δCi
+

δC16 is 9, it follows that one of Cj and Ck is C16 and hence xix16 − xjxk = 0.
Thus x1x16, x1xi, xix16 /∈ in<(IK2,3) for each i ∈ {5, . . . , 12}. If x1xix16 belongs to
in<(IK2,3) for some i ∈ {5, . . . , 12}, then the cubic monomial x1xix16 belongs to the
minimal set of monomial generators of in<(IK2,3). This contradicts the hypothesis
that in<(IK2,3) is generated by quadratic monomials. Hence each x1xix16 does not
belong to in<(IK2,3). Thus the initial monomial of each cubic binomial fi (1 ≤ i ≤ 8)
above is the first monomial. Let R = K[x1, x5, x6, . . . , x12, x16]. Note that each fi
belongs to R. Let xk (k ∈ {1, 5, 6, . . . , 12, 16}) be the greatest variable in R with
respect to the lexicographic order. Then xk appears in the second monomial of fj
for some j. Since < is a lexicographic order, the initial monomial of fj is the second
monomial, a contradiction. �

Remark 1.4. Shibata [20] showed that the cut ideal of the complete bipartite graph
K2,m has a quadratic Gröbner basis with respect to a reverse lexicographic order.

Let A = (a1,a2, . . . ,an) be a d × n configuration and let B = (ai1 ,ai2 , . . . ,aim)
be a submatrix of A. Then K[B] is called a combinatorial pure subring of K[A] if
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there exists a vector c ∈ Rd such that

ai · c

 = 1 i ∈ {i1, i2, . . . , im},

< 1 otherwise.

That is, K[B] is a combinatorial pure subring of K[A] if and only if there exists a
face F of the convex hull of A such that {a1,a2, . . . ,an} ∩ F = {ai1 ,ai2 , . . . ,aim}.
It is known that a combinatorial pure subring K[B] inherits numerous properties of
K[A] (see [13]). In particular, we have the following:

Proposition 1.5. Suppose that K[B] is a combinatorial pure subring of K[A]. If
IA has a lexicographic quadratic Gröbner basis, then so does IB.

Suppose that a graph H is obtained by an edge contraction from a graph G; then
it is known from [22, Lemma 3.2 (2)] that K[AH ] is a combinatorial pure subring of
K[AG]. Thus we have the following from Propositions 1.3 and 1.5.

Proposition 1.6. Let G be a graph. Suppose that K2,3 is obtained by a sequence of
contractions from G. Then IG has no lexicographic quadratic Gröbner bases.

Let G be a graph with 6 vertices and 7 edges, as shown in Fig. 2. Then the

Figure 2. A counterexample to Conjecture 0.1.

configuration AG is
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1
0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 1 1 0 0 1 1 1 1 0 0 1 1 0 0 0 0 1 1 1 1 0 0 1 1 0 0 0 0 1 1
0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0
0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 0 1 0 1 1 0 1 0 1 0 1 0 0 1 0 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

.

Here, the i-th row of AG is indexed by the edge ei and the j-th column of AG is
indexed by the subset Cj ⊂ {1, 2, 3, 4, 5, 6}, where C1 = ∅, C2 = {6}, C3 = {5}, C4 =
{5, 6}, C5 = {4}, C6 = {4, 6}, C7 = {4, 5}, C8 = {4, 5, 6}, C9 = {2, 4, 5}, C10 =
{2, 4, 5, 6}, C11 = {2, 4}, C12 = {2, 4, 6}, C13 = {2, 5}, C14 = {2, 5, 6}, C15 = {2}, C16 =
{2, 6}, C17 = {3}, C18 = {3, 6}, C19 = {3, 5}, C20 = {3, 5, 6}, C21 = {2, 3, 4, 5}, C22 =
{2, 3, 4, 5, 6}, C23 = {2, 3, 4}, C24 = {2, 3, 4, 6}, C25 = {2, 3, 5}, C26 = {2, 3, 5, 6}, C27 =
{2, 3}, C28 = {2, 3, 6}, C29 = {3, 4}, C30 = {3, 4, 6}, C31 = {3, 4, 5}, C32 = {3, 4, 5, 6}.
The configuration AG contains six combinatorial pure subrings which are isomorphic
to AK2,3 . By considering weight vectors such that the reduced Gröbner basis of IK2,3

is quadratic, we found a weight vector w ∈ R32 such that the reduced Gröbner basis
of IG is also quadratic. Letw = (25, 24, 24, 45, 46, 44, 37, 37, 47, 47, 63, 107, 47, 25, 24,
46, 36, 33, 20, 26, 102, 87, 80, 103, 92, 35, 25, 26, 53, 37, 22, 27). The following Gröbner
basis of IG with respect to w is quadratic:
{−x20x31 +x19x32,−x15x3 +x14x2, x28x20−x27x19,−x27x31 +x28x32, x18x31−x30x19,
x3x32 − x8x19, x3x31 − x7x19, x2x19 − x18x3,−x15x19 + x18x14,−x26x15 + x27x14,
x27x3 − x26x2, x1x19 − x17x3,−x17x2 + x1x18, x2x31 − x30x3,−x15x31 + x30x14,
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− x30x20 + x18x32, x7x27 − x28x8, x7x20 − x3x32,−x8x31 + x7x32, x2x31 − x6x19,
x3x20 − x4x19,−x1x31 + x5x19, x4x31 − x3x32, x27x19 − x18x26,−x6x3 + x7x2,
− x7x15 + x6x14,−x6x20 + x2x32, x2x32 − x8x18, x2x31 − x7x18,−x5x3 + x1x7,
− x5x2 + x1x6, x27x3 − x4x28, x28x15 − x16x27,−x8x20 + x4x32, x27x31 − x30x26,
x1x32 − x10x27, x2x32 − x9x27, x16x20 − x15x19, x5x20 − x1x32,−x15x3 + x13x1,
− x10x2 + x9x1,−x15x31 + x16x32, x17x31 − x29x19, x1x31 − x10x28, x2x31 − x9x28,
− x1x32 + x17x8, x1x31 − x17x7, x6x32 − x8x30, x6x31 − x7x30, x1x31 − x29x3,
− x29x2 + x1x30, x30x2 − x6x18, x2x20 − x4x18,−x29x20 + x17x32,−x6x26 + x7x27,
x5x18 − x1x30,−x1x30 + x17x6, x28x14 − x16x26, x1x20 − x17x4, x2x32 − x4x30,
x3x32 − x9x26, x29x1 − x17x5, x8x3 − x4x7,−x11x19 + x10x18, x15x19 − x13x17,
x10x18 − x9x17,−x7x15 + x16x8,−x11x31 + x10x30,−x29x18 + x17x30,−x11x3 + x10x2,
− x10x15 + x11x14,−x1x30 + x11x28, x8x2 − x4x6, x5x32 − x29x8, x5x31 − x29x7,
x15x3 − x16x4, x1x8 − x5x4, x7x15 − x13x5,−x10x6 + x9x5, x9x14 − x13x10,
x5x30 − x29x6,−x1x32 + x29x4,−x1x32 + x11x26, x15x31 − x13x29,−x10x30 + x9x29,
− x11x7 + x10x6,−x23x15 + x11x27,−x1x32 + x23x14, x9x15− x11x13,−x1x32 + x22x15,
x23x3− x22x2, x22x14− x10x26,−x23x26 + x22x27,−x25x15 + x13x27,−x25x14 + x13x26,
− x27x3 + x25x1, x23x19 − x22x18,−x23x31 + x22x30,−x1x30 + x23x16, x2x32 − x21x15,
x24x15 − x1x30,−x2x32 + x23x13,−x3x32 + x21x14, x23x3 − x21x1,−x24x27 + x23x28
, x27x19 − x25x17, x1x31 − x24x14, x24x20 − x23x19, x23x31 − x24x32,−x23x7 + x22x6,
−x12x15 +x11x16,−x12x27 +x1x30,−x12x14 +x10x16, x1x31−x22x16, x12x20−x10x18,
−x12x32 +x10x30,−x3x32 +x22x13,−x24x26 +x22x28, x13x28−x25x16,−x7x27 +x25x5,
x23x19 − x21x17, x3x32 − x25x10,−x24x8 + x23x7, x1x31 − x12x26,−x12x8 + x10x6,
x27x31 − x25x29,−x23x3 + x24x4, x2x31 − x21x16,−x23x7 + x21x5,−x12x28 + x24x16,
− x25x9 + x21x13,−x21x10 + x22x9, x2x31 − x24x13,−x23x10 + x22x11, x10x2 − x12x4,
x9x16 − x12x13,−x23x31 + x21x29, x2x32 − x25x11, x23x9 − x21x11, x21x27 − x25x23,
x21x26 − x25x22, x24x11 − x12x23, x24x10 − x12x22, x21x28 − x24x25, x2x31 − x12x25,
x24x9 − x12x21}.
For the sake of reliability, we computed this using several different software packages
(CoCoA [1], Risa/Asir [12], and so on). The code for the computation is available in

https://sci-tech.ksc.kwansei.ac.jp/~hohsugi/R Sakamoto/code cutideal

For example, if we input� �
M:=MakeTermOrd(mat([[25,24,24,45,46,44,37,37,47,47,63,107,47,25,24,

46,36,33,20,26,102,87,80,103,92,35,25,26,53,37,22,27]]));

R:= NewPolyRing(QQ, SymbolRange("x",1,32 ), M, 1);

use R;

A:=mat([

[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1],

[0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,1,1,1],

[0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1],

[0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1],

[0,0,1,1,0,0,1,1,1,1,0,0,1,1,0,0,0,0,1,1,1,1,0,0,1,1,0,0,0,0,1,1],

[0,1,1,0,0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0],

[0,1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,0,1,0,1,1,0,1,0,1,0,1,0,0,1,0,1],

[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]

]);

ReducedGBasis( toric(A) );� �
to CoCoA, then we can obtain the reduced Gröbner basis in several seconds. The
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monomial order w is neither lexicographic nor reverse lexicographic. In fact, all
monomial orders for which the reduced Gröbner bases of IG consist of quadratic
binomials are neither lexicographic nor reverse lexicographic.

Theorem 1.7. Let G be the graph of Fig. 2. Then IG has quadratic Gröbner bases,
none of which are either lexicographic or reverse lexicographic. In particular, IG is
a counterexample to Conjecture 0.1.

Proof. Since G has an induced cycle of length 5, IG has no reverse lexicographic
quadratic Gröbner bases by Proposition 1.2. Moreover, since K2,3 is obtained by
contraction of an edge of G, IG has no lexicographic quadratic Gröbner bases by
Proposition 1.6. �

2. Squarefree Veronese subrings and cut ideals of cycles

If a graph G is a cycle, then the cut ideal IG is generated by quadratic binomials
by Proposition 0.3. Nagel-Petrović [11, Proposition 3.2] claimed that the cut ideal
of a cycle has a quadratic Gröbner basis with respect to a lexicographic order. This
claim relies on the following claims in Chifman-Petrović [5]:

Claim 1 ([5, Proposition 2]) Let Im be the toric ideal of phylogenetic invariants for

the general group-based model on the claw tree K1,m (defined later) which coincides
with the cut ideals of the cycle of length m+1. Then Im is generated by Qm (defined
later) which consists of quadratic binomials.

Claim 2 ([5, Proposition 3]) The set Qm is a lexicographic Gröbner basis of Im for
any m ≥ 4.

However, Claim 1 is not true for any m ≥ 5. Therefore, Claim 2 is not true for
any m ≥ 5. Moreover, with respect to a lexicographic order given in [5], the reduced
Gröbner basis of Im is not quadratic for any m ≥ 5. In this section, we point out
an error in the proof of [5, Propositions 2 and 3] for the cut ideal of the cycle and
present a lexicographic order for which the reduced Gröbner basis of the cut ideal
of the cycle of length 7 consists of quadratic binomials.

First, we explain an error in the proof of [5, Propositions 2 and 3]. For each
m-dimensional (0, 1) vector (i1, i2, . . . , im), we associate a variable qi1i2···im . Let

K[qi1i2...im | i1, i2, . . . , im ∈ {0, 1}] and K[a
(j)
ij
| ij ∈ {0, 1}, j = 1, . . . ,m + 1] be

polynomial rings over K. Let

ϕm : K[qi1i2...im | i1, i2, . . . , im ∈ {0, 1}]→ K[a
(j)
ij
| ij ∈ {0, 1}, j = 1, . . . ,m+ 1]

be a homomorphism such that ϕm(qi1i2...im) = a
(1)
i1
a
(2)
i2
. . . a

(m)
im
a
(m+1)
i1+i2+···+im(mod 2) and

let Im be the kernel of ϕm. According to [11], the ideal Im is the cut ideal of the
cycle of length m+ 1. Let Qm be a set of all quadratic binomials

qi1i2···imqj1j2···jm − qk1k2···kmql1l2···lm ∈ Im
satisfying one of the following properties:

(1) For some 1 ≤ a ≤ m and j ∈ {0, 1},
ia = ja = j = ka = la

and the binomial

qi1...ia−1ia+1...imqj1...ja−1ja+1...jm − qk1...ka−1ka+1...kmql1...la−1la+1...lm

belongs to Im−1;
8



(2) For each 1 ≤ b ≤ m,

ib + jb = 1 = kb + lb

and the binomial

qi1...ib−1ib+1...imqj1...jb−1jb+1...jm − qk1...kb−1kb+1...kmql1...lb−1lb+1...lm

belongs to Im−1.

In [5, Proposition 2], Im is claimed to be generated by Qm for any m ≥ 4. However,
this is incorrect for m ≥ 5. Now, we consider the quadratic binomial

q = q10101q01010 − q11111q00000
and the binomial q′ = q1101q0010 − q1111q0000. Since

ϕ5(q10101q01010) = ϕ5(q11111q00000) = a
(1)
0 a

(2)
0 a

(3)
0 a

(4)
0 a

(5)
0 a

(6)
0 a

(1)
1 a

(2)
1 a

(3)
1 a

(4)
1 a

(5)
1 a

(6)
1 ,

q belongs to I5. On the other hand, since

ϕ4(q1101q0010) = a
(1)
0 a

(2)
0 a

(3)
0 a

(4)
0 a

(1)
1 a

(2)
1 a

(3)
1 a

(4)
1 (a

(5)
1 )2,

ϕ4(q1111q0000) = a
(1)
0 a

(2)
0 a

(3)
0 a

(4)
0 a

(1)
1 a

(2)
1 a

(3)
1 a

(4)
1 (a

(5)
0 )2,

q′ does not belong to I4. Hence q does not belong to Q5. The following proposition
shows that q is not generated by Q5.

Proposition 2.1. Let

P =
{
qi1i2i3i4i5qj1j2j3j4j5

∣∣ ik + jk = 1, ik, jk ∈ {0, 1} for 1 ≤ k ≤ 5
}
.

Then any nonzero binomial q = u− v where u, v ∈ P does not belong to Q5.

Proof. Let

q = qi1i2i3i4i5qj1j2j3j4j5 − qi′1i′2i′3i′4i′5qj′1j′2j′3j′4j′5
be a nonzero binomial where ik + jk = i′k + j′k = 1 and ik, jk, i

′
k, j
′
k ∈ {0, 1} for

1 ≤ k ≤ 5. It is trivial that q does not satisfy property (1). Since ik+jk = i′k+j′k = 1
for 1 ≤ k ≤ 5, we have

5∑
k=1

ik +
5∑

k=1

jk =
5∑

k=1

i′k +
5∑

k=1

j′k = 5.

Hence we may assume that
∑5

k=1 ik ≡
∑5

k=1 i
′
k ≡ 1 and

∑5
k=1 jk ≡

∑5
k=1 j

′
k ≡ 0

modulo 2. Since q is not zero, qi1i2i3i4i5 6= qi′1i′2i′3i′4i′5 . Thus we may assume that ik = 1
and i′k = 0 for some 1 ≤ k ≤ 5 (by exchanging qi1i2i3i4i5 and qi′1i′2i′3i′4i′5 if we need).
Then jk = 0 and j′k = 1. For example, if k = 1, then

q′ = qi2i3i4i5qj2j3j4j5 − qi′2i′3i′4i′5qj′2j′3j′4j′5
does not belong to I4 since i2+ i3+ i4+ i5 ≡ j2+j3+j4+j5 ≡ 0 and i′2+ i′3+ i′4+ i′5 ≡
j′2 + j′3 + j′4 + j′5 ≡ 1. Thus q does not satisfy property (2). �

Thus, I5 is not generated by Q5. This is the error in the proof of [5, Proposition 2].
By this error, instead of Im, an ideal that is strictly smaller than Im is considered in
the proof of [5, Proposition 3]. Unfortunately, with respect to a lexicographic order
considered in [5, Proposition 3], the reduced Gröbner basis of Im is not quadratic
for m ≥ 5. The computation for m = 5 is given in

https://sci-tech.ksc.kwansei.ac.jp/~hohsugi/R Sakamoto/code cutideal
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degree the number of binomials
2 195
3 10
4 2

Table 1. The number of binomials in the reduced Gröbner basis of I5.

We describe the number of binomials in the reduced Gröbner basis with respect to
a lexicographic order in [5] for m = 5 in Table 1.

Thus the existence of a quadratic Gröbner basis of the cut ideal of a cycle is now
an open problem. However, we will show that there exists a lexicographic order
such that the reduced Gröbner basis of the cut ideal of a cycle of length 7 consists
of quadratic binomials. In general, if G is a cycle of length m, then it is known that
{δC | C ⊂ V (G)} = {(d1, . . . , dm) ∈ {0, 1}m | d1 + · · · + dm is even}. Let G be the
cycle of length 7. Then we have

AG =

(
0 A B C
1 1 · · · 1 1 · · · 1 1 · · · 1

)
,

where

A =



1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 1 0 0 0 0 1 1 1 1 0 0 0 0 0 0
0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 1 1 1 0 0 0
0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 1 0 0 1 1 0
0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 1 0 1 0 1
0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 1 0 1 1


,

B =

 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 0 0 0 0 1 1 1 1 0
1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 1 1 1 0 0 0 1 1 1 0 1 1 1 0 1
0 1 0 0 1 0 0 1 1 0 1 0 0 1 1 0 1 1 0 1 1 0 0 1 1 0 1 1 0 1 1 1 0 1 1
0 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 1 0 1 0 1 0 1 1 0 1 1 1 0 1 1 1
0 0 0 1 0 0 1 0 1 1 0 0 1 0 1 1 0 1 1 1 0 0 1 0 1 1 0 1 1 1 0 1 1 1 1

,

C =



1 1 1 1 1 1 0
1 1 1 1 1 0 1
1 1 1 1 0 1 1
1 1 1 0 1 1 1
1 1 0 1 1 1 1
1 0 1 1 1 1 1
0 1 1 1 1 1 1


.

In general, the configuration of the (m, r)-squarefree Veronese subring is the config-
uration whose columns are

{(d1, . . . , dm) ∈ {0, 1}m | d1 + · · ·+ dm = r}.

The matrix A is a configuration of the (7, 2)-squarefree Veronese subring, and B is
a configuration of the (7, 4)-squarefree Veronese subring. According to [16, Theo-
rem 1.4], there is a lexicographic order such that the reduced Gröbner basis of the
toric ideal of the (m, 2)-squarefree Veronese subring consists of quadratic binomials
for any integer m ≥ 2. However, it is not known whether there is a lexicographic
order such that the reduced Gröbner basis of IB consists of quadratic binomials.
Now, we consider the following question:
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Question 2.2. If we use lexicographic orders such that the reduced Gröbner bases
of IA and IB consist of quadratic binomials, do we obtain a lexicographic order such
that the reduced Gröbner basis of IAG

consists of quadratic binomials?

To answer this question, we look for a lexicographic order >1 such that the re-
duced Gröbner basis of IB ⊂ K[y1, y2, . . . , y35] consists of quadratic binomials. For
i = 1, 2, . . . , 7, we consider the subconfiguration Bi of B with column vectors consist-
ing of all column vectors of B whose i-th component is one. We consider combining
lexicographic orders such that the reduced Gröbner bases of IBi

consist of quadratic
binomials. We write down the lexicographic order >1:

y1 > y2 > y4 > y3 > y5 > y7 > y6 > y10 > y9 > y8 > y11 > y13 > y12 > y16 > y15 >
y14 > y20 > y19 > y18 > y17 > y21 > y23 > y22 > y26 > y25 > y24 > y30 > y29 > y28 >
y27 > y35 > y34 > y33 > y32 > y31.

Next, we consider combining two lexicographic orders such that the reduced Gröbner
bases of IA and IB consist of quadratic binomials. We fix the order
x23 > x24 > x26 > x25 > x27 > x29 > x28 > x32 > x31 > x30 > x33 > x35 > x34 >
x38 > x37 > x36 > x42 > x41 > x40 > x39 > x43 > x45 > x44 > x48 > x47 > x46 >
x52 > x51 > x50 > x49 > x57 > x56 > x55 > x54 > x53
which corresponds to the lexicographic order >1 and look for the order such that
the reduced Gröbner basis of IAG

consists of quadratic binomials by modifying the
order for IA using computational experiments. A desired lexicographic order is
x1 > x17 > x18 > x19 > x22 > x20 > x21 > x13 > x14 > x15 > x16 > x2 > x3 > x4 >
x5 > x6 > x7 > x8 > x9 > x10 > x11 > x12 > x23 > x24 > x26 > x25 > x27 > x29 >
x28 > x32 > x31 > x30 > x33 > x35 > x34 > x38 > x37 > x36 > x42 > x41 > x40 >
x39 > x43 > x45 > x44 > x48 > x47 > x46 > x52 > x51 > x50 > x49 > x57 > x56 >
x55 > x54 > x53 > x58 > x59 > x60 > x61 > x62 > x63 > x64.

The reduced Gröbner basis of IG consists of 1050 quadratic binomials. The compu-
tation is given in

https://sci-tech.ksc.kwansei.ac.jp/~hohsugi/R Sakamoto/code cutideal

Note that any cycle of length ≤ 6 is obtained by the sequence of contractions from
G. Thus, we have the following.

Theorem 2.3. Let G be a cycle of length ≤ 7. Then IG has a lexicographic quadratic
Gröbner basis.
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