LEXICOGRAPHIC AND REVERSE LEXICOGRAPHIC QUADRATIC GRÖBNER BASES OF CUT IDEALS

RYUICHI SAKAMOTO

Abstract

Hibi conjectured that if a toric ideal has a quadratic Gröbner basis, then the toric ideal has either a lexicographic or a reverse lexicographic quadratic Gröbner basis. In this paper, we present a cut ideal of a graph that serves as a counterexample to this conjecture. We also discuss the existence of a quadratic Gröbner basis of a cut ideal of a cycle. Nagel and Petrović claimed that a cut ideal of a cycle has a lexicographic quadratic Gröbner basis using the results of Chifman and Petrović. However, we point out that the results of Chifman and Petrović used by Nagel and Petrović are incorrect for cycles of length greater than or equal to 6 . Hence the existence of a quadratic Gröbner basis for the cut ideal of a cycle (a ring graph) is an open question. We also provide a lexicographic quadratic Gröbner basis of a cut ideal of a cycle of length less than or equal to 7 .

Introduction

A $d \times n$ integer matrix $A=\left(\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \ldots, \boldsymbol{a}_{n}\right)$ is called a configuration if there exists a vector $\boldsymbol{c} \in \mathbb{R}^{d}$ such that for all $1 \leq i \leq n$, the inner product $\boldsymbol{a}_{i} \cdot \boldsymbol{c}$ is equal to 1 . Let K be a field and let $K[\boldsymbol{x}]=K\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ be a polynomial ring in n variables. For an integer vector $\boldsymbol{\alpha}=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{d}\right) \in \mathbb{Z}^{d}$, we define the Laurent monomial $\boldsymbol{t}^{\alpha}=t_{1}^{\alpha_{1}} t_{2}^{\alpha_{2}} \ldots t_{d}^{\alpha_{d}} \in K\left[t_{1}^{ \pm 1}, t_{2}^{ \pm 1}, \ldots, t_{d}^{ \pm 1}\right]$ and $K[A]=K\left[\boldsymbol{t}^{a_{1}}, \boldsymbol{t}^{a_{2}}, \ldots, \boldsymbol{t}^{a_{n}}\right]$. Let π be a homomorphism $\pi: K[\boldsymbol{x}] \rightarrow K[A]$, where $\pi\left(x_{i}\right)=\boldsymbol{t}^{\boldsymbol{a}_{i}}$. The kernel of π is called the toric ideal of A and is denoted by I_{A}. It is known [13, 21] that I_{A} is generated by homogeneous binomials associated to the kernel of A. For a configuration A, let $\operatorname{Ker}_{\mathbb{Z}} A=\left\{\boldsymbol{b} \in \mathbb{Z}^{n} \mid A \boldsymbol{b}=\mathbf{0}\right\}$. For each $\boldsymbol{b}=\left(b_{1}, \ldots, b_{n}\right) \in \operatorname{Ker}_{\mathbb{Z}} A$, we define

$$
f_{\boldsymbol{b}}=\prod_{b_{i}>0} x_{i}{ }^{b_{i}}-\prod_{b_{j}<0} x_{j}^{-b_{j}} \in K[\boldsymbol{x}] .
$$

Then $I_{A}=\left\langle f_{\boldsymbol{b}} \mid \boldsymbol{b} \in \operatorname{Ker}_{\mathbb{Z}} A\right\rangle$. Commutative algebraists are interested in the following properties:
(1) The toric ideal I_{A} is generated by quadratic binomials;
(2) The toric ring $K[A]$ is Koszul;
(3) There exists a monomial order satisfying that a Gröbner basis of I_{A} consists of quadratic binomials.
The implication $(3) \Rightarrow(2) \Rightarrow(1)$ is true, but both $(1) \Rightarrow(2)$ and $(2) \Rightarrow(3)$ are false in general (for example, see [10, 14]). Several classes of toric ideals with lexicographic/reverse lexicographic quadratic Gröbner bases are known (for example, see [4, 6, 15, 17, 18, 20]). In contrast, in [2, 3, 19], sorting monomial orders (which are not necessarily lexicographic or reverse lexicographic) are used to construct a quadratic Gröbner basis. The monomial orders appearing in the theory of toric fiber products [23] constitute another example that is not necessarily lexicographic or reverse lexicographic. The following conjecture was presented by Hibi.

[^0]Conjecture 0.1. Suppose that the toric ideal I_{A} has a quadratic Gröbner basis. Then I_{A} has either a lexicographic or reverse lexicographic quadratic Gröbner basis.

In the present paper, we will present a cut ideal of a graph as a counterexample to this conjecture.

Now, we define the cut ideal of a graph. Let G be a finite connected simple graph with the vertex set $V(G)=\{1,2, \ldots, m\}$ and the edge set $E(G)=\left\{e_{1}, e_{2}, \ldots, e_{r}\right\}$. Given a subset C of $V(G)$, we define a vector $\delta_{C}=\left(d_{1}, d_{2}, \ldots, d_{r}\right) \in\{0,1\}^{r}$ by

$$
d_{i}= \begin{cases}1 & \left|C \cap e_{i}\right|=1\left(e_{i}=\{j, k\}\right) \\ 0 & \text { otherwise }\end{cases}
$$

We consider the configuration

$$
A_{G}=\left(\begin{array}{cccc}
\delta_{C_{1}} & \delta_{C_{2}} & \cdots & \delta_{C_{N}} \\
1 & 1 & \ldots & 1
\end{array}\right)
$$

where $\left\{\delta_{C} \mid C \subset V(G)\right\}=\left\{\delta_{C_{1}}, \delta_{C_{2}}, \ldots, \delta_{C_{N}}\right\}$ and $N=2^{m-1}$. The toric ideal of A_{G} is called the cut ideal of G and is denoted by I_{G} (see [22] for details). This definition of the cut ideal is different from that in [22]. However, the two definitions are equivalent. In fact, in [22] they say that "Indeed, the convex hull of the exponent vectors ϕ_{G} is affinely isomorphic to $\operatorname{Cut}^{\square}(G)$." Here $\operatorname{Cut}^{\square}(G)$ is the convex hull of $\left\{\delta_{C} \mid C \subset V(G)\right\}$. We illustrate this equivalence by an example.
Example 0.2. Let G be a cycle of length 4 with $V(G)=\{1,2,3,4\}, E(G)=\left\{e_{1}=\right.$ $\left.\{1,2\}, e_{2}=\{2,3\}, e_{3}=\{3,4\}, e_{4}=\{1,4\}\right\}$. Then A_{G} is

$$
A_{G}=\left(\begin{array}{llllllll}
0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 0 & 1 & 1 & 1 \\
\hline 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1
\end{array}\right)
$$

Here, the i-th row of A_{G} is indexed by the edge e_{i} and the j-th column of A_{G} is indexed by the subset $C_{j} \subset\{1,2,3,4\}$, where $C_{1}=\phi, C_{2}=\{2\}, C_{3}=\{2,3\}, C_{4}=$ $\{2,3,4\}, C_{5}=\{3\}, C_{6}=\{3,4\}, C_{7}=\{4\}, C_{8}=\{2,4\}$. On the other hand, in [22], the cut ideal of G is defined as the kernel of homomorphism $\phi_{G}: K\left[q_{\mid 1234}, q_{2 \mid 134}, q_{23 \mid 14}\right.$, $\left.q_{234 \mid 1}, q_{3 \mid 124}, q_{34 \mid 12}, q_{4 \mid 123}, q_{24 \mid 13}\right] \rightarrow K\left[s_{12}, s_{23}, s_{34}, s_{14}, t_{12}, t_{23}, t_{34}, t_{14}\right]$ with

$$
\begin{aligned}
q_{| | 234} & \mapsto t_{12} t_{23} t_{34} t_{14} & q_{2 \mid 134} \mapsto s_{12} s_{23} t_{34} t_{14} \\
q_{23 \mid 14} & \mapsto s_{12} t_{23} s_{34} t_{14} & q_{234 \mid 1} \mapsto s_{12} t_{23} t_{34} s_{14} \\
q_{3 \mid 124} & \mapsto t_{12} s_{23} s_{34} t_{14} & q_{34 \mid 12} \mapsto t_{12} s_{23} t_{34} s_{14} \\
q_{4 \mid 123} & \mapsto t_{12} t_{23} s_{34} s_{14} & q_{24 \mid 13} \mapsto s_{12} s_{23} s_{34} s_{14} .
\end{aligned}
$$

So, the cut ideal defined in [22] is the toric ideal of the following configuration A_{G}^{\prime} :

s_{12}
s_{23}
s_{34}
s_{14}
t_{12}
t_{23}
t_{34}
t_{14}

0 \& 1 \& 0 \& 0 \& 1 \& 1 \& 0 \& 1

0 \& 0 \& 1 \& 0 \& 1 \& 0 \& 1 \& 1

0 \& 0 \& 0 \& 1 \& 0 \& 1 \& 1 \& 1

\hline 1 \& 0 \& 0 \& 0 \& 1 \& 1 \& 1 \& 0

1 \& 0 \& 1 \& 1 \& 0 \& 0 \& 1 \& 0

1 \& 1 \& 0 \& 1 \& 0 \& 1 \& 0 \& 0

1 \& 1 \& 0 \& 1 \& 0 \& 0 \& 0\end{array}\right)\),
where j-th column is indexed by j-th element of $\left(q_{\mid 1234}, q_{2 \mid 134}, q_{23 \mid 14}, q_{234 \mid 1}, q_{3 \mid 124}, q_{34 \mid 12}\right.$, $q_{4 \mid 123}, q_{24 \mid 13}$). We obtain the following matrix by elementary row operations from A_{G}^{\prime} :

$$
\binom{A_{G}}{O}
$$

where O is a 3×8 zero-matrix. Therefore, $\operatorname{Ker}_{\mathbb{Z}} A_{G}=\operatorname{Ker}_{\mathbb{Z}} A_{G}^{\prime}$.
We introduce important known results on the quadratic Gröbner bases of cut ideals. An edge contraction for a graph G is an operation that merges two vertices joined by the edge e after removing e from G. A graph H is called a minor of the graph G if H is obtained by deleting some edges and vertices and contracting some edges. In this paper, $K_{n}, K_{m, n}$, and \mathcal{C}_{n} stand for the complete graph with n vertices, the complete bipartite graph on the vertex set $\{1,2, \ldots, m\} \cup\{m+1, m+2, \ldots, m+n\}$ and the cycle of length n, respectively.

Proposition 0.3 ([8]). Let G be a graph. Then I_{G} is generated by quadratic binomials if and only if G is free of K_{4} minors.

Proposition $0.4([20])$. Let G be a graph. Then $K\left[A_{G}\right]$ is strongly Koszul if and only if G is free of $\left(K_{4}, \mathcal{C}_{5}\right)$ minors. In addition, if $K\left[A_{G}\right]$ is strongly Koszul, then I_{G} has a quadratic Gröbner basis.

Nagel and Petrović [11, Proposition 3.2] claimed that if G is a cycle, then I_{G} has a (lexicographic) quadratic Gröbner basis. However, [5, Propositions 2 and 3], which are used in the proof of [11, Proposition 3.2], contain some errors. We will explain this in Section 2. In contrast, the following problem is open.

Problem 0.5. Classify the graphs whose cut ideals have a quadratic Gröbner basis.
This paper comprises Sections 1 and 2. In Section 1, we show some results concerning the existence of a lexicographic/reverse lexicographic quadratic Gröbner basis of cut ideals. Then, we give a graph whose cut ideal is a counterexample to Conjecture 0.1. In Section 2, we study the cut ideal of a cycle. First, we point out an error in the lexicographic quadratic Gröbner basis of cut ideals of cycles given in [5, Proposition 3] (and introduced in [11]). Finally, we construct a lexicographic quadratic Gröbner basis of the cut ideal of a cycle of length ≤ 7.

1. Lexicographic and reverse lexicographic Gröbner bases

In this section, we present necessary conditions for cut ideals to have a lexicographic/reverse lexicographic quadratic Gröbner basis. Using these results, we present a graph whose cut ideal is a counterexample to Conjecture 0.1.

First, we study reverse lexicographic quadratic Gröbner bases of cut ideals. The following was proved in [22, Theorem 1.3].

Proposition 1.1. Let G be a graph. Then the graph G is free of K_{5} minors and has no induced cycles of length ≥ 5 if and only if there exists a reverse lexicographic order such that the initial ideal of I_{G} is squarefree.

Using that fact that A_{G} is a $(0,1)$ matrix and Proposition 1.1, we are able to prove the following.

Proposition 1.2. Suppose that a graph G has an induced cycle of length ≥ 5. Then I_{G} has no reverse lexicographic quadratic Gröbner bases.

Proof. Suppose that I_{G} has a reverse lexicographic quadratic reduced Gröbner basis \mathcal{G}. Any toric ideal is prime in general, and hence \mathcal{G} consists of irreducible binomials. Since A_{G} is a configuration, \mathcal{G} consists of homogeneous binomials. Moreover, since A_{G} is a $(0,1)$ matrix, there exist no nonzero binomials of the form $x_{i}^{2}-x_{j} x_{k}$ in I_{G}. In fact, if $x_{i}^{2}-x_{j} x_{k} \neq 0$ belongs to I_{G}, then $2 \delta_{C_{i}}=\delta_{C_{j}}+\delta_{C_{k}}$. However, this is impossible since $\delta_{C_{i}}, \delta_{C_{j}}, \delta_{C_{k}}$ are $(0,1)$-vectors. It therefore follows that the initial ideal is generated by squarefree monomials. By proposition 1.1, G has no induced cycle of length ≥ 5.

Second, we study the lexicographic quadratic Gröbner bases of cut ideals. Let G be a complete bipartite graph $K_{2,3}$, as shown in Fig. 1. The configuration A_{G} is

Figure 1. Complete bipartite graph $K_{2,3}$.

$$
A_{G}=\left(\begin{array}{llllllllllllllll}
0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\
\hline 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\
\hline 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1
\end{array}\right) .
$$

Here, the i-th row of A_{G} is indexed by the edge e_{i} and the j-th column of A_{G} is indexed by the subset $C_{j} \subset\{1,2,3,4,5\}$, where $C_{1}=\emptyset, C_{2}=\{5\}, C_{3}=\{4\}, C_{4}=$ $\{4,5\}, C_{5}=\{2,3,4,5\}, C_{6}=\{2,3,4\}, C_{7}=\{2,3,5\}, C_{8}=\{2,3\}, C_{9}=\{2,4,5\}, C_{10}=$ $\{2,4\}, C_{11}=\{2,5\}, C_{12}=\{2\}, C_{13}=\{3\}, C_{14}=\{3,5\}, C_{15}=\{3,4\}, C_{16}=\{3,4,5\}$.
The configuration A_{G} has a symmetry group, called switching in [7, as follows.
Given subsets $A, B \subset\{1,2,3,4,5\}$, let $A \triangle B$ denote the symmetric difference $(A \cup$ $B) \backslash(A \cap B)$ of them. From the general theory of cuts, for any $C, C^{\prime} \subset\{1,2,3,4,5\}, \delta_{C}+$ $\delta_{C^{\prime}}=\delta_{C \Delta C^{\prime}}$ in \mathbb{F}_{2}^{6}. Hence each $C \subset\{1,2,3,4,5\}$ gives a permutation ψ_{C} on $\left(\delta_{C_{1}}, \cdots, \delta_{C_{16}}\right)$ defined by

$$
\psi_{C}\left(\delta_{C_{1}}, \cdots, \delta_{C_{16}}\right)=\left(\delta_{C_{i_{1}}}, \cdots, \delta_{C_{i_{16}}}\right)
$$

where $\delta_{C_{k}}+\delta_{C}=\delta_{C_{i_{k}}}$ in \mathbb{F}_{2}^{6}. The permutation ψ_{C} naturally induces an action on $K[\boldsymbol{x}]$ by $\psi_{C}\left(x_{k}\right)=x_{i_{k}}$. Since

$$
\left(\begin{array}{ccc}
\delta_{C_{1}}+\delta_{C} & \cdots & \delta_{C_{16}}+\delta_{C} \\
1 & \cdots & 1
\end{array}\right)
$$

is obtained by elementary row operations from

$$
\left(\begin{array}{ccc}
\delta_{C_{1}} & \cdots & \delta_{C_{16}} \\
1 & \cdots & 1
\end{array}\right)
$$

their kernels are the same. Hence we have $\psi_{C}\left(I_{G}\right)=I_{G}$. We show that I_{G} has no lexicographic quadratic Gröbner bases by using these symmetries.

Proposition 1.3. The cut ideal of the complete bipartite graph $K_{2,3}$ is generated by quadratic binomials and has no lexicographic quadratic Gröbner bases.

Proof. Since $K_{2,3}$ is free of K_{4} minors, $I_{K_{2,3}}$ is generated by quadratic binomials according to Proposition 0.3. Let $<$ be a lexicographic order on $K[\mathbf{x}]$. Suppose that the initial ideal of $I_{K_{2,3}}$ with respect to $<$ is quadratic. Let \mathcal{M} be the set of all monomials in $K[\mathbf{x}]$ and let

$$
S=\left\{u \in \mathcal{M} \mid \pi(u)=t_{1} t_{2} t_{3} t_{4} t_{5} t_{6} t_{7}^{2}\right\}
$$

Then we have

$$
S=\left\{x_{1} x_{16}, x_{2} x_{15}, x_{3} x_{14}, x_{4} x_{13}, x_{5} x_{12}, x_{6} x_{11}, x_{7} x_{10}, x_{8} x_{9}\right\}
$$

For each element $x_{i} x_{17-i} \in S, \psi_{C_{i}}\left(x_{i} x_{17-i}\right)=x_{1} x_{16}$ for $i=2, \ldots, 8$. (For example, $\psi_{C_{2}}\left(x_{2} x_{15}\right)=x_{1} x_{16}$ for $C_{2}=\{5\}$ since $\delta_{C_{2}}+\delta_{C_{2}}=\delta_{C_{1}}$ and $\delta_{C_{15}}+\delta_{C_{2}}=\delta_{C_{16}}$ in \mathbb{F}_{2}^{6}.) Hence we may assume that $x_{1} x_{16}$ is the smallest monomial in S with respect to $<$. It then follows that $x_{1} x_{16} \notin \mathrm{in}_{<}\left(I_{K_{2,3}}\right)$. We now consider the following 8 cubic binomials of $I_{K_{2,3}}$:

$$
\begin{aligned}
& f_{1}=x_{6} x_{7} x_{9}-x_{1} x_{5} x_{16} \\
& f_{2}=x_{5} x_{8} x_{10}-x_{1} x_{6} x_{16} \\
& f_{3}=x_{5} x_{8} x_{11}-x_{1} x_{7} x_{16} \\
& f_{4}=x_{6} x_{7} x_{12}-x_{1} x_{8} x_{16} \\
& f_{5}=x_{5} x_{0} x_{11}-x_{1} x_{9} x_{16} \\
& f_{6}=x_{6} x_{9} x_{12}-x_{1} x_{10} x_{16} \\
& f_{7}=x_{7} x_{9} x_{12}-x_{1} x_{11} x_{16} \\
& f_{8}=x_{8} x_{10} x_{11}-x_{1} x_{12} x_{16}
\end{aligned}
$$

Suppose that there exists a nonzero binomial $x_{1} x_{i}-x_{j} x_{k} \in I_{K_{2,3}}$ with $i \in\{5, \ldots, 12\}$. Then we have $\delta_{C_{i}}=\delta_{C_{j}}+\delta_{C_{k}}$. Since $\delta_{C_{i}}$ contains exactly 3 ones, so does $\delta_{C_{j}}+\delta_{C_{k}}$. It then follows that one of C_{j} and C_{k} is C_{1} and hence $x_{1} x_{i}-x_{j} x_{k}=0$. Similarly, suppose that there exists a nonzero binomial $x_{i} x_{16}-x_{j} x_{k} \in I_{K_{2,3}}$ with $i \in\{5, \ldots, 12\}$. Then we have $\delta_{C_{i}}+\delta_{C_{16}}=\delta_{C_{j}}+\delta_{C_{k}}$. Since the sum of the components of $\delta_{C_{i}}+$ $\delta_{C_{16}}$ is 9 , it follows that one of C_{j} and C_{k} is C_{16} and hence $x_{i} x_{16}-x_{j} x_{k}=0$. Thus $x_{1} x_{16}, x_{1} x_{i}, x_{i} x_{16} \notin \mathrm{in}_{<}\left(I_{K_{2,3}}\right)$ for each $i \in\{5, \ldots, 12\}$. If $x_{1} x_{i} x_{16}$ belongs to $\mathrm{in}_{<}\left(I_{K_{2,3}}\right)$ for some $i \in\{5, \ldots, 12\}$, then the cubic monomial $x_{1} x_{i} x_{16}$ belongs to the minimal set of monomial generators of $\mathrm{in}_{<}\left(I_{K_{2,3}}\right)$. This contradicts the hypothesis that $\operatorname{in}_{<}\left(I_{K_{2,3}}\right)$ is generated by quadratic monomials. Hence each $x_{1} x_{i} x_{16}$ does not belong to in $\mathrm{C}_{<}\left(I_{K_{2,3}}\right)$. Thus the initial monomial of each cubic binomial $f_{i}(1 \leq i \leq 8)$ above is the first monomial. Let $R=K\left[x_{1}, x_{5}, x_{6}, \ldots, x_{12}, x_{16}\right]$. Note that each f_{i} belongs to R. Let $x_{k}(k \in\{1,5,6, \ldots, 12,16\})$ be the greatest variable in R with respect to the lexicographic order. Then x_{k} appears in the second monomial of f_{j} for some j. Since < is a lexicographic order, the initial monomial of f_{j} is the second monomial, a contradiction.

Remark 1.4. Shibata [20] showed that the cut ideal of the complete bipartite graph $K_{2, m}$ has a quadratic Gröbner basis with respect to a reverse lexicographic order.

Let $A=\left(\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \ldots, \boldsymbol{a}_{n}\right)$ be a $d \times n$ configuration and let $B=\left(\boldsymbol{a}_{i_{1}}, \boldsymbol{a}_{i_{2}}, \ldots, \boldsymbol{a}_{i_{m}}\right)$ be a submatrix of A. Then $K[B]$ is called a combinatorial pure subring of $K[A]$ if
there exists a vector $\boldsymbol{c} \in \mathbb{R}^{d}$ such that

$$
\boldsymbol{a}_{i} \cdot \boldsymbol{c}\left\{\begin{array}{cc}
=1 & i \in\left\{i_{1}, i_{2}, \ldots, i_{m}\right\}, \\
<1 & \text { otherwise }
\end{array}\right.
$$

That is, $K[B]$ is a combinatorial pure subring of $K[A]$ if and only if there exists a face F of the convex hull of A such that $\left\{\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \ldots, \boldsymbol{a}_{n}\right\} \cap F=\left\{\boldsymbol{a}_{i_{1}}, \boldsymbol{a}_{i_{2}}, \ldots, \boldsymbol{a}_{i_{m}}\right\}$. It is known that a combinatorial pure subring $K[B]$ inherits numerous properties of $K[A]$ (see [13]). In particular, we have the following:
Proposition 1.5. Suppose that $K[B]$ is a combinatorial pure subring of $K[A]$. If I_{A} has a lexicographic quadratic Gröbner basis, then so does I_{B}.

Suppose that a graph H is obtained by an edge contraction from a graph G; then it is known from [22, Lemma $3.2(2)]$ that $K\left[A_{H}\right]$ is a combinatorial pure subring of $K\left[A_{G}\right]$. Thus we have the following from Propositions 1.3 and 1.5 .

Proposition 1.6. Let G be a graph. Suppose that $K_{2,3}$ is obtained by a sequence of contractions from G. Then I_{G} has no lexicographic quadratic Gröbner bases.

Let G be a graph with 6 vertices and 7 edges, as shown in Fig. 2. Then the

Figure 2. A counterexample to Conjecture 0.1.
configuration A_{G} is

$$
\left(\begin{array}{llllllllllllllllllllllllllllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 \\
0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 \\
1 & 1
\end{array}\right) .
$$

Here, the i-th row of A_{G} is indexed by the edge e_{i} and the j-th column of A_{G} is indexed by the subset $C_{j} \subset\{1,2,3,4,5,6\}$, where $C_{1}=\emptyset, C_{2}=\{6\}, C_{3}=\{5\}, C_{4}=$ $\{5,6\}, C_{5}=\{4\}, C_{6}=\{4,6\}, C_{7}=\{4,5\}, C_{8}=\{4,5,6\}, C_{9}=\{2,4,5\}, C_{10}=$ $\{2,4,5,6\}, C_{11}=\{2,4\}, C_{12}=\{2,4,6\}, C_{13}=\{2,5\}, C_{14}=\{2,5,6\}, C_{15}=\{2\}, C_{16}=$ $\{2,6\}, C_{17}=\{3\}, C_{18}=\{3,6\}, C_{19}=\{3,5\}, C_{20}=\{3,5,6\}, C_{21}=\{2,3,4,5\}, C_{22}=$ $\{2,3,4,5,6\}, C_{23}=\{2,3,4\}, C_{24}=\{2,3,4,6\}, C_{25}=\{2,3,5\}, C_{26}=\{2,3,5,6\}, C_{27}=$ $\{2,3\}, C_{28}=\{2,3,6\}, C_{29}=\{3,4\}, C_{30}=\{3,4,6\}, C_{31}=\{3,4,5\}, C_{32}=\{3,4,5,6\}$. The configuration A_{G} contains six combinatorial pure subrings which are isomorphic to $A_{K_{2,3}}$. By considering weight vectors such that the reduced Gröbner basis of $I_{K_{2,3}}$ is quadratic, we found a weight vector $\boldsymbol{w} \in \mathbb{R}^{32}$ such that the reduced Gröbner basis of I_{G} is also quadratic. Let $\boldsymbol{w}=(25,24,24,45,46,44,37,37,47,47,63,107,47,25,24$, $46,36,33,20,26,102,87,80,103,92,35,25,26,53,37,22,27)$. The following Gröbner basis of I_{G} with respect to \boldsymbol{w} is quadratic:
$\left\{-x_{20} x_{31}+x_{19} x_{32},-x_{15} x_{3}+x_{14} x_{2}, x_{28} x_{20}-x_{27} x_{19},-x_{27} x_{31}+x_{28} x_{32}, x_{18} x_{31}-x_{30} x_{19}\right.$,
$x_{3} x_{32}-x_{8} x_{19}, x_{3} x_{31}-x_{7} x_{19}, x_{2} x_{19}-x_{18} x_{3},-x_{15} x_{19}+x_{18} x_{14},-x_{26} x_{15}+x_{27} x_{14}$,
$x_{27} x_{3}-x_{26} x_{2}, x_{1} x_{19}-x_{17} x_{3},-x_{17} x_{2}+x_{1} x_{18}, x_{2} x_{31}-x_{30} x_{3},-x_{15} x_{31}+x_{30} x_{14}$,
$-x_{30} x_{20}+x_{18} x_{32}, x_{7} x_{27}-x_{28} x_{8}, x_{7} x_{20}-x_{3} x_{32},-x_{8} x_{31}+x_{7} x_{32}, x_{2} x_{31}-x_{6} x_{19}$, $x_{3} x_{20}-x_{4} x_{19},-x_{1} x_{31}+x_{5} x_{19}, x_{4} x_{31}-x_{3} x_{32}, x_{27} x_{19}-x_{18} x_{26},-x_{6} x_{3}+x_{7} x_{2}$, $-x_{7} x_{15}+x_{6} x_{14},-x_{6} x_{20}+x_{2} x_{32}, x_{2} x_{32}-x_{8} x_{18}, x_{2} x_{31}-x_{7} x_{18},-x_{5} x_{3}+x_{1} x_{7}$,
$-x_{5} x_{2}+x_{1} x_{6}, x_{27} x_{3}-x_{4} x_{28}, x_{28} x_{15}-x_{16} x_{27},-x_{8} x_{20}+x_{4} x_{32}, x_{27} x_{31}-x_{30} x_{26}$,
$x_{1} x_{32}-x_{10} x_{27}, x_{2} x_{32}-x_{9} x_{27}, x_{16} x_{20}-x_{15} x_{19}, x_{5} x_{20}-x_{1} x_{32},-x_{15} x_{3}+x_{13} x_{1}$,
$-x_{10} x_{2}+x_{9} x_{1},-x_{15} x_{31}+x_{16} x_{32}, x_{17} x_{31}-x_{29} x_{19}, x_{1} x_{31}-x_{10} x_{28}, x_{2} x_{31}-x_{9} x_{28}$,
$-x_{1} x_{32}+x_{17} x_{8}, x_{1} x_{31}-x_{17} x_{7}, x_{6} x_{32}-x_{8} x_{30}, x_{6} x_{31}-x_{7} x_{30}, x_{1} x_{31}-x_{29} x_{3}$,
$-x_{29} x_{2}+x_{1} x_{30}, x_{30} x_{2}-x_{6} x_{18}, x_{2} x_{20}-x_{4} x_{18},-x_{29} x_{20}+x_{17} x_{32},-x_{6} x_{26}+x_{7} x_{27}$,
$x_{5} x_{18}-x_{1} x_{30},-x_{1} x_{30}+x_{17} x_{6}, x_{28} x_{14}-x_{16} x_{26}, x_{1} x_{20}-x_{17} x_{4}, x_{2} x_{32}-x_{4} x_{30}$,
$x_{3} x_{32}-x_{9} x_{26}, x_{29} x_{1}-x_{17} x_{5}, x_{8} x_{3}-x_{4} x_{7},-x_{11} x_{19}+x_{10} x_{18}, x_{15} x_{19}-x_{13} x_{17}$,
$x_{10} x_{18}-x_{9} x_{17},-x_{7} x_{15}+x_{16} x_{8},-x_{11} x_{31}+x_{10} x_{30},-x_{29} x_{18}+x_{17} x_{30},-x_{11} x_{3}+x_{10} x_{2}$,
$-x_{10} x_{15}+x_{11} x_{14},-x_{1} x_{30}+x_{11} x_{28}, x_{8} x_{2}-x_{4} x_{6}, x_{5} x_{32}-x_{29} x_{8}, x_{5} x_{31}-x_{29} x_{7}$,
$x_{15} x_{3}-x_{16} x_{4}, x_{1} x_{8}-x_{5} x_{4}, x_{7} x_{15}-x_{13} x_{5},-x_{10} x_{6}+x_{9} x_{5}, x_{9} x_{14}-x_{13} x_{10}$,
$x_{5} x_{30}-x_{29} x_{6},-x_{1} x_{32}+x_{29} x_{4},-x_{1} x_{32}+x_{11} x_{26}, x_{15} x_{31}-x_{13} x_{29},-x_{10} x_{30}+x_{9} x_{29}$,
$-x_{11} x_{7}+x_{10} x_{6},-x_{23} x_{15}+x_{11} x_{27},-x_{1} x_{32}+x_{23} x_{14}, x_{9} x_{15}-x_{11} x_{13},-x_{1} x_{32}+x_{22} x_{15}$,
$x_{23} x_{3}-x_{22} x_{2}, x_{22} x_{14}-x_{10} x_{26},-x_{23} x_{26}+x_{22} x_{27},-x_{25} x_{15}+x_{13} x_{27},-x_{25} x_{14}+x_{13} x_{26}$,
$-x_{27} x_{3}+x_{25} x_{1}, x_{23} x_{19}-x_{22} x_{18},-x_{23} x_{31}+x_{22} x_{30},-x_{1} x_{30}+x_{23} x_{16}, x_{2} x_{32}-x_{21} x_{15}$,
$x_{24} x_{15}-x_{1} x_{30},-x_{2} x_{32}+x_{23} x_{13},-x_{3} x_{32}+x_{21} x_{14}, x_{23} x_{3}-x_{21} x_{1},-x_{24} x_{27}+x_{23} x_{28}$
$, x_{27} x_{19}-x_{25} x_{17}, x_{1} x_{31}-x_{24} x_{14}, x_{24} x_{20}-x_{23} x_{19}, x_{23} x_{31}-x_{24} x_{32},-x_{23} x_{7}+x_{22} x_{6}$,
$-x_{12} x_{15}+x_{11} x_{16},-x_{12} x_{27}+x_{1} x_{30},-x_{12} x_{14}+x_{10} x_{16}, x_{1} x_{31}-x_{22} x_{16}, x_{12} x_{20}-x_{10} x_{18}$,
$-x_{12} x_{32}+x_{10} x_{30},-x_{3} x_{32}+x_{22} x_{13},-x_{24} x_{26}+x_{22} x_{28}, x_{13} x_{28}-x_{25} x_{16},-x_{7} x_{27}+x_{25} x_{5}$,
$x_{23} x_{19}-x_{21} x_{17}, x_{3} x_{32}-x_{25} x_{10},-x_{24} x_{8}+x_{23} x_{7}, x_{1} x_{31}-x_{12} x_{26},-x_{12} x_{8}+x_{10} x_{6}$,
$x_{27} x_{31}-x_{25} x_{29},-x_{23} x_{3}+x_{24} x_{4}, x_{2} x_{31}-x_{21} x_{16},-x_{23} x_{7}+x_{21} x_{5},-x_{12} x_{28}+x_{24} x_{16}$,
$-x_{25} x_{9}+x_{21} x_{13},-x_{21} x_{10}+x_{22} x_{9}, x_{2} x_{31}-x_{24} x_{13},-x_{23} x_{10}+x_{22} x_{11}, x_{10} x_{2}-x_{12} x_{4}$,
$x_{9} x_{16}-x_{12} x_{13},-x_{23} x_{31}+x_{21} x_{29}, x_{2} x_{32}-x_{25} x_{11}, x_{23} x_{9}-x_{21} x_{11}, x_{21} x_{27}-x_{25} x_{23}$,
$x_{21} x_{26}-x_{25} x_{22}, x_{24} x_{11}-x_{12} x_{23}, x_{24} x_{10}-x_{12} x_{22}, x_{21} x_{28}-x_{24} x_{25}, x_{2} x_{31}-x_{12} x_{25}$,
$\left.x_{24} x_{9}-x_{12} x_{21}\right\}$.
For the sake of reliability, we computed this using several different software packages (CoCoA [1], Risa/Asir [12], and so on). The code for the computation is available in
https://sci-tech.ksc.kwansei.ac.jp/~hohsugi/R_Sakamoto/code_cutideal
For example, if we input

```
M:=MakeTermOrd(mat ([[25, 24, 24, 45, 46, 44, 37, 37, 47, 47, 63, 107, 47, 25, 24,
46, 36, 33, 20, 26, 102, 87, 80, 103, 92, 35, 25, 26, 53, 37, 22, 27]]));
R:= NewPolyRing(QQ, SymbolRange("x",1,32 ), M, 1);
use R;
A:=mat([
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1],
[0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,1,1,1],
[0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1],
[0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1],
[0,0,1,1,0,0,1,1,1,1,0,0,1,1,0,0,0,0,1,1,1,1,0,0,1,1,0,0,0,0,1,1],
[0,1,1,0,0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0],
[0,1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,0,1,0,1,1,0,1,0,1,0,1,0,0,1,0,1],
[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]
]);
ReducedGBasis( toric(A) );
```

to CoCoA, then we can obtain the reduced Gröbner basis in several seconds. The
monomial order \boldsymbol{w} is neither lexicographic nor reverse lexicographic. In fact, all monomial orders for which the reduced Gröbner bases of I_{G} consist of quadratic binomials are neither lexicographic nor reverse lexicographic.
Theorem 1.7. Let G be the graph of Fig. 2. Then I_{G} has quadratic Gröbner bases, none of which are either lexicographic or reverse lexicographic. In particular, I_{G} is a counterexample to Conjecture 0.1.
Proof. Since G has an induced cycle of length $5, I_{G}$ has no reverse lexicographic quadratic Gröbner bases by Proposition 1.2 . Moreover, since $K_{2,3}$ is obtained by contraction of an edge of G, I_{G} has no lexicographic quadratic Gröbner bases by Proposition 1.6 .

2. Squarefree Veronese subrings and cut ideals of cycles

If a graph G is a cycle, then the cut ideal I_{G} is generated by quadratic binomials by Proposition 0.3. Nagel-Petrović [11, Proposition 3.2] claimed that the cut ideal of a cycle has a quadratic Gröbner basis with respect to a lexicographic order. This claim relies on the following claims in Chifman-Petrović [5]:

Claim 1 (5, Proposition 2]) Let I_{m} be the toric ideal of phylogenetic invariants for the general group-based model on the claw tree $K_{1, m}$ (defined later) which coincides with the cut ideals of the cycle of length $m+1$. Then I_{m} is generated by Q_{m} (defined later) which consists of quadratic binomials.

Claim 2 ([5, Proposition 3]) The set Q_{m} is a lexicographic Gröbner basis of I_{m} for any $m \geq 4$.

However, Claim 1 is not true for any $m \geq 5$. Therefore, Claim 2 is not true for any $m \geq 5$. Moreover, with respect to a lexicographic order given in [5], the reduced Gröbner basis of I_{m} is not quadratic for any $m \geq 5$. In this section, we point out an error in the proof of [5, Propositions 2 and 3] for the cut ideal of the cycle and present a lexicographic order for which the reduced Gröbner basis of the cut ideal of the cycle of length 7 consists of quadratic binomials.

First, we explain an error in the proof of [5, Propositions 2 and 3]. For each m-dimensional $(0,1)$ vector $\left(i_{1}, i_{2}, \ldots, i_{m}\right)$, we associate a variable $q_{i_{1} i_{2} \cdots i_{m}}$. Let $K\left[q_{i_{1} i_{2} \ldots i_{m}} \mid i_{1}, i_{2}, \ldots, i_{m} \in\{0,1\}\right]$ and $K\left[a_{i_{j}}^{(j)} \mid i_{j} \in\{0,1\}, j=1, \ldots, m+1\right]$ be polynomial rings over K. Let

$$
\varphi_{m}: K\left[q_{i_{1} i_{2} \ldots i_{m}} \mid i_{1}, i_{2}, \ldots, i_{m} \in\{0,1\}\right] \rightarrow K\left[a_{i_{j}}^{(j)} \mid i_{j} \in\{0,1\}, j=1, \ldots, m+1\right]
$$

be a homomorphism such that $\varphi_{m}\left(q_{i_{1} i_{2} \ldots i_{m}}\right)=a_{i_{1}}^{(1)} a_{i_{2}}^{(2)} \ldots a_{i_{m}}^{(m)} a_{i_{1}+i_{2}+\cdots+i_{m}(\bmod 2)}^{(m+1)}$ and let I_{m} be the kernel of φ_{m}. According to [11], the ideal I_{m} is the cut ideal of the cycle of length $m+1$. Let Q_{m} be a set of all quadratic binomials

$$
q_{i_{1} i_{2} \cdots i_{m}} q_{j_{1} j_{2} \cdots j_{m}}-q_{k_{1} k_{2} \cdots k_{m}} q_{l_{1} l_{2} \cdots l_{m}} \in I_{m}
$$

satisfying one of the following properties:
(1) For some $1 \leq a \leq m$ and $j \in\{0,1\}$,

$$
i_{a}=j_{a}=j=k_{a}=l_{a}
$$

and the binomial

$$
q_{i_{1} \ldots i_{a-1} i_{a+1} \ldots i_{m}} q_{j_{1} \ldots j_{a-1} j_{a+1} \ldots j_{m}}-q_{k_{1} \ldots k_{a-1} k_{a+1} \ldots k_{m}} q_{l_{1} \ldots l_{a-1} l_{a+1} \ldots l_{m}}
$$

belongs to I_{m-1};
(2) For each $1 \leq b \leq m$,

$$
i_{b}+j_{b}=1=k_{b}+l_{b}
$$

and the binomial

$$
q_{i_{1} \ldots i_{b-1} i_{b+1} \ldots i_{m}} q_{j_{1} \ldots j_{b-1} j_{b+1} \ldots j_{m}}-q_{k_{1} \ldots k_{b-1} k_{b+1} \ldots k_{m}} q_{l_{1} \ldots l_{b-1} l_{b+1} \ldots l_{m}}
$$

belongs to I_{m-1}.
In [5, Proposition 2], I_{m} is claimed to be generated by Q_{m} for any $m \geq 4$. However, this is incorrect for $m \geq 5$. Now, we consider the quadratic binomial

$$
q=q_{10101} q_{01010}-q_{11111} q_{00000}
$$

and the binomial $q^{\prime}=q_{1101} q_{0010}-q_{1111} q_{0000}$. Since

$$
\varphi_{5}\left(q_{10101} q_{01010}\right)=\varphi_{5}\left(q_{11111} q_{00000}\right)=a_{0}^{(1)} a_{0}^{(2)} a_{0}^{(3)} a_{0}^{(4)} a_{0}^{(5)} a_{0}^{(6)} a_{1}^{(1)} a_{1}^{(2)} a_{1}^{(3)} a_{1}^{(4)} a_{1}^{(5)} a_{1}^{(6)}
$$

q belongs to I_{5}. On the other hand, since

$$
\begin{aligned}
& \varphi_{4}\left(q_{1101} q_{0010}\right)=a_{0}^{(1)} a_{0}^{(2)} a_{0}^{(3)} a_{0}^{(4)} a_{1}^{(1)} a_{1}^{(2)} a_{1}^{(3)} a_{1}^{(4)}\left(a_{1}^{(5)}\right)^{2}, \\
& \varphi_{4}\left(q_{1111} q_{0000}\right)=a_{0}^{(1)} a_{0}^{(2)} a_{0}^{(3)} a_{0}^{(4)} a_{1}^{(1)} a_{1}^{(2)} a_{1}^{(3)} a_{1}^{(4)}\left(a_{0}^{(5)}\right)^{2}
\end{aligned}
$$

q^{\prime} does not belong to I_{4}. Hence q does not belong to Q_{5}. The following proposition shows that q is not generated by Q_{5}.

Proposition 2.1. Let

$$
P=\left\{q_{i_{1} i_{2} i_{3} i_{4} i_{5}} q_{j_{1} j_{2} j_{3} j_{4} j_{5}} \mid i_{k}+j_{k}=1, i_{k}, j_{k} \in\{0,1\} \text { for } 1 \leq k \leq 5\right\}
$$

Then any nonzero binomial $q=u-v$ where $u, v \in P$ does not belong to Q_{5}.
Proof. Let

$$
q=q_{i_{1} i_{2} i_{3} i_{4} i_{5}{ }_{j} q_{j_{1} j_{2} j_{3} j_{4} j_{5}}-q_{i_{1}^{\prime} i_{2}^{\prime} i_{3}^{\prime} i_{4}^{\prime} i_{5}^{\prime}}^{q_{1}^{\prime} j_{2}^{\prime} j_{3}^{\prime} j_{4}^{\prime} j_{5}^{\prime}}, ~}^{\text {and }}
$$

be a nonzero binomial where $i_{k}+j_{k}=i_{k}^{\prime}+j_{k}^{\prime}=1$ and $i_{k}, j_{k}, i_{k}^{\prime}, j_{k}^{\prime} \in\{0,1\}$ for $1 \leq k \leq 5$. It is trivial that q does not satisfy property (1). Since $i_{k}+j_{k}=i_{k}^{\prime}+j_{k}^{\prime}=1$ for $1 \leq k \leq 5$, we have

$$
\sum_{k=1}^{5} i_{k}+\sum_{k=1}^{5} j_{k}=\sum_{k=1}^{5} i_{k}^{\prime}+\sum_{k=1}^{5} j_{k}^{\prime}=5
$$

Hence we may assume that $\sum_{k=1}^{5} i_{k} \equiv \sum_{k=1}^{5} i_{k}^{\prime} \equiv 1$ and $\sum_{k=1}^{5} j_{k} \equiv \sum_{k=1}^{5} j_{k}^{\prime} \equiv 0$ modulo 2. Since q is not zero, $q_{i_{1} i_{2} i_{3} i_{4} i_{5}} \neq q_{i_{1}^{\prime} i_{2}^{\prime} i_{3}^{\prime} i_{4}^{\prime} i_{5}^{\prime}}$. Thus we may assume that $i_{k}=1$ and $i_{k}^{\prime}=0$ for some $1 \leq k \leq 5$ (by exchanging $q_{i_{1} i_{2} i_{3} i_{4} i_{5}}$ and $q_{i_{1}^{\prime} i_{2}^{\prime} i_{3}^{\prime} i_{4}^{\prime} i_{5}^{\prime}}$ if we need). Then $j_{k}=0$ and $j_{k}^{\prime}=1$. For example, if $k=1$, then

$$
q^{\prime}=q_{i_{2} i_{3} i_{4} i_{5}} q_{j_{2} j_{3} j_{4} j_{5}}-q_{i_{2}^{\prime} i_{3}^{\prime} i_{4}^{\prime} i_{5}^{\prime}}{q j_{2}^{\prime} j_{3}^{\prime} j_{4}^{\prime} j_{5}^{\prime}}^{\prime}
$$

does not belong to I_{4} since $i_{2}+i_{3}+i_{4}+i_{5} \equiv j_{2}+j_{3}+j_{4}+j_{5} \equiv 0$ and $i_{2}^{\prime}+i_{3}^{\prime}+i_{4}^{\prime}+i_{5}^{\prime} \equiv$ $j_{2}^{\prime}+j_{3}^{\prime}+j_{4}^{\prime}+j_{5}^{\prime} \equiv 1$. Thus q does not satisfy property (2).

Thus, I_{5} is not generated by Q_{5}. This is the error in the proof of [5, Proposition 2]. By this error, instead of I_{m}, an ideal that is strictly smaller than I_{m} is considered in the proof of [5, Proposition 3]. Unfortunately, with respect to a lexicographic order considered in [5, Proposition 3], the reduced Gröbner basis of I_{m} is not quadratic for $m \geq 5$. The computation for $m=5$ is given in

degree	the number of binomials
2	195
3	10
4	2

Table 1. The number of binomials in the reduced Gröbner basis of I_{5}.

We describe the number of binomials in the reduced Gröbner basis with respect to a lexicographic order in 5 for $m=5$ in Table 1.

Thus the existence of a quadratic Gröbner basis of the cut ideal of a cycle is now an open problem. However, we will show that there exists a lexicographic order such that the reduced Gröbner basis of the cut ideal of a cycle of length 7 consists of quadratic binomials. In general, if G is a cycle of length m, then it is known that $\left\{\delta_{C} \mid C \subset V(G)\right\}=\left\{\left(d_{1}, \ldots, d_{m}\right) \in\{0,1\}^{m} \mid d_{1}+\cdots+d_{m}\right.$ is even $\}$. Let G be the cycle of length 7 . Then we have

$$
A_{G}=\left(\begin{array}{cccccccccc}
\mathbf{0} & & A & & & B & & & C & \\
1 & 1 & \cdots & 1 & 1 & \cdots & 1 & 1 & \cdots & 1
\end{array}\right)
$$

where

$$
\begin{aligned}
& A=\left(\begin{array}{lllllllllllllllllllll}
1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 1
\end{array}\right),
\end{aligned}
$$

$$
\begin{aligned}
& C=\left(\begin{array}{lllllll}
1 & 1 & 1 & 1 & 1 & 1 & 0 \\
1 & 1 & 1 & 1 & 1 & 0 & 1 \\
1 & 1 & 1 & 1 & 0 & 1 & 1 \\
1 & 1 & 1 & 0 & 1 & 1 & 1 \\
1 & 1 & 0 & 1 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 & 1 & 1 & 1
\end{array}\right) .
\end{aligned}
$$

In general, the configuration of the (m, r)-squarefree Veronese subring is the configuration whose columns are

$$
\left\{\left(d_{1}, \ldots, d_{m}\right) \in\{0,1\}^{m} \mid d_{1}+\cdots+d_{m}=r\right\}
$$

The matrix A is a configuration of the $(7,2)$-squarefree Veronese subring, and B is a configuration of the $(7,4)$-squarefree Veronese subring. According to [16, Theorem 1.4], there is a lexicographic order such that the reduced Gröbner basis of the toric ideal of the $(m, 2)$-squarefree Veronese subring consists of quadratic binomials for any integer $m \geq 2$. However, it is not known whether there is a lexicographic order such that the reduced Gröbner basis of I_{B} consists of quadratic binomials. Now, we consider the following question:

Question 2.2. If we use lexicographic orders such that the reduced Gröbner bases of I_{A} and I_{B} consist of quadratic binomials, do we obtain a lexicographic order such that the reduced Gröbner basis of $I_{A_{G}}$ consists of quadratic binomials?

To answer this question, we look for a lexicographic order $>_{1}$ such that the reduced Gröbner basis of $I_{B} \subset K\left[y_{1}, y_{2}, \ldots, y_{35}\right]$ consists of quadratic binomials. For $i=1,2, \ldots, 7$, we consider the subconfiguration B_{i} of B with column vectors consisting of all column vectors of B whose i-th component is one. We consider combining lexicographic orders such that the reduced Gröbner bases of $I_{B_{i}}$ consist of quadratic binomials. We write down the lexicographic order $>_{1}$:
$y_{1}>y_{2}>y_{4}>y_{3}>y_{5}>y_{7}>y_{6}>y_{10}>y_{9}>y_{8}>y_{11}>y_{13}>y_{12}>y_{16}>y_{15}>$ $y_{14}>y_{20}>y_{19}>y_{18}>y_{17}>y_{21}>y_{23}>y_{22}>y_{26}>y_{25}>y_{24}>y_{30}>y_{29}>y_{28}>$ $y_{27}>y_{35}>y_{34}>y_{33}>y_{32}>y_{31}$.
Next, we consider combining two lexicographic orders such that the reduced Gröbner bases of I_{A} and I_{B} consist of quadratic binomials. We fix the order
$x_{23}>x_{24}>x_{26}>x_{25}>x_{27}>x_{29}>x_{28}>x_{32}>x_{31}>x_{30}>x_{33}>x_{35}>x_{34}>$ $x_{38}>x_{37}>x_{36}>x_{42}>x_{41}>x_{40}>x_{39}>x_{43}>x_{45}>x_{44}>x_{48}>x_{47}>x_{46}>$ $x_{52}>x_{51}>x_{50}>x_{49}>x_{57}>x_{56}>x_{55}>x_{54}>x_{53}$
which corresponds to the lexicographic order $>_{1}$ and look for the order such that the reduced Gröbner basis of $I_{A_{G}}$ consists of quadratic binomials by modifying the order for I_{A} using computational experiments. A desired lexicographic order is
$x_{1}>x_{17}>x_{18}>x_{19}>x_{22}>x_{20}>x_{21}>x_{13}>x_{14}>x_{15}>x_{16}>x_{2}>x_{3}>x_{4}>$ $x_{5}>x_{6}>x_{7}>x_{8}>x_{9}>x_{10}>x_{11}>x_{12}>x_{23}>x_{24}>x_{26}>x_{25}>x_{27}>x_{29}>$ $x_{28}>x_{32}>x_{31}>x_{30}>x_{33}>x_{35}>x_{34}>x_{38}>x_{37}>x_{36}>x_{42}>x_{41}>x_{40}>$ $x_{39}>x_{43}>x_{45}>x_{44}>x_{48}>x_{47}>x_{46}>x_{52}>x_{51}>x_{50}>x_{49}>x_{57}>x_{56}>$ $x_{55}>x_{54}>x_{53}>x_{58}>x_{59}>x_{60}>x_{61}>x_{62}>x_{63}>x_{64}$.
The reduced Gröbner basis of I_{G} consists of 1050 quadratic binomials. The computation is given in
https://sci-tech.ksc.kwansei.ac.jp/~hohsugi/R_Sakamoto/code_cutideal
Note that any cycle of length ≤ 6 is obtained by the sequence of contractions from G. Thus, we have the following.

Theorem 2.3. Let G be a cycle of length ≤ 7. Then I_{G} has a lexicographic quadratic Gröbner basis.
Acknowledgment. The author is grateful to the anonymous referees for their careful reading and helpful comments.

References

[1] J. Abbott, A. M. Bigatti, L. Robbiano, CoCoA: a system for doing Computations in Commutative algebra. Available at http://cocoa.dima.unige.it
[2] S. Aoki, T. Hibi, H. Ohsugi, A. Takemura, Gröbner bases of nested configurations, 2008, J. Algebra, 320 no. 6, 2583-2593.
[3] S. Aoki, T. Hibi, H. Ohsugi, A. Takemura, Markov basis and Gröbner basis of Segre-Veronese configuration for testing independence in group-wise selections, 2010, Ann. Inst. Statist. Math. 62, 299-321.
[4] A. Aramova, J. Herzog, T. Hibi, Finite lattices and lexicographic Gröbner bases, 2000, European J. Combin., 21, 431-439.
[5] J. Chifman, S. Petrović, Toric ideals of phylogenetic invariants for the general group-based model on claw trees $K_{1, n}, 2007$, in: Proceedings of the Second international conference on Algebraic Biology, (eds. H. Anai, K. Horimoto and T. Kutsia), Springer LNCS 4545, SpringerVerlag, 307-321.
[6] A. D'Alì, Toric ideals associated with gap-free graphs, 2015, J. Pure Appl. Algebra, 219 issue 9, 3862-3872.
[7] M. Deza, M. Laurent, Geometry of Cuts and Metrics, 1997, Springer-Verlag, Berlin.
[8] A. Engström, Cut ideals of K_{4}-minor free graphs are generated by quadratics, 2011, Michigan Math J. 60, Issue 3, 705-714.
[9] J. Herzog, T. Hibi, H. Ohsugi, Binomial ideals, 2018, Springer
[10] T. Hibi, K. Nishiyama, H. Ohsugi, A. Shikama, Many toric ideals generated by quadratic binomials possess no quadratic Gröbner bases, 2014, J. Algebra 408, 138-146.
[11] U. Nagel, S. Petrović, Properties of cut ideals associated to ring graphs, 2009, J. Commut. Algebra 1, 547-565.
[12] N. Noro, et al., Risa/Asir, a computer algebra system, http://www.math.kobe-u.ac.jp/ Asir/
[13] H. Ohsugi, J. Herzog, T. Hibi, Combinatorial pure subrings, 2000, Osaka J. Math. 37, 745-757.
[14] H. Ohsugi, T. Hibi, Toric ideals generated by quadratic binomials, 1999, J. Algebra 218509 527.
[15] H. Ohsugi, T. Hibi, Koszul bipartite graphs, 1999, Adv. in Appl. Math. 22, 25-28.
[16] H. Ohsugi, T. Hibi, Compressed polytopes, initial ideals and complete multipartite graphs, 2000, Illinois J. Math. 44, 391-406.
[17] H. Ohsugi, T. Hibi, Quadratic initial ideals of root systems, 2002, Proc. Amer. Math. Soc. 130, 1913-1922.
[18] H. Ohsugi, T. Hibi, Two way subtable sum problems and quadratic Gröbner bases, 2009, Proc. Amer. Math. Soc. 137, no. 5, 1539-1542.
[19] H. Ohsugi, T. Hibi, Toric rings and ideals of nested configurations, 2010, J. Commut. Algebra 2, 187-208.
[20] K. Shibata, Strong Koszulness of the toric ring associated to a cut ideal, 2015, Comment. Math. Univ. St. Pauli 64, 71-80
[21] B. Sturmfels, Gröbner bases and convex polytopes, 1996, American Mathematical Society (Amer. Math. Soc)
[22] B. Sturmfels, S. Sullivant, Toric geometry of cuts and splits, 2008, Michigan Math J. 57, 689-709
[23] S. Sullivant, Toric fiber products, 2007, J. Algebra 316, 560-577
Ryuichi Sakamoto, Department of Mathematical Sciences, Graduate School of Science and Technology, Kwansei Gakuin University, Sanda, Hyogo 669-1337, Japan

E-mail address: dpm86391@kwansei.ac.jp

[^0]: 2010 Mathematics Subject Classification. 13P10.
 Key words and phrases. Gröbner bases, cut ideals, finite graphs.

