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Abstract

The functional (de)composition of polynomials is a topic in pure and computer
algebra with many applications. The structure of decompositions of (suitably
normalized) polynomials f = go h in F[z] over a field F is well understood
in many cases, but less well when the degree of f is divisible by the positive
characteristic p of F. This work investigates the decompositions of r-additive
polynomials, where every exponent and also the field size is a power of r, which
itself is a power of p.

The decompositions of an r-additive polynomial f are intimately linked to
the Frobenius-invariant subspaces of its root space V in the algebraic closure
of F. We present an efficient algorithm to compute the rational Jordan form
of the Frobenius automorphism on V. A formula of Fripertinger (2011) then
counts the number of Frobenius-invariant subspaces of a given dimension and
we derive the number of decompositions with prescribed degrees.
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1. Introduction

The composition of two polynomials g, h € F[z] over a field F is denoted as
f =goh=g(h), and then (g, h) is a decomposition of f. If g and h have degree
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at least 2, then f is decomposable and g and h are left and right components of
f, respectively.

Since the foundational work of Ritt, Fatou, and Julia in the 1920s on com-
positions over C, a substantial body of work has been concerned with structural
properties (e.g., Fried and MacRae (1969), Dorey and Whaples (1974), Schinzel
(1982, 2000), Zannier (1993)), with algorithmic questions (e.g., Barton and Zip-
pel (1985), Kozen and Landau (1989)), and more recently with enumeration,
exact and approximate (e.g., Giesbrecht (1988), Blankertz et al. (2013), von zur
Gathen (2014), Ziegler (2015, 2016)). A fundamental dichotomy is between the
tame case, where the characteristic p of F' does not divide degg, see von zur
Gathen (1990a), and the wild case, where p divides deg g, see von zur Gathen
(1990b).

Zippel (1991) suggests that the block decompositions of Landau and Miller
(1985) for determining subfields of algebraic number fields can be applied to
decomposing rational functions even in the wild case. Blankertz (2014) proves
this formally and shows that this idea can be used to compute all decompo-
sitions of a polynomial with an indecomposable right component. Giesbrecht
(1998) provides fast algorithms for the decomposition of additive (or linearized)
polynomials, where all exponents are powers of p. Subsequent improvements in
the cost of factorization and basic operations have been made in Caruso and
Le Borgne (2017, 2018). All these algorithms use time polynomial in the input
degree.

We consider the following counting problem: given f € F[z] and a divisor d
of its degree, how many (g, h) are there with f = g o h and degg = d? Under
a suitable normalization, the answer in the tame case is simple: at most one.
However, we address this question for additive polynomials, in some sense an
“extremely wild” case, and determine both the structure and the number of such
decompositions. This involves three steps:

e a bijective correspondence between decompositions of an additive poly-
nomial f and Frobenius-invariant subspaces of its root space Vy in an
algebraic closure of F' (Section 2),

e a description of the A-invariant subspaces of an F-vector space for a matrix
A € F™*™ in rational Jordan form (Section 3), and

e an efficient algorithm to compute the rational Jordan form of the Frobenius
automorphism on V} (Section 4). Its runtime is polynomial in log,(deg f).

A combinatorial result of Fripertinger (2011) counts the relevant Frobenius-
invariant subspaces of V; and thus our decompositions (Subsection 3.1). We also
count the number of maximal chains of Frobenius-invariant subspaces and thus
the complete decompositions. Our algorithm deals with squarefree polynomials,
and we give a reduction for the general case (Subsection 2.2).
Some of the results in the present paper are described in an Extended Ab-
stract (von zur Gathen et al., 2010). A version of the present paper is available
at https://arxiv.org/abs/1005.1087. Implementations of all algorithms in
SageMath are available at https://github.com/zieglerk/polynomial_decomposition.
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2. Additive polynomials and vector spaces

Additive (or linearized) polynomials have a rich mathematical structure. In-
troduced by Ore (1933), they play an important role in the theory of finite and
function fields and have found many applications in coding theory and cryptog-
raphy. See Lidl and Niederreiter (1997, Section 3.4) for an introduction and
survey. In this section, we establish connections between components of addi-
tive polynomials, subspaces of root spaces, and factors of so-called projective
polynomials.

We focus on additive polynomials over finite fields F, though some of these
results hold more generally for any field of characteristic p > 0. Let r be a
power of p and let

Flx;r] = Z aixrlzneZzo, ag,...,a, €F
0<i<n

be the set of r-additive (or r-linearized) polynomials over F. For F =T, we fix
an algebraic closure F O F,.. Then these are the polynomials f such that f(aco+
bB) = af(a)+bf(B) for any a,b € F, and a, B € F. The r-additive polynomials
form a non-commutative ring under the usual addition and composition. It is a
principal left (and right) ideal ring with a left (and right) Euclidean algorithm;
see Ore (1933, Chapter 1, Theorem 1). For f,h € F[x;r], we find

h is a factor of f <= h is a right component of f (2.1)

after comparing division with remainder of f by h (in Flz]) and decomposition
with remainder of f by h (in F[z;7]). All components of an r-additive polynomial
are p-additive, see Dorey and Whaples (1974, Theorem 4) and Giesbrecht (1988,
Theorem 3.3).

An additive polynomial is squarefree if its derivative is nonzero, meaning that
its linear coefficient ag is nonzero. To understand the decomposition behavior
of additive polynomials, it is sufficient to restrict ourselves to monic squarefree
elements of Fl[z;r]. The general (monic non-squarefree) case is discussed in
Subsection 2.2. For f € F[z;r] with deg f = ™, we call n the exponent of f,
denote it by expnf, and write for n > 0

Flz; 7], = {f € Flz;r]: f is monic squarefree with exponent n} .

For f € Flx;7],, the set V} of all roots of f in an algebraic closure F of F
forms an F,-vector space of dimension n. From now on, we assume g to be a
power of r, and let F = I, be a finite field with ¢ elements. Then V% is invariant
under the gth power Frobenius automorphism o, since for o € F with f(a) =0
we have f(oq(a)) = f(a?) = f(a)? = 0, thus 04(Vy) C Vy, and o, is injective.
For n > 0, we define

Llog; Fy], = {n-dimensional o,-invariant F,-linear subspaces of F,}



Fylz;r]n — Liog; Frln,

o [ Vi = {aeF: fla) =0},

(2.2)

Conversely, for any n-dimensional F,-vector space V' C F, the lowest degree
monic polynomial fy = [],cy (z—a) € Flz] with V" as its roots is a squarefree r-
additive polynomial of exponent n, see Ore (1933, Theorem 8). If V is invariant
under oy, then fy € Fylx;r],. For n > 0, we define

L{og; Frln — Fylx; 7],

Pn: Vs fy= H(x_a)' (2.3)
acV

Ore (1933, Chapter 1, §§ 3-4) gives a correspondence between monic square-
free p-additive polynomials and F,-vector spaces which generalizes as follows.

Proposition 2.4. For r a power of a prime p, q a power of r, and n > 0, the
maps Y, and @, are inverse bijections.

2.1. Right components and invariant subspaces

The following refinement of Proposition 2.4 is a cornerstone of this paper. It
provides a bijection between right components of a monic original f € Fy[x; 7],
and og-invariant subspaces of its root space Vy € L{og;F,],. The latter are
analyzed with methods from linear algebra in Section 3. Those insights are
then reflected back to questions about decompositions, providing results that
seem hard to obtain directly.

Forn>d>0, f € Fylx;7],, and V € L[og; F,,, we define

Hy(f) = Hyra(f) = {right components h € Fy[x;7]q of f} C Fylx;7]4,
Ly(V) =Ly, a(V) = {d-dimensional o,-invariant F,-linear subspaces of V'}
C L[Uq; Fr]da

where we omit ¢ and r from the notation when they are clear from the context.
We also set Hyr q(f) = Lq,ra(V) = @ for d <O0.

Proposition 2.5. Let n > d > 0, r be a power of a prime p, q a power of
r, and f € Fylx;r],. Then the restrictions of ¥q and pq are inverse bijections
between Hy . a(f) and Lg,.qa(Vy).

Proof. For h € Hy(f), we have h | f by (2.1), and thus V}, C V;. Since
h € Fylx;r]q, we have dim V;, = d and V}, € Ly(Vy). Conversely, for W € Ly(f),
we have W C Vy and fw is a squarefree divisor of f with expnfyw = d. From

(2.1), we have fyr € Ha(f). Thus, a(ea(La(f))) € La(f) and wa(a(Ha(f))) €
Hy(f). Since both sets are finite and both maps are injective, we have equalities

and the claim follows. O

Thus, under the conditions of Proposition 2.5, we have for h € Fy[z;r]q
h|f<<V,CVy <= heHyf), (2.6)

as an extension of (2.1).



2.2. General additive polynomials

We generalize Proposition 2.5 from squarefree to all monic additive polyno-
mials. We can write any monic f € Flx;r] as g o ™" with unique m > 0 and
unique monic squarefree g € F[z;r]. Then

f=goa =a""of (2.7)

with unique monic squarefree f € F[x;r] and the coefficients of f are the r"th
roots of the coefficients of g, see Giesbrecht (1988, Section 3). Composing an
additive polynomial with 2" from the left leaves the root space invariant and
we have

Vi =Viror = Vy.

We now relate the right components of f to the right components of f.

Proposition 2.8. Let m,n >0, m+n > d > 0, r be a power of a prime p and q
a power of 1,0 < d < m+n, and f € Fy[x;7],. For monic f =a"" of € Fy[z;r]
with exponent m+ n, we have a bijection between any two of the following three
sets:

(i) {monic right components h € Fy[z;r] of f with exponent d},
(i) the union of all H;(f) for d —m <i<d, and
(7it) the union of all L;(Vy) ford—m < i <d.

Proof. We begin with a bijection between (i) and (ii). Following (2.7), we can
write every h in (i) as 2™ o h with unique i satisfying d —m < i < d and
unique monic squarefree h € Fy[z;r];. Then V, C Vi = Vy and h € H;(f)
by (2.6). Conversely, let d —m < i < d and h € H;(f). Then f = go h for
some g € F,[z;r],—; and f = 2" " 0 §oa™ " o h, where the coefficients
of § are the r?“th roots of the coefficients of g. Thus h = e ohisa
monic right component of f with exponent d. Together this yields a one-to-one
correspondence between (i) and (ii).
Proposition 2.5 provides a bijection between (ii) and (iii).
o

We note that for d > n, all three sets are empty.

2.3. Projective and subadditive polynomials

As an aside, we exhibit two further sets of polynomials that are in bijective
correspondence with Hy(f); this will not be used beyond this subsection, but
illustrates the wide range of applications. Let f =3 ..., a;a” € F[z;r] and
t be a positive divisor of r — 1. We have f = z - (m(f) o 2') for m(f) =
Y o<i<n a;x(" =1/t Abhyankar (1997) introduced the projective polynomials

Tr_1(a” + arx” +apz) = 2 V0D Lgia 4 ag, (2.9)



which may have, over function fields of positive characteristic, nice Galois groups
such as projective general or projective special linear groups. Projective polyno-
mials appear naturally in coding theory (e.g., Helleseth et al. (2008), Zeng et al.
(2008)) and the study of difference sets (e.g., Dillon (2002), Bluher (2003)). They
can be used to construct strong Davenport pairs explicitly (Bluher, 2004a) and
determine whether a quartic power series is actually hyperquadratic (Bluher and
Lasjaunias, 2006). The linear shifts of (2.9) are closely related to group actions
on irreducible polynomials over Fy (Stichtenoth and Topuzoglu, 2012). The car-
dinality of the value set of a (possibly non-additive) polynomial f € Fg[z] is
determined by the maximal s, ¢ such that f = 2° - (f o z*) for some f € F,[z]
(Akbary et al., 2009). Bluher (2004b) shows that (2.9) has exactly 0, 1, 2, or
r 4 1 roots in F, for ¢ a power of r. Helleseth and Kholosha (2010) count the
roots for ¢ and r independent powers of 2.
The polynomial

pi(f) = (xt om(f)) == (Wt(f))t

is called (r,t)-subadditive (or simply subadditive). We have p;(f) ozt =zt o f
and in particular p; (f) = f. Subadditive polynomials were introduced by Cohen
(1990) to study their role as permutation polynomials. Henderson and Matthews
(1999) connect their decomposition behavior to that of additive polynomials and
provide the bijection between (i) and (iii) in the following proposition. Coul-
ter et al. (2004) use this connection to apply Odoni’s (1999) counting formula
for p-additive polynomials and Giesbrecht’s (1998) decomposition algorithm for
additive polynomials to subadditive polynomials.

Proposition 2.10. Letn > d > 0, r be a power of a prime p, q a power of r,
t a positive divisor of r —1, and f € Fy[x;7],,. Then we have bijections between
any two of the following three sets.

(i) Ha(f),

(ii) the set of monic factors of m(f) that are of the form mi(h) for some
h € Flz;r]|q, and

(iii) the set of monic (r,t)-subadditive right components of p;(f) of degree r?.

In particular, the maps m and p: are bijections from (i) to (ii) and to (%),
respectively.

Proof. For the bijection between (i) and (ii), it is sufficient to show that the
following statements are equivalent for h € Fg[z;r|q:

e h is a right component of f;
o h=u-(m(h) o) is a factor of f =z (m(f) o xt);

e 7. (h) is a factor of m(f).



The first two items are equivalent by (2.1), and so are the last two since
7t (h)m(f) is coprime to x for squarefree h and f.

The bijection between (i) and (iii) is due to Henderson and Matthews (1999,
Theorem 4.1). O

Irreducible factors in (ii) correspond to components in (i) and (iii) that
are indecomposable over Fy[x;r] and pi(Fy[x;r]), respectively. For d = 1 and
t = r — 1, this yields the following criterion by Ore.

Fact 2.11 (Ore 1933, Theorem 3). For n, r, and F as in Proposition 2.10,
f €Fylz;r], and a € F*, we have

2" —ax € Hi(f) < m—1(f)(a) = 0.

3. The rational Jordan form

The usual Jordan (normal) form of a matrix contains the eigenvalues. It is
unique up to permutations of the Jordan blocks. The rational Jordan form of a
matrix is a generalization, with eigenvalues in a proper extension of the ground
field being represented by the companion matrix of their minimal polynomial.
Forms akin to the rational Jordan form were investigated already by Frobenius
(1911) and the underlying decomposition of the vector space is described by
Gantmacher (1959, Chapter VII). A detailed discussion of rational normal forms
can be found in Lineburg (1987, Chapter 6).

Let A be a square matrix with entries in F. We factor the minimal polynomial
of A over F completely and obtain minpoly(A) = ul*---uf* € Fly] with ¢
pairwise distinct monic irreducible u; € Fly] and k; > 0 for 1 < i < ¢. We call
u; an eigenfactor of A and ker(u;(A)) its eigenspace.

For any u = Y .c,, @iy’ € Fly] with a,, = 1, we have the companion
matrix o
0 —ap
1 —a1
Cu= |0 : € Fmxm
0

0 1 —Qm—1

with minpoly(Cy) = u. The rational Jordan block of order ¢ > 0 for u is

JO = € Flm)x(tm)



where I, is the m x m identity matrix. For linear u = y — a € F[y], we
have C;, = (a) and the rational Jordan blocks are the Jordan blocks of the
usual Jordan form. The arrangement of rational Jordan blocks along the main
diagonal gives a rational Jordan form.

Definition 3.1. A rational Jordan matrixz over F is a matrix of the shape

A= diag(J{, L gD gt i) (3.2)
with ¢ > 1, pairwise distinct monic irreducible uq,...,u; € F[y], s; > 1, and

lin 2 i > -+ > Ay, for 1 <@ <t

Giesbrecht (1995, Lemma 8.1) shows that minpoly(Jy)) = u’, and thus
minpoly(A) = uf“ e uf“. Every matrix over F is similar to a rational Jordan
matrix over F, see, e.g., Giesbrecht (1995, Theorem 8.3), which we call the
rational Jordan form of the matrix. The eigenvalues and their multiplicities
are preserved by this similarity transformation and the rational Jordan form
is unique up to permutation of the rational Jordan blocks. Giesbrecht (1995,
Corollary 8.6) shows how to transform an n X n matrix over F into rational
Jordan form using O™~ (n* 4+ nlogr) field operations, where w is the exponent
of square matrix multiplication over F. This matches the lower bound 2(n*)
for this problem up to polylogarithmic factors. The “textbook” method gives
w < 3 and Le Gall (2014) shows w < 2.3728639.

We extract the purely combinatorial data from a rational Jordan form A €
F*>™ as in (3.2). For 1 <i <tand 1< j</{;,let \;; denote the number of
rational Jordan blocks of order j for the eigenfactor u;. The formulae for \;;
over the algebraic closure, see, e.g., Gantmacher (1959, p. 155), generalize as

Nij - degui = rk(ul "' (A)) = 2rk(u] (A)) + rk(ul T (4))

= 2nul(ul(A)) — nul(u! " (A)) — nul(ult'(A)), (3.3)
where u{(A) = I,, and nulB = n — rkB is the nullity of B for any B € F"*".
The vector A(u;) = (degus; A1, Aia, - - -, Aig;, ) Of positive integers is the species
of u; (in A). This abstracts away the arrangement of the rational Jordan blocks
as well as the actual factors u;. The multiset of all the species of eigenfactors
in A is then called the species A(A) of A. This notion was introduced by Kung
(1981) over the algebraic closure and generalized to finite fields by Fripertinger
(2011).

Table 3.4 gives all similarity classes of rational Jordan forms A in F3*? and
their species. The notation 3 x (1;1) indicates that the species (1;1) occurs
three times in the multiset. We also list, for every species, the lattice £(A) of
A-invariant subspaces in a 3-dimensional F-vector space, the number #L;(A) of
1-dimensional A-invariant subspaces, and the number #chains(A) of maximal
A-invariant subspace chains (3.6).

In the next subsection, we derive the latter from the species. In Section 4, we
show how to compute the rational Jordan form of the Frobenius automorphism
on the root space of an additive polynomial without the (costly) computation
of a basis.



A(4) {(1;:3)}
//V \ / \
<UI>J—§}§>K.§1€Z+1>J— 6162/ €1, 63
<Ur2+r+1> te 1> \ /
#L1(A) = #Lo(A) r+r+1 2
#chains(A) (r?+r+1)(r+1) 3

« () )

A(4) {(1;0,0,1)} {11, 1)}
(e1,e2) (e1,e3) > - ,(0,1,8.)T)
(e1) y {(ar,0,1)T
£(A) {0}
#L1(A) = #L2(A) 1 r+1
#chains(A) 1 2r+1



a 0 Co
A ( a ) (1 0 cl)
b 1 e
A(4) {(1;2), (1; 1)} {3 1)}
%
/ \ |
<61’62> <(l,a1,O)T,63> <(17aT70)T763> <62,63>
=
=\
£(A) {0} {0}
#L1(A) = #L2(A) "2
#chains(A) 3(r+1) 1
AR
1 b1 C
A(4) {(1;1),(2;1)} {3x(1;1)}
Y / ‘ \
\ (e1,€2) (e1,e3) (e2,e3)
2 TN
L(A)
#L1(A) = #La2(A) 1 3
#chains(A) 2 6

Table 3.4: All similarity classes of rational Jordan forms A € F3%3, where a,b,c € F are
pairwise distinct eigenvalues and the eigenfactors y2 — byy — bp and y3 — coy? — c1y — co are
irreducible over F.
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8.1. The number of invariant subspaces

Let r be a power of the prime p and A € F'*" be a rational Jordan matrix
as in (3.2) with minpoly(A) = ul" ---u*, where uy, ..., u; € F,[y] are pairwise
distinct monic irreducible, and k; > 0 for 1 < i < t. A operates on every n-
dimensional F,-vector space V' and we have the corresponding primary vector
space decomposition

V=ViaVhe &V, (3.5)

where V; = ker(u¥(A)) is the generalized eigenspace of u; for 1 < i <.
We ask two counting questions, motivated by the connection to decomposi-
tion.

(i) What is the number #Lg(A) of d-dimensional A-invariant subspaces of V'
for a given d?

(ii) What is the number #chains(A) of maximal chains
{0}=UCU1 C---CU. =V (3.6)

of A-invariant subspaces U; for 0 < j < e, where e is the Krull dimension
of V7

The A-invariant subspaces of V' constitute the complete lattice £(A) with min-
imum {0} and maximum V. In this lattice’s Hasse diagrams, question (i) asks
for the number of nodes of a given dimension and question (ii) asks for the
number of paths from the minimum to the maximum.

First, we discuss question (i). Let g(A) = Y g <, 842% € Zxo[z] be the
generating function for the number gq = #L4(A) of d-dimensional A-invariant
subspaces of V. The A-invariant subspace lattice £L(A) is self-dual, see Brickman
and Fillmore (1967, Theorem 3), and thus the generating function is symmetric
with gg = gn—q for all 0 < d < n.

Let A; denote the restriction of A to V; as in (3.5), and £(4;) and g(4;) be
the lattice and generating function of the A;-invariant subspaces of V;, respec-
tively. Brickman and Fillmore (1967, Theorem 1) show that

£(A) = [] £(4i) and thus g(A) = [] e(A4). (3.7)

1<i<t 1<i<t

Thus it suffices to study A-primary vector spaces, where minpoly(A) = u* is the
kth power of an irreducible polynomial u of some degree m. If an n-dimensional
A-primary vector space has species A(A) = {(m, A1, A2, ..., A\¢)}, then there is
a rational Jordan form B € Fr/™™/™ with species AB) ={(1, 1, A2y ..., \e)}
and

L(A) = L(B) and g(A) = g(B) o 2™. (3.8)

It is therefore enough to study A-primary vector spaces, where minpoly(A) is
the power of a linear polynomial. In this situation, we now compute g; (A).

11



From the theory of g-series, we use the g-bracket (also g-number)

of an integer n.

Lemma 3.9. Let A € F*™ be a rational Jordan form as in (3.2) with minpoly(A) =
u® for some linear u € F.[y], k > 0, and species \(A) = {(1; A1, A2, ..., \)}.
Then the number of A-invariant lines in an n-dimensional F.-vector space V is

g1(4) = [slr, (3.10)

where s =3 cicp Aj-
Proof. For v € V\{0}, the following are equivalent for the line (v):
e (v) is A-invariant.

e (v) is in the eigenspace of the linear eigenfactor u (a factor of A’s minimal
polynomial).

For a linear eigenfactor u, the eigenspace has dimension dim(ker(u(A))) =
> 1<j<k Aj = s and thus contains (r* —1)/(r — 1) lines. O

With go = 1, (3.7), and (3.8), we now compute g; for a rational Jordan form
A with arbitrary minimal polynomial.

Proposition 3.11. Let A € F*™ be in rational Jordan form as in (3.2) with
species AM(A) = {(degui; Ai1, Nizy -+, Nigy, )2 1 < @ < t}. Then the number of
A-invariant lines in F}' is

gA)= Y [s] (3.12)

1<i<t
degu;=1

where s; = Zlgjgeil Aij for 1 <i<t.

This answers question (i) for d = 1. For d > 1, the number g4 of d-
dimensional A-invariant subspaces can be derived from the species with the
formulas of Fripertinger (2011). We make them available through the SageMath-
package accompanying this paper.

For perspective, formula (3.12) allows us to determine exactly the possible
values for the number of right components of an additive polynomial that have
exponent 1. By Fact 2.11, this is equivalent to finding the possible number of
roots of certain projective polynomials. Let

Mg = {#H1(f): f € Fylz;r]n} (3.13)

be the set of possible numbers of right components of exponent 1 for monic
squarefree r-additive polynomials of exponent n over F,.

12



For a positive integer m, let IT,,, be the set of unordered partitions (multisets)
7w = {m1,...,m} of m with positive integers m; and m; + --- + m, = m. For
any partition m € II,,, we define the r-bracket [r], = [m1], + [m2]r + -+ + [7k]r
Then (3.12) yields the following theorem.

Theorem 3.14. Let M,, = My, n1 be as in (3.13) and define
MO = {0}5
]/\Zi = ]\//71;1 U{[r]p: 7€ I}

for1 <i<n. Then M,, C ]/\4\,1

Generally, M,, = ]T/[\q7T,n71 for all but a few triples (g, r,n), especially over
small fields F, where not all possible (similarity classes of) Jordan forms may
occur. As an example, for ¢ = r = n = 2, we have merely two monic squarefree
polynomials under consideration. That is simply not enough to cover all four
cases in M. A list of the first seven values follows.

My = {0},
M = My U {[1),} = {0,1},
My = My U {2[1],, [2],} = {0,1,2,7 + 1}, (consistent with Bluher (2004b))
My = My U {3, [2), + 1,[3],}
={0,1,2,3,7+ 1,7 + 2,72 +r + 1},
My = M3 U {4, 2], +2,2[2),, [3], + 1, [4],}
={0,1,2,3, 4,7+ 1,7 + 2,7+ 3,2r + 2,7° + 7 + 1,7° + 1 + 2,
4?4 1),
M = My U {5, 2], + 3,2(2) + 1, [8), + 2, 3] + 2], [4], + 1,[5],}
={0,1,2,3,4,5,7r+ 1,r+2,r+3,r+4,2r +2,2r 4+ 3,
e+ L+ 2, 443,72+ 2r 4 2,
P+ Lt 2t 3 1),
Mg = M5 U {6, 2], + 4,22, + 2,32, [38]» + 3, [3]» + [2]» + 1, 2[3],
4] + 2, 4], + 2]+, [5] + 1, 6]}
={0,1,2,3,4,5,6,7+ 1,7+ 2,7+ 3,r + 4,7+ 5,2r +2,2r + 3,2r + 4,3r + 3,
Phr+ L+ r+2 2 +r+3, 2 Fr+ 4,72 4+ 2r + 2,02 + 2r 4 3,
2r2+2r+2,7“3+7“2—i—r—l—1,r3+r2+r+2,7"3+r2+7"+3,
T‘3+T2+2T+2,7‘4+T‘3+T2—|—T+1,T4—|—T3+T2+7‘+2,
Pt S e e 410,

The size of M,, equals > o<k<n P(k), where p(k) is the number of additive par-
titions of k. For n — oo, p(n) grows exponentially as exp(m+/2n/3)/(4nv/3)
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(Hardy and Ramanujan, 1918), but is still surprisingly small considering the
generality of the polynomials involved.

Concerning question (ii), we recall that all maximal chains (3.6) have equal
length by the Krull-Schmidt Theorem. Let A € F'*™ be in rational Jordan
form on V' and let #chains(A) denote the number of all maximal A-invariant
chains (3.6). If the lattice is a grid, these are the binomial coefficients.

The number of A-invariant chains depends only on the species A(A) and
we write #chains(A(A)) = #chains(A4). For every minimal nonzero A-invariant
subspace U, there is a canonical bijection — given by /U and @&U — between the
chains for V' that start with U; = U and chains for V/U. Thus, we have the
recursion formula

#chains(\(A)) = > #chains(M(Aly/v)), (3.15)
minimal, nonzero
A-invariant U C V

where Aly i is A taken as a linear transformation on the quotient vector space
V/U, of dimension n — dim(U).
We now have two tasks.

e Find all minimal nonzero A-invariant U C V.
e Derive A(A|y,y) for each such U.

Every minimal nonzero A-invariant subspace U C V is contained in the
eigenspace V; = ker(ul* (A)) for a unique i < t and we can partition the formula
(3.15) in the light of the vector space decomposition (3.5) as

#chains(A(4)) = Z Z #chains(A(Aly/p)).  (3.16)

eigenfactors u; minimal, nonzero
A-invariant U C V;

As for question (i) above, we make two simplifications. First, it is sufficient
to study A where minpoly(A) = uf" ---uf* is the product of linear u; by (3.7)
and (3.8). Second, we will deal only with primary vector spaces, i.e. a single
eigenfactor u;, and thus only the inner sum in (3.16).

Ezxample 3.17. We have the following base case. If A = (Ji(f)) consists only of a
single Jordan block, i.e. A = {(1;0,...,0, A\, = 1)}, we have a unique maximal
chain of A-invariant subspaces

0C (e1) & (er,e2) & C

= = =

and #chains(A) = 1. For completeness, we note that U = (e1) is the unique
minimal nonzero A-invariant subspace, Aly;y = (Jy_l)), and MAlyv) =
{(1;0,...,0, 1 = 1)}

For A(A) = {(1; \1,...,  \k)}, we already know that the number of minimal
nonzero A-invariant subspaces is [> ;. Ail» from (3.8) and (3.10). We need
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to scrutinize them further. For
A = diag(JS), g2 )y

with u =y —a, €1 > -+ > s, minpoly(A) = u’t, s =Y \;, and \j; = #{{; =
j'+ 1 <j < s}, we re-index the basis of V as

€11,-.-,€14,,€21y-+-y€205,-+-+.,€51,...,Eg0,. (3.18)

The d-dimensional eigenspace is ker u(A) = {(e11, €21, ..., ¢es1) and contains [s],
lines, that is, 1-dimensional subspaces, and these are the only minimal non-zero
subspaces.

Let U be an A-invariant subspace. We define its support supp(U) (in the
basis (3.18)) as the set of all base vectors for which e;; - U # 0. For a minimal,
that is, 1-dimensional, U, we have j = 1 for all e;; in its support, since these
are the base vectors that span the eigenspace.

The support links the subspace U to the Jordan blocks that act non-trivially
on U. Of particular interest are the Jordan blocks of minimal size that act
non-trivially on U. We define

depth(U) = min{¢;: e;1 € supp(U)}.

Note that there may be several Jordan blocks of size depth(U) acting on the
support of U.

a 1
Ezample 3.19. For A = a , we have (e1) of depth 2 and (e; + aes)

a
for « € F,. of depth 1. And these are all » 4+ 1 nonzero minimal A-invariant
subspaces.

To make (3.15) applicable, we now determine the number of minimal nonzero
A-invariant subspaces of depth j for 1 < j < k. Let A = (1;A1,..., Ax) be the
species of the eigenvalue under consideration. The possible values for the depth
of a nonzero minimal A-invariant subspace range from 1 to k, where k = max ¢;
and the following counting formula follows easily by inclusion-exclusion.

Proposition 3.20. Let A be primary on' V', with species AN(A) = {(1; A1,..., )}
(i) The number of A-invariant subspaces with depth i is
#depth(A, i) = Pt A ],
(i) Let U be an A-invariant subspace with depth i. Then A is well-defined on
V/U and has species

(1;)\1—1,/\2,...,/\k) if’izl,

A(A =\ =
(Alv,v) i {(1;/\1, N1 = 1,000 ) otherwise.
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(iii) The number of maximal A-invariant chains is given by the recursion

#chains({(1;1)}) =1,
#chains(A(A)) = Y #depth(}, j) - #chains()s).

1<j<k

Proof. (i) For ¢ = k, we have [A\x], eigenspaces of depth k. For i < k, we have
[Ai + Xit1+ - -+ Akl eigenspaces of depth at least ¢ and we find by direct
computation

#depth(A,4) = [Ai + Aig1 + -+ + Al = [Aigr + - 4+ Al
pAit At ] pritite A

- r—1 B r—1

= Pt )

as claimed.

(ii) We dealt with the base case in Example 3.17.

Without loss of generality, we assume that ej; is in the support of U and
that the corresponding first Jordan block has size equal to the depth of U.
We have

U= <€11 “+ apeo1 + -+ - + a5651>

for some a; € F, and «; # 0 only if the corresponding Jordan block is
larger than the first one. We turn (3.18) into the following basis for V/U:

e12 + aegr + -+ ases2 + U,
e13 + ageas + - + ases3 + U,

e1e, + apegp, + -+ agegy + U,
€21 +U,...,62@2 + U,

e+ U, ...,eq. +U.

In other words, we drop the projection of the first base vector (due to the
linear dependence introduced by U) and modify the base vectors for the
first Jordan block. A direct computation shows that Aly¢ is in rational
Jordan form, its first Jordan block is equal to the first Jordan block of A
reduced by size 1, and all other Jordan blocks “remained” unchanged.

(iii) This follows from (3.16) using (i) and (iii).
(]

In the general case of several eigenfactors we obtain #chains(A4) by (3.16)
using the formulae in Proposition 3.20 (iii) for each eigenfactor.
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4. The Frobenius automorphism on the root space

In this section, we present an efficient algorithm to compute the rational
Jordan form of the Frobenius automorphism on the root space of a squarefree
monic additive polynomial f. With the results of Subsection 3.1, this yields
the number of right components of f of a given degree. The straightforward
approach suffers from possibly exponential costs for the description of the root
space Vy, see Example 4.12.

The centre of the Ore ring F,[z; r] will be a useful tool. For ¢ a power of r,
so that IF,. C [Fy, it equals

F.lz;q] = { Z aiz? ine Z>o, Qg,...,0n € IFT} C Fylz; 7],
0<i<n

see, e.g., Giesbrecht (1998, Section 3). Every element f € Fy[x;r] has a unique
minimal central left component f* € F,.[z;q|, the unique monic polynomial in
F,[x;q] of minimal degree such that f* = g o f for some nonzero g € Fy[x;7].
For squarefree f, it is the monic generator of the largest two-sided ideal I(f)
contained in the left ideal generated by f. The ideal I(f) is then known as the
bound of f, see Jacobson (1943, page 83).

Fact 4.1 (Giesbrecht 1998, Lemma 4.2). Let r be a power of a prime p and g =
rd. For f € Fy[z;7] of exponent n, we can find its minimal central left component
f* € Frlx; q) with O(n2dM(d) + n?d®?M(d)logd) C O~ (n3d? + n?d®) operations
in F,., where M(d) is the number of operations to multiply two polynomials over
F, with degree at most d each.

The “schoolbook” method gives M(d) = O(d?) and Harvey and van der
Hoeven (2019a) show M(d) = O(dlog d4'°¢" @), The recent, as yet unpublished,
preprint of Harvey and van der Hoeven (2019b) claims M(d) = O(d log d), which
many consider to be the best achievable asymptotic bound.

Le Borgne (2012, Theorem I1.3.2) gives an algorithm for f* with O™~ (n¥d* +
n2d?logr) operations in F,, where d and n are as above and w is an exponent
of square matrix multiplication over F,.

The centre F,.[z;¢] is a commutative subring of F[z;7] and isomorphic to
F,[y] with the usual addition and multiplication via

Fy[z; 9] — Frlyl,
Tif= Y aa? mT(f) = Y ay,
0<i<n 0<i<n

see McDonald (1974, pages 24-25). The isomorphic image F,.[y] is a unique fac-
torization domain and factorizations in F,[y] are in one-to-one correspondence
with decompositions in F,.[z;¢] into central components. The following main
theorem shows the close relationship between the minimal central left compo-
nent of an additive polynomial and the minimal polynomial of the Frobenius
automorphism on its root space.
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Theorem 4.2. Let r be a power of a prime p and q a power of r. Let f €
F,[x; 7], be monic squarefree of exponent n with root space Vy C IF_q and minimal
central left component f* € F.[z;q]. Then the image 7(f*) € F,ly] is the
minimal polynomial of the qth power Frobenius automorphism o, on the F,-
vector space Vy.

Proof. For a central g = -, giz? € F,[z;q], we have 7(g) = Y o<icm GV’
€ F.[y] and (7(g))(c4) = g, and the following are equivalent: o

e ¢ is a right or left component of f;
e g(a) =0 for all & € Vy;
e (1(9)(0q))(a) =0 for all a € V.

The first two items are equivalent by (2.1) and the squarefreeness of f and since
g is central. The last two items are equivalent since 7(g)(o4) = g.

Thus, g is a central left component of f if and only if 7(¢) annihilates o4 on V;.
Since f* and the minimal polynomial of o, are the unique monic polynomials of
minimal degree with these properties, respectively, we have the claimed equality.

O

It is useful to recall a little more about the ring F4[z;r]. Ore (1933) shows
that for any f,g € Fy[x; 7], there exists a unique monic h € Fy[z; r] of maximal
degree, called the greatest common right component (gere) of f and g, such that
f=uohand g =wvoh for some u,v € Fylz;r]. Also, h = gere(f, g) = ged(f, 9),
and the roots of h are those in the intersection of the roots of f and g, in other
words Vyere(r,g) = V§ N Vy. In fact, there is an efficient Euclidean-like algorithm
for computing the gere; see Ore (1933) and Giesbrecht (1998) for an analysis.
The usual Euclidean algorithm for ged(f, g) is insufficient, since the degrees of
f and g may be exponential in their exponents.

Fact 4.3 (Giesbrecht 1998, Lemma 2.1). Let r be a power of a prime p and
q=r% For f,g € Fylw;r] of exponent n, we can find gere(f,g) € Fylz;r] with
O(n?M(d)dlogd) C O~ (n?d?) operations in F,., where M(d) is as in Fact 4.1.

4.1. A fast algorithm for the rational Jordan form of o4 on V¢

We now determine the rational Jordan form of the Frobenius automorphism
on the root space of an additive polynomial. We begin with a factorization of
the minimal polynomial and then compute every eigenfactor’s species indepen-
dently. The following proposition deals with the base case, where the minimal
polynomial is the power of an irreducible polynomial.

Proposition 4.4. Let r be a power of a prime p, g a power of r, f € Fylx;r],
monic squarefree of exponent n with minimal central left component f* € F,.[x; q],
and o, the qth power Frobenius automorphism on V. If 7(f*) = u®* for an ir-
reducible u € F,.[y] and k > 0, then

T u)) = u (o), (4.5)
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ker(uj (Uq)) = VqC’rc(f,T’l(uj))u (46)
H (z — a) = gere(f, 71 (u?)) (4.7)

acker(ui(oq))
for all j with 0 < j < k + 1, where u®(ay,) is the identity on V.

Proof. Let 0 < j < k+ 1. If we write v/ = >, w;y’ with all w; € F,, then
7 w) = 3, wiz? = uI(0y,), which is (4.5). The kernels of these two maps
on Vy form the same subset of Vi, so that Vi-1(,:) NV = Vere(p7-1(us)). This
shows (4.6).

Furthermore, the bijection ¢qim (ker(ui (0, ))) from (2.3) maps the left and right
hand sides of (4.6) to the left and right hand sides of (4.7), respectively. O

Corollary 4.8. In the notation and under the assumption of Proposition 4.4, let
u be irreducible of degree m and v; = expn(gere(f, 77 (u?))) for 0 <j < k+1.
Then the species of the rational Jordan form of o4 on Vi is {(m; A1, A2, ..., Ap)},
where

Aj = (2v; —vj—1 —vipa)/m, (4.9)

for1<j<k.

Proof. For monic squarefree g € F,[z;r], we have expng = dim 'V, due to the
bijection (2.2). For 0 < j < k+1, gere(f, 7~ (u?)) is monic squarefree and thus

Vi = dim(vgcrc(fﬁfl(u]‘))) = dim(ker(uj (Uq))) = nU‘l(uJ(S))

by (4.6). The claim follows from (3.3). O

In the case of a minimal polynomial with arbitrary factorization, we treat
every eigenfactor separately with Corollary 4.8, see Giesbrecht (1998, Theo-
rem 4.1). The result is Algorithm 4.10. It computes the rational Jordan form
of the Frobenius automorphism on the root space of a given f € Fy[z;r],.

Theorem 4.11. Algorithm 4.10 works correctly as specified and takes an ex-
pected number of O~ (n®d*) field operations in F,.

Proof. The notation in the algorithm corresponds to that of the rational Jor-
dan form (3.2) and Corollary 4.8. In Step 1, we know from Theorem 4.2 that
f* is the minimal polynomial of S. Therefore all rational Jordan blocks corre-
spond to factors of f* (determined in Step 2) and we only need to figure out
every eigenfactor’s species. By Giesbrecht (1998, Theorem 4.1), we can treat
every eigenfactor separately (Steps 4-11) and align the resulting rational Jordan
blocks along the main diagonal (Step 11, initialized in Step 3).

For every eigenfactor u; the first inner loop (Steps 5-7) determines v; as
defined in Corollary 4.8 for 0 < j < k; + 1. The second inner loop (Steps 9-11)
derives the number \; of rational Jordan blocks of order j for u; (Step 10) via
formula (4.9) and extends S along its main diagonal accordingly (Step 11).

Doing this for all eigenfactors and all possible orders returns the specified
output in Step 12.
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Algorithm 4.10: RationalJordanForm

Input: r-additive monic squarefree f € Fy[x; 7], of exponent n, where
g =r? and r is a power of a prime p
Output: rational Jordan form S € F**™ as in (3.2) of the gth power
Frobenius automorphism on V;
f* < minimal central left component of f

[ary

2 uftub? .. ult < factorization of 7(f*) into pairwise distinct monic
irreducible u; € F,.[y] with k; >0 for 1 <i <t
35+ 0 // initialize "empty matrix"

4 fori+1tot do

// determine the species of w;
5 for j«<0to k;+1 do

6 hj = gere(f, 771 (u]))
7 vj < expnh; // equal to nul(ul(S))
m « deg, u;

for j < 1to k; do

10 Aj = (2vj —vj_1 —vjp1)/m // employ (4.9)
11 S + diag(S, Jfg), Cey Jﬁf)) // append Jordan blocks
N——
Aj-times

12 return S

We assume that the isomorphism 7 and its inverse are free operations. If
the polynomials are stored as vectors of coefficients, these operations merely
change the way this information is interpreted. We also take for granted a
free operation to determine the exponent of an additive and the degree of an
“ordinary” polynomial in Steps 7 and 8, respectively. Finally, we neglect the
(cheap) integer arithmetic in Step 10.

Step 1 uses O~ (n3d? + n%d®) field operations in F,., see Fact 4.1. We have
expnf* < dn and thus deg, 7(f*) < n. The factorization in Step 2 can be done
in random polynomial time with O~ (n? +nlogr) field operations in F,., see, e.g.
von zur Gathen and Gerhard (2013, Corollary 14.30). The worst case occurs
when 7(f*) is the nth power of a linear eigenfactor u. The n + 2 powers of u
can be obtained with O~ (n?) field operations in F,. The additive polynomial
77 (u?) has exponent dj and each gcre in Step 6 requires O~ (max(n, dj)?d?) C
0O~ (n%d*) field operations in F,, see Step 4.3. The complete inner loop thus
requires O~ (n3d*) field operations which dominates the costs of the previous
steps. O

Only the distinct-degree factorization in Step 2 requires randomization. But
this granularity is necessary for our approach as the following example shows.

20



A_< aa >7 B_< ab )E]F?:X47
b b

with distinct nonzero a,b € F,.. Then A and B are two rational Jordan forms
with distinct species {(1;3), (1;1)} and {2 x (1; 2)}, respectively, but equal mini-
mal polynomial u = (y—a)(y—0b). The single equal-degree factor has multiplicity
1 and yields only the information dim keru(A) = dim ker u(B) = 4, that is the
sum of orders of blocks corresponding to eigenfactors of degree 1.

Caruso and Le Borgne (2017) give an algorithm for the species of the Frobe-
nius operator on the n-dimensional module F,[z;7]/(F,4[z;7] - f), as in von zur
Gathen et al. (2010), and count complete decompositions, as in Fripertinger
(2011). Related counting problems are also considered in Le Borgne (2012).

The costs of Algorithm 4.10 are only polynomial in expnf and log ¢, despite
the fact that the actual roots of f may lie in an extension of exponential degree
over I, as illustrated in the following example and Figure 4.13.

Ezxample 4.12. Let ¢ = r and f € F4[y] be primitive of degree n. Its additive
q-associate 7~ 1(f) factors into z and the irreducible 7=1(f)/x of degree ¢ — 1
over F,, see Lidl and Niederreiter (1997, Theorem 3.63). Thus, the splitting
field of the additive 77 (f) is an extension of F, of degree ¢" — 1.

4

Vi CF,

g
m
=

<
B
=
Y
m
=
33
X
3

gere(fy-)

[ el q =F,[y] > 7(f*)

Figure 4.13: Algorithm 4.10 computes the rational Jordan form of the Frobenius automor-
phism on the root space Vy of f while avoiding the expensive computation (dashed) of and
on the root space itself.
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Together with the results of Subsection 3.1, we can now count the num-
ber of irreducible right components of degree r of any r-additive polynomial
f € Fylx;r] of exponent n. This also yields a fast algorithm to compute the
number of certain factors and right components of projective and subadditive
polynomials as described in Subsection 2.3.

Ezample 4.14. Boucher and Ulmer (2014) build self-dual codes from factoriza-

tions of 2" — ax beating previously known minimal distances. Over F4z;2],

they exhibit 3, 15, 90, and 543 complete decompositions for 22° + z, 22* + z,
8

2% + 2, and 22 + z, respectively.

In this section, we assume the field size ¢ to be a power of the parameter r.
As in Bluher’s (2004b) work, our methods go through for the general situation,
where ¢ = p? and r = p° are independent powers of the characteristic. Then
F,NF, = F; for s = p&°d(4) and the centre of F,[x; 7] is Fy[x;t] for ¢ = plem(de),

5. Conclusion and open questions

We investigated the structure and number of all right components of an
additive polynomial. This involved three steps:

e a bijective correspondence between decompositions of an additive poly-
nomial f and Frobenius-invariant subspaces of its root space Vy in an
algebraic closure of F' (Section 2),

e a description of the A-invariant subspaces of an F-vector space for a ra-
tional Jordan form A € F™*™ (Section 3), and

e an efficient algorithm for the rational Jordan form of the Frobenius auto-
morphism on V; (Section 4). Its runtime is polynomial in logp(deg f).

A combinatorial result of Fripertinger (2011) counts the relevant Frobenius-
invariant subspaces of V; and thus our decompositions (Subsection 3.1). We
also count the number of maximal chains of Frobenius-invariant subspaces and
thus the complete decompositions.

In Theorem 3.14, we describe the small set of possible values for the number
of right components of exponent r of a given additive polynomial. The natural
“inverse” question asks for the number of additive polynomials that admit a
given number of right components.

The root space V; has exponentially (in the exponent of f) many elements,
and the field over which it is defined may have exponential degree. The effi-
ciency of our algorithms in Section 4 is mainly achieved by avoiding any direct
computation with Vy.
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