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STRICT INCLUSIONS OF HIGH RANK LOCI

EDOARDO BALLICO, ALESSANDRA BERNARDI, AND EMANUELE VENTURA

Abstract. For a given projective variety X, the high rank loci are the closures of
the sets of points whose X-rank is higher than the generic one. We show examples of
strict inclusion between two consecutive high rank loci. Our first example is for the
Veronese surface of plane quartics. Although Piene had already shown an example
when X is a curve, we construct infinitely many curves in P4 for which such strict
inclusion appears. For space curves, we give two criteria to check whether the locus
of points of maximal rank 3 is finite (possibly empty).

1. Introduction

Tensor rank and symmetric tensor ranks have recently attracted a lot of attention,
because of their natural appearance in several pure and applied contexts ([19, 20, 5, 2,
15]). However, the notion of rank may be generalized to any projective variety.

We work over the complex numbers. Let X ⊂ PN be a complex projective non-
degenerate variety, and let p ∈ PN be a point. The X-rank of p is defined to be:

rkX(p) = min {r | p ∈ 〈p1, . . . , pr〉, where pi ∈ X} .

In the examples of tensor and symmetric tensor ranks the underlying varieties X’s are
the Segre varieties and the Veronese varieties respectively.

The X-generic rank is the least integer g such that the generic element in 〈X〉 has
X-rank equal to g.

In [10], Buczyński, Han, Mella, and Teitler made the first systematic study of loci of
points whose X-rank is higher than the generic one. It is worth noting that, in general,
even the existence of such points is not known. Define the locus

Wk = {p ∈ PN | rkX(p) = k},

that is, the Zariski closure of the locus of points of X-rank k. Let g be the X-generic
rank with respect to a non degenerate variety X ⊂ PN and let m be the X-maximal
rank, i.e., m is the minimum integer such that every element of 〈X〉 is in the span
of at most m points of X. For k ≤ g, the set Wk coincides with the secant variety
σk(X) := ∪p1,...,pk∈X〈p1, . . . , pk〉. In [10, Theorem 3.1], the authors show the following
inclusion:

Wk +X ⊆Wk−1,

where Wk +X denotes the join between Wk and X, for all g + 1 ≤ k ≤ m.
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If X = ν3(P2) is the Veronese surface of plane cubics, then the maximal X-rank is
5 (c.f. e.g. [4]) and it is only attained by all reducible cubics whose components are a
smooth conic and a tangent line to it: those whose normal form is y(x2 + yz) (cf. [18]).
In this case the X-generic rank is 4 (cf. [1]). Moreover, one can show that dimW5 = 6
[10, Example 4.11]. In this case, we have:

W5 +X =W4 = σ4(X) = P9.

We will sketch an idea of the proof of this fact in Example 2.2.

One instance of strict inclusion Wk+X (Wk−1 was already known in the literature,
although stated in a different fashion. In 1981, Piene proved the existence of a smooth
and non-degenerate degree 4 rational curve X ⊂ P3 with W3 nonempty and finite ([22,
Case a1 at p. 101]). Since σ2(X) = P3 for any non-degenerate curve X, one hasW2 = P3

and dim(W3 +X) = 2. We elaborate more on this in Example 2.3.

In the present paper, we provide further examples where equality of high rank loci
fails. These are featured in our main results:

Theorem 1.1. Let X = ν4(P2) ⊂ P14 be the Veronese surface of plane quartics, and

let W7 be the maximal X-rank locus. Then:

W7 +X (W6 = σ6(X) = P14.

Theorem 1.2. Fix integers d, g such that g ≥ 0 and d ≥ 3. Let X ⊂ P3 be a smooth

and non-degenerate curve of degree d and arithmetic genus g. Assume either 23g <
d2 − 3d − 15, or, when d is even, g < (3d2 − 16d + 16)/16. Then W3 is infinite if

and only if g = 0 and X is a smooth rational curve projectively equivalent to the curve

parametrized by x0 = zd0 , x1 = z1z
d−1
0 , x2 = a2z

d−1
1 z0, x3 = a3z

d
1 with a2a3 6= 0.

Therefore, when W3 is finite and nonempty,

W3 +X (W2 = σ2(X) = P3.

See Example 4.1 for a discussion of the curves appearing in Theorem 1.2.

Theorem 1.3. For every d ≥ 5, there exists a degree d rational curve X ⊂ P4 such

that dimW4 ≤ 1. Thus

W4 +X (W3 = σ3(X) = P4.

Structure of the paper. In §2, we briefly discuss some preliminary examples: when
X = ν3(P2) and Piene’s curve. In §3, we prove Theorem 1.1. In §4, we discuss space
curves and prove Theorem 1.2. In §4, we construct rational curves of degree d ≥ 5 in
P4 with dimW4 ≤ 1, thus proving Theorem 1.3.
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2. Some preliminary examples

Let νd : Pn → PN , where N =
(

n+d
n

)

− 1, be the Veronese embedding of a projective
space Pn. Denote a zero-dimensional degree k scheme supported at a point p ∈ Pn with
Z(k, p). For a scheme Z, we denote with 〈Z〉 its projective span.

Definition 2.1 ([8, 24]). Let f be a homogeneous polynomial of degree d in n + 1
variables. The cactus rank of f is the minimal degree of a zero-dimensional scheme
Z ⊂ Pn such that f ∈ 〈νd(Z)〉. We say that such a Z evinces the cactus rank of f .

Example 2.2 (X = ν3(P2)). We sketch a possible approach to see W5 + X = W4 =
σ4(X) = P9. First, recall that every scheme Z evincing the cactus rank of an element
of W5 is a scheme Z(3, p) supported on a smooth conic. Therefore, in order to show the
equality it is enough to prove that a general cubic is in the span of a Z(3, p) supported
on a smooth conic and a simple point Z(1, q).

Let f ∈ P(H0(OP2(3))) be a general cubic. Its symmetric rank is 4. The variety
parametrizing the schemes Z of degree 4 such that f ∈ 〈Z〉 is the so called variety of

sums of powers, VSP(f, 4) (see [23] for more on these classical varieties). For a general
cubic f , it is a classical result that VSP(f, 4) ∼= P2.

For a given form f ∈ P(H0(OPn(d))), its apolar ideal f⊥ is the homogeneous ideal in
the ring of polynomial differential operators T = C[∂0, . . . , ∂n] generated by all g ∈ T
such that g ◦ f = 0, where ◦ denotes the usual differentiation. For a general cubic f , its
apolar ideal f⊥ is generated in degree 2; the degree 2 homogeneous part

(

f⊥
)

2
is a net

of conics with empty base locus.
The VSP(f, 4) can be realized as the image of the regular map ϕf : P2 → P2 defined

by the net of conics
(

f⊥
)

2
. The morphism ϕf is a generically 4 : 1 map and the closure

of its image is VSP(f, 4).
The branch locus Bf of ϕf is a sextic curve, that is the dual curve of the Hessian

H(f) of the cubic f (cf. [21, §3]). Following the classical De Paolis algorithm (cf. [11]),
fix the tangent line q to one of the nine flexes of H(f). Then deg(q ∩H(f)) = 3 and
the intersection is supported at one point p. Under duality, the line q corresponds to a
cusp cq ∈ Bf . Its fiber ϕ

−1
f (cq) is the scheme Z = Z(3, p) +Z(1, q). By construction, Z

is the intersection of two conics from the vector space 〈
(

f⊥
)

2
〉 and so spans f .

Example 2.3 (Piene’s curve [22]). Consider a general projection of the rational
normal curve ν4(P1) ⊂ P4 onto a rational curve X ⊂ P3. Recall that the maximal X-
rank is 3. By [22, Case a1, p. 101], the only cuspidal planar projection of X is obtained
by projecting X from the unique point p ∈ P3 of intersection of an ordinary tangent with
a stall tangent. For the reader who is not familiar with this notation, a stall tangent is
the tangent line at stall point of X, i.e., a point whose local parametrization is:

x = at+ · · · ,

y = b2t
2 + b3t

3 + · · · ,(1)

z = c4t
4 + c5t

5 + · · · ,

with ab2c4 6= 0 and b2c5 6= b3c4 (see [22, Lemma 1, p. 98]). The projected curve is a
rational planar quartic curve with an ordinary cusp (arising from the ordinary tangent)
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and a ramphoid cusp of the 1st type [22, Remark, p. 98] (arising from the stall tangent).
Since a projection from a point p ∈ P3 is injective if and only if rkX(p) > 2, we have
that W3 = {p}. Therefore W3 +X ( σ2(X) = P3.

3. Proof of Theorem 1.1

In this section, we prove Theorem 1.1. Here X = ν4(P2) is the Veronese surface of
plane quartics. Recall that the k-cactus variety of X is the closure of the union of the
scheme-theoretic linear spans of all zero-dimensional subschemes of X of degree at most
k (cf. [9, 8, 7]).

Since W6 = σ6(X) = P14, in order to prove the inclusion between W7 +X and W6 it
is sufficient to show that W7 +X does not fill the ambient space. Since the dimension
of any join is at most the sum of the dimensions of the varieties involved plus one, to
prove that W7 +X 6= P14, it is enough to show that dimW7 ≤ 10.

Notice that plane quartics of border rank 5 are expected to fill the ambient space;
however it is a classical result that they fail to do that, whereas W6 = P14 (cf. [1]).
Moreover, by [8], also the 6-th cactus variety of ν4(P2) fills the ambient space. Now,
Kleppe’s classification [17, Chapter 3] of quartics in W7 shows that there is no f ∈W7

of symmetric border rank 6. All the normal forms of [17] with symmetric rank 7 were
also classified in [4] and they all turn out to have cactus rank smaller or equal than 5.

As in §2, we denote a zero-dimensional degree k scheme supported at a point p ∈ P2

with Z(k, p). In [4, Theorem 44] the stratification by symmetric rank of σs(X)\σs−1(X)
for s = 2, 3, 4, 5, is derived. Symmetric rank 7 arises in cactus ranks 3, 4 and 5.

• For cactus rank 3, there is one possible scheme:
(I) Z = Z(3, p) contained in a smooth conic.

• For cactus rank 4, there are the two possible schemes:
(IIa) Z = Z(2, p) + Z(2, ℓ) (two 2-jets supported at p, ℓ);
(IIb) Z = Z(2, p)+Z(1, ℓ)+Z(1, q) (a 2-jet supported at p and two simple points

ℓ, q).
• For cactus rank 5, there are three possible schemes:
(IIIa) Z = Z(3, p) + Z(2, ℓ) (a 3-jet supported at p and a 2-jet supported at ℓ);
(IIIb) Z = Z(4, p) + Z(1, ℓ) contained in a double line: its homogeneous ideal in

S =
⊕

k≥0H
0(OP2(k)) is of the form IZ = (Q, y2) ∩ (x− z, y), where Q is

either a smooth conic whose tangent line at p coincides with {y = 0}, or a
reducible conic with vertex p;

(IIIc) Z = Z(2, p)+Z(2, ℓ) +Z(1, q) contained in a double line: its homogeneous
ideal in S =

⊕

k≥0H
0(OP2(k)) is of the form IZ = (x, y) ∩ (x2 − z2, y2).

Let Hilbk(P2) be the Hilbert scheme parametrizing zero-dimensional schemes Z ⊂ P2

of degree k. Let Υ7 be the subset of

H =
⋃

3≤k≤5

Hilbk(P
2)× P14 =

{

(Z, f), where Z ⊂ P2,deg(Z) = k, f ∈ 〈ν4(Z)〉
}

consisting of all (Z, f) ∈ H, such that rkX(f) = 7. The set Υ7 comes equipped with a
natural structure of algebraic variety.

Then W7 is the projection of Υ7 to P14 and so dimW7 ≤ dimΥ7. Thus proving
dimΥ7 ≤ 10 will finish the proof.
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For each one of the schemes above, we give an upper bound for the number of pa-
rameters involved:

(I) (Z, 〈Z〉) is parametrized by the choice of a conic C ∈ P5 (+5), a point p ∈ C
(+1), and its span (+2). Thus this gives a parameter space of dimension at
most 8.

(IIa) (Z, 〈Z〉) is parametrized by the choice of two points p, ℓ ∈ P2 (+4), two lines
passing through each of them (+2), and its span (+3). Thus this gives a
parameter space of dimension at most 9.

(IIb) (Z, 〈Z〉) is parametrized by the choice of three points p, ℓ, q ∈ P2 (+6), a line
passing through one of them (+1), and its span (+3). Thus this gives a pa-
rameter space of dimension at most 10.

(IIIa) (Z, 〈Z〉) is parametrized by the choice of two lines (+4), one point on each of
them (+2), and its span (+4). Thus this gives a parameter space of dimension
at most 10.

(IIIb) Suppose Q is reducible. Since Q has vertex p, the parameter space for Q is P2.
In this case, (Z, 〈Z〉) is parametrized by the choice of a line (+2), two points
p, ℓ on it (+2), a reducible quadric with vertex at p (+2), and its span (+4).
Thus this gives a parameter space of dimension at most 10.

Suppose Q is a smooth conic and so Q ∈ P5. Choose a smooth conic Q and
a point p ∈ Q. The tangent line {y = 0} at p to Q is determined by Z(4, p).
So far we have 6 parameters. However, note that h0(IZ(4,p)(2)) = 2 and hence

there is a P1 of generically smooth conics providing the same scheme Z(4, p).
Thus the parameters are in fact 5 (+5). Now choose a point ℓ ∈ {y = 0} (+1),
and the span of Z (+4). Hence the parameter space for (Z, 〈Z〉) has dimension
at most 10.

(IIIc) (Z, 〈Z〉) is parametrized by the choice of one line (+2), three points p, ℓ, q on
it (+3), and its span (+4). Thus this gives a parameter space of dimension at
most 9.

Consequently, all the cases show dimΥ7 ≤ 10.
Then dimW7 ≤ dimΥ7 ≤ 10 and so dim(W7 +X) ≤ 13 < dimW6 = 14.

4. Space curves

For a zero-dimensional scheme Z, let ♯Z denote the cardinality of its support. We
start by discussing the rational curves appearing in Theorem 1.2.

Example 4.1. Let X ⊂ P3 be a smooth rational curve of degree d ≥ 4. Assume the
existence of a line L ⊂ P3 such that deg(X ∩ L) ≥ d − 1 and (X ∩ L)red = {p}, i.e., it
is set-theoretically a single point. Therefore rkX(q) = 3 for any q ∈ L \ {p}.

To see this, first notice that rkX(q) > 1 since q ∈ L \X ∩L. By [18, Proposition 5.1]
we have rkX(q) ≤ 3. Assume rkX(q) = 2 and take A ⊂ X such that ♯A = 2 and q ∈ 〈A〉.
Since, by hypothesis, ♯(X ∩ L) = 1, L cannot coincide with 〈A〉, moreover q ∈ 〈A〉 ∩ L
therefore 〈A〉 ∪ L spans a plane Π. If p /∈ A, then deg(X ∩ Π) ≥ 2 + deg(X ∩ L) > d,
a contradiction with degX = d. If p ∈ A, then 〈A〉 ∩ L = {p}, because the lines are
distinct, i.e., L 6= 〈A〉. Thus q = p, a contradiction.
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Construction. All triples (X,L, p) as in the example above can be constructed as
follows. The aim is to give a degree d embedding ϕ : P1 −→ P3 and v ∈ P1 such that
the tangent line L = TpX has order of contact d− 1 with X at p = ϕ(v).

Let z0, z1 be homogeneous coordinates of P1, and x0, x1, x2, x3 be the ones of P3.
Up to projective automorphisms of P1 and P3 (the latter one is the automorphism
acting on the Grassmannian of the targets of the projection, G(3,Pd)), we may assume
v = (1 : 0), p = (1 : 0 : 0 : 0), TpX = {x2 = x3 = 0}, and OpX = {x3 = 0}
be the tangent line and the osculating plane of X at p respectively. Up to the above
actions, we may further assume the morphism ϕ is defined by x0 = zd0 , x1 = a1z1z

d−1
0 ,

x2 = a2z
d−1
1 z0 + bzd1 , x3 = a3z

d
1 with a1a2a3 6= 0. Since a3 6= 0, we may further reduce

to the case b = 0. Taking the automorphism (z0 : z1) 7→ (z0 : tz1), with t = a−1
1 , we may

also assume a1 = 1. Conversely, any parametrization defined by x0 = zd0 , x1 = z1z
d−1
0 ,

x2 = a2z
d−1
1 z0, x3 = a3z

d
1 with a2a3 6= 0 gives the desired rational curve.

Proof of Theorem 1.2: One direction is clear from Example 4.1. For the converse, as-
sume W3 is infinite. Since W3 is a closed algebraic subset of P3, there is an irreducible
curve Γ ⊂ P3 such that Γ ⊆W3 and rkX(q) = 3 for a general q ∈ Γ. Recall that W4 = ∅
by [18, Proposition 5.1]. Let τ(X) ⊂ P3 denote the tangential variety of X, i.e., (since
X is smooth) the union of all tangent lines TpX, p ∈ X. This is an integral surface
containing X in its singular locus. Take an arbitrary point a ∈ P3 such that rkX(a) > 2.
Since σ2(X) = P3, one necessarily has a ∈ τ(X)\X; hence there exists p ∈ X such that
a ∈ TpX.

Fix a general q ∈ Γ ⊆W3. Let πq : P3 \ {q} −→ P2 denote the linear projection away
from q. Since rkX(q) > 1, q /∈ X and so πq|X is a morphism. Set Dq := πq(X). Note
that, since rkX(q) > 2, the map πq|X is injective. Thus Dq is a degree d plane curve
with geometric genus g (its normalization is X).

Call T(q) the set of all p ∈ X such that q ∈ TpX. Since πq|X is injective, we have
Sing(Dq) = πq(T(q)). Fix p ∈ T(q) (we do not claim that such a p is unique). Again,
since πq|X is injective on points, we have that set-theoretically {p} = TpX ∩X.

Let t be a uniformizing parameter of the complete local ring ÔX,p
∼= K[[t]]. We may

choose an affine coordinate system x, y, z around p such that X is locally given by the
formal power series:

x = atl0+1 + · · · ,

y = btl1+2 + · · · ,(2)

z = ctl2+3 + · · · ,

where abc 6= 0 and 0 ≤ l0 ≤ l1 ≤ l2; see, e.g., [22, §2]. (The smoothness of X at p is
equivalent to l0 = 0.) In these coordinates, TpX = {y = z = 0}. Two possibilities arise:
either Γ = TpX or Γ 6= TpX.

(I) Assume Γ = TpX. The linear projection πTpX : P3 \ TpX −→ P1 induces a

non-constant morphism ψ : X \ TpX −→ P1. Since X is smooth, ψ extends to a
non-constant morphism ψ′ : X −→ P1. Since {p} = TpX ∩X (set-theoretically),
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we have deg(TpX ∩X) = l1+2 and hence deg(ψ′) = d− l1− 2. Since X 6= TpX,
we have deg(ψ′) ≥ 1.
(a) Assume deg(ψ′) = 1, i.e., ψ′ : X −→ P1 is a birational morphism. Thus

g = 0. We obtain deg(TpX∩X) = d−1 and hence we are in the assumptions
of Example 4.1.

(b) Assume deg(ψ′) ≥ 2. Since in characteristic zero the affine line A1 is
algebraically simply connected (i.e., it does not admit any nontrivial étale
covering), the morphism ψ′ has at least two distinct ramification points.
Thus, besides {p} = X ∩ TpX, there exists a tangent line Rq to X, such
that Rq 6= TpX and q ∈ Rq. Thus {q} = TpX ∩Rq. Varying q in TpX, we
derive that TpX meets a general tangent line of X, i.e., the differential of
ψ′ is identically zero on X, a contradiction as we are in characteristic zero.

(II) Assume Γ 6= TpX. This means that a single TpX cannot contain the curve
Γ ⊆ W3. Therefore, varying q ∈ Γ, the sets T(q) cover an open subset of X.
Hence for a general q ∈ Γ, we find a point p ∈ T(q), whose sequence (l0, l1, l2)
as in (2) is (0, 0, 0):

Claim. For each p ∈ T(q), the sequence (l0, l1, l2) is (0, 0, 0).

Proof of the Claim. Let B be the set of all a ∈ X such that the
sequence in (2) is not (0, 0, 0), i.e., such that the osculating plane of X
at a has order of contact > 3 with X at a (such a plane is also called
non-ordinary osculating plane). The set B is finite. If it is empty, there
is nothing to prove. Otherwise, we obtain the existence of a ∈ B such
that q ∈ TaX for a general q ∈ Γ. Thus TaX = Γ and so we are in
case (I), which leads to a contradiction.

By the Claim, πq(p) is an ordinary cusp of the plane curve Dq. By step (II), Dq is an
integral degree d plane curve with only ordinary cusps as singularities. Since Dq has
arithmetic genus (d − 1)(d − 2)/2 and geometric genus g, it has (d − 1)(d − 2)/2 − g
(ordinary) cusps. If (d − 1)(d − 2)/2 − g > (21g + 17)/2 (i.e., 23g < d2 − 3d − 15), we
derive a contradiction by the results in [25]. (In fact, Tono’s result is stronger, because
it bounds the number of cusps in term of the geometric genus g, without requiring the
cusps being ordinary.)

Since our cusps are ordinary, there are other upper bounds for their number κ; see
[14, 16]. (When the plane curve is rational, and one has the parameterization, there are
algorithms to describe its singularities, see e.g. [6].) In particular, if d is even, [14, eq.
16] gives

(3) κ ≤ d(5d − 6)/16.

Since in our case κ = (d− 1)(d− 2)/2− g, for d even, we obtain 16g ≥ 3d2 − 16d+ 16,
contradicting our assumption. �

By Castelnuovo’s upper bound for non-degenerate curves [12, 3.12, 3.13, 3.14], the
bounds on the arithmetic genus featured in Theorem 1.2 are quite good, although not
optimal.

Remark 4.2. For g = 1, we cover all even integers ≥ 6, whereas we know that for
(d, g) = (4, 1) we have dimW3 > 0. For g = 1 and arbitrary d, we cover all d ≥ 9.
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Set W 0
3 := {q ∈ P3 | rkX(q) = 3}. As before, recall that for any o ∈ P3, πo :

P3 \{o} −→ P2 denotes the linear projection away from o, and (since o /∈ X), ϕo := πo|X
is a morphism ϕo : X −→ P2.

Remark 4.3. As noticed in the proof of Theorem 1.2, the morphism ϕo is injective if
and only if o ∈ W 0

3 . Hence, if o ∈ W 0
3 , ϕo(X) is a plane curve of degree deg(X) and

geometric genus pa(X) with only unibranch singularities.

Let Σ(X) denote the set of all o ∈ W 0
3 such that ϕo(X) has only ordinary cusps as

singularities.

Theorem 4.4. W 0
3 \ Σ(X) is infinite if and only if X is as in Example 4.1.

Proof. Fix o ∈W 0
3 \Σ(X). By assumption, ϕo(X) is a plane curve with degree deg(X),

only unibranch singularities, but with at least one non-ordinary cusp. Since X is smooth
and ϕo is induced by a linear projection away from o /∈ X, this non-ordinary singularity
of ϕo(X) corresponds to some p ∈ X such that o ∈ TpX and the osculating plane OpX
to X at p has order of contact ℓ2+3 > 3 with X at p [22, §2], i.e., OpX is a non-ordinary
osculating plane.

Assume Σ(X) is infinite. Since Σ(X) is a constructible set and X has only finitely
many non-ordinary osculating planes, we obtain the existence of p ∈ X such that the
tangent line L := TpX is contained in Σ(X) and Σ(X) contains all but finitely many
o ∈ L, i.e., there exists a finite set A ⊂ L such that W 0

3 ⊇ L \ A. By definition of W 0
3 ,

we also see that L ∩ (X \ {p}) = ∅. Hence ℓ1 + 2 := deg(L ∩X) is the order of contact
of L and X at p.

Now the proof proceeds exactly as the proof of Theorem 1.2: once we take the linear
projection away from L, we derive a contradiction. Hence Σ(X) is finite (possibly
empty). Apply Theorem 1.2 and conclude. �

5. Infinitely many curves in P4

This section is devoted to prove Theorem 1.3. For all integers d ≥ 5, we construct
a smooth, rational and non-degenerate degree d curve X ⊂ P4 such that dimW4 = 1.
More precisely, we show dimW4 < 2 and that the locus W4 contains a line.

Let F1 ⊂ P4 be the smooth rational ruled (cubic) surface, the first Hirzebruch surface
[13, §V.2]; this is also the projection of the degree 4 Veronese surface ν2(P2) ⊂ P5 from
a point on itself. Its Picard group is Pic(F1) ∼= Z2; we may take as a basis of Pic(F1),
a fiber f of the ruling of F1 and the only integral curve C0 ⊂ F1 with normal bundle of
degree C2

0 = −1. Note that f2 = 0. The curve C0 is a section of the ruling of F1 and
so C0 · f = 0. The chosen embedding of this surface is the one given by the complete
linear system |C0 + 2f |. In this embedding, the section C0 has degree one, i.e., it is a
line. Moreover, all fibers ℓ ∈ |f | are lines and F1 contains no other line.

We will construct a curve X ⊂ F1 such that W4 ⊇ C0 and dimW4 < 2. Take any
Y ∈ |C0+(d−1)f |. We have deg(Y ) = (C0+(d−1)f) · (C0+2f) = d. Notice that if C0

is not a component of Y we have deg(C0∩Y ) = C0 ·(C0+(d−1)f) = d−2. Furthermore,
if ℓ ∈ |f | and ℓ is not a component of Y , then deg(ℓ ∩ Y ) = f · (C0 + (d− 1)f) = 1.

When Y is integral, it is a smooth rational curve of degree d. Indeed, the genus
formula on the surface F1 implies pa(Y ) = 1 + 1

2 (Y · Y + Y ·KF1
) = 0.
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For all d ≥ 4, Y spans P4, because no element of |C0 + 2f | contains Y . We have
h0(OF1

(C0 + (d− 1)f)) = d+ d− 1, i.e., dim |C0 + (d− 1)f | = 2d− 2.

Lemma 5.1. Fix o ∈ C0 and call E ⊂ C0 the degree (d−2) zero-dimensional subscheme

whose support is {o}. We have dim |IE(C0+(d−1)f)| = d and a general X ∈ |IE(C0+
(d− 1)f)| is smooth.

Proof. The ideal sheaf exact sequence gives dim |IE(C0 + (d − 1)f)| ≥ dim |C0 + (d −
1)f | − deg(E) = 2d − 2 − (d − 2) = d. Since h1(F1,OF1

(C0 + (d − 1)f)) = 0, we have
dim |IE(C0 +(d− 1)f)| = d if and only if h1(F1,IE(C0 +(d− 1)f)) = 0. Since E ⊂ C0,
we have an exact sequence

(4) 0 −→ OF1
((d − 1)f) −→ IE(C0 + (d− 1)f) −→ IE,C0

(C0 + (d− 1)f) −→ 0.

Using [13, Lemma 2.4, V], we have h1(OF1
((d−1)f)) = 0 because d ≥ 2. Since C0

∼= P1

and OC0
(C0 + (d − 1)f) has degree d − 2, we have h1(C0,IE,C0

(C0 + (d − 1)f)) = 0,
because deg(E) = d− 2. We conclude by using the cohomology exact sequence of (4).

Now, let X be a general element of |IE(C0 + (d − 1)f)|. By the genus formula, to
prove that X is smooth, it is sufficient to prove that it is irreducible, i.e., the set of
all reducible Y ∈ |IE(C0 + (d − 1)f)| has dimension < d. First we consider all the
reducible Y ∈ |IE(C0 + (d − 1)f)| containing C0. They are of the form Y = C0 ∪ B
with B ∈ |(d − 1)f |. Hence this set has dimension d − 1. Next we consider the set of
all reducible Y ∈ |IE(C0 + (d − 1)f)| without C0 as component. There is an integer
b such that 1 ≤ b ≤ d − 2 such that Y = B ∪ Y ′ with B ∈ |bf | and Y ′ a smooth
element of |C0 + (d − 1 − b)f)|. Since deg(Y ′ ∩ C0) = d − 2 − b, deg(B ∩ C0) = b and
deg(E) = d − 2, B has to contain the support of E and so B = bfo, where fo is the
unique element of |f | containing o. In other words, B is uniquely determined by o and
hence it is sufficient to prove that the set of all Y ′ has dimension ≤ d− 1. The residual
scheme of E with respect to B is the degree (d − 2 − b) divisor E′ of C0 with support
{o}. Thus Y ′ ∈ |IE′(C0+(d−1− b)f |. However, the first paragraph of the proof shows
dim |IE′(C0 + (d− 1− b)f)| = d− b ≤ d− 1. �

Lemma 5.2. Keeping the notation from above, fix any smooth X ∈ |IE(C0+(d−1)f)|.
Then rkX(q) = 4, for all q ∈ C0 \ {o} and W4 ⊇ C0.

Proof. By [18, Proposition 5.1] we have rkX(q) ≤ 4. Assume rkX(q) ≤ 3 and take a
subscheme S ⊂ X such that ♯S ≤ 3 and q ∈ 〈S〉, evincing its rank. Since d ≥ 5 and C0

is a line, one has 〈E〉 = C0.
First, assume o /∈ S and ♯S = 3 (i.e., 〈S〉 is a plane). Since o is the only point of

X contained in C0, deg(E ∪ S) = d + 1. Since deg(X) = d, we derive 〈E ∪ S〉 = P4.
Hence the line 〈E〉 and the plane 〈S〉 must be disjoint, contradicting the assumption
q ∈ 〈S〉 ∩C0.

Assume o /∈ S and ♯S = 2 (i.e., 〈S〉 is a line). Since deg(E ∪S) = d, the span 〈E ∪S〉
is either a hyperplane or P4, contradicting the assumption that the lines 〈E〉 and 〈S〉
contain q.

Assume o ∈ S and ♯S = 3. The span 〈S〉 is a plane containing o and q and hence
containing C0. Therefore deg(E ∪ S) = d and hence dim〈E ∪ S〉 ≥ 3, contradicting the
inclusions E ⊂ C0 ⊂ 〈S〉. The other cases are analogous and left to the reader. The
second assertion follows from the first one, because C0 is the closure of C0 \ {o}. �
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Remark 5.3. Since σ3(X) = P4 for any non-degenerate curve X ⊂ P4, Lemma 5.1 and
Lemma 5.2 show that in order to construct the desired example it is sufficient to prove
the existence of a smooth X ∈ |IE(C0 + (d− 1)f)| such that dimW4 < 2.

Henceforth we take a general X ∈ |IE(C0 + (d − 1)f)|. From now on, we assume
dimW4 ≥ 2 and take a projective irreducible surface Γ ⊆ W4. Lemma 5.5 will provide
a contradiction.

For any a ∈ X \ {o}, let πa : P4 \ {a} −→ P3 denote the linear projection from a. Call
G ⊂ P3 the closure in P3 of πa(F1\{a}). Since deg(F1) = 3 and F1 is non-degenerate and
irreducible, G is an irreducible quadric surface. Note that πa contracts the line fa ∈ |f |
containing a. We see that πa|F1\fa is an embedding. Thus πa|X\{a} is an embedding.

Since a is a smooth point of X, one has deg(X ′) = d−1. Moreover, πa|X\{a} extends to

a morphism ϕ : X −→ P3 with the image a′ := ϕ(a) corresponding to the tangent line
TaX of X at a.

Set X ′ := ϕ(X). Note that TaX 6= fa, because X · fa = 1. We have a′ /∈ πa(X \{a}),
because deg(TaX ∩ F1) = 2, since TaX 6= fa (and hence TaX * F1) and F1 is scheme-
theoretically cut out by quadrics. For a general a ∈ X (it is in fact sufficient to assume
that the osculating hyperplane to X at a has order of contact 3 with X at a), a′ is a
smooth point of X ′. Thus X ′ is a smooth rational curve of degree d − 1 ≥ 4. By [13,
Ex. V.2.9], G is a smooth quadric surface. Up to a choice of rulings of G, we have
X ′ ∈ |OG(1, d − 2)|.

The surface Γ ⊆ P4 is not a cone for a general a ∈ X, because X spans P4, and the
vertex of a cone is a linear subspace of the ambient space. Thus, for a general a ∈ X,
Γa = πa(Γ \ {a}) ⊂ P3 is a surface. Henceforth, assume a ∈ X general.

Lemma 5.4. We have dimW3(X
′) ≤ 1.

Proof. Since X ′ is a smooth non-degenerate curve, its first secant satisfies σ2(X
′) = P3

and rkX(q) = 2 for all q ∈ P3\τ(X ′). Since τ(X ′) is an irreducible surface, it is sufficient
to prove that rkX′(q) ≤ 2 for a general q ∈ τ(X ′). Fix a general p ∈ X ′. In particular,
we assume that the order of contact of TpX

′ with X ′ at p is 2: if TpX
′ meets X ′ at

another point, then all points of TpX
′ have X ′-rank at most 2. Thus we may assume

deg(TpX ∩X) = 2 and supported at p. Since X ′ is smooth at p and of degree d− 1, the
linear projection πTpX′ : P3 \ TpX

′ −→ P1 away from the line TpX
′ extends to a degree

d− 3 morphism ψ : X ′ −→ P1. Since d ≥ 5, a general fiber of ψ has cardinality at least
two. This is equivalent to say that a general element of TpX has X ′-rank at most 2.
(An analogous algorithm can be found in [3].) �

By Lemma 5.4, we have rkX′(b) ≤ 2 for a general b ∈ Γa. Thus rkX′(πa(q)) ≤ 2 for
a general q ∈ Γ.

Fix a general q ∈ Γ ⊂ W4 and recall that a′ ∈ P3 is the image of a upon taking the
closure of the image πa(X \ {a}). Take S′ ⊂ X ′ such that ♯S′ ≤ 2 and πa(q) ∈ 〈S′〉. If
S′ ⊂ X ′\{a′}, then we may take S′′ ⊂ X\{a} with πa(S

′′) = S′ and hence q ∈ 〈S′′∪{a}〉.
Since ♯(S′′ ∪ {a}) ≤ 3, we derive rkX(q) ≤ 3, a contradiction.

Now assume a′ ∈ S′. We have ♯S′ = 2, because otherwise q ∈ TaX, contradicting the
generality of q. Set {b′} := S′ \{a′}. If ♯(〈S′〉∩X ′) ≥ 3, we may take a′′ ∈ X ′ \{a′} such
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that πa(q) ∈ 〈{a′′, b′}〉 and derive rkX(q) ≤ 3. Thus we may assume 〈S′〉 ∩X ′ = {a′, b′}
(set-theoretically).

Let S(X ′, πa(q)) denote the set of rank-decompositions of πa(q) with respect to X ′.
Since any two different lines through a′ meet only at a′, S′ is the only element of
S(X,πa(q)) containing a

′, because otherwise another one should have contained πa(q) 6=
a′ as well. Thus, to conclude, it is enough to prove that the set S(X ′, πa(q)) contains at
least another decomposition. As mentioned above, since Γ is not a cone with vertex a
(for a general a ∈ X), Γa is a surface. So it is sufficient to prove that |S(X ′, πa(q))| > 1
is satisfied by all points πa(q) /∈ Σ (i.e., possibly outiside some curve Σ) having at least
a decomposition in S(X ′, πa(q)) containing a

′. It is sufficient to apply the next lemma.

Lemma 5.5. Assume d ≥ 5. Let Ca′(X
′) ⊂ P3 be the cone with vertex a′ and X ′ as its

base. There exists a curve Σ ⊂ Ca′(X
′) such that for all points x ∈ Ca′(X

′) \ Σ, with
rkX′(x) = 2, either S(X ′, x) is infinite or |S(X ′, x))| > 1.

Proof. The surface Ca′(X
′) is irreducible and Ca′(X

′) 6= τ(X ′). Therefore they intersect
along a curve, dim (Ca′(X

′) ∩ τ(X ′)) = 1.
Consider all x ∈ Ca′(X

′)\(τ(X ′) ∩ Ca′(X
′)), with rkX′(x) = 2, and suppose S(X ′, x)

is not infinite.
Let πx : P3 \ {x} −→ P2 denote the linear projection away from x. Since x /∈ τ(X ′),

then x /∈ X ′ and πx|X′ is a local embedding. We are assuming S(X ′, x) is finite, i.e.,
πx|X′ is birational onto its image. Note that if there are at least three different points of
X ′ with the same image by πx, then |(S(X ′, x))| ≥ 3. So this case is excluded. Likewise,
if there are t singular points of πx(X

′), we have |(S(X ′, x))| ≥ t, because πx|X′ is a local
embedding and so distinguishes tangent directions.

Thus we may assume that πx(X
′) has a unique singular point, α, which has exactly

two branches, each of them smooth (the case with more branches was excluded above).
Since deg(πx(X

′)) = d− 1, one has pa(πx(X
′)) = (d− 2)(d− 3)/2. Thus α is a tacnode

with arithmetic genus (d− 2)(d− 3)/2, since the normalization of X is rational. Hence
there exist distinct a1, a2 ∈ X ′, such that the plane 〈Ta1X

′ ∪ Ta2X
′〉 contains x and the

order of contact of TaiX
′ with X ′ at ai is at least three.

However, since X ′ is contained in a smooth quadric surface G, each tangent line of
X ′ with order of contact at least three is contained in G. One of the rulings of G is
formed by lines with degree of intersection d − 2 ≥ 3 with X ′. Therefore we may take
as Σ a finite union of lines of G and the curve Ca′(X

′) ∩ τ(X ′). �
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